JPWO2020105687A1 - Electrolyte analysis method and electrolyte analyzer - Google Patents

Electrolyte analysis method and electrolyte analyzer Download PDF

Info

Publication number
JPWO2020105687A1
JPWO2020105687A1 JP2020557599A JP2020557599A JPWO2020105687A1 JP WO2020105687 A1 JPWO2020105687 A1 JP WO2020105687A1 JP 2020557599 A JP2020557599 A JP 2020557599A JP 2020557599 A JP2020557599 A JP 2020557599A JP WO2020105687 A1 JPWO2020105687 A1 JP WO2020105687A1
Authority
JP
Japan
Prior art keywords
electrolytic solution
light
emission information
light emission
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020557599A
Other languages
Japanese (ja)
Other versions
JP7227984B2 (en
Inventor
北川 雄一
廣瀬 潤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Publication of JPWO2020105687A1 publication Critical patent/JPWO2020105687A1/en
Application granted granted Critical
Publication of JP7227984B2 publication Critical patent/JP7227984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

本発明は、電解液に前処理を施すことなく迅速かつ非破壊で分析するものであり、電荷のキャリアとなるイオン性物質を有機溶媒に添加してなる電解液Sに測定光L1を照射して、電解液Sから生じる二次光L2を検出する二次光検出工程と、二次光検出工程により検出された二次光L2から、電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報を特定する発光情報特定工程と、発光情報特定工程により特定された発光情報を用いて、電解液Sを分析する電解液分析工程とを備える。 According to the present invention, the electrolytic solution is analyzed quickly and non-destructively without pretreatment, and the electrolytic solution S obtained by adding an ionic substance serving as a charge carrier to an organic solvent is irradiated with measurement light L1. When the secondary light L2 for detecting the secondary light L2 generated from the electrolytic solution S and the secondary light L2 detected by the secondary light detection step are used to irradiate the component of the electrolytic solution S with the measurement light L1. It is provided with a light emission information specifying step for specifying light emission information that does not appear in the above, and an electrolytic solution analysis step for analyzing the electrolytic solution S using the light emission information specified by the light emission information specifying step.

Description

本発明は、電解液分析方法及び電解液分析装置に関するものである。 The present invention relates to an electrolytic solution analysis method and an electrolytic solution analyzer.

従来、リチウムイオン二次電池の電解液を分析する方法としては、特許文献1に示すように、液体クロマトグラフィー質量分析計(LC−MS)やガスクロマトグラフィー質量分析計(GC−MS)などを用いたものが考えられている。 Conventionally, as a method for analyzing an electrolytic solution of a lithium ion secondary battery, as shown in Patent Document 1, a liquid chromatography mass spectrometer (LC-MS), a gas chromatography mass spectrometer (GC-MS), or the like is used. The one used is considered.

しかしながら、上記の方法では、液体クロマトグラフィーやガスクロマトグラフィーなどにより電解液を各成分単体に分離して分析することになり、ありのままの電解液の状態を測定することは困難である。 However, in the above method, the electrolytic solution is separated into individual components for analysis by liquid chromatography, gas chromatography, or the like, and it is difficult to measure the state of the electrolytic solution as it is.

特表2018−515770号公報Special Table 2018-515770

ところで、本願発明者は、電荷のキャリアとなるイオン性物質を溶媒に添加してなる電解液を各成分単体に分離することなく非破壊で測定することを検討しており、電解液に励起光を照射した際に電解液から生じる発光を検出することにより、電解液を分析することを考えている。 By the way, the inventor of the present application is studying non-destructive measurement of an electrolytic solution obtained by adding an ionic substance serving as a charge carrier to a solvent without separating each component into individual components, and excitation light is applied to the electrolytic solution. We are thinking of analyzing the electrolytic solution by detecting the luminescence generated from the electrolytic solution when the electrolyte is irradiated.

この発光分析において、本願発明者がリチウムイオン二次電池用電解液を構成する各単成分に励起光を照射したところ、図9に示すように、各成分単体からの顕著な発光が検出されないことが分かった。なお、図9に示すデータは、励起−発光マトリックス(EEM)データであり、すなわち各波長の励起光を照射した際に得られる各発光波長における光強度を測定したものである。「LiPF粉末」のEEMデータに見られる対角線方向へ伸びる強い光強度は、レイリー散乱による光を検出したものである。また、図9の「EC100%」のEEMデータなどに見られる対角方向へ伸びる光強度は、C−H結合に由来するラマン散乱に相当する。In this luminescence analysis, when the inventor of the present application irradiates each single component constituting the electrolytic solution for a lithium ion secondary battery with excitation light, as shown in FIG. 9, remarkable luminescence from each component alone is not detected. I found out. The data shown in FIG. 9 is excitation-emission matrix (EEM) data, that is, the light intensity at each emission wavelength obtained when the excitation light of each wavelength is irradiated is measured. The strong light intensity extending diagonally, which is seen in the EEM data of "LiPF 6 powder", is the detection of light due to Rayleigh scattering. Further, the light intensity extending diagonally as seen in the EEM data of “EC 100%” in FIG. 9 corresponds to Raman scattering derived from the CH bond.

一方で、電解液を各成分単体に分離することなくそのままの状態で励起光を照射したところ、図2に示すように、電解液からの発光が検出されることが分かった。 On the other hand, when the electrolytic solution was irradiated with excitation light as it was without being separated into individual components, it was found that light emission from the electrolytic solution was detected as shown in FIG.

