JPWO2020106824A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020106824A5
JPWO2020106824A5 JP2021527173A JP2021527173A JPWO2020106824A5 JP WO2020106824 A5 JPWO2020106824 A5 JP WO2020106824A5 JP 2021527173 A JP2021527173 A JP 2021527173A JP 2021527173 A JP2021527173 A JP 2021527173A JP WO2020106824 A5 JPWO2020106824 A5 JP WO2020106824A5
Authority
JP
Japan
Prior art keywords
cpe
eyepiece waveguide
region
grating
grating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021527173A
Other languages
Japanese (ja)
Other versions
JP2022509083A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/062386 external-priority patent/WO2020106824A1/en
Publication of JP2022509083A publication Critical patent/JP2022509083A/en
Publication of JPWO2020106824A5 publication Critical patent/JPWO2020106824A5/ja
Priority to JP2023171963A priority Critical patent/JP2023168484A/en
Pending legal-status Critical Current

Links

Description

いくつかの実施形態では、拡張現実ディスプレイシステムのための接眼レンズ導波管は、光学的に透過性の基板と、入力結合格子(ICG)領域と、基板の第1の側上に形成される、第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域とを備え、ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、入力ビームのセットは、接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成する、k-ベクトルのセットと関連付けられ、ICG領域は、誘導ビームとして、それらを基板の中に結合するように、かつ少なくとも部分的に、k-空間環内において、FOV形状を第1の位置に平行移動させるように、入力ビームを回折するように構成され、第1の相互作用を用いて、第1のCPE格子領域は、少なくとも部分的に、k-空間環内において、FOV形状を第1の位置から第2および第3の位置に平行移動させるように、誘導ビームを回折するように構成され、第2の相互作用を用いて、第1のCPE格子領域は、FOV形状を第2および第3の位置からk-空間環の中心に平行移動させるように、誘導ビームを回折するように構成される。
本発明は、例えば、以下の項目を提供する。
(項目1)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の表面のうちの1つ上または前記1つ内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光の入力ビームを受け取り、誘導ビームとして、前記入力ビームを前記基板の中に結合するように構成される、ICG領域と、
前記基板の第1の表面上または前記第1の表面内に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域であって、前記第1のCPE格子領域は、前記誘導ビームを前記ICG領域から受け取り、第1の複数の回折ビームを複数の分散された場所に作成し、第1の複数の出力ビームを外部結合するように位置付けられる、第1のCPE格子領域と、
前記基板の第2の表面上または前記第2の表面内に形成される第2のCPE格子領域であって、前記第2のCPE格子領域は、前記誘導ビームを前記ICG領域から受け取り、第2の複数の回折ビームを複数の分散された場所に作成し、第2の複数の出力ビームを外部結合するように位置付けられる、第2のCPE格子領域と
を備える、接眼レンズ導波管。
(項目2)
前記第1のCPE格子領域は、前記第2の複数の回折ビームを外部結合するように構成され、前記第2のCPE格子領域は、前記第1の複数の回折ビームを外部結合するように構成される、項目1に記載の接眼レンズ導波管。
(項目3)
前記第1および第2の複数の回折ビームは、交互に、前記第1および第2のCPE格子領域と相互作用する、項目2に記載の接眼レンズ導波管。
(項目4)
前記第1のCPE格子領域および前記第2のCPE格子領域は両方とも、複数の周期的に繰り返される回折ラインを備え、前記第1のCPE格子領域の回折ラインは、前記第2のCPE格子領域の回折ラインに対して実質的に60°の角度で配向される、項目1に記載の接眼レンズ導波管。
(項目5)
前記第1および第2のCPE格子領域の回折ラインは、同一周期を有する、項目4に記載の接眼レンズ導波管。
(項目6)
前記第1および第2のCPE格子領域の回折ラインは、共通マスタテンプレートを使用して形成される、項目4に記載の接眼レンズ導波管。
(項目7)
前記ICG領域は、複数の周期的に繰り返される回折ラインを備え、前記ICG領域の回折ラインは、前記第1のCPE格子領域の回折ラインおよび前記第2のCPE格子領域の回折ラインに対して実質的に60°の角度で配向される、項目4に記載の接眼レンズ導波管。
(項目8)
前記ICG領域、前記第1のCPE格子領域、および前記第2のCPE格子領域の回折ラインは、同一周期を有する、項目7に記載の接眼レンズ導波管。
(項目9)
前記第1および第2のCPE格子領域は、少なくとも90%重複する、項目1に記載の接眼レンズ導波管。
(項目10)
前記第1および第2のCPE格子領域は、同一サイズである、項目1に記載の接眼レンズ導波管。
(項目11)
前記第1および第2のCPE格子領域は、相互に整合される、項目10に記載の接眼レンズ導波管。
(項目12)
前記第1のCPE格子領域は、前記ICG領域からの誘導ビームの屈折力の一部を少なくとも2つの方向に回折することによって、前記第1の複数の回折ビームを作成するように構成される、項目1に記載の接眼レンズ導波管。
(項目13)
前記2つの方向のうちの1つは、ゼロ次回折ビームに対応する、項目12に記載の接眼レンズ導波管。
(項目14)
前記第2のCPE格子領域は、前記ICG領域からの誘導ビームの屈折力の一部を少なくとも2つの方向に回折することによって、前記第2の複数の回折ビームを作成するように構成される、項目1に記載の接眼レンズ導波管。
(項目15)
前記2つの方向のうちの1つは、ゼロ次回折ビームに対応する、項目14に記載の接眼レンズ導波管。
(項目16)
前記第1の複数の回折ビームは、第1の方向に伝搬し、前記第2の複数の回折ビームは、前記第1の方向に対して実質的に60°の角度で第2の方向に伝搬する、項目1に記載の接眼レンズ導波管。
(項目17)
前記入力ビームは、コリメートされ、5mm以下の直径を有する、項目1に記載の接眼レンズ導波管。
(項目18)
前記光学的に透過性の基板は、平面である、項目1に記載の接眼レンズ導波管。
(項目19)
前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、項目1に記載の接眼レンズ導波管。
(項目20)
前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、項目19に記載の接眼レンズ導波管。
(項目21)
前記ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、前記接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、
前記ICG領域は、誘導ビームとして、それらを前記基板の中に結合するように、かつ少なくとも部分的に、前記k-空間環内において、前記FOV形状を第1の位置に平行移動させるように、前記入力ビームを回折するように構成され、
前記第1のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を第2の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第2のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を第3の位置に平行移動させるように、前記誘導ビームを回折するように構成される、
項目1に記載の接眼レンズ導波管。
(項目22)
前記k-空間環の中心、前記第1の位置、および前記第2の位置は、k-空間内の第1の正三角形を定義する、項目21に記載の接眼レンズ導波管。
(項目23)
前記k-空間環の中心、前記第1の位置、および前記第3の位置は、k-空間内の第2の正三角形を定義する、項目22に記載の接眼レンズ導波管。
(項目24)
前記k-空間内の第1および第2の正三角形は、一辺を共有する、項目23に記載の接眼レンズ導波管。
(項目25)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
入力結合格子(ICG)領域と、
第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域と、
第2のCPE格子領域と
を備え、
前記ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、前記接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、
前記ICG領域は、誘導ビームとして、それらを前記基板の中に結合するように、かつ少なくとも部分的に、前記k-空間環内において、前記FOV形状を第1の位置に平行移動させるように、前記入力ビームを回折するように構成され、
前記第1のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第2の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第2のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第1のCPE格子領域は、前記FOV形状を前記第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第2のCPE格子領域は、前記FOV形状を前記第2の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
接眼レンズ導波管。
(項目26)
前記k-空間環の中心、前記第1の位置、および前記第2の位置は、k-空間内の第1の正三角形を定義する、項目25に記載の接眼レンズ導波管。
(項目27)
前記k-空間環の中心、前記第1の位置、および前記第3の位置は、k-空間内の第2の正三角形を定義する、項目26に記載の接眼レンズ導波管。
(項目28)
前記k-空間内の第1および第2の正三角形は、一辺を共有する、項目27に記載の接眼レンズ導波管。
(項目29)
前記第1のCPE格子領域および前記第2のCPE格子領域は、前記光学的に透過性の基板の対向側上または前記対向側内に形成される、項目25に記載の接眼レンズ導波管。
(項目30)
前記誘導ビームは、交互に、前記第1および第2のCPE格子領域と相互作用する、項目25に記載の接眼レンズ導波管。
(項目31)
前記第1のCPE格子領域と関連付けられる一次格子ベクトルは、前記第2のCPE格子領域と関連付けられる一次格子ベクトルと同一大きさを有する、項目25に記載の接眼レンズ導波管。
(項目32)
前記ICG領域と関連付けられる一次格子ベクトルは、前記第1のCPE格子領域と関連付けられる一次格子ベクトル、および、前記第2のCPE格子領域と関連付けられる一次格子ベクトルと同一大きさを有する、項目31に記載の接眼レンズ導波管。
(項目33)
前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、項目25に記載の接眼レンズ導波管。
(項目34)
前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、項目33に記載の接眼レンズ導波管。
(項目35)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の表面のうちの1つ上または前記1つ内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光のビームを受け取り、誘導伝搬モードにおいて、前記ビームを前記基板の中に結合するように構成される、ICG領域と、
前記基板の第1の表面上または前記第1の表面内に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域であって、前記第1のCPE格子領域は、前記ICG領域からの光のビームを受け取るように位置付けられ、前記第1のCPE格子領域は、第1の相互作用を用いて、前記ビームの伝搬方向を改変し、第2の相互作用を用いて、前記ビームを前記接眼レンズ導波管から外部結合するように構成される、複数の回折特徴を備える、第1のCPE格子領域と
を備える、接眼レンズ導波管。
(項目36)
前記第1のCPE格子領域の複数の回折特徴は、少なくとも2つの方向に周期性を呈する、項目35に記載の接眼レンズ導波管。
(項目37)
前記第1のCPE格子領域の複数の回折特徴は、相互に対して実質的に60°の角度で配向される第1および第2の方向に周期性を呈する、項目36に記載の接眼レンズ導波管。
(項目38)
前記ICG領域は、前記第1の方向および前記第2の方向の両方に対して実質的に60°の角度で配向される第3の方向に周期性を呈する複数の回折特徴を備える、項目37に記載の接眼レンズ導波管。
(項目39)
前記基板の第2の表面上または前記第2の表面内に形成される第2のCPE格子領域をさらに備え、前記第2のCPE格子領域は、第1の相互作用を用いて、前記ビームの伝搬方向を改変し、第2の相互作用を用いて、前記ビームを前記接眼レンズ導波管から外部結合するように構成される、複数の回折特徴を備える、項目35に記載の接眼レンズ導波管。
(項目40)
前記第1および第2のCPE格子領域は、同じである、項目39に記載の接眼レンズ導波管。
(項目41)
前記基板は、前記ビームが、前記誘導伝搬モードへと結合された後、前記ICG領域と相互作用することを防止するために十分に大きい厚さを有する、項目39に記載の接眼レンズ導波管。
(項目42)
前記ビームは、コリメートされ、5mm以下の直径を有する、項目35に記載の接眼レンズ導波管。
(項目43)
前記光学的に透過性の基板は、平面である、項目35に記載の接眼レンズ導波管。
(項目44)
前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、項目35に記載の接眼レンズ導波管。
(項目45)
前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、項目44に記載の接眼レンズ導波管。
(項目46)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
入力結合格子(ICG)領域と、
前記基板の第1の側上に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域と
を備え、
前記ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、前記接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、
前記ICG領域は、誘導ビームとして、それらを前記基板の中に結合するように、かつ少なくとも部分的に、前記k-空間環内において、前記FOV形状を第1の位置に平行移動させるように、前記入力ビームを回折するように構成され、
第1の相互作用を用いて、前記第1のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第2および第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
第2の相互作用を用いて、前記第1のCPE格子領域は、前記FOV形状を前記第2および第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
接眼レンズ導波管。
(項目47)
前記k-空間環の中心、前記第1の位置、および前記第2の位置は、k-空間内の第1の正三角形を定義する、項目46に記載の接眼レンズ導波管。
(項目48)
前記k-空間環の中心、前記第1の位置、および前記第3の位置は、k-空間内の第2の正三角形を定義する、項目47に記載の接眼レンズ導波管。
(項目49)
前記k-空間内の第1および第2の正三角形は、一辺を共有する、項目48に記載の接眼レンズ導波管。
(項目50)
前記基板の第2の側上に形成される第2のCPE格子領域をさらに備え、
第1の相互作用を用いて、前記第2のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から前記第2および第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
第2の相互作用を用いて、前記第2のCPE格子領域は、前記FOV形状を前記第2および第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
項目46に記載の接眼レンズ導波管。
(項目51)
前記第2のCPE格子領域は、前記接眼レンズ導波管からの出力ビームの密度を増加させる、項目50に記載の接眼レンズ導波管。
(項目52)
前記第2のCPE格子領域は、少なくとも4倍、前記出力ビームの密度を増加させる、項目51に記載の接眼レンズ導波管。
In some embodiments, an eyepiece waveguide for an augmented reality display system is formed on an optically transparent substrate, an input coupling grating (ICG) region, and a first side of the substrate. , a first combined pupil expander-extractor (CPE) grating region, the ICG region configured to receive a plurality of sets of input beams of light, the sets of input beams being directed to the eyepiece. Associated with a set of k-vectors that form a field-of-view (FOV) shape centered in the k-space ring associated with the wave tube, the ICG regions are coupled into the substrate as guided beams. and at least partially configured to diffract the input beam to translate the FOV shape to a first position within the k-space annulus, using the first interaction to produce a first The CPE grating region is configured, at least in part, to diffract the stimulation beam to translate the FOV shape from the first position to the second and third positions within the k-space annulus; With the interaction of 2, the first CPE grating region is configured to diffract the stimulated beam so as to translate the FOV shape from the second and third positions to the center of the k-space ring. .
The present invention provides, for example, the following items.
(Item 1)
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transmissive substrate having a first surface and a second surface;
an input coupling grating (ICG) region formed on or within one of the surfaces of said substrate, said ICG region receiving an input beam of light and said input beam as a stimulating beam; an ICG region configured to bond into the substrate;
A first combined pupil expander-extractor (CPE) grating region formed on or within a first surface of said substrate, said first CPE grating region comprising said a first CPE grating region positioned to receive a stimulating beam from said ICG region, produce a first plurality of diffracted beams at a plurality of distributed locations, and out-couple a first plurality of output beams; ,
a second CPE grating region formed on or within the second surface of the substrate, the second CPE grating region receiving the stimulated beam from the ICG region; a second CPE grating region positioned to produce a plurality of diffracted beams of at a plurality of distributed locations and out-couple a second plurality of output beams;
an eyepiece waveguide.
(Item 2)
the first CPE grating region configured to outcouple the second plurality of diffracted beams and the second CPE grating region configured to outcouple the first plurality of diffracted beams 2. An eyepiece waveguide according to item 1, wherein the eyepiece waveguide is
(Item 3)
3. The eyepiece waveguide of item 2, wherein the first and second plurality of diffracted beams alternately interact with the first and second CPE grating regions.
(Item 4)
Both the first CPE grating region and the second CPE grating region comprise a plurality of periodically repeating diffraction lines, the diffraction lines of the first CPE grating region being aligned with the diffraction lines of the second CPE grating region. 2. An eyepiece waveguide according to item 1, oriented at an angle of substantially 60° to the diffraction line of .
(Item 5)
5. The eyepiece waveguide of item 4, wherein the diffraction lines of the first and second CPE grating regions have the same period.
(Item 6)
5. The eyepiece waveguide of item 4, wherein the diffraction lines of the first and second CPE grating regions are formed using a common master template.
(Item 7)
The ICG region comprises a plurality of periodically repeating diffraction lines, and the diffraction lines of the ICG region are substantially relative to the diffraction lines of the first CPE grating region and the diffraction lines of the second CPE grating region. 5. An eyepiece waveguide according to item 4, oriented at an angle of 60°.
