JPWO2020095868A1 - Fertilized egg sex identification device, fertilized egg sex identification method, and program - Google Patents

Fertilized egg sex identification device, fertilized egg sex identification method, and program Download PDF

Info

Publication number
JPWO2020095868A1
JPWO2020095868A1 JP2020556057A JP2020556057A JPWO2020095868A1 JP WO2020095868 A1 JPWO2020095868 A1 JP WO2020095868A1 JP 2020556057 A JP2020556057 A JP 2020556057A JP 2020556057 A JP2020556057 A JP 2020556057A JP WO2020095868 A1 JPWO2020095868 A1 JP WO2020095868A1
Authority
JP
Japan
Prior art keywords
axis
fertilized egg
minor axis
contour
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556057A
Other languages
Japanese (ja)
Other versions
JP7320710B2 (en
Inventor
良輔 谷口
良輔 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAGI Nobuhide
Original Assignee
YAGI Nobuhide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAGI Nobuhide filed Critical YAGI Nobuhide
Publication of JPWO2020095868A1 publication Critical patent/JPWO2020095868A1/en
Application granted granted Critical
Publication of JP7320710B2 publication Critical patent/JP7320710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K43/00Testing, sorting or cleaning eggs ; Conveying devices ; Pick-up devices
    • A01K43/04Grading eggs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/54Revolving an optical measuring instrument around a body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20168Radial search
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products

Abstract

本発明では、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に有精卵の雌雄鑑定を行う技術を提供する。即ち、コンピュータにより有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、各角度での撮影に対応した前記短径の位相差を算出し、前記短径の位相差を用いて雌雄の判定を行う有精卵雌雄鑑定方法、有精卵雌雄鑑定装置、及びプログラムである。The present invention provides a technique for identifying the sex of a fertilized egg with a high identification rate and at high speed based on image data obtained by photographing the outline of the egg. That is, it is a method for determining the sex of a fertilized egg based on the contour of the fertilized egg by a computer, and the contour is extracted based on the image data obtained by photographing the fertilized egg at different angles. A fertilized egg sex identification method in which the minor axis is calculated from the contour, the phase difference of the minor axis corresponding to photography at each angle is calculated, and the sex is determined using the phase difference of the minor axis. It is an egg sex identification device and a program.

Description

本発明は、有精卵の雌雄を判別する技術に関する。 The present invention relates to a technique for discriminating between male and female fertilized eggs.

従来、鳥卵、典型的には鶏卵の有精卵(以下、単に卵とも称する)の雌雄鑑定に、頭部の膨らみや細長さなどといった卵形(卵の外殻形状)観察を基準とする手法が提案されている。しかし、同手法による鑑定は、親鳥個体や飼育環境により卵の形が変わると、雌雄の判別基準そのものがばらつき、鑑定が困難となるため、実用化には至っていない。以下では、鶏卵の長軸上で鈍端側を頭部、鋭端側(尖端側)を尾部といい、長軸上でのサイズ(長さ寸法)を長径、長軸と直行する短軸上でのサイズを短径という。 Conventionally, the sex identification of fertilized eggs (hereinafter, also simply referred to as eggs) of chicken eggs, typically chicken eggs, is based on the observation of the egg shape (outer shell shape of the egg) such as the bulge and slenderness of the head. A method has been proposed. However, the appraisal by this method has not been put into practical use because the criteria for distinguishing males and females vary and the appraisal becomes difficult when the shape of the egg changes depending on the parent bird and the breeding environment. In the following, the blunt end side on the long axis of the egg is called the head, the sharp end side (tip side) is called the tail, and the size (length dimension) on the long axis is the major axis and the minor axis perpendicular to the long axis. The size at is called the minor axis.

一方、従来、有精卵を、その外形形状(外殻の輪郭)を、複数のカメラで撮影した画像に基づいて雌雄を鑑定する手法が提案されている。例えば、特許文献1では、有精卵の輪郭に潜在する面積歪と面積歪(リミットサイクル)を、短径上で0度と90度の角度で撮影した画像データを差分演算して得た位相差が雌雄で異なることに着目した鑑定手法を開示している。 On the other hand, conventionally, a method has been proposed in which a fertilized egg is identified as male or female based on images taken by a plurality of cameras for its outer shape (outer shell contour). For example, in Patent Document 1, the area strain and the area strain (limit cycle) latent in the contour of a fertilized egg are obtained by performing a differential calculation on image data taken at angles of 0 and 90 degrees on the minor axis. It discloses an appraisal method focusing on the fact that the phase difference differs between males and females.

特開2011−142866号公報Japanese Unexamined Patent Publication No. 2011-142866

しかしながら、特許文献1に開示された鑑定手法では、撮像により得られた画像データから現在の肛門鑑定や羽毛鑑定の鑑定率にとって代わるための具体的な手法を十分には開示していない。従って、現在の肛門鑑定や羽毛鑑定の鑑定率95%から98%と同等の鑑定率を得ることは不可能であり、その鑑定率の向上には限界がある。 However, the appraisal method disclosed in Patent Document 1 does not sufficiently disclose a specific method for substituting the current appraisal rate of anal appraisal and feather appraisal from the image data obtained by imaging. Therefore, it is impossible to obtain an appraisal rate equivalent to the current appraisal rate of 95% to 98% for anal appraisal and feather appraisal, and there is a limit to the improvement of the appraisal rate.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に、有精卵の雌雄鑑定を行う技術を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to obtain male and female fertilized eggs at a high appraisal rate and at high speed based on image data obtained by photographing the outline of an egg. The purpose is to provide the technology for appraisal.

上記課題を解決するため、本発明の一つの態様に係る有精卵雌雄鑑定方法は、コンピュータにより、複数のカメラによる撮影で得られた画像データに基づいて、有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く第1及び第2カメラが設置されており、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる前記角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う。 In order to solve the above problem, the fertilized egg sex identification method according to one aspect of the present invention determines the sex by the contour of the fertilized egg based on the image data obtained by taking pictures with a plurality of cameras by a computer. A method for determining the sex of a fertilized egg, wherein the long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X axis and the Y axis is the Z axis, and the X is Above the two-dimensional plane composed of the axis and the Y-axis, the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y-axis with respect to the Z-axis, and the optical axis on one side is formed. The first and second cameras are installed so that the optical axis on the other side intersects the Y axis at the center of the fertilized egg, both of which are on the two-dimensional plane, and the fertilized egg is viewed at different angles. The contour is extracted based on the image data obtained by shooting, the minor axis is calculated from the contour, and the minor axis is photographed by the first camera at an angle of 0 degrees and the minor axis is photographed by the second camera at an angle of 90 degrees. The phase difference of the minor axis, which is the difference of the minor axis due to the above, is calculated, and the inclination of the minor axis obtained by the first camera at an angle of 0 degrees and the second camera at an angle of 90 degrees. The logical product of is calculated, and the sex is determined using the phase difference of the minor axis and the logical product.

本発明の他の態様による有精卵雌雄鑑定装置は、有精卵の輪郭で雌雄を判定する有精卵雌雄鑑定装置であって、前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある有精卵の中心で前記Y軸と交差する如く設置された第1及び第2カメラと、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部と、を備える。 The fertilized egg sex identification device according to another aspect of the present invention is a fertilized egg sex identification device that determines sex based on the contour of the fertilized egg, and the long axis of the fertilized egg is the X axis and the minor axis is the minor axis. The Y-axis, the axis perpendicular to the X-axis and the Y-axis is the Z-axis, above the two-dimensional plane composed of the X-axis and the Y-axis, and on the Y-axis with respect to the Z-axis. The optical axis is tilted to one side and the other side at an angle of 45 degrees, so that the optical axis on one side and the optical axis on the other side intersect the Y axis at the center of the fertilized egg on the two-dimensional plane. The contours are extracted based on the image data obtained by photographing the fertilized eggs with the installed first and second cameras at different angles, the minor axis is calculated from the contours, and the first camera is used. The phase difference of the minor axis, which is the difference between the minor axis photographed by the second camera at an angle of 90 degrees and the minor axis photographed by the second camera at an angle of 0 degrees, is calculated, and the photograph is performed by the first camera at an angle of 0 degrees. And a control unit that calculates the logical product of the inclination of the minor axis obtained by shooting at an angle of 90 degrees with the second camera, and determines the sex using the phase difference of the minor axis and the logical product. To be equipped.

本発明の他の態様によるプログラムは、有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く配置された第1及び第2カメラによる撮影で得られた画像データに基づいて前記有精卵の雌雄判定を行うプログラムであって、コンピュータを、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部として機能させる。 In a program according to another aspect of the present invention, the long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X axis and the Y axis is the Z axis, and the X axis and the said. Above the two-dimensional plane composed of the Y-axis, the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y-axis with respect to the Z-axis, and the optical axis on one side and the other side are tilted. The fertilized egg is based on image data obtained by photographing with the first and second cameras arranged so that the optical axes intersect the Y axis at the center of the fertilized egg both on the two-dimensional plane. A program for determining sex, a computer extracts a contour based on image data obtained by photographing the fertilized egg at different angles, calculates a minor axis from the contour, and obtains the first camera. The phase difference of the minor axis, which is the difference between the minor axis photographed by the second camera at an angle of 90 degrees and the minor axis photographed by the second camera at an angle of 0 degrees, is calculated and photographed by the first camera at an angle of 0 degrees. , And as a control unit that calculates the logical product of the inclination of the minor axis obtained by shooting at an angle of 90 degrees with the second camera, and determines the sex using the phase difference of the minor axis and the logical product. Make it work.

本発明によれば、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に、有精卵の雌雄鑑定を行う技術を提供することができる。 According to the present invention, it is possible to provide a technique for identifying male and female fertilized eggs at a high identification rate and at high speed based on image data obtained by photographing the contour of an egg.

図1(a)、図1(b)は、本発明の第1実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点である、卵の輪郭とその輪郭歪の相違が雌卵と雄卵で異なることを説明する図、図1(c)、図1(d)は輪郭歪を示す図である。1 (a) and 1 (b) are the points of view of the male-female identification by the fertilized egg male-female identification device according to the first embodiment of the present invention. FIGS. 1 (c) and 1 (d), which explain the difference between eggs, are diagrams showing contour distortion. 図2は、有精卵の雌雄鑑定特性を示す画像データの解析結果である。FIG. 2 is an analysis result of image data showing the sex identification characteristics of fertilized eggs. 図3は、カメラの設置関係を示す図である。FIG. 3 is a diagram showing the installation relationship of the cameras. 図4(a)、図4(b)は、有精卵の長軸を中心として鈍端側から見て右方向へ360度撮影して得られた画像データから取り出した短径の傾き変化を示す図である。FIGS. 4 (a) and 4 (b) show changes in the inclination of the minor axis taken from the image data obtained by photographing 360 degrees to the right when viewed from the blunt end side with the long axis of the fertilized egg as the center. It is a figure which shows. 図5(a)乃至図5(c)は、有精卵の短径の角度差を示す図である。5 (a) to 5 (c) are diagrams showing the angle difference of the minor axis of the fertilized egg. 図6(a)乃至図6(c)は、有精卵の輪郭面積の角度差を示す図である。6 (a) to 6 (c) are views showing the angular difference in the contour area of the fertilized egg. 図7(a)乃至図7(c)は、有精卵の輪郭の頭部頂点から54度までの輪郭ベクトルの積算値の角度差を示す図である。7 (a) to 7 (c) are diagrams showing the angle difference of the integrated values of the contour vectors from the head apex of the contour of the fertilized egg to 54 degrees. 図8(a)乃至図8(c)は、有精卵雌雄鑑定装置の一部である撮影系の構成を示す図である。8 (a) to 8 (c) are diagrams showing the configuration of an imaging system that is a part of a fertilized egg sex identification device. 図9(a)乃至図9(c)は、有精卵の輪郭の中心と短径を中心にした二次元平面でみた構造を説明する図である。9 (a) to 9 (c) are views for explaining the structure of the fertilized egg as viewed in a two-dimensional plane centered on the center of the contour and the minor axis. 図10(a)、図10(b)は、本発明の第1実施形態に係る有精卵雌雄鑑定装置の制御系の構成を示す図である。10 (a) and 10 (b) are diagrams showing the configuration of the control system of the fertilized egg sex identification device according to the first embodiment of the present invention. 図11は、本発明の第1実施形態に係る有精卵雌雄鑑定装置による処理手順を説明するフローチャートである。FIG. 11 is a flowchart illustrating a processing procedure by the fertilized egg sex identification device according to the first embodiment of the present invention. 図12は、被検査対象となる有精卵の基本構造を説明する図である。FIG. 12 is a diagram for explaining the basic structure of the fertilized egg to be inspected. 図13は、輪郭ベクトルについて、その定義を説明する図である。FIG. 13 is a diagram for explaining the definition of the contour vector. 図14は、基準輪郭ベクトルについて、その定義を説明する図である。FIG. 14 is a diagram illustrating the definition of the reference contour vector. 図15は、卵の螺旋構造について説明する図である。FIG. 15 is a diagram illustrating the spiral structure of the egg. 図16(a)乃至図16(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第1の観点につき説明する図である。16 (a) to 16 (d) are views for explaining the first viewpoint of male-female identification by the fertilized egg male-female identification device according to the second embodiment of the present invention. 図17(a)乃至図17(c)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第1の観点につき説明する図である。17 (a) to 17 (c) are views for explaining the first viewpoint of male-female identification by the fertilized egg male-female identification device according to the second embodiment of the present invention. 図18(a)乃至図18(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第2の観点につき説明する図である。18 (a) to 18 (d) are views for explaining the second aspect of the sex identification by the fertilized egg sex identification device according to the second embodiment of the present invention. 図19(a)乃至図19(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第2の観点につき説明する図である。19 (a) to 19 (d) are views for explaining a second aspect of the sex identification by the fertilized egg sex identification device according to the second embodiment of the present invention. 図20(a)乃至図20(e)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第3の観点につき説明する図である。20 (a) to 20 (e) are views for explaining the third aspect of the sex identification by the fertilized egg sex identification device according to the second embodiment of the present invention. 図21は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第4の観点につき説明する図である。FIG. 21 is a diagram illustrating a fourth aspect of sex identification by the fertilized egg sex identification device according to the second embodiment of the present invention. 図22(a)乃至図22(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による解析結果を示す図である。22 (a) to 22 (d) are diagrams showing the analysis results by the fertilized egg sex identification device according to the second embodiment of the present invention. 図23(a)乃至図23(f)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による解析結果を示す図である。23 (a) to 23 (f) are diagrams showing the analysis results by the fertilized egg sex identification device according to the second embodiment of the present invention. 図24は、特異点について説明するための図である。FIG. 24 is a diagram for explaining the singularity. 図25は、本発明の第2実施形態に係る有精卵雌雄鑑定装置の解析部の構成を示す図である。FIG. 25 is a diagram showing a configuration of an analysis unit of a fertilized egg sex identification device according to a second embodiment of the present invention.