そこで本発明は、上記の現象を利用して、電解液に前処理を施すことなく迅速かつ非破壊で分析することをその主たる課題とするものである。 Therefore, the main object of the present invention is to utilize the above phenomenon to analyze the electrolytic solution quickly and non-destructively without pretreatment.

すなわち本発明に係る電解液分析方法は、電荷のキャリアとなるイオン性物質を有機溶媒に添加してなる電解液に測定光を照射して、前記電解液から生じる二次光を検出する二次光検出工程と、前記二次光検出工程により検出された二次光から、前記電解液の成分単体に前記測定光を照射した場合には現れない発光情報を特定する発光情報特定工程と、前記発光情報特定工程により特定された発光情報を用いて、前記電解液を分析する電解液分析工程とを備えることを特徴とする。 That is, in the electrolytic solution analysis method according to the present invention, the electrolytic solution obtained by adding an ionic substance serving as a charge carrier to an organic solvent is irradiated with measurement light, and the secondary light generated from the electrolytic solution is detected. A light emission information specifying step for specifying light emission information that does not appear when the measurement light is irradiated to a single component of the electrolytic solution from the light detection step and the secondary light detected by the secondary light detection step, and the above-mentioned It is characterized by including an electrolytic solution analysis step for analyzing the electrolytic solution using the light emission information specified by the light emission information specifying step.

このようなものであれば、電解液の成分単体に測定光を照射した場合には現れない発光情報を特定し、その特定された発光情報を用いることにより、電解液をそのままの状態で分析することができる。その結果、電解液に前処理を施すことなく、迅速かつ非破壊で分析することができる。 In such a case, the emission information that does not appear when the component of the electrolytic solution is irradiated with the measurement light is specified, and the identified emission information is used to analyze the electrolytic solution as it is. be able to. As a result, the electrolytic solution can be analyzed quickly and non-destructively without pretreatment.

電解液の分析を容易に行うためには、前記電解液分析工程は、前記発光情報特定工程により特定された発光情報と、基準となる発光情報とを比較することにより、前記電解液を分析するものであることが望ましい。 In order to easily analyze the electrolytic solution, the electrolytic solution analysis step analyzes the electrolytic solution by comparing the light emission information specified by the light emission information specifying step with the reference light emission information. It is desirable that it is a thing.

電解液の変化の要因を特定できるようにするためには、前記電解液分析工程は、前記発光情報特定工程により特定された発光情報から求まる発光強度変化と、基準となる発光強度変化とを比較することにより、前記電解液を分析するものであることが望ましい。 In order to be able to identify the cause of the change in the electrolytic solution, the electrolytic solution analysis step compares the light emission intensity change obtained from the light emission information specified by the light emission information identification step with the reference light emission intensity change. It is desirable to analyze the electrolytic solution by doing so.

具体的に前記電解液分析工程は、前記電解液の水分含有量、前記電解液が受けた温度負荷量、又は、前記電解液の劣化度合いを診断するものであることが考えられる。 Specifically, it is conceivable that the electrolytic solution analysis step diagnoses the water content of the electrolytic solution, the temperature load received by the electrolytic solution, or the degree of deterioration of the electrolytic solution.

二次光には種々の情報が含まれていることから、それら情報の中から特徴的な情報を抽出して分析に用いることが望ましい。このため、前記発光情報特定工程は、複数回の前記二次光検出工程により検出された複数の励起−発光マトリックス(EEM)データを用いて多変量解析により前記二次光に含まれる複数の発光成分をそれぞれ特定するものであり、前記電解液分析工程は、特定された複数の発光成分を用いて、前記電解液を分析するものであることが望ましい。 Since the secondary light contains various information, it is desirable to extract characteristic information from the information and use it for analysis. Therefore, in the light emission information identification step, a plurality of light emissiones contained in the secondary light by multivariate analysis using a plurality of excitation-emission matrix (EEM) data detected by the secondary light detection steps a plurality of times. Each component is specified, and it is desirable that the electrolytic solution analysis step analyzes the electrolytic solution using a plurality of specified light emitting components.

また、本発明に係る電解液分析装置は、電荷のキャリアとなるイオン性物質を有機溶媒に添加してなる電解液に測定光を照射する照射部と、前記電解液から生じる二次光を検出する検出部と、前記検出部により検出された二次光から、前記電解液の成分単体に前記測定光を照射した場合には現れない発光情報を特定する特定部と、前記特定部により特定された発光情報を用いて、前記電解液を分析する分析部とを備えることを特徴とする。 Further, the electrolytic solution analyzer according to the present invention detects an irradiation unit that irradiates an electrolytic solution obtained by adding an ionic substance serving as a charge carrier to an organic solvent with measurement light, and a secondary light generated from the electrolytic solution. From the detection unit to be detected and the secondary light detected by the detection unit, a specific unit that specifies light emission information that does not appear when the measurement light is applied to a single component of the electrolytic solution is specified by the specific unit. It is characterized by including an analysis unit that analyzes the electrolytic solution by using the light emission information.

以上に述べた本発明によれば、電解液に前処理を施すことなく迅速かつ非破壊で分析することができる。 According to the present invention described above, the electrolytic solution can be analyzed quickly and non-destructively without pretreatment.