(Item 8)
8. The eyepiece waveguide of item 7, wherein the diffraction lines of the ICG region, the first CPE grating region and the second CPE grating region have the same period.
(Item 9)
The eyepiece waveguide of item 1, wherein the first and second CPE grating regions overlap at least 90%.
(Item 10)
2. The eyepiece waveguide of item 1, wherein the first and second CPE grating regions are the same size.
(Item 11)
11. The eyepiece waveguide of item 10, wherein the first and second CPE grating regions are mutually aligned.
(Item 12)
the first CPE grating region is configured to diffract a portion of the refractive power of the stimulated beam from the ICG region in at least two directions to create the first plurality of diffracted beams; An eyepiece waveguide according to item 1.
(Item 13)
13. The eyepiece waveguide of item 12, wherein one of said two directions corresponds to a zero order diffracted beam.
(Item 14)
the second CPE grating region is configured to create the second plurality of diffracted beams by diffracting a portion of the refractive power of the stimulated beam from the ICG region in at least two directions; An eyepiece waveguide according to item 1.
(Item 15)
15. The eyepiece waveguide of item 14, wherein one of said two directions corresponds to a zero order diffracted beam.
(Item 16)
The first plurality of diffracted beams propagates in a first direction and the second plurality of diffracted beams propagates in a second direction at an angle substantially 60° with respect to the first direction. An eyepiece waveguide according to item 1, wherein
(Item 17)
An eyepiece waveguide according to item 1, wherein the input beam is collimated and has a diameter of 5 mm or less.
(Item 18)
An eyepiece waveguide according to item 1, wherein the optically transmissive substrate is planar.
(Item 19)
The eyepiece waveguide of item 1, wherein the eyepiece waveguide is incorporated into an eyepiece for an augmented reality display system.
(Item 20)
20. The eyepiece waveguide of item 19, wherein the eyepiece is configured to display color images in multiple depth planes.
(Item 21)
The ICG region is configured to receive a set of input beams of light, the set of input beams having a field-of-view (FOV) shape centered in a k-space annulus associated with the eyepiece waveguide. associated with a set of k-vectors forming
the ICG regions as guided beams to couple them into the substrate and at least partially translate the FOV shape to a first position within the k-space annulus; configured to diffract the input beam;
the first CPE grating region is configured, at least in part, to diffract the stimulation beam to translate the FOV shape to a second position within the k-space annulus;
the second CPE grating region is configured, at least in part, to diffract the stimulation beam to translate the FOV shape to a third position within the k-space annulus;
An eyepiece waveguide according to item 1.
(Item 22)
22. The eyepiece waveguide of item 21, wherein the center of the k-space ring, the first location and the second location define a first equilateral triangle in k-space.
(Item 23)
23. The eyepiece waveguide of item 22, wherein the center of the k-space ring, the first position and the third position define a second equilateral triangle in k-space.
(Item 24)
24. The eyepiece waveguide of item 23, wherein the first and second equilateral triangles in k-space share one side.
(Item 25)
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transparent substrate;
an input coupling grid (ICG) region;
a first combined pupil expander-extractor (CPE) grating region;
a second CPE grating region; and
with
The ICG region is configured to receive a set of input beams of light, the set of input beams having a field-of-view (FOV) shape centered in a k-space annulus associated with the eyepiece waveguide. associated with a set of k-vectors forming
the ICG regions as guided beams to couple them into the substrate and at least partially translate the FOV shape to a first position within the k-space annulus; configured to diffract the input beam;
The first CPE grating region is adapted, at least in part, to diffract the stimulation beam to translate the FOV shape from the first position to a second position within the k-space annulus. configured to
The second CPE grating region is configured to, at least partially, diffract the stimulation beam to translate the FOV shape from the first position to a third position within the k-space annulus. configured to
the first CPE grating region is configured to diffract the stimulating beam to translate the FOV shape from the third location to the center of the k-space ring;
the second CPE grating region is configured to diffract the stimulated beam to translate the FOV shape from the second location to the center of the k-space ring;
Eyepiece waveguide.
(Item 26)
26. The eyepiece waveguide of item 25, wherein the center of the k-space ring, the first position and the second position define a first equilateral triangle in k-space.
(Item 27)
27. The eyepiece waveguide of item 26, wherein the center of the k-space ring, the first position and the third position define a second equilateral triangle in k-space.
(Item 28)
28. The eyepiece waveguide of item 27, wherein the first and second equilateral triangles in k-space share one side.
(Item 29)
26. The eyepiece waveguide of item 25, wherein the first CPE grating region and the second CPE grating region are formed on or in opposite sides of the optically transparent substrate.
(Item 30)
26. The eyepiece waveguide of item 25, wherein the stimulated beams alternately interact with the first and second CPE grating regions.
(Item 31)
26. The eyepiece waveguide of item 25, wherein the primary grating vectors associated with the first CPE grating region have the same magnitude as the primary grating vectors associated with the second CPE grating region.
(Item 32)
in item 31, wherein the primary lattice vectors associated with the ICG regions have the same magnitude as the primary lattice vectors associated with the first CPE lattice regions and the primary lattice vectors associated with the second CPE lattice regions. An eyepiece waveguide as described.
(Item 33)
26. The eyepiece waveguide of item 25, wherein the eyepiece waveguide is incorporated into an eyepiece for an augmented reality display system.
(Item 34)
34. An eyepiece waveguide according to item 33, wherein the eyepiece is configured to display color images in multiple depth planes.
(Item 35)
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transmissive substrate having a first surface and a second surface;
An incoupling grating (ICG) region formed on or within one of the surfaces of the substrate, the ICG region receiving a beam of light and transmitting the beam in a guided propagation mode to the an ICG region configured to bond into a substrate;
A first combined pupil expander-extractor (CPE) grating region formed on or within a first surface of said substrate, said first CPE grating region comprising said positioned to receive a beam of light from an ICG region, the first CPE grating region using a first interaction to modify the propagation direction of the beam; a first CPE grating region comprising a plurality of diffractive features configured to outcouple the beam from the eyepiece waveguide;
an eyepiece waveguide.
(Item 36)
36. The eyepiece waveguide of item 35, wherein the plurality of diffractive features of the first CPE grating region exhibits periodicity in at least two directions.
(Item 37)
37. An ocular lens guide according to item 36, wherein the plurality of diffractive features of the first CPE grating region exhibit periodicity in first and second directions oriented at angles of substantially 60° with respect to each other. Wave tube.
(Item 38)
Item 37, wherein said ICG region comprises a plurality of diffractive features exhibiting periodicity in a third direction oriented at an angle of substantially 60° with respect to both said first direction and said second direction. The eyepiece waveguide as described in .
(Item 39)
further comprising a second CPE grating region formed on or within the second surface of the substrate, the second CPE grating region using the first interaction to direct the beam to 36. The eyepiece waveguide of item 35, comprising a plurality of diffractive features configured to alter propagation direction and out-couple the beam from the eyepiece waveguide using a second interaction. tube.
(Item 40)
40. The eyepiece waveguide of item 39, wherein the first and second CPE grating regions are the same.
(Item 41)
40. An eyepiece waveguide according to item 39, wherein the substrate has a thickness sufficiently large to prevent the beam from interacting with the ICG region after being coupled into the guided propagation mode. .
(Item 42)
36. The eyepiece waveguide of item 35, wherein the beam is collimated and has a diameter of 5 mm or less.
(Item 43)
36. The eyepiece waveguide of item 35, wherein the optically transmissive substrate is planar.
(Item 44)
36. The eyepiece waveguide of item 35, wherein the eyepiece waveguide is incorporated into an eyepiece for an augmented reality display system.
(Item 45)
45. The eyepiece waveguide of item 44, wherein the eyepiece is configured to display color images in multiple depth planes.
(Item 46)
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transparent substrate;
an input coupling grid (ICG) region;
a first combined pupil expander-extractor (CPE) grating region formed on a first side of the substrate;
with
The ICG region is configured to receive a set of input beams of light, the set of input beams having a field-of-view (FOV) shape centered in a k-space annulus associated with the eyepiece waveguide. associated with a set of k-vectors forming
the ICG regions as guided beams to couple them into the substrate and at least partially translate the FOV shape to a first position within the k-space annulus; configured to diffract the input beam;
With a first interaction, the first CPE grating region at least partially parallels the FOV shape from the first position to second and third positions within the k-space annulus. configured to diffract the directed beam so as to move;
Using a second interaction, the first CPE grating region diffracts the stimulating beam to translate the FOV shape from the second and third positions to the center of the k-space ring. configured to
Eyepiece waveguide.
(Item 47)
47. The eyepiece waveguide of item 46, wherein the center of the k-space ring, the first position and the second position define a first equilateral triangle in k-space.
(Item 48)
48. The eyepiece waveguide of item 47, wherein the center of the k-space ring, the first position and the third position define a second equilateral triangle in k-space.
(Item 49)
49. The eyepiece waveguide of item 48, wherein the first and second equilateral triangles in k-space share a side.
(Item 50)
further comprising a second CPE grating region formed on a second side of said substrate;
Using a first interaction, the second CPE grating region moves, at least in part, the FOV shape from the first position to the second and third positions within the k-space annulus. configured to diffract the directed beam so as to translate;
Using a second interaction, the second CPE grating region diffracts the stimulating beam to translate the FOV shape from the second and third positions to the center of the k-space ring. configured to
47. An eyepiece waveguide according to item 46.
(Item 51)
51. The eyepiece waveguide of item 50, wherein the second CPE grating region increases the density of the output beam from the eyepiece waveguide.
(Item 52)
52. The eyepiece waveguide of item 51, wherein said second CPE grating region increases the density of said output beam by at least a factor of four.