以下、図面を参照しつつ本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

<第1実施形態> <First Embodiment>

本発明の第1形態は、例えば、以下を特徴としている。 The first aspect of the present invention is characterized by, for example, the following.

(a−1) 被検査対象の有精卵の輪郭を、角度を変えて撮影して得られた輪郭歪に起因する輪郭ベクトルの平均値あるいは輪郭面積の撮影角度差の3次元変化は、卵が親鳥から回転して生まれ出ることで微細な螺旋状の潜在的形状を発現する。本願発明者は、有精卵は、その雌雄によって回転方向が逆になることに着目した。この雌雄で異なる卵の外殻の3次元的特徴は、雌雄それぞれの3次元的特徴としてデータ化することができる。本発明の第1実施形態に係る有精卵雌雄鑑定装置等によれば、この3次元的特徴に係るデータを有精卵の雌雄それぞれを特徴づけるためのパラメータとして顕在化できるので、当該パラメータに基づいて的確な鑑定を行うことができる。 (A-1) The three-dimensional change in the average value of the contour vector or the difference in the shooting angle of the contour area due to the contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles is the egg. Is born from a parent bird by rotating, and develops a latent shape of a fine spiral. The inventor of the present application has noted that the direction of rotation of a fertilized egg is reversed depending on the sex. The three-dimensional characteristics of the outer shell of the egg, which differs between males and females, can be converted into data as the three-dimensional characteristics of each male and female. According to the fertilized egg sex identification device or the like according to the first embodiment of the present invention, the data related to this three-dimensional feature can be manifested as a parameter for characterizing each male and female of the fertilized egg. Accurate appraisal can be performed based on this.

(a−2) 本発明の第1実施形態に係る有精卵雌雄鑑定装置は、被検査対象である有精卵の外形表面(外殻、輪郭等)を、角度を変えて撮影する1台又は複数台のカメラを用いた撮影手段と画像処理手段を備えた構成となる。カメラとしては、高解像度のCCDあるいはCMOSイメージセンサ等を採用している。そして、有精卵の外形(外殻の輪郭)を1台のカメラで角度を変えながら撮影し、あるいは複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換することで、前述したような回転の痕跡を顕在化したデータを得ている。 (A-2) The fertilized egg sex identification device according to the first embodiment of the present invention is one that photographs the outer surface (outer shell, contour, etc.) of the fertilized egg to be inspected at different angles. Alternatively, the configuration is provided with a photographing means using a plurality of cameras and an image processing means. As the camera, a high-resolution CCD or CMOS image sensor or the like is adopted. Then, the outer shape (outer shell contour) of the fertilized egg is photographed with one camera while changing the angle, or is photographed with a plurality of cameras, and the image data is acquired three-dimensionally, and the image data is precisely obtained. By converting to the contour data, the data that manifests the trace of rotation as described above is obtained.

以下、本発明の第1実施形態について詳述する。 Hereinafter, the first embodiment of the present invention will be described in detail.

先ずは、実験データ等を紹介しながら、本発明の第1実施形態に係る有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラムが、有精卵の雌雄鑑定に際して着眼した観点を詳細に説明する。 First, while introducing experimental data and the like, the fertilized egg sex identification device, the fertilized egg sex identification method, and the program according to the first embodiment of the present invention detail the viewpoints that were focused on in the sex identification of fertilized eggs. Explain to.

図1(a)乃至図1(d)を参照して、本発明の第1実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点である、卵の輪郭とその輪郭歪の相違が雌卵(♀)と雄卵(♂)で異なることを説明する。 With reference to FIGS. 1 (a) to 1 (d), the difference between the outline of the egg and its contour distortion, which is the point of view of the sex identification by the fertilized egg sex identification device according to the first embodiment of the present invention, is female. Explain the difference between eggs (♀) and male eggs (♂).

本実施形態では、卵10を、その鈍端4と鋭端5とを結ぶ長径周りに図中矢印で示す方向に360度右回転させながら撮影した画像から抽出した輪郭データから輪郭歪を算出する。図1(a)は、卵10の輪郭1とその輪郭歪を拡大して示したものである。図1(b)は、卵10を撮影角度0度から360度の間で間欠撮影したカメラ出力(速度変化:角速度)より算出した輪郭1の輪郭歪と、その近似曲線を示したものである。 In the present embodiment, the contour distortion is calculated from the contour data extracted from the image taken while rotating the egg 10 360 degrees clockwise in the direction indicated by the arrow in the figure around the major axis connecting the blunt end 4 and the sharp end 5. .. FIG. 1A is an enlarged view of the contour 1 of the egg 10 and its contour distortion. FIG. 1B shows the contour distortion of the contour 1 calculated from the camera output (speed change: angular velocity) of the egg 10 taken intermittently between the shooting angles of 0 degrees and 360 degrees, and the approximate curve thereof. ..

図1(b)に示されるように、速度曲線は、雌雄でパターンが異なり、それは親鳥から生まれ出るときの回転方向が雌雄で逆になっていることに起因している。この特性は2つの周波数による弛張振動で構成した周期関数と定義できる。尚、弛張振動については、公知のファン・デル・ポールの方程式の考え方を適用できる。 As shown in FIG. 1 (b), the velocity curve has a different pattern between males and females, which is due to the fact that the directions of rotation when born from the parent bird are opposite between males and females. This characteristic can be defined as a periodic function composed of relaxation vibrations at two frequencies. The known concept of Van der Pol's equation can be applied to the relaxation vibration.

ここで、一般に、強制振動は、粘性係数をγ、振動の振幅をθとすると、次式のように定義することができる。

Figure 2020095868
Here, in general, forced vibration can be defined by the following equation, where the viscosity coefficient is γ and the vibration amplitude is θ.
Figure 2020095868

そして、強制振動を適切に記述するには、
・拡大、または縮小に対する不変性を破ること
・γ<0でエネルギーの増大を抑えること
・γ<0のときにはエネルギーの損失を補うために、連続的補給できるようにすること
が求められる。
And to properly describe forced vibration,
-Breaking the invariance with respect to expansion or contraction-Suppressing the increase in energy with γ <0-When γ <0, it is required to be able to continuously replenish to compensate for the energy loss.

ファン・デル・ポールは、粘性係数γを振動の振幅θに依存させるという数学的には単純な変更によって、上記のような性質を持たせられることを初めて指摘した。振幅が小さいときγは負で、大きな振幅になると正になるとすればよい。ファン・デル・ポールの方程式は、無次元化されたパラメータεを含む次式で定義される。

Figure 2020095868
Van der Pol for the first time pointed out that the above-mentioned properties can be obtained by a mathematically simple change in which the viscosity coefficient γ depends on the amplitude θ of vibration. It may be assumed that γ is negative when the amplitude is small and positive when the amplitude is large. Van der Pol's equation is defined by the following equation, which includes the dimensionless parameter ε.
Figure 2020095868

同式によれば、εが大きい場合には振幅θの時間的変化は二つの異なった時間スケールの現象となる。一方はゆっくりとした変動を示す部分で、他方は急激な変化を示す部分である。この特徴的な現象が前述した弛張振動である。そして、リミットサイクル(ある点の極限集合に含まれる周期起動)の運動θ(t)は、フーリエ級数で示すことができ、いかなる力学量X(t)をとっても次式のように定義することができる。

Figure 2020095868
According to the same equation, when ε is large, the temporal change of the amplitude θ becomes a phenomenon of two different time scales. One is the part that shows slow fluctuations and the other is the part that shows rapid changes. This characteristic phenomenon is the relaxation vibration described above. Then, the motion θ (t) of the limit cycle (periodic activation included in the limit set of a certain point) can be indicated by a Fourier series, and any mechanical quantity X (t) can be defined as the following equation. can.
Figure 2020095868

そして、速度近似式については、次式で定義される。

Figure 2020095868
Then, the velocity approximation formula is defined by the following formula.
Figure 2020095868

さらに、図1(c)及び図1(d)に示されるような輪郭歪は、次式で示すことができる。

Figure 2020095868
Further, the contour distortion as shown in FIGS. 1 (c) and 1 (d) can be expressed by the following equation.
Figure 2020095868

図2には、有精卵の雌雄鑑定特性を示す画像データの解析結果を示し説明する。尚、図3は、有精卵を撮影するカメラの位置(有精卵に対する角度)を示している。 FIG. 2 shows and describes the analysis results of image data showing the sex identification characteristics of fertilized eggs. Note that FIG. 3 shows the position (angle with respect to the fertilized egg) of the camera for photographing the fertilized egg.

図3に示されるように、卵10は設置台23の上にその長軸が紙面の手前から奥になるように載置される。カメラ200は、載置された卵の短軸側の右(Right)と、左(Left)の位置で90度の角度差をもって卵の輪郭を撮影する。より詳細には、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側(撮影角度0度)と他方側(撮影角度90度)の位置で90度の角度差をもって有精卵の輪郭を撮影する。そして、それぞれの撮影により得られた画像データの差分をとって、回転方向を判断する。この回転方向を求めることで、雌雄鑑定が可能となる。 As shown in FIG. 3, the egg 10 is placed on the installation table 23 so that its long axis is from the front to the back of the paper. The camera 200 captures the contour of the placed egg with an angle difference of 90 degrees between the right (Right) and the left (Left) positions on the short axis side of the placed egg. More specifically, the long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X axis and the Y axis is the Z axis, and one side and the other side on the Y axis with respect to the Z axis. The optical axis is tilted at an angle of 45 degrees, and the contour of the fertilized egg is photographed with an angle difference of 90 degrees between the positions on one side (shooting angle 0 degrees) and the other side (shooting angle 90 degrees). Then, the rotation direction is determined by taking the difference of the image data obtained by each shooting. By determining this direction of rotation, it is possible to identify the sex.