本発明の一実施形態に係る電解液分析装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the electrolytic solution analyzer which concerns on one Embodiment of this invention. 同実施形態の励起−発光マトリックス(EEM)データの一例を示す図である。It is a figure which shows an example of the excitation-emission matrix (EEM) data of the same embodiment. 室温及び70℃温調下におけるEEMデータの経時変化を示す図である。It is a figure which shows the time-dependent change of EEM data at room temperature and 70 degreeC temperature control. 同実施形態の分析方法を示すフローチャートである。It is a flowchart which shows the analysis method of the same embodiment. 同実施形態の補正処理を示す図である。It is a figure which shows the correction process of the same embodiment. EEMデータに含まれる発光成分及び各スペクトルを、PARAFAC解析により抽出した結果を示す図である。It is a figure which shows the result of having extracted the luminescent component and each spectrum included in the EEM data by PARAFAC analysis. PARAFAC解析により抽出した励起・発光スペクトルについて、各EEMデータにおける重みである負荷量(PARAFACスコア)を示す図である。It is a figure which shows the load amount (PARAFAC score) which is the weight in each EEM data about the excitation / emission spectrum extracted by PARAFAC analysis. 室温及び70℃におけるPARAFACスコアの経時変化を示す図である。It is a figure which shows the time-dependent change of the PARAFAC score at room temperature and 70 degreeC. 電解液に含まれる各成分単体を測定した場合のEEMデータを示す図である。It is a figure which shows the EEM data at the time of measuring each component alone contained in an electrolytic solution.

100・・・電解液分析装置
2 ・・・照射部
L1 ・・・測定光(励起光)
L2 ・・・二次光(試料由来の発光)
3 ・・・検出部
4 ・・・特定部
5 ・・・分析部
6 ・・・格納部
100 ... Electrolyte analyzer 2 ... Irradiation unit L1 ... Measurement light (excitation light)
L2 ・ ・ ・ Secondary light (light emission derived from sample)
3 ・ ・ ・ Detection unit 4 ・ ・ ・ Specific unit 5 ・ ・ ・ Analysis unit 6 ・ ・ ・ Storage unit

以下、本発明の一実施形態に係る電解液分析装置及び電解液分析方法について、図面を参照しながら説明する。 Hereinafter, the electrolytic solution analyzer and the electrolytic solution analysis method according to the embodiment of the present invention will be described with reference to the drawings.

<装置構成>
本実施形態の電解液分析装置100は、例えばリチウムイオン二次電池に用いられる電解液を、前処理を施すことなく非破壊で分析するものである。
<Device configuration>
The electrolytic solution analyzer 100 of the present embodiment analyzes, for example, an electrolytic solution used in a lithium ion secondary battery in a non-destructive manner without performing pretreatment.

測定対象である電解液は、極物質を構成する元素と同元素を持ち電池内部で電荷のキャリアとなる、イオン性物質を溶媒に添加して作製されたものである。本実施形態では、リチウムイオン二次電池用電解質としてヘキサフルオロリン酸リチウム(LiPF)を含み、高誘電率溶媒としてエチレンカーボネート(EC)を含み、低粘度溶媒としてジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を含むものを用いた。The electrolytic solution to be measured is prepared by adding an ionic substance to a solvent, which has the same elements as the elements constituting the polar substance and serves as charge carriers inside the battery. In this embodiment, lithium hexafluorophosphate (LiPF 6 ) is contained as an electrolyte for a lithium ion secondary battery, ethylene carbonate (EC) is contained as a high dielectric constant solvent, and dimethyl carbonate (DMC) and ethyl methyl are contained as low viscosity solvents. Those containing carbonate (EMC) were used.

なお、電解質としては、電荷のキャリアとなるイオン性物質を溶媒に添加して作製されたものであれば良い。本実施形態では、ヘキサフルオロリン酸リチウム(LiPF)の他、過塩素酸リチウム(LiClO)、ホウフッ化リチウム(LiBF)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を含むものであっても良い。電解液に含まれる電解質は、前述したものの何れか1つであってもよいし、それらを組み合わせたものであってもよいし、前述したもの以外の電解質を含むものであってもよい。The electrolyte may be an electrolyte prepared by adding an ionic substance that serves as a charge carrier to a solvent. In this embodiment, in addition to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) are contained. You may. The electrolyte contained in the electrolytic solution may be any one of those described above, a combination thereof, or an electrolyte other than those described above.

また、溶媒としては、構造中に非共有電子対を1つ以上有する溶媒、好ましくは、構造中にカルボニル基、エーテル結合、酸素を有する環状構造のいずれか1つ以上の特徴を有する有機溶媒であれば良い。例えば、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジエチルカーボネート(DEC)、γ−ブチロラクトン(GBL)、メチル−γ−ブチロラクトン(GVL)であっても良い。電解液に含まれる溶媒は、前述したものの何れか1つであってもよいし、それらを組み合わせたものであってもよいし、前述したもの以外の溶媒を含むものであってもよい。 The solvent is a solvent having one or more unshared electron pairs in the structure, preferably an organic solvent having one or more characteristics of a cyclic structure having a carbonyl group, an ether bond, or oxygen in the structure. All you need is. For example, ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), propylene carbonate (PC), butylene carbonate (BC), diethyl carbonate (DEC), γ-butyrolactone (GBL), methyl-γ- Butyrolactone (GVL) may be used. The solvent contained in the electrolytic solution may be any one of those described above, a combination thereof, or a solvent other than those described above.