Claims (25)

拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
入力結合格子(ICG)領域と、
第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域と、
第2のCPE格子領域と
を備え、
前記ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、前記接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、
前記ICG領域は、誘導ビームとして、それらを前記基板の中に結合するように、かつ少なくとも部分的に、前記k-空間環内において、前記FOV形状を第1の位置に平行移動させるように、前記入力ビームを回折するように構成され、
前記第1のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第2の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第2のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第1のCPE格子領域は、前記FOV形状を前記第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成され、
前記第2のCPE格子領域は、前記FOV形状を前記第2の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
接眼レンズ導波管。
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transparent substrate;
an input coupling grating (ICG) region;
a first combined pupil expander-extractor (CPE) grating region;
a second CPE grating region;
The ICG region is configured to receive a set of input beams of light, the set of input beams having a field-of-view (FOV) shape centered in a k-space annulus associated with the eyepiece waveguide. associated with a set of k-vectors forming
the ICG regions as guided beams to couple them into the substrate and at least partially translate the FOV shape to a first position within the k-space annulus; configured to diffract the input beam;
The first CPE grating region is adapted, at least in part, to diffract the stimulation beam to translate the FOV shape from the first position to a second position within the k-space annulus. configured to
The second CPE grating region is configured to, at least partially, diffract the stimulation beam to translate the FOV shape from the first position to a third position within the k-space annulus. configured to
the first CPE grating region is configured to diffract the stimulating beam to translate the FOV shape from the third location to the center of the k-space ring;
the second CPE grating region is configured to diffract the stimulated beam to translate the FOV shape from the second location to the center of the k-space ring;
Eyepiece waveguide.
前記k-空間環の中心、前記第1の位置、および前記第2の位置は、k-空間内の第1の正三角形を定義する、請求項に記載の接眼レンズ導波管。 2. The eyepiece waveguide of claim 1 , wherein the center of the k-space ring, the first position, and the second position define a first equilateral triangle in k-space. 前記k-空間環の中心、前記第1の位置、および前記第3の位置は、k-空間内の第2の正三角形を定義する、請求項に記載の接眼レンズ導波管。 3. The eyepiece waveguide of claim 2 , wherein the center of the k-space ring, the first location, and the third location define a second equilateral triangle in k-space. 前記k-空間内の前記第1および第2の正三角形は、一辺を共有する、請求項に記載の接眼レンズ導波管。 4. The eyepiece waveguide of claim 3 , wherein said first and second equilateral triangles in said k-space share a side. 前記第1のCPE格子領域および前記第2のCPE格子領域は、前記光学的に透過性の基板の対向側上または前記対向側内に形成される、請求項に記載の接眼レンズ導波管。 2. The eyepiece waveguide of claim 1 , wherein the first CPE grating region and the second CPE grating region are formed on or in opposite sides of the optically transparent substrate. . 前記誘導ビームは、交互に、前記第1および第2のCPE格子領域と相互作用する、請求項に記載の接眼レンズ導波管。 2. The eyepiece waveguide of claim 1 , wherein said stimulating beams alternately interact with said first and second CPE grating regions. 前記第1のCPE格子領域と関連付けられる一次格子ベクトルは、前記第2のCPE格子領域と関連付けられる一次格子ベクトルと同一大きさを有する、請求項に記載の接眼レンズ導波管。 2. The eyepiece waveguide of claim 1 , wherein the primary grating vectors associated with the first CPE grating region have the same magnitude as the primary grating vectors associated with the second CPE grating region. 前記ICG領域と関連付けられる一次格子ベクトルは、前記第1のCPE格子領域と関連付けられる前記一次格子ベクトル、および、前記第2のCPE格子領域と関連付けられる前記一次格子ベクトルと同一大きさを有する、請求項に記載の接眼レンズ導波管。 primary lattice vectors associated with the ICG regions have the same magnitude as the primary lattice vectors associated with the first CPE lattice region and the primary lattice vectors associated with the second CPE lattice region; 8. An eyepiece waveguide according to claim 7 . 前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、請求項に記載の接眼レンズ導波管。 2. The eyepiece waveguide of claim 1 , wherein the eyepiece waveguide is incorporated into an eyepiece for an augmented reality display system. 前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、請求項に記載の接眼レンズ導波管。 10. The eyepiece waveguide of claim 9 , wherein the eyepiece is configured to display color images in multiple depth planes. 拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の前記表面のうちの1つ上または前記1つ内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光のビームを受け取り、誘導伝搬モードにおいて、前記ビームを前記基板の中に結合するように構成される、ICG領域と、
前記基板の前記第1の表面上または前記第1の表面内に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域であって、前記第1のCPE格子領域は、前記ICG領域からの前記光のビームを受け取るように位置付けられ、前記第1のCPE格子領域は、少なくとも2つの方向に周期性を呈する複数の回折特徴を備え、前記複数の回折特徴は、第1の相互作用を用いて、前記ビームの伝搬方向を改変し、第2の相互作用を用いて、前記ビームを前記接眼レンズ導波管から外部結合するように構成される第1のCPE格子領域と
を備え、前記第1のCPE格子領域の前記複数の回折特徴は、相互に対して実質的に60°の角度で配向される第1および第2の方向に周期性を呈し、
前記ICG領域は、前記第1の方向および前記第2の方向の両方に対して実質的に60°の角度で配向される第3の方向に周期性を呈する複数の回折特徴を備える、接眼レンズ導波管。
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transmissive substrate having a first surface and a second surface;
An input coupling grating (ICG) region formed on or within one of said surfaces of said substrate, said ICG region receiving a beam of light and transmitting said beam in a guided propagation mode. an ICG region configured to bond into the substrate;
a first combined pupil expander-extractor (CPE) grating region formed on or within the first surface of the substrate, the first CPE grating region comprising: Positioned to receive the beam of light from the ICG region, the first CPE grating region comprises a plurality of diffractive features exhibiting periodicity in at least two directions, the plurality of diffractive features comprising a first a first CPE grating region configured to modify the direction of propagation of said beam using an interaction of and outcouple said beam from said eyepiece waveguide using a second interaction and wherein the plurality of diffractive features of the first CPE grating region exhibit periodicity in first and second directions oriented at angles of substantially 60° relative to each other;
The ICG region comprises a plurality of diffractive features exhibiting periodicity in a third direction oriented at an angle of substantially 60° with respect to both the first direction and the second direction. waveguide.
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の前記表面のうちの1つ上または前記1つ内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光のビームを受け取り、誘導伝搬モードにおいて、前記ビームを前記基板の中に結合するように構成される、ICG領域と、
前記基板の前記第1の表面上または前記第1の表面内に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域であって、前記第1のCPE格子領域は、前記ICG領域からの前記光のビームを受け取るように位置付けられ、前記第1のCPE格子領域は、少なくとも2つの方向に周期性を呈する複数の回折特徴を備え、前記複数の回折特徴は、第1の相互作用を用いて、前記ビームの伝搬方向を改変し、第2の相互作用を用いて、前記ビームを前記接眼レンズ導波管から外部結合するように構成される、第1のCPE格子領域と、
前記基板の前記第2の表面上または前記第2の表面内に形成される第2のCPE格子領域であって、前記第2のCPE格子領域は、第1の相互作用を用いて、前記ビームの伝搬方向を改変し、第2の相互作用を用いて、前記ビームを前記接眼レンズ導波管から外部結合するように構成される数の回折特徴を備える、第2のCPE格子領域と
を備える、接眼レンズ導波管。
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transmissive substrate having a first surface and a second surface;
An input coupling grating (ICG) region formed on or within one of said surfaces of said substrate, said ICG region receiving a beam of light and transmitting said beam in a guided propagation mode. an ICG region configured to bond into the substrate;
a first combined pupil expander-extractor (CPE) grating region formed on or within the first surface of the substrate, the first CPE grating region comprising: Positioned to receive the beam of light from the ICG region, the first CPE grating region comprises a plurality of diffractive features exhibiting periodicity in at least two directions, the plurality of diffractive features comprising a first a first CPE grating region configured to modify the direction of propagation of said beam using an interaction of and outcouple said beam from said eyepiece waveguide using a second interaction When,
A second CPE grating region formed on or within the second surface of the substrate, the second CPE grating region using a first interaction to direct the beam to a second CPE grating region comprising a plurality of diffractive features configured to alter the direction of propagation of and outcouple the beam from the eyepiece waveguide using a second interaction;
an eyepiece waveguide.
前記第1および第2のCPE格子領域は、同じである、請求項12に記載の接眼レンズ導波管。 13. The eyepiece waveguide of claim 12 , wherein the first and second CPE grating regions are the same. 前記基板は、前記ビームが、前記誘導伝搬モードへと結合された後、前記ICG領域と相互作用することを防止するために十分に大きい厚さを有する、請求項12に記載の接眼レンズ導波管。 13. The eyepiece waveguide of claim 12 , wherein the substrate has a thickness sufficiently large to prevent the beam from interacting with the ICG region after being coupled into the guided propagation mode. tube. 前記ビームは、コリメートされ、5mm以下の直径を有する、請求項11に記載の接眼レンズ導波管。 12. The eyepiece waveguide of claim 11 , wherein the beam is collimated and has a diameter of 5 mm or less. 前記光学的に透過性の基板は、平面である、請求項11に記載の接眼レンズ導波管。 12. The eyepiece waveguide of claim 11 , wherein said optically transmissive substrate is planar. 前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、請求項11に記載の接眼レンズ導波管。 12. The eyepiece waveguide of claim 11 , wherein the eyepiece waveguide is incorporated into an eyepiece for an augmented reality display system. 前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、請求項17に記載の接眼レンズ導波管。 18. The eyepiece waveguide of claim 17 , wherein the eyepiece is configured to display color images in multiple depth planes. 拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
入力結合格子(ICG)領域と、
前記基板の第1の側上に形成される第1の組み合わせられた瞳エクスパンダ-抽出器(CPE)格子領域と
を備え、
前記ICG領域は、複数の光の入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、前記接眼レンズ導波管と関連付けられるk-空間環の中心に位置する視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、
前記ICG領域は、誘導ビームとして、それらを前記基板の中に結合するように、かつ少なくとも部分的に、前記k-空間環内において、前記FOV形状を第1の位置に平行移動させるように、前記入力ビームを回折するように構成され、
第1の相互作用を用いて、前記第1のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から第2および第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
第2の相互作用を用いて、前記第1のCPE格子領域は、前記FOV形状を前記第2および第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
接眼レンズ導波管。
An eyepiece waveguide for an augmented reality display system, the eyepiece waveguide comprising:
an optically transparent substrate;
an input coupling grating (ICG) region;
a first combined pupil expander-extractor (CPE) grating region formed on a first side of the substrate;
The ICG region is configured to receive a set of input beams of light, the set of input beams having a field-of-view (FOV) shape centered in a k-space annulus associated with the eyepiece waveguide. associated with a set of k-vectors forming
the ICG regions as guided beams to couple them into the substrate and at least partially translate the FOV shape to a first position within the k-space annulus; configured to diffract the input beam;
With a first interaction, the first CPE grating region at least partially parallels the FOV shape from the first position to second and third positions within the k-space annulus. configured to diffract the directed beam so as to move;
Using a second interaction, the first CPE grating region diffracts the stimulating beam to translate the FOV shape from the second and third positions to the center of the k-space ring. configured to
Eyepiece waveguide.
前記k-空間環の中心、前記第1の位置、および前記第2の位置は、k-空間内の第1の正三角形を定義する、請求項19に記載の接眼レンズ導波管。 20. The eyepiece waveguide of claim 19, wherein the center of the k-space ring, the first location, and the second location define a first equilateral triangle in k-space. 前記k-空間環の中心、前記第1の位置、および前記第3の位置は、k-空間内の第2の正三角形を定義する、請求項20に記載の接眼レンズ導波管。 21. The eyepiece waveguide of claim 20 , wherein the center of the k-space ring, the first location, and the third location define a second equilateral triangle in k-space. 前記k-空間内の前記第1および第2の正三角形は、一辺を共有する、請求項21に記載の接眼レンズ導波管。 22. The eyepiece waveguide of claim 21 , wherein said first and second equilateral triangles in said k-space share a side. 前記基板の第2の側上に形成される第2のCPE格子領域をさらに備え、
第1の相互作用を用いて、前記第2のCPE格子領域は、少なくとも部分的に、前記k-空間環内において、前記FOV形状を前記第1の位置から前記第2および第3の位置に平行移動させるように、前記誘導ビームを回折するように構成され、
第2の相互作用を用いて、前記第2のCPE格子領域は、前記FOV形状を前記第2および第3の位置から前記k-空間環の中心に平行移動させるように、前記誘導ビームを回折するように構成される、
請求項19に記載の接眼レンズ導波管。
further comprising a second CPE grating region formed on a second side of said substrate;
Using a first interaction, the second CPE grating region moves, at least in part, the FOV shape from the first position to the second and third positions within the k-space annulus. configured to diffract the directed beam so as to translate;
Using a second interaction, the second CPE grating region diffracts the stimulating beam to translate the FOV shape from the second and third positions to the center of the k-space ring. configured to
20. An eyepiece waveguide according to claim 19 .
前記第2のCPE格子領域は、前記接眼レンズ導波管からの出力ビームの密度を増加させる、請求項23に記載の接眼レンズ導波管。 24. The eyepiece waveguide of claim 23 , wherein the second CPE grating region increases the density of the output beam from the eyepiece waveguide. 前記第2のCPE格子領域は、少なくとも4倍、前記出力ビームの密度を増加させる、請求項24に記載の接眼レンズ導波管。