図2において、Meas-Noは被検卵の撮影番号、SEXは羽毛鑑定による検証結果、IncSR0は撮影角度0度の輪郭の短径での傾斜方向、IncSR90は撮影角度90度の輪郭の短径での傾斜方向、PD_YRLは短径の位相差、PD_SEALは面積の角度差、PD_TRFRLは輪郭の角度差、PD_TRARLは全輪郭ベクトルの角度差を示している。さらに、各評定欄のLeftは短径の傾きが左方向、Rightは右方向、Lagは位相遅れ、Leadは位相進み、をそれぞれ示している。 In FIG. 2, Meas-No is the imaging number of the test egg, SEX is the verification result by feather appraisal, IncSR0 is the inclination direction of the contour with a imaging angle of 0 degrees, and IncSR90 is the minor axis of the contour with an imaging angle of 90 degrees. In the direction of inclination, PD_YRL indicates the phase difference of the minor diameter, PD_SEAL indicates the angle difference of the area, PD_TRFRL indicates the angle difference of the contour, and PD_TRARL indicates the angle difference of the entire contour vector. Furthermore, Left in each rating column indicates that the slope of the minor axis is to the left, Right is to the right, Lag is phase lag, and Lead is phase advance.

図2からも明らかなように、PD_TRFRLとPD_TRARLにおいて、雌雄による特性の違いを確認することができる可能性がある。尚、PD_TRARLにおいては、数カ所のエラーが見られるが、これには撮影誤差を起因しているものと考える。 As is clear from FIG. 2, it may be possible to confirm the difference in characteristics between males and females in PD_TRFRL and PD_TRARL. In PD_TRARL, some errors are seen, but it is considered that this is due to the shooting error.

図4(a)、図4(b)には、有精卵の長軸を中心として鈍端側から見て右方向へ360度撮影して得られた画像データから取り出した短径の傾き変化を示し説明する。具体的には、図4(a)は雌卵の特性、図4(b)は雄卵の特性を示す。各図において、横軸は撮影番号、縦軸は傾き量(°)である。さらに、縦軸で、0より大きい場合は右傾斜(右傾き)、0より小さい場合は左傾斜(左傾き)である。ここでは、説明を分かり易くするために、雌雄とも右傾斜をスタートポイントに設定している。図4(a)、図4(b)より明らかなように、長軸周りの有精卵の短径の傾きの特性が雌雄で異なることから、当該傾きを算出することで、有精卵の雌雄鑑定が可能となる。 In FIGS. 4 (a) and 4 (b), the inclination change of the minor axis taken from the image data obtained by photographing 360 degrees to the right when viewed from the blunt end side with the long axis of the fertilized egg as the center. Will be shown and explained. Specifically, FIG. 4 (a) shows the characteristics of a female egg, and FIG. 4 (b) shows the characteristics of a male egg. In each figure, the horizontal axis is the photographing number and the vertical axis is the amount of inclination (°). Further, on the vertical axis, when it is larger than 0, it is tilted to the right (tilt to the right), and when it is smaller than 0, it is tilted to the left (tilt to the left). Here, in order to make the explanation easier to understand, the right inclination is set as the starting point for both males and females. As is clear from FIGS. 4 (a) and 4 (b), the characteristics of the inclination of the minor axis of the fertilized egg around the major axis differ between males and females. Male and female identification is possible.

図5(a)には短径の傾き変化、図5(b)、図5(c)には、有精卵の短径の位相を示し説明する。より具体的には、図5(a)は撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示しており、0度〜90度、90度〜180度、180度〜270度、270度〜360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図5(b)は雌卵の短径の位相差PD_YRLn、図6(c)は雄卵の短径の位相差PD_YRLnである。0度より大きい場合は右回転、0より小さい場合は左回転である。各領域で、雌雄の特性は異なる。従って、有精卵の短径の位相差を利用すれば、雌雄の鑑定ができる。 FIG. 5 (a) shows a change in the inclination of the minor axis, and FIGS. 5 (b) and 5 (c) show the phase of the minor axis of the fertilized egg. More specifically, FIG. 5A shows the change of the inclination IncSR0 in the minor axis of the contour whose shooting angle is 0 degrees, and is 0 degrees to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees. The area is divided at 270 degrees to 360 degrees. The characteristic of the female egg is curve F, and the characteristic of the male egg is curve M. FIG. 5 (b) shows the minor axis phase difference PD_YRLn of the female egg, and FIG. 6 (c) shows the minor axis phase difference PD_YRLn of the male egg. If it is larger than 0 degrees, it rotates clockwise, and if it is smaller than 0 degrees, it rotates counterclockwise. Male and female characteristics are different in each region. Therefore, male and female can be identified by using the phase difference of the minor axis of the fertilized egg.

図6(a)には短径の傾き変化、図6(b)、図6(c)には、有精卵の輪郭面積の角度差を示し説明する。より具体的には、図6(a)は撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示しており、0度〜90度、90度〜180度、180度〜270度、270度〜360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図6(b)は、雌卵の面積の角度差PD_SERLn、図6(c)は雄卵の面積の角度差PD_SERLnを示している。短径の位相差と同じ位相で、雌雄の面積の角度差PD_SERLnの特性に違いが現れている。従って、この有精卵の輪郭面積の角度差を利用すれば、雌雄の鑑定ができる。 FIG. 6A shows a change in the inclination of the minor axis, and FIGS. 6B and 6C show an angular difference in the contour area of the fertilized egg. More specifically, FIG. 6A shows the change of the inclination IncSR0 in the minor axis of the contour whose shooting angle is 0 degrees, and is 0 degrees to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees. The area is divided at 270 degrees to 360 degrees. The characteristic of the female egg is curve F, and the characteristic of the male egg is curve M. FIG. 6 (b) shows the angle difference PD_SERLn of the area of the female egg, and FIG. 6 (c) shows the angle difference PD_SERLn of the area of the male egg. In the same phase as the minor axis phase difference, there is a difference in the characteristics of the angle difference PD_SERLn between the male and female areas. Therefore, male and female can be identified by using the angle difference of the contour area of the fertilized egg.

図7(a)には短径の傾き変化、図7(b)、図7(c)には、有精卵の輪郭の頭部頂点から所定角度までの輪郭ベクトル積算値の角度差を示し説明する。より具体的には、図7(a)は、撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示し、0度〜90度、90度〜180度、180度〜270度、270度〜360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図7(b)と図7(c)は、それぞれ雌卵、雄卵の角度0度から角度45度までの輪郭(輪郭Fという)の角度差PD_TRFRLを示している。これは、輪郭をベクトル値に変換した後、左右の平均値を求め、角度90度での角度差を算出したものである。図7(a)乃至図7(c)から明らかなように、前述した短径の位相差、面積の角度差とは特性が逆になっているが、規則性がある。従って、この有精卵の輪郭Fの角度差PD_TRFRLを利用すれば、雌雄の鑑定ができる。 FIG. 7 (a) shows a change in the inclination of the minor axis, and FIGS. 7 (b) and 7 (c) show the angle difference of the contour vector integrated value from the head apex of the contour of the fertilized egg to a predetermined angle. explain. More specifically, FIG. 7A shows the change in the inclination IncSR0 at the minor axis of the contour whose shooting angle is 0 degrees, 0 degrees to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees, The area is divided at 270 degrees to 360 degrees. The characteristic of the female egg is curve F, and the characteristic of the male egg is curve M. 7 (b) and 7 (c) show the angle difference PD_TRFRL of the contours (referred to as contour F) of the female and male eggs from an angle of 0 degrees to an angle of 45 degrees, respectively. In this method, after converting the contour into a vector value, the average value on the left and right is obtained, and the angle difference at an angle of 90 degrees is calculated. As is clear from FIGS. 7 (a) to 7 (c), the characteristics are opposite to those of the phase difference of the minor diameter and the angle difference of the area described above, but there is regularity. Therefore, by using the angle difference PD_TRFRL of the contour F of this fertilized egg, it is possible to identify males and females.

このように、検査対象の有精卵の輪郭を、角度を変えて撮影して得られた輪郭歪に起因する輪郭ベクトルの平均値、あるいは輪郭面積の角度差の3次元変化には、卵が親鳥から生まれる際に起こる回転を示す構造的非線形の特性が発現する。この非線形に基づいて雌雄の鑑定を行うことで有精卵の輪郭に存在している雌雄それぞれの3次元的特徴をデータ化することができ、この3次元的特徴を表すデータによれば、的確な有精卵の雌雄鑑定が可能となる。 In this way, the average value of the contour vector due to the contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles, or the three-dimensional change in the angle difference of the contour area is determined by the egg. It develops a structurally non-linear property that indicates the rotation that occurs when it is born from a parent bird. By identifying males and females based on this non-linearity, it is possible to digitize the three-dimensional characteristics of each male and female existing in the contour of the fertilized egg, and according to the data representing these three-dimensional characteristics, it is accurate. It is possible to identify the sex of fertilized eggs.

ここで、図8には、有精卵雌雄鑑定装置の一部である撮影系の構成を示し説明する。図8(a)は撮影系の模式図であり、図8(b)は撮影対象となる有精卵の水平位置調整の手順を示し、図8(c)は水平位置調整の手順を示す。 Here, FIG. 8 shows and describes a configuration of an imaging system that is a part of a fertilized egg sex identification device. FIG. 8A is a schematic view of the photographing system, FIG. 8B shows a procedure for adjusting the horizontal position of the fertilized egg to be photographed, and FIG. 8C shows a procedure for adjusting the horizontal position.

同図に示されるように、撮影系の構成は、異なる撮影角度での撮影が可能なように配置された3台のカメラ201,211,221を備えている。有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にカメラ201(センターカメラ)が設置されており、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くカメラ211(レフトカメラ)、カメラ221(ライトカメラ)が設置されている。この例では、カメラ211(レフトカメラ)による撮影を角度0度での撮影といい、カメラ221(ライトカメラ)による撮影を角度90度での撮影という。 As shown in the figure, the configuration of the photographing system includes three cameras 2011, 211, 221 arranged so as to be capable of photographing at different shooting angles. The long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X and Y axes is the Z axis, and above the two-dimensional plane composed of the X and Y axes and with the X axis. A camera 201 (center camera) is installed above the Z-axis of the fertilized egg at the intersection with the Y-axis, and above the two-dimensional plane, on one side and the other side on the Y-axis with respect to the Z-axis. The optical axis is tilted at an angle of 45 degrees, and the camera 211 (left camera) and camera so that the optical axis on one side and the optical axis on the other side intersect the Y axis at the center of the fertilized egg on a two-dimensional plane. 221 (light camera) is installed. In this example, shooting with the camera 211 (left camera) is called shooting at an angle of 0 degrees, and shooting with the camera 221 (right camera) is called shooting at an angle of 90 degrees.

検査対象の有精卵10が載置される載置台23は、水平角制御、回転角制御、及び高さ制御を担う3軸制御部24により駆動される。有精卵10は、長径を紙面に垂直な方向にして載置台23に載置されることになる。載置台23は、有精卵の姿勢、大きさに応じて長軸(長径)中心が3台のカメラ201,211,221の光軸の交叉点と一致するように、その水平角、回転角、及び高さが3軸制御部24で制御される。通常、カメラ201は、垂直線(載置台23のX−Y軸平面に対して垂直なZ軸)上にその光軸が一致するように設置される。 The mounting table 23 on which the fertilized egg 10 to be inspected is placed is driven by a three-axis control unit 24 which is responsible for horizontal angle control, rotation angle control, and height control. The fertilized egg 10 is placed on the mounting table 23 with the major axis oriented perpendicular to the paper surface. The horizontal angle and angle of rotation of the mounting table 23 are such that the center of the long axis (major axis) coincides with the intersection of the optical axes of the three cameras 2011, 21 and 221 according to the posture and size of the fertilized egg. , And the height is controlled by the 3-axis control unit 24. Normally, the camera 201 is installed on a vertical line (Z-axis perpendicular to the XY-axis plane of the mounting table 23) so that its optical axis coincides with each other.

一般に、親鳥が卵を産み始めてから廃鶏になるまで、卵のサイズは20%近く変化することが知られている。この変化によって載置台23に置かれ卵の中心も変化する。この中心の変化に伴って卵の長軸の位置が水平面上と垂直線上で変化するため、卵の輪郭が正しく撮影されなくなる。その結果、卵の回転方向を捉える角度差の精度が悪化して正確な画像データを得られなくなり、鑑定率に影響を及ぼしてしまう。 It is generally known that the size of eggs varies by nearly 20% from the time the parent bird begins laying eggs until it is abandoned. Due to this change, the egg is placed on the mounting table 23 and the center of the egg also changes. As the center changes, the position of the long axis of the egg changes on the horizontal plane and on the vertical line, so that the outline of the egg cannot be photographed correctly. As a result, the accuracy of the angle difference that captures the rotation direction of the egg deteriorates, and accurate image data cannot be obtained, which affects the appraisal rate.