具体的に電解液分析装置100は、図1に示すように、リチウムイオン二次電池の電解液Sに測定光L1を照射する照射部2と、電解液Sから生じる二次光L2を検出する検出部3と、検出部3により検出された二次光L2から、電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報を特定する特定部4と、特定部4により特定された発光情報を用いて、電解液Sを分析する分析部5とを備えている。 Specifically, as shown in FIG. 1, the electrolytic solution analyzer 100 detects the irradiation unit 2 that irradiates the electrolytic solution S of the lithium ion secondary battery with the measurement light L1 and the secondary light L2 generated from the electrolytic solution S. From the detection unit 3 and the secondary light L2 detected by the detection unit 3, the specific unit 4 and the specific unit 4 specify the light emission information that does not appear when the measurement light L1 is irradiated to the component of the electrolytic solution S alone. It includes an analysis unit 5 that analyzes the electrolytic solution S using the specified light emission information.

なお、本実施形態では、照射部2と検出部3との間に電解液Sを収容した容器10が着脱可能に取り付ける容器ホルダ(不図示)が設けられた構成であるが、電解液Sを収容する測定セルを設けた構成としても良い。 In the present embodiment, a container holder (not shown) to which the container 10 containing the electrolytic solution S is detachably attached is provided between the irradiation unit 2 and the detection unit 3, but the electrolytic solution S is used. A configuration may be provided in which a measuring cell for accommodating is provided.

照射部2は、測定光L1である励起光を電解液Sに照射するものであり、例えばキセノンランプ等の励起光源21と、当該励起光源21からの光を分光して励起光を射出する分光器22とを有している。本実施形態の照射部2は、例えば220〜600nmの励起波長を有する測定光L1を照射するものである。 The irradiation unit 2 irradiates the electrolytic solution S with the excitation light which is the measurement light L1. It has a vessel 22 and. The irradiation unit 2 of the present embodiment irradiates the measurement light L1 having an excitation wavelength of, for example, 220 to 600 nm.

検出部3は、測定光L1が照射された電解液Sから生じる電解液S由来の発光(二次光L2)を検出するものであり、二次光L2を分光する分光器31と、当該分光器31により分光された二次光L2を検出する検出器32とを有している。本実施形態では、例えば、211〜617nmの波長帯域を有する光を検出するものである。検出器32は、例えばCCD検出器である。検出器32の各測定における露光時間は例えば1.0秒である。 The detection unit 3 detects light emission (secondary light L2) derived from the electrolytic solution S generated from the electrolytic solution S irradiated with the measurement light L1, and a spectroscope 31 that disperses the secondary light L2 and the spectroscopy. It has a detector 32 that detects the secondary light L2 dispersed by the device 31. In this embodiment, for example, light having a wavelength band of 211 to 617 nm is detected. The detector 32 is, for example, a CCD detector. The exposure time in each measurement of the detector 32 is, for example, 1.0 second.

その他、本実施形態の電解液分析装置100では、電解液Sの吸光度を算出するために電解液Sを透過した透過光L3を検出する透過光検出器6を備えている。 In addition, the electrolytic solution analyzer 100 of the present embodiment includes a transmitted photodetector 6 that detects the transmitted light L3 transmitted through the electrolytic solution S in order to calculate the absorbance of the electrolytic solution S.

次に説明する特定部4及び分析部5は、CPU、メモリ、入出力インターフェイス、AD変換器等を有するコンピュータにより構成されており、メモリに格納された分析プログラムに基づいて、CPU及び周辺機器が協働することによってその機能が発揮される。 The specific unit 4 and the analysis unit 5 described below are composed of a computer having a CPU, a memory, an input / output interface, an AD converter, and the like, and the CPU and peripheral devices are based on an analysis program stored in the memory. The function is demonstrated by collaborating.

特定部4は、検出器32により検出された二次光L2の光強度信号を取得して、電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報を特定するものである。この特定部4は、電解液Sの成分単体(LiPF、EC、DMC、EMC)に測定光L1を照射した場合には現れない発光ピークを有する発光成分を特定する。The identification unit 4 acquires the light intensity signal of the secondary light L2 detected by the detector 32, and identifies the light emission information that does not appear when the measurement light L1 is irradiated to the component of the electrolytic solution S alone. be. The specific unit 4 identifies a light emitting component having an emission peak that does not appear when the measurement light L1 is irradiated to the simple substance (LiPF 6, EC, DMC, EMC) of the electrolytic solution S.

具体的に特定部4は、図2に示す複数個の励起−発光マトリックス(EEM)データ(縦軸を励起波長、横軸を発光波長として、各波長の光強度を表した3次元データ)を生成し、この複数個の3次元データ(EEMデータ)を用いて多変量解析により二次光L2の光強度信号に含まれる複数の発光成分を特定する。ここで、複数個のEEMデータは、温度や水分混入量等状態の異なる電解液Sから得られたものである(図3参照)。 Specifically, the specific unit 4 uses a plurality of excitation-emission matrix (EEM) data (three-dimensional data representing the light intensity of each wavelength with the vertical axis as the excitation wavelength and the horizontal axis as the emission wavelength) shown in FIG. A plurality of light emitting components included in the light intensity signal of the secondary light L2 are specified by multivariate analysis using the generated and plurality of three-dimensional data (EEM data). Here, the plurality of EEM data are obtained from the electrolytic solutions S having different states such as temperature and the amount of water mixed (see FIG. 3).

以下に、特定部4の演算方法の一例について図4を参照して説明する。 Hereinafter, an example of the calculation method of the specific unit 4 will be described with reference to FIG.