25. The eyepiece waveguide of claim 24 , wherein said second CPE grating region increases the density of said output beam by a factor of at least 4.

JP2021527173A 2018-11-20 2019-11-20 Eyepieces for augmented reality display systems Pending JP2022509083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023171963A JP2023168484A (en) 2018-11-20 2023-10-03 Eyepieces for augmented reality display system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862769933P 2018-11-20 2018-11-20
US62/769,933 2018-11-20
PCT/US2019/062386 WO2020106824A1 (en) 2018-11-20 2019-11-20 Eyepieces for augmented reality display system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023171963A Division JP2023168484A (en) 2018-11-20 2023-10-03 Eyepieces for augmented reality display system

Publications (2)

Publication Number Publication Date
JP2022509083A JP2022509083A (en) 2022-01-20
JPWO2020106824A5 true JPWO2020106824A5 (en) 2022-11-30

Family

ID=70727859

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021527173A Pending JP2022509083A (en) 2018-11-20 2019-11-20 Eyepieces for augmented reality display systems
JP2023171963A Pending JP2023168484A (en) 2018-11-20 2023-10-03 Eyepieces for augmented reality display system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023171963A Pending JP2023168484A (en) 2018-11-20 2023-10-03 Eyepieces for augmented reality display system

Country Status (5)

Country Link
US (3) US11237393B2 (en)
EP (1) EP3884337A4 (en)
JP (2) JP2022509083A (en)
CN (1) CN113302546A (en)
WO (1) WO2020106824A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
CN107873086B (en) 2015-01-12 2020-03-20 迪吉伦斯公司 Environmentally isolated waveguide display
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
WO2017060665A1 (en) 2015-10-05 2017-04-13 Milan Momcilo Popovich Waveguide display
KR20190082303A (en) 2016-11-18 2019-07-09 매직 립, 인코포레이티드 Waveguide Optical Multiplexer Using Crossed Gratings
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
IL307783A (en) 2017-01-23 2023-12-01 Magic Leap Inc Eyepiece for virtual, augmented, or mixed reality systems
US10852547B2 (en) 2017-12-15 2020-12-01 Magic Leap, Inc. Eyepieces for augmented reality display system
US11237393B2 (en) 2018-11-20 2022-02-01 Magic Leap, Inc. Eyepieces for augmented reality display system
EP3924759A4 (en) 2019-02-15 2022-12-28 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
GB201903708D0 (en) * 2019-03-19 2019-05-01 Wave Optics Ltd Improved angular uniformity waveguide for augmented or virtual reality
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
KR20220054386A (en) 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. Vacuum Bragg grating and manufacturing method thereof
US20210132387A1 (en) * 2019-11-05 2021-05-06 Facebook Technologies, Llc Fluid lens with output grating
EP4154051A4 (en) * 2020-05-22 2024-08-14 Magic Leap Inc Method and system for dual projector waveguide displays with wide field of view
EP4139607A4 (en) * 2020-06-09 2023-12-27 Vuzix Corporation Image light guide with zoned diffractive optic
US20230266599A1 (en) * 2020-07-09 2023-08-24 Vuzix Corporation Image light guide with compound diffractive optical element and the head-mounted display made therewith
JP2023541447A (en) * 2020-09-16 2023-10-02 マジック リープ, インコーポレイテッド Eyepiece for augmented reality display system
US20230118998A1 (en) * 2021-10-15 2023-04-20 Applied Materials, Inc. Waveguide combiners having arrangements for image uniformity
CN116068768A (en) * 2022-03-15 2023-05-05 嘉兴驭光光电科技有限公司 Diffraction optical waveguide and display device having the same
CN114647082A (en) * 2022-04-02 2022-06-21 深圳市光舟半导体技术有限公司 Pupil expanding device, binocular display method and image display method
CN114935790B (en) * 2022-07-21 2022-09-27 北京驭光科技发展有限公司 Diffractive optical waveguide and display device
FI20225929A1 (en) * 2022-10-13 2024-04-14 Dispelix Oy Display structure
WO2024091654A1 (en) * 2022-10-28 2024-05-02 Applied Materials, Inc. Enhanced pupil replication using fold grating for eyepieces in near-eye displays
CN115903122B (en) * 2023-01-06 2023-06-06 北京至格科技有限公司 Grating waveguide device and waveguide system for augmented reality display
WO2024178217A1 (en) * 2023-02-23 2024-08-29 Google Llc Waveguides for displays constructed from a combination of flat and curved surfaces using plural incouplers