そこで、本実施形態では、この問題を解消するために、3軸制御部24で載置台23のX−Y軸(水平面、二次元平面)を調整する水平角制御、長軸の向き角を制御する回転角制御、高さ制御を行う3軸制御部24を設けている。図8には、卵が大きくなることで当該卵の中心がカメラ211とカメラ221の光軸の交叉点から垂直線(Z軸)に沿って変化し、上方に移動する。この変化は、左右のカメラ211,221で撮影すべき角度90度からX軸方向の上方にずれる。そこで、左右のカメラ211,221の光軸が往査する点と卵の長軸を併せるように3軸制御部24が載置台23を駆動制御する。尚、3軸制御部24は、サーボ制御方式を採用してもよい。 Therefore, in the present embodiment, in order to solve this problem, the three-axis control unit 24 controls the horizontal angle control for adjusting the XY axes (horizontal plane, two-dimensional plane) of the mounting table 23, and controls the orientation angle of the long axis. A three-axis control unit 24 that controls the rotation angle and the height is provided. In FIG. 8, as the egg grows larger, the center of the egg changes from the intersection of the optical axes of the camera 211 and the camera 221 along the vertical line (Z axis) and moves upward. This change shifts upward in the X-axis direction from the angle of 90 degrees to be photographed by the left and right cameras 211 and 221. Therefore, the 3-axis control unit 24 drives and controls the mounting table 23 so that the points visited by the optical axes of the left and right cameras 211 and 221 and the long axis of the egg are aligned. The 3-axis control unit 24 may adopt a servo control method.

このような構成による撮影動作は次のようになる。先ず、被検査対象の卵を載置台23に載置し、カメラ201で見た当該卵の長軸をカメラのX軸 Horizontal(水平、垂直走査方向の一方で、ここでは水平方向をX軸とする)に平行になるように3軸制御部24がサーボ制御する。回転角度CAngleについても同様である。 The shooting operation with such a configuration is as follows. First, the egg to be inspected is placed on the mounting table 23, and the long axis of the egg as seen by the camera 201 is the X-axis Horizontal of the camera (horizontal and vertical scanning directions, while the horizontal direction is the X-axis here. The 3-axis control unit 24 performs servo control so as to be parallel to the above. The same applies to the rotation angle C Angle.

続いて、カメラ201による撮影で得た画像データに基づいて卵の短径(短軸寸法、幅)を算出し、予め設定された固定値となるように高さ調整(Z軸調整)を行う。同様に、カメラ201による撮影で得た画像データに基づいて水平角度を調整し、カメラ211,221による撮影で得られた画像データの長軸をカメラ201による撮影で得られた画像データの長軸と一致させる。全て調整された状態で、カメラ201,211,221による3面の画像撮影を行う。 Subsequently, the minor axis (minor axis dimension, width) of the egg is calculated based on the image data obtained by the image taken by the camera 201, and the height is adjusted (Z-axis adjustment) so as to be a preset fixed value. .. Similarly, the horizontal angle is adjusted based on the image data obtained by shooting with the camera 201, and the long axis of the image data obtained by shooting with the cameras 211 and 221 is the long axis of the image data obtained by shooting with the camera 201. Match with. With all the adjustments, the cameras 2011, 21 and 221 take three-sided images.

ここで、図9(a)乃至図9(c)を参照して、有精卵の輪郭の中心と短径を中心にした二次元平面でみた構造について説明する。 Here, with reference to FIGS. 9 (a) to 9 (c), the structure seen in a two-dimensional plane centered on the center of the contour of the fertilized egg and the minor axis will be described.

図9(a)は卵の中心(X軸とY軸の交叉点)から外殻に一定角度θで輪郭(外殻)に対して放射状に引いた直線(線分)14を矢印A方向に動かしたときの当該線分の長さ変化(ベクトル変化)を示している。図9(b)は、卵の輪郭を0度から180度でみた場合の輪郭右(上側の曲線)と輪郭左(下側の曲線)のベクトル変化を示している。図9(c)は、ベクトル変化を卵の輪郭に適用するための座標表示を示している。 FIG. 9A shows a straight line (line segment) 14 drawn radially from the center of the egg (the intersection of the X-axis and the Y-axis) to the outer shell at a constant angle θ with respect to the contour (outer shell) in the direction of arrow A. It shows the change in length (vector change) of the line segment when it is moved. FIG. 9B shows the vector changes of the contour right (upper curve) and the contour left (lower curve) when the contour of the egg is viewed from 0 to 180 degrees. FIG. 9 (c) shows the coordinate representation for applying the vector change to the contour of the egg.

図9(c)に示されるように、本実施形態では、卵の輪郭1において、鈍端である頭部頂点(Head top)と鋭端である尾部頂点(Tail top)を結ぶ線が長径(Long Radial)、短軸の右頂点である幅右頂点(Upper top)と幅左頂点(Lower top)とを結ぶ線が短径(Short Radial)、幅右頂点側の輪郭を右輪郭(Right Contour)、幅左頂点側の輪郭を左輪郭(Left Contour)と称する。なお、個体差があるので、卵の短径の中心は、長径の中心(Egg Center)とは必ずしも一致しないことは勿論である。 As shown in FIG. 9 (c), in the present embodiment, in the contour 1 of the egg, the line connecting the blunt end of the head top and the sharp end of the tail top is the major axis ( Long Radial), the line connecting the right apex of the short axis (Upper top) and the left apex of the width (Lower top) is the short diameter (Short Radial), and the contour on the right apex side of the width is the right contour (Right Contour). ), The contour on the left apex side of the width is called the left contour (Left Contour). Of course, since there are individual differences, the center of the minor axis of the egg does not always coincide with the center of the major axis (Egg Center).

以下、前述したような雌雄鑑定の視点を採用した、本発明の第1実施形態に係る有精卵雌雄鑑定装置の構成及び作用について詳細に説明する。 Hereinafter, the configuration and operation of the fertilized egg sex identification device according to the first embodiment of the present invention, which employs the viewpoint of sex identification as described above, will be described in detail.

図10には、本発明の第1実施形態に係る有精卵雌雄鑑定装置の制御系の構成を示し詳細に説明する。 FIG. 10 shows and describes in detail the configuration of the control system of the fertilized egg sex identification device according to the first embodiment of the present invention.

同図に示されるように、有精卵雌雄鑑定装置は、異なる撮影角度での撮影が可能なように配置された3台のカメラ50,51,52を備えている。検査対象の有精卵10が載置される載置台70は、水平角調整機構64、回転角制御調整機構65、及び高さ調整機構66に3軸が調整される。載置台70は、有精卵の姿勢、大きさに応じて長軸(長径)中心が3台のカメラ50,51,52の光軸の交叉点と一致するように、その水平角、回転角、及び高さが角度制御部60で制御される。 As shown in the figure, the fertilized egg sex identification device includes three cameras 50, 51, 52 arranged so as to be able to shoot at different shooting angles. The mounting table 70 on which the fertilized egg 10 to be inspected is placed has three axes adjusted by the horizontal angle adjusting mechanism 64, the rotation angle control adjusting mechanism 65, and the height adjusting mechanism 66. The horizontal angle and angle of rotation of the mounting table 70 are such that the center of the long axis (major axis) coincides with the intersection of the optical axes of the three cameras 50, 51, 52 according to the posture and size of the fertilized egg. , And the height is controlled by the angle control unit 60.

有精卵雌雄鑑定装置は、全体の制御を司る制御部53を備える。制御部53は、表示部67、操作部68、及び記憶部69と接続されている。そして、制御部53は、記憶部69に記憶されたプログラムを実行することで、0度輪郭生成部54、45度輪郭生成部55、90度輪郭生成部56、3面輪郭合成部57、解析部58、及び角度指令部59として機能する。角度指令部59は、角度制御部60に接続されている。そして、角度制御部60は、ウェーブドライバ61を介して水平調整機構64に接続され、回転ドライバ62を回転角調整機構65に接続され、リフトドライバ63を介して高さ調整機構66に接続されている。尚、制御部53は、コンピュータ等により実現される。 The fertilized egg sex identification device includes a control unit 53 that controls the whole. The control unit 53 is connected to the display unit 67, the operation unit 68, and the storage unit 69. Then, the control unit 53 executes the program stored in the storage unit 69 to analyze the 0-degree contour generation unit 54, the 45-degree contour generation unit 55, the 90-degree contour generation unit 56, the three-plane contour synthesis unit 57, and the analysis. It functions as a unit 58 and an angle command unit 59. The angle command unit 59 is connected to the angle control unit 60. Then, the angle control unit 60 is connected to the horizontal adjustment mechanism 64 via the wave driver 61, the rotation driver 62 is connected to the rotation angle adjustment mechanism 65, and is connected to the height adjustment mechanism 66 via the lift driver 63. There is. The control unit 53 is realized by a computer or the like.

撮影系の構成については、異なる撮影角度での撮影が可能なように配置された3台のカメラ50,51,52を備えている。有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にカメラ51(センターカメラ)が設置されており、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くカメラ50(レフトカメラ)、カメラ52(ライトカメラ)が設置されている。カメラ50(レフトカメラ)による撮影を角度0度での撮影といい、カメラ51(センターカメラ)による撮影を角度45度での撮影といい、カメラ52(ライトカメラ)による撮影を角度90度での撮影という。 As for the configuration of the shooting system, it includes three cameras 50, 51, and 52 arranged so that shooting can be performed at different shooting angles. The long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X and Y axes is the Z axis, and above the two-dimensional plane composed of the X and Y axes and with the X axis. A camera 51 (center camera) is installed above the Z-axis of the fertilized egg at the intersection with the Y-axis, and above the two-dimensional plane, on one side and the other side on the Y-axis with respect to the Z-axis. The optical axis is tilted at an angle of 45 degrees, and the camera 50 (left camera) and camera so that the optical axis on one side and the optical axis on the other side intersect the Y axis at the center of the fertilized egg on a two-dimensional plane. 52 (light camera) is installed. Shooting with the camera 50 (left camera) is called shooting at an angle of 0 degrees, shooting with the camera 51 (center camera) is called shooting at an angle of 45 degrees, and shooting with the camera 52 (right camera) is called shooting at an angle of 90 degrees. It's called shooting.

このような構成において、3台のカメラ50(撮影角度0度)、カメラ51(撮影角度45度)、及びカメラ52(撮影角度90度)による撮像で得られた各画像データは、制御部53の0度輪郭生成部54、45度輪郭生成部55、及び90度輪郭生成部56にそれぞれ送られる。そして、各部54,55,56で、角度0度、角度45度、及び角度90度のそれぞれでの撮影で得られた画像データに基づく輪郭データ(0度輪郭データ、45度輪郭データ、及び90度輪郭データ;座標データ等)が生成される。これらの輪郭データは、3面輪郭合成部57にそれぞれ送られ、0度輪郭データ、45度輪郭データ、及び90度輪郭データの3面輪郭合成が行われる。そして、解析部58は、各輪郭データ、及び合成された3面輪郭データを解析する。 In such a configuration, each image data obtained by imaging by the three cameras 50 (shooting angle 0 degrees), the camera 51 (shooting angle 45 degrees), and the camera 52 (shooting angle 90 degrees) is the control unit 53. It is sent to the 0 degree contour generation unit 54, the 45 degree contour generation unit 55, and the 90 degree contour generation unit 56, respectively. Then, contour data (0-degree contour data, 45-degree contour data, and 90 degrees) based on image data obtained by shooting at angles of 0 degrees, 45 degrees, and 90 degrees in each of the parts 54, 55, and 56. Degree contour data; coordinate data, etc.) is generated. These contour data are sent to the three-sided contour synthesizing unit 57, respectively, and three-sided contour synthesizing of 0-degree contour data, 45-degree contour data, and 90-degree contour data is performed. Then, the analysis unit 58 analyzes each contour data and the synthesized three-sided contour data.

より具体的には制御部53の、解析部58は、要素算出部58a、短径傾き変化算出部58b、短径角度差算出部58c、輪郭面積角度差算出部58d、輪郭角度差算出部58e、全輪郭ベクトル角度差算出部58f、及び鑑定部58gとして機能する。 More specifically, the analysis unit 58 of the control unit 53 includes an element calculation unit 58a, a minor axis inclination change calculation unit 58b, a minor axis angle difference calculation unit 58c, a contour area angle difference calculation unit 58d, and a contour angle difference calculation unit 58e. , The total contour vector angle difference calculation unit 58f, and the appraisal unit 58g.