照射部2から測定光L1を照射し(ステップS1)、検出部3により二次光L2を検出する(ステップS2)。そして、特定部4は、複数個の光強度信号から、図2に示す複数個のEEMデータを生成する(ステップS3)。 The measurement light L1 is irradiated from the irradiation unit 2 (step S1), and the secondary light L2 is detected by the detection unit 3 (step S2). Then, the specific unit 4 generates a plurality of EEM data shown in FIG. 2 from the plurality of light intensity signals (step S3).

なお、図2は、内部フィルタ効果(Inner filter effect)及びレイリー散乱を補正し、水ラマン光散乱強度を用いてノーマライズされた補正後のEEMデータである。これらの補正処理は、特定部4により行われる(図5参照)。 Note that FIG. 2 is the corrected EEM data in which the internal filter effect (Inner filter effect) and Rayleigh scattering are corrected and normalized using the water Raman light scattering intensity. These correction processes are performed by the specific unit 4 (see FIG. 5).

また、特定部4は、多変量解析の1つであるPARAFAC(Parallel factor analysis)を用いて、複数個のEEMデータから、EEMに見られる複数の発光成分に関する定性的な情報、すなわち励起スペクトル及び発光スペクトルを抽出するとともに(ステップS4、図6参照)、それら発光成分が各EEMにおける寄与量(PARAFACスコア)を定量的な発光情報として算出する(ステップS5、図7参照)。なお、このPARAFACスコアは、解析に用いた各EEMにおいて抽出された各発光成分がそれぞれどの程度の強度で含まれているかを示す値である。このように本実施形態の特定部4による発光情報の特定には、二次光の光強度信号から発光情報を抽出すること、及び、二次光の光強度信号から発光情報を算出することを含むものであったが、何れか一方であっても良いし、その他の方法により発光情報を特定するものであっても良い。 Further, the specific unit 4 uses PARAFAC (Parallel factor analysis), which is one of the multivariate analyzes, to obtain qualitative information on a plurality of luminescent components found in the EEM from a plurality of EEM data, that is, an excitation spectrum and an excitation spectrum. The emission spectrum is extracted (see step S4 and FIG. 6), and the contribution amount (PARAFAC score) of these emission components in each EEM is calculated as quantitative emission information (see steps S5 and FIG. 7). The PARAFAC score is a value indicating the intensity of each luminescent component extracted in each EEM used in the analysis. As described above, in order to specify the light emission information by the specific unit 4 of the present embodiment, it is necessary to extract the light emission information from the light intensity signal of the secondary light and to calculate the light emission information from the light intensity signal of the secondary light. Although it was included, either one may be used, or the light emission information may be specified by another method.

そして、分析部5は、特定部4により特定された複数の発光成分を用いて、電解液Sを分析するものである。具体的に分析部5は、特定部4により特定された複数の発光スペクトルのPARAFACスコアを用いて、電解液Sの状態を分析・診断する(ステップS6)。例えば、分析部5は、複数の発光スペクトルのPARAFACスコアと、基準となる発光情報(所定の状態を示すPARAFACスコア)とを比較して、電解液Sの水分含有量、電解液Sの使用温度、又は、電解液Sの劣化度合いを診断する。 Then, the analysis unit 5 analyzes the electrolytic solution S using a plurality of light emitting components specified by the specific unit 4. Specifically, the analysis unit 5 analyzes and diagnoses the state of the electrolytic solution S using the PARAFAC scores of the plurality of emission spectra specified by the specific unit 4 (step S6). For example, the analysis unit 5 compares the PARAFAC scores of a plurality of emission spectra with the reference emission information (PARAFAC score indicating a predetermined state), and compares the water content of the electrolytic solution S and the operating temperature of the electrolytic solution S. Or, the degree of deterioration of the electrolytic solution S is diagnosed.

以下に、室温(25℃)に温調した電解液SのPARAFACスコアの時間変化と、70℃に温調した電解液SのPARAFACスコアの時間変化とを図8に示す。 The time change of the PARAFAC score of the electrolytic solution S temperature-controlled to room temperature (25 ° C.) and the time-dependent change of the PARAFAC score of the electrolytic solution S temperature-controlled to 70 ° C. are shown below.

室温に温調した場合の各発光成分のPARAFACスコアはほとんど一定であり、それらの大小関係は変わらないことが分かる。一方で、70℃に温調した場合の各発光成分のPARAFACスコアは大きな変化を示し、それらの大小関係も変化している。 It can be seen that the PARAFAC score of each luminescent component when the temperature is adjusted to room temperature is almost constant, and the magnitude relationship between them does not change. On the other hand, the PARAFAC score of each luminescent component when the temperature is adjusted to 70 ° C. shows a large change, and the magnitude relationship between them also changes.

この結果から、各温度において電解液SのPARAFACスコアの値及び大小関係が決定されることから、これらの値を予め取得して格納部7に記憶し、基準となる発光情報とする。そして、測定試料である電解液Sを測定して得られたPARAFACスコアと比較することにより、リチウムイオン二次電池の使用時における電解液Sの温度を診断することができる。 From this result, the values and magnitude relations of the PARAFAC score of the electrolytic solution S are determined at each temperature. Therefore, these values are acquired in advance and stored in the storage unit 7, and used as reference light emission information. Then, by comparing the electrolytic solution S, which is a measurement sample, with the PARAFAC score obtained, the temperature of the electrolytic solution S when the lithium ion secondary battery is used can be diagnosed.