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693544A (en) 1982-12-14 1987-09-15 Nippon Sheet Glass Co., Ltd. Optical branching device with internal waveguide
GB8318863D0 (en) 1983-07-12 1983-08-10 Secr Defence Thermochromic liquid crystal displays
JPS62269174A (en) 1986-05-18 1987-11-21 Ricoh Co Ltd Optical path splitting and color separating optical device in color copying machine
WO1988009917A1 (en) 1987-06-04 1988-12-15 Walter Lukosz Optical modulation and measurement process
US4991924A (en) 1989-05-19 1991-02-12 Cornell Research Foundation, Inc. Optical switches using cholesteric or chiral nematic liquid crystals and method of using same
US5082354A (en) 1989-08-29 1992-01-21 Kaiser Aerospace And Electronics Corporation Optical switch and color selection assembly
JPH0384516A (en) 1989-08-29 1991-04-10 Fujitsu Ltd Three-dimensional display device
GB2249387B (en) 1990-10-11 1995-01-25 Holtronic Technologies Ltd Apparatus for and a method of transverse position measurement in proximity lithographic systems
DE69221102T2 (en) 1991-12-20 1998-01-08 Fujitsu Ltd Liquid crystal display device with different divided orientation areas
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US6219015B1 (en) 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
SE470454B (en) 1992-08-26 1994-04-11 Ericsson Telefon Ab L M Optical filter device
FR2707781B1 (en) 1993-07-16 1995-09-01 Idmatic Sa Flexible card equipped with a validity control device.
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
WO1996027148A1 (en) 1995-02-28 1996-09-06 Philips Electronics N.V. Electro-optical device
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
JP3649818B2 (en) 1996-09-19 2005-05-18 富士通ディスプレイテクノロジーズ株式会社 Liquid crystal display
US5915051A (en) 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
US6181393B1 (en) 1997-12-26 2001-01-30 Kabushiki Kaisha Toshiba Liquid crystal display device and method of manufacturing the same
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
US6785447B2 (en) 1998-10-09 2004-08-31 Fujitsu Limited Single and multilayer waveguides and fabrication process
US6690845B1 (en) 1998-10-09 2004-02-10 Fujitsu Limited Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6723396B1 (en) 1999-08-17 2004-04-20 Western Washington University Liquid crystal imprinting
JP2001091715A (en) 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp Composite diffraction device
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
GB9928126D0 (en) 1999-11-30 2000-01-26 Secr Defence Bistable nematic liquid crystal device
US7460200B2 (en) 2000-03-27 2008-12-02 Helwett-Packard Development Company, L.P. Liquid crystal alignment
US6649715B1 (en) 2000-06-27 2003-11-18 Clemson University Fluoropolymers and methods of applying fluoropolymers in molding processes
US6816290B2 (en) 2000-07-05 2004-11-09 Sony Corporation Image display element, and image display device
IL137625A0 (en) 2000-08-01 2001-10-31 Sensis Ltd Detector for an electrophoresis apparatus
TW540228B (en) 2000-11-03 2003-07-01 Actuality Systems Inc Three-dimensional display systems
US6795138B2 (en) 2001-01-11 2004-09-21 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and novel process for its manufacture
EP1227347A1 (en) 2001-01-29 2002-07-31 Rolic AG Optical device and method for manufacturing same
US6735224B2 (en) 2001-03-01 2004-05-11 Applied Optoelectronics, Inc. Planar lightwave circuit for conditioning tunable laser output
GB2374081B (en) 2001-04-06 2004-06-09 Central Research Lab Ltd A method of forming a liquid crystal polymer layer
KR100701442B1 (en) 2001-05-10 2007-03-30 엘지.필립스 엘시디 주식회사 Application Method of Liquid Crystal using ink jet system
US6542671B1 (en) 2001-12-12 2003-04-01 Super Light Wave Corp. Integrated 3-dimensional multi-layer thin-film optical couplers and attenuators
US6998196B2 (en) 2001-12-28 2006-02-14 Wavefront Technology Diffractive optical element and method of manufacture
GB0201132D0 (en) 2002-01-18 2002-03-06 Epigem Ltd Method of making patterned retarder
JP3768901B2 (en) 2002-02-28 2006-04-19 松下電器産業株式会社 Manufacturing method of three-dimensional optical waveguide
GB0215153D0 (en) 2002-07-01 2002-08-07 Univ Hull Luminescent compositions
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7070405B2 (en) 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US6982818B2 (en) 2002-10-10 2006-01-03 Nuonics, Inc. Electronically tunable optical filtering modules
WO2004036302A1 (en) 2002-10-17 2004-04-29 Zbd Displays Ltd. Liquid crystal alignment layer
JP3551187B2 (en) 2002-11-28 2004-08-04 セイコーエプソン株式会社 Optical element, illumination device, and projection display device
TW556031B (en) 2003-01-17 2003-10-01 Chunghwa Picture Tubes Ltd Non-rubbing liquid crystal alignment method
JP2004247947A (en) 2003-02-13 2004-09-02 Olympus Corp Optical apparatus
US7341348B2 (en) 2003-03-25 2008-03-11 Bausch & Lomb Incorporated Moiré aberrometer
JP2007526620A (en) 2003-06-06 2007-09-13 ザ・ジェネラル・ホスピタル・コーポレイション Wavelength tuning source device and method
US7400447B2 (en) 2003-09-03 2008-07-15 Canon Kabushiki Kaisha Stereoscopic image display device
US7058261B2 (en) 2003-09-04 2006-06-06 Sioptical, Inc. Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling
WO2005036211A2 (en) 2003-10-17 2005-04-21 Explay Ltd. Optical system and method for use in projection systems
US7122482B2 (en) 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
EP1688783B1 (en) 2003-11-27 2009-10-14 Asahi Glass Company Ltd. Optical element using liquid crystal having optical isotropy
US7385660B2 (en) 2003-12-08 2008-06-10 Sharp Kabushiki Kaisha Liquid crystal display device for transflector having opening in a first electrode for forming a liquid crystal domain and openings at first and second corners of the domain on a second electrode
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
GB2411735A (en) 2004-03-06 2005-09-07 Sharp Kk Control of liquid crystal alignment in an optical device
CN101174028B (en) 2004-03-29 2015-05-20 索尼株式会社 Optical device and virtual image display device
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
WO2005103771A1 (en) 2004-04-23 2005-11-03 Parriaux Olivier M High efficiency optical diffraction device
US7140861B2 (en) 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
JP2005316314A (en) 2004-04-30 2005-11-10 Casio Comput Co Ltd Image pickup device
JP4631308B2 (en) 2004-04-30 2011-02-16 ソニー株式会社 Image display device
DE602005022874D1 (en) 2004-06-03 2010-09-23 Molecular Imprints Inc FLUID AND DROP EXPOSURE AS REQUIRED FOR MANUFACTURE IN THE NANO AREA
USD514570S1 (en) 2004-06-24 2006-02-07 Microsoft Corporation Region of a fingerprint scanning device with an illuminated ring
JP2008509438A (en) 2004-08-06 2008-03-27 ユニヴァーシティ オブ ワシントン Optical display device scanned with variable fixed viewing distance
JP4720424B2 (en) 2004-12-03 2011-07-13 コニカミノルタホールディングス株式会社 Optical device manufacturing method
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
EP1825306B1 (en) 2004-12-13 2012-04-04 Nokia Corporation System and method for beam expansion with near focus in a display device
US7585424B2 (en) 2005-01-18 2009-09-08 Hewlett-Packard Development Company, L.P. Pattern reversal process for self aligned imprint lithography and device
US8537310B2 (en) 2005-03-01 2013-09-17 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
KR101281401B1 (en) 2005-03-01 2013-07-02 더치 폴리머 인스티튜트 Polarization gratings in mesogenic films
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
EP1938152B1 (en) 2005-06-03 2012-08-15 Nokia Corporation General diffractive optics method for expanding an exit pupil
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
WO2007036936A1 (en) 2005-09-28 2007-04-05 Mirage Innovations Ltd. Stereoscopic binocular system, device and method
JP4810949B2 (en) 2005-09-29 2011-11-09 ソニー株式会社 Optical device and image display device
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
JP2007265581A (en) 2006-03-30 2007-10-11 Fujinon Sano Kk Diffraction element
ITTO20060303A1 (en) 2006-04-26 2007-10-27 Consiglio Nazionale Ricerche LETTER OF ASSIGNMENT FOLLOWS
JP2009539128A (en) 2006-06-02 2009-11-12 ノキア コーポレイション Color distribution in exit pupil magnifier
EP2033040B1 (en) 2006-06-02 2020-04-29 Magic Leap, Inc. Stereoscopic exit pupil expander display
US20080043166A1 (en) 2006-07-28 2008-02-21 Hewlett-Packard Development Company Lp Multi-level layer
US20100177388A1 (en) 2006-08-23 2010-07-15 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
EP2076813B1 (en) 2006-09-28 2017-12-20 Nokia Technologies Oy Beam expansion with three-dimensional diffractive elements