要素算出部58aは、各部での算出に必要となる要素(例えば、長径、短径、面積、短径傾き、長径傾き等)を算出する。短径傾き変化算出部58bは、検査対象である有精卵の短径の傾き変化を算出する。短径角度差算出部58cは、有精卵の短径の角度差を算出する。輪郭面積角度差算出部58dは、有精卵の輪郭面積の角度差を算出する。輪郭角度差算出部58eは、有精卵の輪郭の角度差を算出する。全輪郭ベクトル角度差算出部58fは、全ての輪郭ベクトルの角度差を算出する。そして、鑑定部58gは、各部58a乃至58fの算出結果の少なくともいずれかを用いて、有精卵の雌雄を鑑定し、鑑定結果を出力する。 The element calculation unit 58a calculates the elements (for example, major axis, minor axis, area, minor axis inclination, major axis inclination, etc.) required for calculation in each unit. The minor axis inclination change calculation unit 58b calculates the minor axis inclination change of the fertilized egg to be inspected. The minor axis angle difference calculation unit 58c calculates the minor axis angle difference of the fertilized egg. The contour area angle difference calculation unit 58d calculates the angle difference of the contour area of the fertilized egg. The contour angle difference calculation unit 58e calculates the angle difference of the contour of the fertilized egg. The all contour vector angle difference calculation unit 58f calculates the angle difference of all contour vectors. Then, the appraisal unit 58g discriminates the sex of the fertilized egg using at least one of the calculation results of each unit 58a to 58f, and outputs the appraisal result.

そして、解析部58による解析結果は、記憶部69に記憶される。さらに、表示部57には、検査対象の有精卵の雌雄鑑定結果が表示される。 Then, the analysis result by the analysis unit 58 is stored in the storage unit 69. Further, the display unit 57 displays the sex identification result of the fertilized egg to be inspected.

上記解析部58による解析の過程で、角度指令部59は、載置台70の駆動に係る制御信号角度制御部60に送出し、角度制御部60は、ウェーブドライバ61、回転ドライバ62、リフトドライバ63に制御信号を送出する。ウェーブドライバ61、回転ドライバ62、リフトドライバ63は、制御信号に基づいて、水平角調整機構64、回転角制御調整機構65、及び高さ調整機構66を駆動する。 In the process of analysis by the analysis unit 58, the angle command unit 59 sends a control signal angle control unit 60 related to driving the mounting table 70, and the angle control unit 60 sends a wave driver 61, a rotation driver 62, and a lift driver 63. Sends a control signal to. The wave driver 61, the rotation driver 62, and the lift driver 63 drive the horizontal angle adjusting mechanism 64, the rotation angle control adjusting mechanism 65, and the height adjusting mechanism 66 based on the control signal.

以下、図11のフローチャートを参照して、本発明の第1実施形態に係る有精卵雌雄鑑定装置による処理手順を説明する。この処理手順の少なくとも一部は、本発明の第1実施形態に係る有精卵雌雄鑑定方法にも相当する。 Hereinafter, the processing procedure by the fertilized egg sex identification device according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. At least a part of this treatment procedure also corresponds to the fertilized egg sex identification method according to the first embodiment of the present invention.

処理を開始すると、制御部53は、各カメラ50乃至52からの画像データの入力を受け、処理する(S1)。続いて、画像データは制御部53の0度輪郭生成部54、45度輪郭生成部55、及び90度輪郭生成部56に送られ、各部で輪郭データ(XY平面上での座標データ等)が生成される。この輪郭データは、3面輪郭合成部57に送られ、0度輪郭データ、45度輪郭データ、及び90度輪郭データの3面輪郭合成が行われることになる(S2)。 When the process is started, the control unit 53 receives the input of the image data from each of the cameras 50 to 52 and processes it (S1). Subsequently, the image data is sent to the 0-degree contour generation unit 54, the 45-degree contour generation unit 55, and the 90-degree contour generation unit 56 of the control unit 53, and the contour data (coordinate data on the XY plane, etc.) is generated in each unit. Will be generated. This contour data is sent to the three-sided contour synthesizing unit 57, and the three-sided contour synthesizing of the 0-degree contour data, the 45-degree contour data, and the 90-degree contour data is performed (S2).

続いて、解析部58は、各輪郭データ、及び合成された3面輪郭データを解析する(S3)。具体的には、要素算出部58aは、各部での算出に必要となる要素(例えば、先に定義した輪郭ベクトル、長径、短径、面積、短径傾き、長径傾き等)を算出する。短径傾き変化算出部58bは、検査対象である有精卵の短径の傾き変化を算出する。短径角度差算出部58cは、有精卵の短径の角度差を算出する。輪郭面積角度差算出部58dは、有精卵の輪郭面積の角度差を算出する。輪郭角度差算出部58eは、有精卵の輪郭の角度差を算出する。全輪郭ベクトル角度差算出部58fは、全ての輪郭ベクトルの角度差を算出する。そして、鑑定部58gは、各部58a乃至58fの算出結果の少なくともいずれかを用いて、有精卵の雌雄を鑑定する(S3)。こうして、表示部67に鑑定結果を表示し(S4)、有精卵雌雄鑑定に係る一連の処理を完了する。 Subsequently, the analysis unit 58 analyzes each contour data and the synthesized three-sided contour data (S3). Specifically, the element calculation unit 58a calculates the elements required for the calculation in each unit (for example, the contour vector, the major axis, the minor axis, the area, the minor axis inclination, the major axis inclination, etc. defined above). The minor axis inclination change calculation unit 58b calculates the minor axis inclination change of the fertilized egg to be inspected. The minor axis angle difference calculation unit 58c calculates the minor axis angle difference of the fertilized egg. The contour area angle difference calculation unit 58d calculates the angle difference of the contour area of the fertilized egg. The contour angle difference calculation unit 58e calculates the angle difference of the contour of the fertilized egg. The all contour vector angle difference calculation unit 58f calculates the angle difference of all contour vectors. Then, the appraisal unit 58g appraises the sex of the fertilized egg using at least one of the calculation results of each unit 58a to 58f (S3). In this way, the appraisal result is displayed on the display unit 67 (S4), and a series of processes related to the fertilized egg male / female appraisal is completed.

以上説明したように、本発明の第1実施形態によれば、以下の技術が実現される。 As described above, according to the first embodiment of the present invention, the following techniques are realized.

(1−1) 卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、被検査対象の有精卵の輪郭を、角度を変えて撮影して得た輪郭歪に起因する輪郭ベクトル平均値の撮影角度差の三次元空間での変化を用いて雌雄の判定を行う有精卵雌雄鑑定方法。 (1-1) A method for determining the sex of a fertilized egg based on the contour of the egg, which is a contour caused by contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles. A fertilized egg sex identification method that determines sex by using the change in the imaging angle difference of the vector average value in three-dimensional space.

(1−2) 卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、被検査対象の有精卵の輪郭を、角度を変えて撮影して得た輪郭歪に起因する輪郭面積の撮影角度差の三次元空間での変化を用いて雌雄の判定を行う有精卵雌雄鑑定方法。 (1-2) A method for determining the sex of a fertilized egg based on the contour of the egg, which is a contour caused by contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles. A fertilized egg sex identification method that determines sex by using the change in the shooting angle difference of the area in three-dimensional space.

(1−3) 上記(1−1)又は(1−2)において、前記有精卵の鈍端と鋭端を結ぶ長軸の周りで、前記有精卵の表面における前記輪郭ベクトル平均値と輪郭面積が雌雄で異なる方向の螺旋状を呈することを用いて雌雄の鑑定を行う有精卵雌雄鑑定方法。 (1-3) In the above (1-1) or (1-2), around the long axis connecting the blunt end and the sharp end of the fertilized egg, with the contour vector average value on the surface of the fertilized egg. A fertilized egg male / female identification method in which males and females are identified by using the fact that the contour areas of males and females exhibit spiral shapes in different directions.

(1−4) 上記(1−3)において、前記有精卵の鈍端と鋭端を結ぶ長軸をX軸、前記長軸に直交する短軸をY軸、前記X軸と前記Y軸の交差点で当該X軸とY軸に直交するX軸とし、前記Z軸上方からみたX−Y二次元平面で前記X軸周りにおける前記有精卵の輪郭における前記輪郭歪が前記X軸周りでの回転に沿って変化し、前記輪郭歪が前記被検卵の雌雄によって逆方向であることを用いて前記有精卵の雌雄鑑定を行う有精卵雌雄鑑定方法。 (1-4) In the above (1-3), the long axis connecting the blunt end and the sharp end of the fertilized egg is the X axis, the short axis orthogonal to the long axis is the Y axis, and the X axis and the Y axis are The X-axis is orthogonal to the X-axis and the Y-axis at the intersection of the above, and the contour strain in the contour of the fertilized egg around the X-axis in the XY two-dimensional plane viewed from above the Z-axis is around the X-axis. A method for determining the sex of a fertilized egg, which changes along the rotation of the fertilized egg and uses the fact that the contour strain is in the opposite direction depending on the sex of the test egg.

(1−5) 上記(1−4)において、前記輪郭歪が、前記X−Y二次元平面上で前記有精卵の前記X軸と前記Y軸の交叉点から予め分割された角度θで前記有精卵の輪郭に伸びる直線の前記二次元平面上でのベクトルデータの変化を前記X軸周りでの回転に沿って前記Z軸方向において三次元空間に形成したものである有精卵雌雄鑑定方法。 (1-5) In (1-4) above, the contour strain is at an angle θ previously divided from the intersection of the X-axis and the Y-axis of the fertilized egg on the XY two-dimensional plane. Male and female fertilized eggs formed by forming changes in vector data on the two-dimensional plane of a straight line extending to the contour of the fertilized egg in a three-dimensional space in the Z-axis direction along the rotation around the X-axis. Appraisal method.

(1−6) 上記(1−3)において、前記輪郭歪は前記有精卵の前記X軸周りでの回転に沿う前記X軸と前記Y軸で形成される前記二次元平面の四象限の各象限における面積の変化を前記X軸周りでの回転に沿って前記Z軸方向において三次元空間に形成されたものである有精卵雌雄鑑定方法。 (1-6) In (1-3) above, the contour strain is the four quadrants of the two-dimensional plane formed by the X-axis and the Y-axis along the rotation of the fertilized egg around the X-axis. A fertilized egg sex identification method in which changes in area in each quadrant are formed in a three-dimensional space in the Z-axis direction along the rotation around the X-axis.

(1−7) 上記(1−3)において、前記輪郭歪を表すためのデータは、前記有精卵の前記X軸及び前記Y軸で構成される二次元平面の上方で、かつ前記Z軸上において前記X軸を光軸に一致させたカメラの撮像信号から生成する画像データと、前記Z軸に関して前記二次元平面の上方で、前記Z軸に関して前記Y軸上の一方側と他方側にあらかじめ設定された角度φで光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く位置した一対のサイドカメラからの撮像信号から生成する画像データとから生成される有精卵雌雄鑑定方法。 (1-7) In the above (1-3), the data for expressing the contour strain is above the two-dimensional plane composed of the X-axis and the Y-axis of the fertilized egg, and the Z-axis. Above, image data generated from an imaging signal of a camera whose X-axis is aligned with the optical axis, and above the two-dimensional plane with respect to the Z-axis, on one side and the other side on the Y-axis with respect to the Z-axis. A pair in which the optical axis is tilted at a preset angle φ, and the optical axis on one side and the optical axis on the other side are located at the center of the fertilized egg on the two-dimensional plane so as to intersect the Y axis. A fertilized egg sex identification method generated from image data generated from an imaging signal from a side camera of.

(1−8) 上記(1−1)乃至(1−7)の方法を実行する有精卵雌雄鑑定装置、プログラム、又はプログラムを記録したコンピュータ読み取り可能な記録媒体。 (1-8) A fertilized egg sex identification device, a program, or a computer-readable recording medium on which the program is recorded, which carries out the methods (1-1) to (1-7) above.

<第2実施形態> <Second Embodiment>

本発明の第2実施形態は、例えば、以下を特徴としている。 The second embodiment of the present invention is characterized by, for example, the following.

(b−1) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における短径を算出し、当該短径の位相差を算出し、当該位相差により有精卵の雌雄を鑑定する。 (B-1) The outer shape (outer shell contour) of the fertilized egg to be inspected is photographed by a plurality of cameras, image data is acquired three-dimensionally, and the image data is converted into precise contour data. , The minor axis in the contour is calculated, the phase difference of the minor axis is calculated, and the sex of the fertilized egg is identified by the phase difference.