同様にして、電解液Sの水分含有量別に基準となる発光情報(例えば、電解液SのPARAFACスコア)を取得しておけば、測定試料である電解液Sを測定して得られた発光情報(複数の発光スペクトルのPARAFACスコア)と比較することにより、電解液Sの水分含有量を評価することができる。また、リチウムイオン二次電池の使用時間(充放電サイクル)別に基準となる発光情報(例えば、電解液のPARAFACスコア)を取得しておけば、測定試料である電解液Sを測定して得られる発光情報(複数の発光スペクトルのPARAFACスコア)と比較することにより、電解液Sの劣化度合いを評価することができる。 Similarly, if reference light emission information (for example, PARAFAC score of the electrolytic solution S) is acquired for each water content of the electrolytic solution S, the light emission information obtained by measuring the electrolytic solution S as a measurement sample. The water content of the electrolytic solution S can be evaluated by comparing with (PARAFAC score of a plurality of emission spectra). Further, if the reference light emission information (for example, the PARAFAC score of the electrolytic solution) is acquired for each usage time (charge / discharge cycle) of the lithium ion secondary battery, it can be obtained by measuring the electrolytic solution S which is a measurement sample. The degree of deterioration of the electrolytic solution S can be evaluated by comparing with the emission information (PARAFAC scores of a plurality of emission spectra).

<本実施形態の効果>
本実施形態の電解液分析装置100によれば、電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報を特定し、その特定された発光情報を用いることにより、電解液Sをそのままの状態で分析することができる。その結果、電解液Sに前処理を施すことなく、迅速かつ非破壊で分析することができる。
<Effect of this embodiment>
According to the electrolytic solution analyzer 100 of the present embodiment, luminescence information that does not appear when the component of the electrolytic solution S is irradiated with the measurement light L1 is specified, and the identified luminescence information is used to obtain the electrolytic solution. S can be analyzed as it is. As a result, the electrolytic solution S can be analyzed quickly and non-destructively without pretreatment.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、特定部及び分析部の機能を以下としても良い。
(1)特定部が二次光の光強度信号から3次元的なデータである励起−発光マトリックス(EEM)を生成することなく、特定励起波長における2次元データ(例えば横軸を発光波長とし、縦軸を光強度としたグラフデータ)を生成して、当該2次元データから発光ピーク等の発光情報を特定するものであっても良い。この場合、分析部は、特定された発光情報と、比較対象となる判断基準データとを比較して、電解液を分析する。
For example, the functions of the specific unit and the analysis unit may be as follows.
(1) Two-dimensional data at a specific excitation wavelength (for example, the horizontal axis is the emission wavelength) without generating an excitation-emission matrix (EEM) which is three-dimensional data from the light intensity signal of the secondary light. Graph data) with the vertical axis as the light intensity may be generated to specify light emission information such as light emission peaks from the two-dimensional data. In this case, the analysis unit analyzes the electrolytic solution by comparing the specified light emission information with the determination criterion data to be compared.

(2)特定部が二次光の光強度信号から3次元データ(EEMデータ)を生成し、当該3次元データから多変量解析を用いることなく発光ピークなどの発光情報を特定するものであっても良い。この場合、分析部は、特定された発光情報と、比較対象となる判断基準データとを比較して、電解液を分析する。ここで、3次元データを示す画像データを画像処理することにより発光ピーク等の発光情報を特定することもできる。 (2) The specific unit generates three-dimensional data (EEM data) from the light intensity signal of the secondary light, and specifies the light emission information such as the light emission peak from the three-dimensional data without using multivariate analysis. Is also good. In this case, the analysis unit analyzes the electrolytic solution by comparing the specified light emission information with the determination criterion data to be compared. Here, it is also possible to specify emission information such as emission peaks by performing image processing on image data indicating three-dimensional data.

(3)特定部が二次光の光強度信号から3次元データ(EEMデータ)を生成し、当該3次元データから多変量解析を用いて複数の発光成分の発光スペクトルを抽出して、当該発光スペクトルを発光情報として特定するものであっても良い。つまり、PARAFACスコア以外の情報を発光情報としても良い。この場合、分析部は、特定された発光情報と比較対象となる判断基準データとを比較して、電解液を分析する。 (3) The specific unit generates three-dimensional data (EEM data) from the light intensity signal of the secondary light, extracts the emission spectra of a plurality of emission components from the three-dimensional data by using multivariate analysis, and emits the light. The spectrum may be specified as light emission information. That is, information other than the PARAFAC score may be used as the light emission information. In this case, the analysis unit analyzes the electrolytic solution by comparing the specified luminescence information with the determination criterion data to be compared.

以上のように特定部は、二次光の光強度信号から抽出される情報であって、電解液の成分単体に励起光を照射した場合には現れない発光を示す発光情報を特定するものであれば、前記実施形態に限られない。 As described above, the specific part is the information extracted from the light intensity signal of the secondary light, and specifies the light emission information indicating the light emission that does not appear when the component of the electrolytic solution is irradiated with the excitation light. If there is, the present invention is not limited to the above embodiment.