US20100277803A1 (en) 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
WO2008081071A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Light guide plate and a method of manufacturing thereof
WO2008081070A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Device for expanding an exit pupil in two dimensions
CN101222009A (en) 2007-01-12 2008-07-16 清华大学 Led
US7394841B1 (en) 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
US8339566B2 (en) 2007-04-16 2012-12-25 North Carolina State University Low-twist chiral liquid crystal polarization gratings and related fabrication methods
US8305523B2 (en) 2007-04-16 2012-11-06 North Carolina State University Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
EP2153266B1 (en) 2007-06-04 2020-03-11 Magic Leap, Inc. A diffractive beam expander and a virtual display based on a diffractive beam expander
EP2485075B1 (en) 2007-06-14 2014-07-16 Nokia Corporation Displays with integrated backlighting
US20140300695A1 (en) 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US7990543B1 (en) 2007-08-31 2011-08-02 California Institute Of Technology Surface characterization based on optical phase shifting interferometry
EP2215513B1 (en) 2007-10-18 2015-05-20 BAE Systems PLC Improvements in or relating to head mounted display systems
JP4395802B2 (en) 2007-11-29 2010-01-13 ソニー株式会社 Image display device
EP2225592B1 (en) 2007-12-18 2015-04-22 Nokia Technologies OY Exit pupil expanders with wide field-of-view
JP5151518B2 (en) 2008-02-07 2013-02-27 ソニー株式会社 Optical device and image display device
ES2562063T3 (en) 2008-02-14 2016-03-02 Nokia Technologies Oy Device and method to determine the direction of the gaze
US8757812B2 (en) 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber
JP5651595B2 (en) 2008-10-09 2015-01-14 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
ES2721600T5 (en) 2008-12-12 2022-04-11 Bae Systems Plc Improvements in or related to waveguides
ES2644595T3 (en) 2009-04-14 2017-11-29 Bae Systems Plc Optical waveguide and display device
EP2425291B1 (en) 2009-04-29 2022-10-19 BAE Systems PLC Head mounted display
JP2010271565A (en) 2009-05-22 2010-12-02 Seiko Epson Corp Head-mounted display device
US8178011B2 (en) 2009-07-29 2012-05-15 Empire Technology Development Llc Self-assembled nano-lithographic imprint masks
JP2011071500A (en) 2009-08-31 2011-04-07 Fujifilm Corp Pattern transfer apparatus and pattern forming method
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
JP5059079B2 (en) 2009-10-21 2012-10-24 キヤノン株式会社 Laminated diffractive optical element and optical system
US20120206485A1 (en) 2010-02-28 2012-08-16 Osterhout Group, Inc. Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
JP5631776B2 (en) 2010-03-03 2014-11-26 株式会社東芝 LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME
US9753297B2 (en) 2010-03-04 2017-09-05 Nokia Corporation Optical apparatus and method for expanding an exit pupil
NL2006747A (en) 2010-07-26 2012-01-30 Asml Netherlands Bv Imprint lithography alignment method and apparatus.
US9406166B2 (en) 2010-11-08 2016-08-02 Seereal Technologies S.A. Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
CA2822978C (en) 2010-12-24 2019-02-19 Hong Hua An ergonomic head mounted display device and optical system
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
CA2824148C (en) 2011-01-14 2016-01-05 Jx Nippon Oil & Energy Corporation Method for producing mold for minute pattern transfer, method for producing diffraction grating using the same, and method for producing organic el element including the diffraction grating
US20130321747A1 (en) 2011-02-15 2013-12-05 Sharp Kabushiki Kaisha Liquid crystal display device
US9046729B2 (en) 2011-03-24 2015-06-02 The Hong Kong University Of Science And Technology Cholesteric liquid crystal structure
GB2505111B (en) 2011-04-18 2015-12-02 Bae Systems Plc A projection display
CN103635891B (en) 2011-05-06 2017-10-27 奇跃公司 The world is presented in a large amount of digital remotes simultaneously
JP5713961B2 (en) 2011-06-21 2015-05-07 キヤノン株式会社 Position detection apparatus, imprint apparatus, and position detection method
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2760363A4 (en) 2011-09-29 2015-06-24 Magic Leap Inc Tactile glove for human-computer interaction
US9715067B1 (en) * 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
GB201117480D0 (en) 2011-10-10 2011-11-23 Palikaras George Filter
US8885161B2 (en) 2011-10-12 2014-11-11 Spectroclick, Inc. Energy dispersion device
CN104011788B (en) 2011-10-28 2016-11-16 奇跃公司 For strengthening and the system and method for virtual reality
US9170436B2 (en) 2011-10-31 2015-10-27 Hewlett-Packard Development Company, L.P. Luminescent stacked waveguide display
KR102440195B1 (en) 2011-11-23 2022-09-02 매직 립, 인코포레이티드 Three dimensional virtual and augmented reality display system
US9575366B2 (en) 2011-12-29 2017-02-21 The Hong Kong University Of Science And Technology Fast switchable and high diffraction efficiency grating ferroelectric liquid crystal cell
JP5957972B2 (en) 2012-03-07 2016-07-27 セイコーエプソン株式会社 Virtual image display device
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
WO2013144898A2 (en) 2012-03-29 2013-10-03 Ecole Polytechnique Federale De Lausanne (Epfl) Methods and apparatus for imaging with multimode optical fibers
BR112014024941A2 (en) 2012-04-05 2017-09-19 Magic Leap Inc Active Focusing Wide-field Imaging Device
CN102683803B (en) 2012-04-28 2015-04-22 深圳光启高等理工研究院 Commercial liquid crystal display screen based on metamaterial satellite antenna
WO2013167864A1 (en) * 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US20130314765A1 (en) 2012-05-25 2013-11-28 The Trustees Of Boston College Metamaterial Devices with Environmentally Responsive Materials
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
CN104737061B (en) 2012-06-11 2018-01-16 奇跃公司 Use more depth plane three dimensional displays of the waveguided reflector arrays projector
US10578946B2 (en) 2012-07-27 2020-03-03 Seereal Technologies S.A. Polarization gratings for oblique incidence angles
US8911080B2 (en) 2012-08-27 2014-12-16 Johnson & Johnson Vision Care, Inc. Usage compliance indicator for contact lenses
US8885997B2 (en) 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
US9810948B2 (en) 2012-09-05 2017-11-07 Sharp Kabushiki Kaisha Spatial light modulator comprising a liquid crystal device having reduced stray light
US9345402B2 (en) 2012-09-11 2016-05-24 Augmented Vision, Inc. Compact eye imaging and eye tracking apparatus
JP2015534108A (en) 2012-09-11 2015-11-26 マジック リープ, インコーポレイテッド Ergonomic head mounted display device and optical system
US10108266B2 (en) 2012-09-27 2018-10-23 The Board Of Trustees Of The University Of Illinois Haptic augmented and virtual reality system for simulation of surgical procedures
US10073201B2 (en) 2012-10-26 2018-09-11 Qualcomm Incorporated See through near-eye display
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014120325A2 (en) 2012-11-19 2014-08-07 The Arizona Board Of Regents On Behalf Of The Universiy Of Arizona Optical elements comprising cholesteric liquid crystal polymers
WO2014091204A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
EP2767852A1 (en) 2013-02-15 2014-08-20 BAE Systems PLC Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
IL283193B (en) 2013-01-15 2022-08-01 Magic Leap Inc System for scanning electromagnetic imaging radiation
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
KR102067759B1 (en) 2013-02-15 2020-01-17 삼성전자주식회사 Fiber scanning projector
IL313175A (en) 2013-03-11 2024-07-01 Magic Leap Inc System and method for augmented and virtual reality
NZ735754A (en) 2013-03-15 2019-04-26 Magic Leap Inc Display system and method
JP6449236B2 (en) 2013-03-25 2019-01-09 インテル コーポレイション Method and apparatus for a multiple exit pupil head mounted display
JP6241762B2 (en) 2013-03-28 2017-12-06 パナソニックIpマネジメント株式会社 Image display device
WO2014172252A1 (en) 2013-04-15 2014-10-23 Kent State University Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions
JP2014224846A (en) 2013-05-15 2014-12-04 セイコーエプソン株式会社 Display device
DE102013105246B4 (en) 2013-05-22 2017-03-23 Leonhard Kurz Stiftung & Co. Kg Optically variable element
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
US10228242B2 (en) 2013-07-12 2019-03-12 Magic Leap, Inc. Method and system for determining user input based on gesture
KR102089661B1 (en) 2013-08-27 2020-03-17 삼성전자주식회사 Wire grid polarizer and liquid crystal display panel and liquid crystal display device having the same