(b−2) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における短径の傾きを算出し、当該短径の傾きの論理積を算出し、当該論理積により有精卵の雌雄を鑑定する。 (B-2) The outer shape (outer shell contour) of the fertilized egg to be inspected is photographed by a plurality of cameras, image data is acquired three-dimensionally, and the image data is converted into precise contour data. , The inclination of the minor axis in the contour is calculated, the logical product of the inclination of the minor axis is calculated, and the sex of the fertilized egg is identified by the logical product.

(b−3) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における面積歪と短径の傾きを算出し、当該面積歪と短径の傾きの論理積を算出し、当該論理積により有精卵の雌雄を鑑定する。 (B-3) The outer shape (outer shell contour) of the fertilized egg to be inspected is photographed by a plurality of cameras, image data is acquired three-dimensionally, and the image data is converted into precise contour data. , The area strain and the inclination of the minor axis in the contour are calculated, the logical product of the area strain and the inclination of the minor axis is calculated, and the sex of the fertilized egg is identified by the logical product.

以下、本発明の第2実施形態について詳述する。尚、先に第1実施形態で説明した輪歪等の各種定義、ハードウェア構成等は、本実施形態においても適用される。例えば、本発明の第2実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点、即ち、卵の輪郭とその輪郭歪の相違が雌卵(♀)と雄卵(♂)で異なることは、先に図1(a)乃至図1(d)で説明したのと同様であるので、重複した説明は省略する。 Hereinafter, the second embodiment of the present invention will be described in detail. In addition, various definitions such as ring distortion and hardware configuration described above in the first embodiment are also applied in this embodiment. For example, the point of view of male-female identification by the fertilized egg male-female identification device according to the second embodiment of the present invention, that is, the difference between the outline of the egg and its contour distortion is different between the female egg (♀) and the male egg (♂). , Since it is the same as that described above with reference to FIGS. 1 (a) to 1 (d), duplicate description will be omitted.

先ず、図12を参照して、被検査対象となる有精卵の基本構造を説明する。 First, with reference to FIG. 12, the basic structure of the fertilized egg to be inspected will be described.

卵の長軸を中心として右に360度回転させながら撮影すると、当該卵の長軸に対する短径の傾きが図12に示すように変化する。同図では、左に傾いた場合をLeft、右に傾いた場合をRightと表記している。例えば、前述したように、有精卵の長軸をX軸とし、短軸をY軸とし、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にセンターカメラが設置され、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くレフトカメラ、ライトカメラが設置される場合、「短径の傾き」とは、光軸方向から見たときの二次元平面上での短径の傾きをいい、光軸方向から見たときに二次元平面上で短径の傾きが右下がりとなる場合はRightとし、左下がりとなる場合はLeftとしている。このように短径が左右に傾くことで、当該短径の長さLyも変化し、その結果、卵の頭部と尾部の面積歪の関係が変化する。 When an image is taken while rotating the egg 360 degrees to the right with respect to the major axis of the egg, the inclination of the minor axis with respect to the major axis of the egg changes as shown in FIG. In the figure, the case of tilting to the left is referred to as Left, and the case of tilting to the right is referred to as Right. For example, as described above, the long axis of the fertilized egg is the X axis, the short axis is the Y axis, the axis perpendicular to the X axis and the Y axis is the Z axis, and the two are composed of the X axis and the Y axis. A center camera is installed above the dimensional plane and above the Z axis of the fertilized egg at the intersection of the X and Y axes, above the two dimensional plane and on one side of the Y axis with respect to the Z axis. The optical axis is tilted to the other side at an angle of 45 degrees, and the left camera and right camera so that the optical axis on one side and the optical axis on the other side intersect the Y axis at the center of the fertilized egg on a two-dimensional plane. When installed, the "minor axis tilt" means the minor axis tilt on the two-dimensional plane when viewed from the optical axis direction, and is short on the two-dimensional plane when viewed from the optical axis direction. When the inclination of the diameter is downward to the right, it is set to Right, and when it is downward to the left, it is set to Left. When the minor axis is tilted to the left or right in this way, the length Ly of the minor axis also changes, and as a result, the relationship between the area strain of the head and the tail of the egg changes.

そして、短径の傾きと頭部面積歪HLMCは同相、頭部面積歪HLMCと尾部面積歪TLMCとは逆相の関係にある。また、短径の傾きIncSRと尾部面積歪TLMCとの関係は180度で反転する。また、短径の位相差を求めると、90度間隔で反転し、更に雌の卵と雄の卵とで位相差が逆になることが明らかとなった。従って、短径の傾きと、面積歪の論理積を組み合わせると、4象限(90度間隔)で雌雄の鑑定が可能となる。 The inclination of the minor axis and the head area strain HLMC are in phase, and the head area strain HLMC and the tail area strain TLMC are in opposite phase. In addition, the relationship between the minor axis tilt IncSR and the tail area strain TLMC is reversed at 180 degrees. Further, when the phase difference of the minor axis was obtained, it was found that the phase difference was reversed at 90 degree intervals, and the phase difference was further reversed between the female egg and the male egg. Therefore, by combining the slope of the minor axis and the logical product of the area strain, it is possible to discriminate between males and females in four quadrants (90 degree intervals).

ここで、頭部面積歪HLMCと、尾部面積歪TLMCは、短径より頭部の右側面積S_HR、短径より頭部の左側面積S_HL、短径より尾部の右側面積S_TR、短径より尾部の左側面積S_TLにより、以下のように定義される。
HLMC=S_HR-S_HL
TLMC=S_TR-S_TL
Here, the head area strain HLMC and the tail area strain TLMC are the right side area S_HR of the head from the minor axis, the left side area S_HL of the head from the minor axis, the right side area S_TR of the tail from the minor axis, and the tail area from the minor axis. It is defined as follows by the left side area S_TL.
HLMC = S_HR-S_HL
TLMC = S_TR-S_TL

さらに、短径での位相差は、角度0度での撮影による短径Ly0、90度での撮影による短径Ly90により、以下のように定義される。
PD_YRL=Ly0-Ly90
ここで、この実施形態でも、撮影系は、異なる撮影角度での撮影が可能なように配置された複数のカメラを備えており、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側での撮影を角度0度での撮影とし、他方側での撮影を角度90度での撮影としている。すなわち、例えば、先に示した図10の構成で説明すると、カメラ50(レフトカメラ)による撮影が角度0度での撮影、カメラ51(センターカメラ)による撮影が角度45度での撮影、カメラ52(ライトカメラ)による撮影が角度90度での撮影となる。
Further, the phase difference at the minor axis is defined as follows by the minor axis Ly0 taken at an angle of 0 degrees and the minor axis Ly90 taken at an angle of 90 degrees.
PD_YRL = Ly0-Ly90
Here, also in this embodiment, the photographing system includes a plurality of cameras arranged so as to be able to photograph at different shooting angles, and the long axis of the fertilized egg is the X-axis and the short axis is the Y-axis. The axis perpendicular to the X-axis and the Y-axis is the Z-axis, and above the two-dimensional plane composed of the X-axis and the Y-axis, the angles of one side and the other side on the Y-axis with respect to the Z-axis are 45 degrees, respectively. The optical axis is tilted with, and the shooting on one side is taken at an angle of 0 degrees, and the shooting on the other side is taken at an angle of 90 degrees. That is, for example, in the configuration of FIG. 10 shown above, the camera 50 (left camera) shoots at an angle of 0 degrees, the camera 51 (center camera) shoots at an angle of 45 degrees, and the camera 52. Shooting with (light camera) is shooting at an angle of 90 degrees.

そして、短径の傾きによる論理積は、角度0度での撮影、及び90度での撮影により得た短径での傾きIncSR0、IncSR90により、以下のように定義される。
AIP_SRRL=and(IncSR0,IncSR90)
The logical product due to the inclination of the minor axis is defined as follows by the inclinations IncSR0 and IncSR90 at the minor axis obtained by photographing at an angle of 0 degrees and photographing at 90 degrees.
AIP_SRRL = and (IncSR0, IncSR90)

次に、図13を参照して、輪郭ベクトルについて、その定義を説明する。 Next, the definition of the contour vector will be described with reference to FIG.

本実施形態では、図13に示すように、検査対象の卵の中心から任意の角度で分割した放射線が、輪郭線と交わる距離を輪郭ベクトルと定義し、その線分を積算した値をTRAと定義する。具体的には、

Figure 2020095868
となる。つまり、角度を90度変えた撮影により得た画像データより算出した輪郭ベクトルの差を求めた値がPD_TRARLとなる(PD_TRARL=TRA0−TRA90)。In the present embodiment, as shown in FIG. 13, the distance at which the radiation divided at an arbitrary angle from the center of the egg to be inspected intersects the contour line is defined as the contour vector, and the value obtained by integrating the line segments is defined as TRA. Define. In particular,
Figure 2020095868
Will be. That is, PD_TRARL is the value obtained by calculating the difference between the contour vectors calculated from the image data obtained by shooting with the angle changed by 90 degrees (PD_TRARL = TRA0-TRA90).

次に、図14を参照して、基準輪郭ベクトルについて、その定義を説明する。 Next, the definition of the reference contour vector will be described with reference to FIG.

同図では、卵の輪郭と共に、その輪郭歪を重ねて示している。同図より、長軸Lx上の頭部頂点よりLx/4の位置では輪郭歪がゼロに収束している。そこで、本実施形態では輪郭歪ゼロ点の輪郭ベクトルを基準ベクトルBLAと定義し、頭部頂点から基準点までのベクトル歪(図中、ハッチングで示す)をFLMCと定義した。 In the figure, the contour distortion of the egg is shown together with the contour of the egg. From the figure, the contour distortion converges to zero at the position of Lx / 4 from the apex of the head on the long axis Lx. Therefore, in this embodiment, the contour vector at the zero contour distortion point is defined as the reference vector BLA, and the vector distortion from the head apex to the reference point (shown by hatching in the figure) is defined as FLMC.

ここで、基準ベクトルの位相差については、角度0度、45度、90度の各撮影で得られた画像データ上で定義される基準ベクトルBLA0、BLA45、BLA90により、以下のように定義される。
PD_BLARL=BLA0−BLA90
PD_BLARC=BLA0−BLA45
PD_BLARL=BLA45−BLA90
Here, the phase difference of the reference vector is defined as follows by the reference vectors BLA0, BLA45, and BLA90 defined on the image data obtained in each shooting at angles of 0 degrees, 45 degrees, and 90 degrees. ..
PD_BLARL = BLA0−BLA90
PD_BLARC = BLA0-BLA45
PD_BLARL = BLA45-BLA90

次に、図15を参照して、卵の螺旋構造について説明する。 Next, the spiral structure of the egg will be described with reference to FIG.

同図では、卵の輪郭と共に、その輪郭歪を重ねて示している。卵を頭部頂点から観察すると、完全な真円ではなくわずかに楕円になっている。更に、その楕円の長軸は、頭部頂点から尾部頂点に向かって、漸次連続的に回転する。これが、卵の螺旋構造である。 In the figure, the contour distortion of the egg is shown together with the contour of the egg. When observing the egg from the apex of the head, it is not a perfect circle but a slight ellipse. Further, the long axis of the ellipse rotates gradually and continuously from the head apex to the tail apex. This is the spiral structure of the egg.

その一方、卵の頭部頂点を精密に検出するために、長軸Lxの頭部頂点から1/4のポイントにおける左右の輪郭ベクトルVqをバランスさせている。その結果、輪郭歪は、図示のようにゼロに収束する。このような観点から、ベクトルVqと短径Lyとの相関を取ることで卵の雌雄鑑定が可能となる。 On the other hand, in order to accurately detect the head apex of the egg, the left and right contour vectors Vq at a point 1/4 from the head apex of the long axis Lx are balanced. As a result, the contour distortion converges to zero as shown. From this point of view, the sex of the egg can be identified by correlating the vector Vq with the minor axis Ly.

以下、上記定義を前提とした、本実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の観点を、実験データをふまえて詳細に説明する。 Hereinafter, the viewpoint of sex identification by the fertilized egg sex identification device according to the present embodiment based on the above definition will be described in detail based on the experimental data.

先ず、図16(a)乃至図16(d)、及び図17(a)乃至図17(c)を参照して雌雄鑑定の第1の観点につき説明する。 First, the first viewpoint of sex identification will be described with reference to FIGS. 16 (a) to 16 (d) and 17 (a) to 17 (c).