前記実施形態では、電解液の成分単体に測定光L1を照射した場合には発光ピークが現れないことを前提として、EEMデータから得られた複数の発光成分が電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報であるとしていたが、必ずしもそうとは限らない。つまり、電解液Sの成分単体に測定光L1を照射したときの成分単体の発光情報(発光しないという情報も含む。)を予め発光情報格納部(不図示)に格納しておき、特定部4は、当該発光情報格納部に格納された成分単体の発光情報と、電解液Sから生じる二次光L2と比較して、電解液Sの成分単体に測定光L1を照射した場合には現れない発光情報を特定することが考えられる。そして、分析部4は、成分単体の発光情報との比較により特定された発光情報に基づいて、電解液Sを分析する。なお、発光情報格納部に格納される発光情報としては、EEMデータであってもよいし、EEMデータから求まるスペクトルデータなどであっても良い。 In the above embodiment, on the premise that the emission peak does not appear when the measurement light L1 is irradiated to the component of the electrolytic solution alone, the plurality of light emitting components obtained from the EEM data are the measurement light for the component of the electrolytic solution S alone. It was said that the light emission information does not appear when L1 is irradiated, but this is not always the case. That is, the light emission information (including the information that the light is not emitted) when the component of the electrolytic solution S is irradiated with the measurement light L1 is stored in advance in the light emission information storage unit (not shown), and the specific unit 4 Does not appear when the measurement light L1 is applied to the component of the electrolytic solution S as compared with the light emission information of the component alone stored in the light emitting information storage unit and the secondary light L2 generated from the electrolytic solution S. It is conceivable to specify the light emission information. Then, the analysis unit 4 analyzes the electrolytic solution S based on the luminescence information specified by comparison with the luminescence information of the component alone. The light emission information stored in the light emission information storage unit may be EEM data, spectrum data obtained from the EEM data, or the like.

前記実施形態では、リチウムイオン電池の電解液を分析した例を示したが、電荷のキャリアとなるイオン性物質を有機溶媒に添加して作製した電解液を使用する電池の電解液であれば、リチウム・硫黄電池の電解液、リチウム・空気電池の電解液、リチウム・銅電池の電解液などを分析するものであっても良い。 In the above embodiment, an example of analyzing the electrolytic solution of the lithium ion battery is shown, but if it is an electrolytic solution of a battery using an electrolytic solution prepared by adding an ionic substance serving as a charge carrier to an organic solvent, the electrolytic solution is used. It may analyze an electrolytic solution of a lithium / sulfur battery, an electrolytic solution of a lithium / air battery, an electrolytic solution of a lithium / copper battery, or the like.

その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。 In addition, various embodiments may be modified or combined as long as they do not contradict the gist of the present invention.

本発明によれば、電解液に前処理を施すことなく迅速かつ非破壊で分析することができる。

According to the present invention, the electrolytic solution can be analyzed quickly and non-destructively without pretreatment.

Claims (6)

電荷のキャリアとなるイオン性物質を溶媒に添加してなる電解液に測定光を照射して、前記電解液から生じる二次光を検出する二次光検出工程と、
前記二次光検出工程により検出された二次光から、前記電解液の成分単体に前記測定光を照射した場合には現れない発光情報を特定する発光情報特定工程と、
前記発光情報特定工程により特定された発光情報を用いて、前記電解液を分析する電解液分析工程とを備える、電解液分析方法。
A secondary light detection step of irradiating an electrolytic solution obtained by adding an ionic substance serving as a charge carrier to a solvent with measurement light to detect secondary light generated from the electrolytic solution.
A light emission information specifying step for specifying light emission information that does not appear when the measurement light is irradiated to a single component of the electrolytic solution from the secondary light detected by the secondary light detection step.
An electrolytic solution analysis method comprising an electrolytic solution analysis step of analyzing the electrolytic solution using the light emission information specified by the light emission information specifying step.
前記電解液分析工程は、前記発光情報特定工程により特定された発光情報と、基準となる発光情報とを比較することにより、前記電解液を分析するものである、請求項1記載の電解液分析方法。 The electrolytic solution analysis according to claim 1, wherein the electrolytic solution analysis step analyzes the electrolytic solution by comparing the light emission information specified by the light emission information specifying step with the reference light emission information. Method. 前記電解液分析工程は、前記発光情報特定工程により特定された発光情報から求まる発光強度変化と、基準となる発光強度変化とを比較することにより、前記電解液を分析するものである、請求項1又は2記載の電解液分析方法。 The electrolytic solution analysis step analyzes the electrolytic solution by comparing the luminescence intensity change obtained from the luminescence information specified by the luminescence information specifying step with the reference luminescence intensity change. The electrolytic solution analysis method according to 1 or 2. 前記電解液分析工程は、前記電解液の水分含有量、前記電解液の使用温度、又は、前記電解液の劣化度合いを診断するものである、請求項1乃至3の何れか一項に記載の電解液分析方法。 The method according to any one of claims 1 to 3, wherein the electrolytic solution analysis step diagnoses the water content of the electrolytic solution, the operating temperature of the electrolytic solution, or the degree of deterioration of the electrolytic solution. Electrolyte analysis method. 前記発光情報特定工程は、複数回の前記二次光検出工程により検出された複数の励起−発光マトリックス(EEM)データを用いて多変量解析により前記二次光に含まれる複数の発光成分を特定するものであり、
前記電解液分析工程は、特定された複数の発光成分を用いて、前記電解液を分析するものである、請求項1乃至4の何れか一項に記載の電解液分析方法。
In the emission information identification step, a plurality of emission components contained in the secondary light are specified by multivariate analysis using a plurality of excitation-emission matrix (EEM) data detected by the secondary light detection steps. To do
The electrolytic solution analysis method according to any one of claims 1 to 4, wherein the electrolytic solution analysis step analyzes the electrolytic solution using a plurality of specified light emitting components.
電荷のキャリアとなるイオン性物質を溶媒に添加してなる電解液に測定光を照射する照射部と、
前記電解液から生じる二次光を検出する検出部と、
前記検出部により検出された二次光から、前記電解液の成分単体に前記測定光を照射した場合には現れない発光情報を特定する特定部と、
前記特定部により特定された発光情報を用いて、前記電解液を分析する分析部とを備える、電解液分析装置。