JP6187045B2 (en) 2013-08-30 2017-08-30 セイコーエプソン株式会社 Optical device and image display apparatus
IL295157B2 (en) 2013-10-16 2023-10-01 Magic Leap Inc Virtual or augmented reality headsets having adjustable interpupillary distance
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
CN107315249B (en) 2013-11-27 2021-08-17 奇跃公司 Virtual and augmented reality systems and methods
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
KR102067229B1 (en) 2013-11-27 2020-02-12 엘지디스플레이 주식회사 Liquid crystal display apparatus and manufacturing method of the same
WO2015091277A1 (en) 2013-12-19 2015-06-25 Bae Systems Plc Improvements in and relating to waveguides
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
NZ722904A (en) 2014-01-31 2020-05-29 Magic Leap Inc Multi-focal display system and method
CN111552079B (en) 2014-01-31 2022-04-15 奇跃公司 Multi-focus display system and method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9395544B2 (en) 2014-03-13 2016-07-19 Google Inc. Eyepiece with switchable reflector for head wearable display
AU2015297036B2 (en) 2014-05-09 2017-09-28 Google Llc Systems and methods for discerning eye signals and continuous biometric identification
USD759657S1 (en) 2014-05-19 2016-06-21 Microsoft Corporation Connector with illumination region
CA3124368C (en) 2014-05-30 2023-04-25 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
USD752529S1 (en) 2014-06-09 2016-03-29 Comcast Cable Communications, Llc Electronic housing with illuminated region
EP3123215B1 (en) 2014-07-31 2023-03-29 ImagineOptix Corporation Bragg liquid crystal polarization gratings
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US10746994B2 (en) 2014-08-07 2020-08-18 Microsoft Technology Licensing, Llc Spherical mirror having a decoupled aspheric
KR102213662B1 (en) 2014-08-22 2021-02-08 삼성전자주식회사 Acousto-optic element array
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
CA2962899C (en) 2014-09-29 2022-10-04 Robert Dale Tekolste Architectures and methods for outputting different wavelength light out of waveguides
US20160097930A1 (en) 2014-10-06 2016-04-07 Steven John Robbins Microdisplay optical system having two microlens arrays
US9912408B2 (en) 2014-10-28 2018-03-06 Luxtera, Inc. Method and system for silicon photonics wavelength division multiplexing transceivers
WO2016082031A1 (en) 2014-11-24 2016-06-02 Lensvector Inc. Liquid crystal beam control device with improved zone transition and method of manufacture thereof
WO2016113533A2 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Holographic waveguide light field displays
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US20160234485A1 (en) 2015-02-09 2016-08-11 Steven John Robbins Display System
US20160231567A1 (en) 2015-02-09 2016-08-11 Pasi Saarikko Display System
US9632226B2 (en) * 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
GB2539166A (en) 2015-03-10 2016-12-14 Colour Holographic Ltd Holographically-projected virtual retinal display
EP4173550A1 (en) 2015-03-16 2023-05-03 Magic Leap, Inc. Diagnosing and treating health ailments
US10591869B2 (en) 2015-03-24 2020-03-17 Light Field Lab, Inc. Tileable, coplanar, flat-panel 3-D display with tactile and audio interfaces
EP3278169B1 (en) 2015-04-02 2022-05-04 University of Rochester Freeform nanostructured surface for virtual and augmented reality near eye display
CN107615136B (en) 2015-04-08 2021-05-11 迪斯帕列斯有限公司 Optical see-through display element and device using such element
USD758367S1 (en) 2015-05-14 2016-06-07 Magic Leap, Inc. Virtual reality headset
US10690826B2 (en) 2015-06-15 2020-06-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
KR102390375B1 (en) 2015-08-26 2022-04-25 삼성전자주식회사 Backlight unit and 3D image display apparatus
WO2017053382A1 (en) 2015-09-23 2017-03-30 Magic Leap, Inc. Eye imaging with an off-axis imager
KR102633000B1 (en) 2015-11-04 2024-02-01 매직 립, 인코포레이티드 Eye-tracking based dynamic display calibration
KR102404944B1 (en) 2015-11-06 2022-06-08 삼성디스플레이 주식회사 Display substrate and liquid crystal display comprising the same
US10234686B2 (en) * 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
US9671615B1 (en) 2015-12-01 2017-06-06 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using wide-spectrum imager
DE102015122055B4 (en) * 2015-12-17 2018-08-30 Carl Zeiss Ag Optical system and method for transmitting a source image
NZ743790A (en) 2016-01-12 2023-01-27 Magic Leap Inc Beam angle sensor in virtual/augmented reality system
USD805734S1 (en) 2016-03-04 2017-12-26 Nike, Inc. Shirt
USD794288S1 (en) 2016-03-11 2017-08-15 Nike, Inc. Shoe with illuminable sole light sequence
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
US10067347B2 (en) 2016-04-13 2018-09-04 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
US10061124B2 (en) * 2016-04-29 2018-08-28 Microsoft Technology Licensing, Llc Robust architecture for large field of view components
US10353202B2 (en) 2016-06-09 2019-07-16 Microsoft Technology Licensing, Llc Wrapped waveguide with large field of view
US20170373459A1 (en) 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
JP2018004950A (en) 2016-07-01 2018-01-11 フォーブ インコーポレーテッド Video display system, video display method, and video display program
CN106101691A (en) 2016-07-31 2016-11-09 吴考寅 A kind of picture depth Display Technique
TWI728175B (en) 2016-08-22 2021-05-21 美商魔法飛躍股份有限公司 Dithering methods and apparatus for wearable display device
WO2018039468A1 (en) 2016-08-26 2018-03-01 Molecular Imprints, Inc. Edge sealant confinement and halo reduction for optical devices
US10534179B1 (en) 2016-10-18 2020-01-14 Meta View, Inc. Image projection systems and methods
US10551622B2 (en) 2016-10-26 2020-02-04 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
KR20190082303A (en) 2016-11-18 2019-07-09 매직 립, 인코포레이티드 Waveguide Optical Multiplexer Using Crossed Gratings
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
IL266669B2 (en) 2016-11-18 2023-11-01 Magic Leap Inc Spatially variable liquid crystal diffraction gratings
CN110178077B (en) 2016-11-18 2022-08-30 奇跃公司 Multilayer liquid crystal diffraction grating for redirecting light with a wide range of incident angles
EP4002000A1 (en) 2016-12-08 2022-05-25 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
CN116778120A (en) * 2016-12-13 2023-09-19 奇跃公司 Augmented reality display system
KR102550742B1 (en) 2016-12-14 2023-06-30 매직 립, 인코포레이티드 Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10185151B2 (en) * 2016-12-20 2019-01-22 Facebook Technologies, Llc Waveguide display with a small form factor, a large field of view, and a large eyebox
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
IL307783A (en) * 2017-01-23 2023-12-01 Magic Leap Inc Eyepiece for virtual, augmented, or mixed reality systems
IL268115B2 (en) 2017-01-27 2024-01-01 Magic Leap Inc Antireflection coatings for metasurfaces
US11243450B2 (en) 2017-01-30 2022-02-08 The Charles Stark Draper Laboratory, Inc. Saw modulator having optical power component for extended angular redirection of light
EP3583461A4 (en) 2017-02-15 2020-03-04 Magic Leap, Inc. Projector architecture incorporating artifact mitigation
KR102483970B1 (en) 2017-02-23 2022-12-30 매직 립, 인코포레이티드 Variable-focus virtual image devices based on polarization conversion
IL269085B2 (en) 2017-03-21 2023-12-01 Magic Leap Inc Stacked waveguides having different diffraction gratings for combined field of view
CN110637249B (en) 2017-03-21 2022-07-01 奇跃公司 Optical device, head-mounted display, imaging system and method of imaging an object
EP3635456A4 (en) * 2017-06-13 2021-01-13 Vuzix Corporation Image light guide with expanded light distribution overlapping gratings
EP4296753A3 (en) 2017-09-21 2024-06-12 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
US10852547B2 (en) 2017-12-15 2020-12-01 Magic Leap, Inc. Eyepieces for augmented reality display system
IL276099B1 (en) 2018-01-31 2024-06-01 Magic Leap Inc Method and system for large field of view display with scanning mirror having optical power
CN113168009A (en) 2018-09-26 2021-07-23 奇跃公司 Diffractive optical element with optical power
US11237393B2 (en) 2018-11-20 2022-02-01 Magic Leap, Inc. Eyepieces for augmented reality display system
JP6711428B2 (en) 2019-01-30 2020-06-17 ソニー株式会社 Image processing apparatus, image processing method and program
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
JP7297548B2 (en) * 2019-06-21 2023-06-26 株式会社日立エルジーデータストレージ Method for manufacturing light guide plate, method for manufacturing light guide plate module, and method for manufacturing image display device