図16(a)は雌の卵の短径Lyを示し、図16(b)は雄の卵の短径Lyを示し、図16(c)は雌の卵の短径の複数カメラで得た値の差分を示し、図16(d)は雄の卵の短径の複数カメラで得た値の差分を示している。これらの図からも明らかなように、卵を360度回転させながら撮影すると短径Lyがわずかに変化する。そして、変化(差分)を拡大すると、雌雄で特性に違いが現れる。 FIG. 16 (a) shows the minor axis Ly of the female egg, FIG. 16 (b) shows the minor axis Ly of the male egg, and FIG. 16 (c) shows the minor axis Ly of the female egg obtained by a plurality of cameras. The difference between the values is shown, and FIG. 16 (d) shows the difference between the values obtained by a plurality of short-diameter cameras of a male egg. As is clear from these figures, the minor axis Ly changes slightly when the egg is photographed while being rotated 360 degrees. Then, when the change (difference) is enlarged, the characteristics differ between males and females.

一方、図17(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図17(b)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図17(c)は、短径の位相差PD_YRLを示している。これらの図からも明らかなように、短径の差分を90度の間隔で算出すると、4象限で差の特性が逆となる。これと同様の操作を雄の卵についても行うことで、雄の卵についても4象限での特性を得ることができるが、その特性は雌雄で逆相となる。従って、当該特性を用いれば、有精卵の雌雄を鑑定することが可能となる。尚、短径の90度の位相差PD_YRLは、卵の螺旋構造の回転方向に相当するものである。 On the other hand, FIG. 17 (a) shows the minor axis Ly0 calculated from the image data obtained by photographing the female egg at an angle of 0 degrees, and FIG. 17 (b) shows the female egg at an angle of 90 degrees. The minor axis Ly90 calculated from the image data obtained by photographing is shown, and FIG. 17 (c) shows the phase difference PD_YRL of the minor axis. As is clear from these figures, when the difference between the minor diameters is calculated at intervals of 90 degrees, the characteristics of the difference are reversed in the four quadrants. By performing the same operation on male eggs, the characteristics of male eggs in four quadrants can be obtained, but the characteristics are opposite in male and female. Therefore, using this characteristic, it is possible to identify the sex of a fertilized egg. The minor axis 90 degree phase difference PD_YRL corresponds to the rotation direction of the spiral structure of the egg.

次に、図18(a)乃至図18(d)、及び図19(a)乃至図19(d)を参照して雌雄鑑定の第2の観点につき説明する。 Next, the second viewpoint of sex identification will be described with reference to FIGS. 18 (a) to 18 (d) and FIGS. 19 (a) to 19 (d).

図18(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図18(b)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図18(c)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図18(d)は、短径の位相差PD_YRLを示している。 FIG. 18 (a) shows the minor axis inclination IncSR0 calculated from the image data obtained by photographing the female egg at an angle of 0 degrees, and FIG. 18 (b) shows the female egg at an angle of 0 degrees. FIG. 18 (c) shows the minor axis Ly0 calculated from the image data obtained by photographing, and FIG. 18 (c) shows the minor axis Ly90 calculated from the image data obtained by photographing the female egg at an angle of 90 degrees. (D) shows the phase difference PD_YRL of the minor axis.

同様に、図19(a)は、雄の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図19(b)は、雄の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図19(c)は、雄の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図19(d)は、短径の位相差PD_YRLを示している。 Similarly, FIG. 19 (a) shows a minor axis slope IncSR0 calculated from image data obtained by photographing a male egg at an angle of 0 degrees, and FIG. 19 (b) shows a male egg angle of 0. The minor axis Ly0 calculated from the image data obtained by photographing at 90 degrees is shown, and FIG. 19 (c) shows the minor axis Ly90 calculated from the image data obtained by photographing the male egg at an angle of 90 degrees. , FIG. 19 (d) shows the phase difference PD_YRL of the minor axis.

これらの図で、短径Ly0は、短径の傾きIncSR0を基準とした特性となっている。短径Ly0の位相を90度進め(Ly90)、その位相差PD_YRLを算出すると、4象限のいずれにおいても、雄雌の特性は逆相になっている。これは、90度間隔で複数のカメラを設置して得られた画像データを用いる場合も同様となる。従って、この短径の位相差PD_YRLによれば、有精卵の雌雄の鑑定を行うことができる。尚、短径の角度90度の位相差PD_YRLは、卵の螺旋構造の回転方向に相当するものである。 In these figures, the minor axis Ly0 has characteristics based on the inclination IncSR0 of the minor axis. When the phase of the minor axis Ly0 is advanced by 90 degrees (Ly90) and the phase difference PD_YRL is calculated, the male and female characteristics are opposite in each of the four quadrants. This also applies when using image data obtained by installing a plurality of cameras at intervals of 90 degrees. Therefore, according to this short-diameter phase difference PD_YRL, it is possible to identify the sex of a fertilized egg. The phase difference PD_YRL with a minor axis angle of 90 degrees corresponds to the rotation direction of the spiral structure of the egg.

次に、図20(a)乃至図20(e)を参照して雌雄鑑定の第3の観点につき説明する。 Next, the third viewpoint of sex identification will be described with reference to FIGS. 20 (a) to 20 (e).

図20(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図20(b)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径の傾きIncSR90を示し、図20(c)は、短径の傾きIncSR0、IncSR90の論理積AIP_SRRLを示し、図20(d)は雌の卵の短径の位相差PD_YRLを示し、図20(e)は、雄の卵の短径の位相差PD_YRLを示している。 FIG. 20 (a) shows the minor axis inclination IncSR0 calculated from the image data obtained by photographing the female egg at an angle of 0 degrees, and FIG. 20 (b) shows the female egg at an angle of 90 degrees. The minor axis slope IncSR90 calculated from the image data obtained by photographing is shown, FIG. 20 (c) shows the logical product AIP_SRRL of the minor axis slopes IncSR0 and IncSR90, and FIG. 20 (d) shows the short diameter of the female egg. The phase difference PD_YRL of the diameter is shown, and FIG. 20 (e) shows the phase difference PD_YRL of the minor diameter of the male egg.

先に図12でも説明したのと同様に、卵の長軸を中心にして右に360度回転させながら撮影すると、卵の短径の傾きが図12のように変化する。短径が左右に傾くことで長さも変化し、その結果、頭部と尾部の面積歪が変化する。そして、傾きIncSR0の位相を90度進め(IncSR)、両者の論理積AIP_SRRLを求めると、90度ごとに特性が反転することが明らかとなった。この特性は、短径の位相差PD_YRLと同種の特性となるので、短径の位相差PD_YRLと同じように、論理積AIP_SRRLの特性は、雌雄の鑑定に利用できる。 Similar to that described above in FIG. 12, when an image is taken while rotating the egg 360 degrees to the right around the long axis, the inclination of the minor axis of the egg changes as shown in FIG. As the minor axis tilts to the left and right, the length also changes, and as a result, the area strain of the head and tail changes. Then, when the phase of the slope IncSR0 was advanced by 90 degrees (IncSR) and the logical product AIP_SRRL of both was obtained, it became clear that the characteristics were inverted every 90 degrees. Since this characteristic is the same as that of the minor axis phase difference PD_YRL, the characteristic of the logical product AIP_SRRL can be used for gender identification, as with the minor axis phase difference PD_YRL.

次に、図21を参照して、雌雄鑑定の第4の観点につき説明する。 Next, with reference to FIG. 21, the fourth viewpoint of sex identification will be described.

同図は、雄雌各1個の有精卵を、360度回転させながら22.5度間隔で撮影した16面の画像データから抽出した短径と、当該短径の傾き等の測定値を一覧にまとめたものである。同図より、尾部面積歪と短径の傾きとの論理積AIP_TS0は、雌の卵と雄の卵とで特性がIP(同相)/AP(逆相)と明確に分かれているので、当該論理積は、有精卵の雌雄鑑定に利用することができることが明らかとなった。 The figure shows the minor axis extracted from 16 image data of 16 male and female fertilized eggs taken at 22.5 degree intervals while rotating 360 degrees, and the measured values such as the inclination of the minor axis. It is a list. From the figure, the logical product AIP_TS0 of the tail area strain and the slope of the minor axis is clearly divided into IP (in-phase) / AP (reverse-phase) in the characteristics of the female egg and the male egg. It was revealed that the product can be used for sex identification of fertilized eggs.

次に、図22(a)乃至図22(d)、及び図23(a)乃至図23(f)には、本実施形態に係る測定結果を示し説明する。 Next, FIGS. 22 (a) to 22 (d) and 23 (a) to 23 (f) show and explain the measurement results according to the present embodiment.

なお、図22(a)乃至図22(d)は1台のカメラによる手動撮影により得られた画像データに基づく測定結果であり、図23(a)乃至図23(f)は、複数台のカメラによる自動撮影により得られた画像データに基づく測定結果である。 22 (a) to 22 (d) are measurement results based on image data obtained by manual shooting with one camera, and FIGS. 23 (a) to 23 (f) are a plurality of cameras. It is a measurement result based on the image data obtained by the automatic shooting by the camera.

これらの図において、Egg-Noは卵の番号である。W30等とある最初の2桁は週齢を示しており、Wに続く番号が若いほど、週齢が若いことを意味する。 In these figures, Egg-No is the egg number. The first two digits such as W30 indicate the age of the week, and the younger the number following W, the younger the age of the week.

週齢と計測日、及びシステム(手動/自動)は次の通りである。

Figure 2020095868
The age of the week, the date of measurement, and the system (manual / automatic) are as follows.
Figure 2020095868

SEXは、羽毛鑑別で鑑定した卵の雌雄鑑定結果である。SGPTは、特異点(SGS)又は特異点以外(NoSG)の旨を示すものである。図24に示されるような特異点を検出する場合とそれ以外とを分けると、微少信号による鑑定エラーを避けることができるため、鑑定に際していずれに設定したかが示される。AIP_SRRLは、検査態様である卵の短径の傾きによる論理積(=and(IncSR0,IncSR90))である。同相の場合にはIP、逆相の場合にはAPとなる。 SEX is the result of male-female identification of eggs identified by feather discrimination. SGPT indicates a singular point (SGS) or a non-singular point (NoSG). When the case of detecting a singular point as shown in FIG. 24 and the case of detecting a singular point are separated from each other, an appraisal error due to a minute signal can be avoided, and therefore, which one is set at the time of appraisal is shown. AIP_SRRL is the logical product (= and (IncSR0, IncSR90)) according to the slope of the minor axis of the egg, which is the inspection mode. If it is in phase, it will be IP, and if it is in reverse phase, it will be AP.

TLMC45は、角度45度での撮影による尾部面積歪である。IncSR0は、角度0度での撮影による短径の傾きであり、IncSR90は角度90度での撮影による短径の傾きである。左に傾いた場合はLeft、右に傾いた場合はRightとなる。AIP_XRCとは、撮影角度0度での撮影による輪郭ベクトルの歪方向と角度45度での撮影による輪郭ベクトルの歪方向の論理積である。 TLMC45 is a tail area distortion due to shooting at an angle of 45 degrees. IncSR0 is the inclination of the minor axis when photographed at an angle of 0 degrees, and IncSR90 is the inclination of the minor axis when photographed at an angle of 90 degrees. If it leans to the left, it will be Left, and if it leans to the right, it will be Right. AIP_XRC is a logical product of the distortion direction of the contour vector by shooting at a shooting angle of 0 degrees and the distortion direction of the contour vector by shooting at an angle of 45 degrees.

PD_BLARLは、基準ベクトルの90度位相差である。PD_TRTCLは、撮影角度45度での撮影による短径より尾部の輪郭ベクトルの積算値と角度90度での撮影による短径より尾部の輪郭ベクトルの積算値との論理積である。PD_F45FBは、前述したバランス点より頭部の輪郭ベクトル歪を更に27度前後に分けた位相特性である。Forwardがbackよりも強い時をLead、弱い時をLagとした。そして、PD_YRLは、短径の位相差(=Ly0-Ly90)である。Lagは位相遅れ、Leadは位相進み、をそれぞれ意味する。 PD_BLARL is the 90 degree phase difference of the reference vector. PD_TRTCL is a logical product of the integrated value of the contour vector of the tail from the minor axis taken at an imaging angle of 45 degrees and the integrated value of the contour vector of the tail from the minor axis taken at an angle of 90 degrees. PD_F45FB is a phase characteristic in which the contour vector distortion of the head is further divided into about 27 degrees from the balance point described above. When Forward is stronger than back, it is called Lead, and when it is weak, it is called Lag. And PD_YRL is the phase difference of the minor axis (= Ly0-Ly90). Lag means phase lag and Lead means phase advance.