An irradiation unit that irradiates an electrolytic solution prepared by adding an ionic substance that serves as a charge carrier to a solvent with measurement light, and an irradiation unit.
A detection unit that detects secondary light generated from the electrolytic solution,
From the secondary light detected by the detection unit, a specific unit that identifies light emission information that does not appear when the measurement light is applied to a single component of the electrolytic solution, and a specific unit.
An electrolytic solution analyzer comprising an analysis unit that analyzes the electrolytic solution using the light emission information specified by the specific unit.

JP2020557599A 2018-11-22 2019-11-20 Electrolyte analysis method and electrolyte analysis device Active JP7227984B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018219767 2018-11-22
JP2018219767 2018-11-22
PCT/JP2019/045497 WO2020105687A1 (en) 2018-11-22 2019-11-20 Electrolytic solution analysis method, and electrolytic solution analyzing device

Publications (2)

Publication Number Publication Date
JPWO2020105687A1 true JPWO2020105687A1 (en) 2021-10-14
JP7227984B2 JP7227984B2 (en) 2023-02-22

Family

ID=70773130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557599A Active JP7227984B2 (en) 2018-11-22 2019-11-20 Electrolyte analysis method and electrolyte analysis device

Country Status (2)

Country Link
JP (1) JP7227984B2 (en)
WO (1) WO2020105687A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266380A (en) * 2009-05-15 2010-11-25 National Agriculture & Food Research Organization Component distribution analysis method and component distribution analyzer
CN102507472A (en) * 2011-10-25 2012-06-20 清华大学深圳研究生院 Electrolyte measurement method and electrolyte measurement device for vanadium redox flow battery
JP2013514530A (en) * 2009-12-16 2013-04-25 スペクトラリス イノベーション Methods and spectroscopic instruments for analyzing foods in particular using multi-channel processing of spectroscopic data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266380A (en) * 2009-05-15 2010-11-25 National Agriculture & Food Research Organization Component distribution analysis method and component distribution analyzer
JP2013514530A (en) * 2009-12-16 2013-04-25 スペクトラリス イノベーション Methods and spectroscopic instruments for analyzing foods in particular using multi-channel processing of spectroscopic data
CN102507472A (en) * 2011-10-25 2012-06-20 清华大学深圳研究生院 Electrolyte measurement method and electrolyte measurement device for vanadium redox flow battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN ET AL.: "Direct monitoring of trace water in Li-ion batteries using operando fluorescence spectroscopy", CHEMICAL SCIENCE, vol. Vol.9/Iss.1, JPN6019050149, 23 October 2017 (2017-10-23), pages 231 - 237, ISSN: 0004893398 *

Also Published As

Publication number Publication date
WO2020105687A1 (en) 2020-05-28
JP7227984B2 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
Mingo et al. An X-ray survey of the 2 Jy sample–I. Is there an accretion mode dichotomy in radio-loud AGN?
Liang et al. Low-luminosity gamma-ray bursts as a unique population: luminosity function, local rate, and beaming factor
Ellis et al. A new method for determining the concentration of electrolyte components in lithium-ion cells, using fourier transform infrared spectroscopy and machine learning
JP2004528567A (en) X-ray fluorescence analyzer combined with laser-induced fluorescence quantum analyzer
Anderson et al. On the environments of Type Ia supernovae within host galaxies
Terborg et al. Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes
Teshager et al. In Situ DRIFTS Analysis of Solid‐Electrolyte Interphase Formation on Li‐Rich Li1. 2Ni0. 2Mn0. 6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition
CN108780048A (en) A kind of method, detection device and the readable storage medium storing program for executing of determining detection device
CN113324973B (en) Multi-factor correction Raman spectrum quantitative analysis method combined with spectrum internal standard
US20220341806A1 (en) Spectral fitting of compact laser-based trace gas sensor measurements for high dynamic range (hdr)
US10804562B2 (en) Method and system for determining concentration of electrolyte components for lithium-ion cells
Winckelmann et al. High-resolution atomic absorption spectrometry combined with machine learning data processing for isotope amount ratio analysis of lithium
US11874240B2 (en) Systems and methods for interpreting high energy interactions
JP7227984B2 (en) Electrolyte analysis method and electrolyte analysis device
RU2014134895A (en) DEVICE FOR OPTICAL ANALYSIS OF ASSOCIATED FABRIC
US20110213746A1 (en) Probabilistic scoring for components of a mixture
JP2011107005A (en) Apparatus and method fluorescent x-ray inspection
JP2015138027A (en) Elemental concentration determination method using compton scattering
JP6308857B2 (en) Component concentration measuring device and method
Heller et al. Hidden information in principal component analysis of ToF‐SIMS data: on the use of correlation loadings for the identification of significant signals and structure elucidation
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
CN109374585B (en) Method and device for measuring fluorescence quantum yield
CN114002203A (en) Method and device for analyzing content of wood components based on Raman spectrum
CN105445239A (en) Background deduction-based element detection method and system
Jones et al. Isotopic Signatures of Lithium Carbonate and Lithium Hydroxide Monohydrate Measured Using Raman Spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7227984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150