Similar Documents

Publication Publication Date Title
JPWO2020106824A5 (en)
CN109073884B (en) Waveguide exit pupil expander with improved intensity distribution
EP3347761B1 (en) Imaging light guide with reflective turning array
KR102493252B1 (en) waveguide structure
JP6714797B2 (en) Diffractive optical waveguide device for expanding exit pupil
WO2022048502A1 (en) Optical waveguide apparatus for ar device and method for manufacturing optical waveguide apparatus, and ar device
CN112630969B (en) Grating waveguide display device
US11598970B2 (en) Imaging light guide with reflective turning array
JP2022060344A5 (en)
EP2419780B1 (en) Optical waveguide and display device
CN113325506A (en) Holographic optical waveguide lens and augmented reality display device
US11994684B2 (en) Image light guide with zoned diffractive optic
CN113495319A (en) Optical structure and optical device
CN113777707A (en) Optical structure and optical device
JP2021528688A (en) Waveguide rotary grid design for optimum efficiency
US20230417974A1 (en) Image light guide with zoned diffractive optic
WO2021169383A1 (en) Apparatus for displaying augmented reality image, and system comprising apparatus
CN114236819A (en) Waveguide display two-dimensional pupil expanding method based on polarizer holographic grating
CN211928226U (en) Optical waveguide lens and three-dimensional display device
CN116171401A (en) Image light guide with composite diffractive optical element and head-mounted display made therefrom
CN114675421A (en) Augmented reality near-to-eye display device
WO2022159716A1 (en) Image light guide with compound in-coupling diffractive optic
WO2023220133A1 (en) Dual index waveguide stack
CN115681888A (en) Diffractive waveguide optical element and near-to-eye display device
JPWO2022060743A5 (en)