図22(a)、図22(b)より、(TLMC45、AIP_XRC)が(Left、IP)、(Left、AP)のいずれの場合でも、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。また、図22(c)、図22(d)より、(TLMC45、PD_BLARL)が(Right、Lead)、(Right、Lag)のいずれの場合においても、PD_YRLにより卵の雌雄の的確な鑑定がなされていることが分かる。W3617の卵の鑑定結果は、撮影機構の不備によるエラーと考えられる。 From FIGS. 22 (a) and 22 (b), it can be seen that PD_YRL accurately identifies males and females regardless of whether (TLMC45, AIP_XRC) is (Left, IP) or (Left, AP). .. Further, from FIGS. 22 (c) and 22 (d), in any case where (TLMC45, PD_BLARL) is (Right, Lead) or (Right, Lag), PD_YRL accurately identifies the sex of the egg. You can see that. The egg identification result of W3617 is considered to be an error due to a defect in the imaging mechanism.

図23(a)、図23(b)より、(PD_F45FB、PD_TRTCL)が(Lead、Lead)、(Lead、Lag)、(Lag、Lag)、(Lag、Lead)のいずれの場合においても、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。また、このグループでは、PD_F45FBとPD_TRTCLとの組み合わせとPD_YRLとの間に規則性が見られるので、PD_F45FBとPD_TRTCLの組合せにより卵の雌雄の鑑定を行うことも可能である。 From FIGS. 23 (a) and 23 (b), PD_YRL is obtained regardless of whether (PD_F45FB, PD_TRTCL) is (Lead, Lead), (Lead, Lag), (Lag, Lag), or (Lag, Lead). It can be seen that accurate identification of males and females has been made. In addition, in this group, there is regularity between the combination of PD_F45FB and PD_TRTCL and PD_YRL, so it is possible to identify the sex of eggs by the combination of PD_F45FB and PD_TRTCL.

図23(c)乃至図23(f)より、(PD_F45FB、PD_TRTCL)が(Lead、Lead)、(Lead、Lag)、(Lag、Lead)、(Lag、Lag)のいずれの場合においても、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。これは、360度を90度ごとに区分した4象限のいずれにおいても的確な鑑定が可能であることを意味する。尚、W4734の卵の鑑定結果は撮影機構の不備によるエラーであると考えられる。 From FIGS. 23 (c) to 23 (f), PD_YRL is obtained regardless of whether (PD_F45FB, PD_TRTCL) is (Lead, Lead), (Lead, Lag), (Lag, Lead), or (Lag, Lag). It can be seen that the sex is accurately identified. This means that accurate appraisal is possible in any of the four quadrants in which 360 degrees are divided into 90 degrees. The egg identification result of W4734 is considered to be an error due to a defect in the imaging mechanism.

そして、図22(a)乃至図22(d)はAIP_SRRLがIP、図23(a)乃至図23(f)はAIP_SRRLがAPであり、いずれの場合でも、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。 AIP_SRRL is IP in FIGS. 22 (a) to 22 (d), and AIP_SRRL is AP in FIGS. 23 (a) to 23 (f). In either case, PD_YRL accurately identifies the sex. You can see that.

この例では、サンプル数41個の卵のうち、2個の卵について、判定要素PD_YRLの情報が逆になっている。その逆であるとの情報は、4象限可逆の定理に反していることで判定されているが、判定に至るまでの構造的情報は複雑な条件を同じにしている。しかも、この2個の卵は撮影ミスであることが判明しているので、撮影機構が理想的であれば判定ミスは発生しない。この事実は、卵の雌雄構造が大きさや歪みの大きさに左右されないことから生じており、卵が性転換していることも考えにくい。従って、現在の肛門鑑定や羽毛鑑定の鑑定率にとって代わるための具体的な手法を本願は十分には開示しており、現在の肛門鑑定や羽毛鑑定の鑑定率95%から98%と同等の鑑定率を得ることができる。 In this example, the information of the determination element PD_YRL is reversed for two eggs out of the 41 eggs in the sample. The information that the opposite is true is determined by violating the four-quadrant reversible theorem, but the structural information up to the determination has the same complicated conditions. Moreover, since it is known that these two eggs are shooting mistakes, if the shooting mechanism is ideal, a judgment mistake does not occur. This fact arises from the fact that the male and female structure of the egg is independent of size and strain, and it is unlikely that the egg has transsexualized. Therefore, the present application sufficiently discloses a specific method for replacing the current anal appraisal and feather appraisal appraisal rate, and the appraisal rate equivalent to the current anal appraisal and feather appraisal appraisal rate of 95% to 98%. You can get the rate.

以上説明したような雌雄鑑定の視点を採用した、本発明の第2実施形態に係る有精卵雌雄鑑定装置の構成、作用については、先に図10で説明した第1実施形態と略同様である。但し、解析部の詳細が第1実施形態とは異なる。有精卵雌雄鑑定装置の制御部はコンピュータ等により実現される。 The configuration and operation of the fertilized egg sex identification device according to the second embodiment of the present invention, which employs the viewpoint of sex identification as described above, are substantially the same as those of the first embodiment described above with reference to FIG. be. However, the details of the analysis unit are different from those of the first embodiment. The control unit of the fertilized egg sex identification device is realized by a computer or the like.

そこで、図25には、解析部の詳細な構成を示し説明する。 Therefore, FIG. 25 shows and describes a detailed configuration of the analysis unit.

第2実施形態に係る有精卵雌雄鑑定装置の解析部100は、記憶部69のプログラムを実行することで、要素算出部100a、面積歪算出部100b、短径位相差算出部100c、短径傾き算出部100d、短径傾き論理積算出部100e、面積歪と短径傾き論理積算出部100f、及び鑑定部100gとして機能する。 The analysis unit 100 of the fertilized egg sex identification device according to the second embodiment executes the program of the storage unit 69 to execute the element calculation unit 100a, the area strain calculation unit 100b, the minor axis phase difference calculation unit 100c, and the minor axis. It functions as an inclination calculation unit 100d, a minor axis inclination logical product calculation unit 100e, an area strain and minor axis inclination logical product calculation unit 100f, and an appraisal unit 100g.

この実施形態においても、撮影系は、異なる撮影角度での撮影が可能なように配置された複数のカメラを備えており、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側での撮影を角度0度での撮影とし、他方側での撮影を角度90度での撮影としている。例えば、先に示した図10の構成で説明すると、カメラ50(レフトカメラ)による撮影が角度0度での撮影、カメラ51(センターカメラ)による撮影が角度45度での撮影、カメラ52(ライトカメラ)による撮影が角度90度での撮影となる。 Also in this embodiment, the photographing system includes a plurality of cameras arranged so as to be able to shoot at different shooting angles, and the long axis of the fertilized egg is the X-axis, the short axis is the Y-axis, and the X-axis. The axis perpendicular to the Y-axis is the Z-axis, and above the two-dimensional plane composed of the X-axis and the Y-axis, light is emitted at an angle of 45 degrees to one side and the other side on the Y-axis with respect to the Z-axis. The axis is tilted, and shooting on one side is taken at an angle of 0 degrees, and shooting on the other side is taken at an angle of 90 degrees. For example, in the configuration of FIG. 10 shown above, the camera 50 (left camera) shoots at an angle of 0 degrees, the camera 51 (center camera) shoots at an angle of 45 degrees, and the camera 52 (light). Shooting with a camera) is shooting at an angle of 90 degrees.

より詳細には、要素算出部100aは、各部での演算に必要となる要素(例えば、輪郭ベクトル、短径、長径、面積等)を算出する。面積歪算出部100bは、短径より頭部の右側面積S_HR、短径より頭部の左側面積S_HL、短径より尾部の右側面積S_TR、短径より尾部の左側面積S_TLにより、頭部面積歪HLMCと尾部面積歪TLMCを算出する。短径位相差算出部100cは、撮影角度0度での撮影による短径Ly0、角度45度での撮影による短径Ly45、角度90度での撮影による短径Ly90により、短径の位相差PD_YRL、PD_YRC、PD_YCLを算出する。短径傾き算出部100dは、角度0度、45度、及び90度の撮影により得た画像データより短径の傾きIncSR0、IncSR45、IncSR90を算出する。短径傾き論理積算出部100eは、短径の傾きによる論理積AIP_SRRL、AIP_SRRC、AIP_SRCLを算出する。面積歪と短径傾き論理積算出部100fは、尾部面積歪と短径の傾きとの論理積を、尾部面積歪TLMC0、TLMC45、TLMC90と短径の傾きIncSR0、IncSR45、IncSR90により算出する。そして、鑑定部100gは、各部の算出結果の少なくともいずれかに基づいて、有精卵の雌雄鑑定を行い出力する。 More specifically, the element calculation unit 100a calculates the elements (for example, contour vector, minor axis, major axis, area, etc.) required for the calculation in each unit. The area strain calculation unit 100b has a head area strain due to the right side area S_HR of the head from the minor axis, the left side area S_HL of the head from the minor axis, the right side area S_TR of the tail from the minor axis, and the left side area S_TL of the tail from the minor axis. Calculate HLMC and tail area strain TLMC. The minor-diameter phase difference calculation unit 100c has a minor-diameter phase difference PD_YRL due to a minor-diameter Ly0 taken at a shooting angle of 0 degrees, a minor-diameter Ly45 shot at an angle of 45 degrees, and a minor-diameter Ly90 shot at an angle of 90 degrees. , PD_YRC, PD_YCL are calculated. The minor axis inclination calculation unit 100d calculates the minor axis inclinations IncSR0, IncSR45, and IncSR90 from the image data obtained by shooting at angles of 0 degrees, 45 degrees, and 90 degrees. The minor axis inclination logical product calculation unit 100e calculates the logical product AIP_SRRL, AIP_SRRC, and AIP_SRCL based on the inclination of the minor axis. The area strain and minor axis inclination logical product calculation unit 100f calculates the logical product of the tail area strain and the minor axis inclination by the tail area strains TLMC0, TLMC45, TLMC90 and the minor axis inclinations IncSR0, IncSR45, IncSR90. Then, the appraisal unit 100g performs and outputs a male-female appraisal of the fertilized egg based on at least one of the calculation results of each unit.

本発明の第2実施形態に係る有精卵雌雄鑑定装置による処理手順は先に第1実施形態で説明したのと略同様であるが、解析(S3)の処理が異なる。この解析の処理では、前述した各部100a乃至100gによる上記解析により雌雄鑑定を行う。 The processing procedure by the fertilized egg sex identification device according to the second embodiment of the present invention is substantially the same as that described above in the first embodiment, but the processing in the analysis (S3) is different. In the processing of this analysis, the sex is identified by the above analysis using the above-mentioned parts 100a to 100g.

本発明の第2実施形態によれば、以下の技術が実現される。 According to the second embodiment of the present invention, the following techniques are realized.

(2−1)コンピュータにより有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵を角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、各角度での撮影に対応した前記短径の位相差を算出し、前記短径の位相差を用いて雌雄の判定を行う有精卵雌雄鑑定方法。 (2-1) A method for determining the sex of a fertilized egg based on the contour of the fertilized egg by a computer, and the contour is extracted based on the image data obtained by photographing the fertilized egg at different angles. A fertilized egg sex identification method in which the minor axis is calculated from the contour, the phase difference of the minor axis corresponding to the imaging at each angle is calculated, and the sex is determined using the phase difference of the minor axis.

(2−2)上記(2−1)の前記雌雄の判定においては、前記画像データに基づいて輪郭を抽出し、前記輪郭から短径の傾きを算出し、各角度での撮影に対応した前記短径の傾きの関係を更に用いる有精卵雌雄鑑定方法。 (2-2) In the determination of the male and female in the above (2-1), the contour is extracted based on the image data, the inclination of the minor diameter is calculated from the contour, and the shooting at each angle is supported. A fertilized egg sex identification method that further uses the relationship of the inclination of the minor axis.

(2−3)上記(2−1)、(2−2)の前記雌雄の判定においては、前記画像データに基づいて輪郭を抽出し、前記輪郭から面積歪と短径の傾きを算出し、前記面積歪と前記短径の傾きの関係を更に用いる有精卵雌雄鑑定方法。 (2-3) In the determination of male and female in the above (2-1) and (2-2), a contour is extracted based on the image data, and the area distortion and the inclination of the minor diameter are calculated from the contour. A fertilized egg sex identification method that further utilizes the relationship between the area strain and the inclination of the minor axis.

(2−4) 上記(2−1)乃至(2−3)の方法を実行する有精卵雌雄鑑定装置、プログラム、又はプログラムを記録したコンピュータ読み取り可能な記録媒体。 (2-4) A fertilized egg sex identification device, a program, or a computer-readable recording medium on which the program is recorded, which carries out the methods (2-1) to (2-3) above.

以上詳述したように、卵の長軸を中心にして右に360度回転させながら撮影すると卵の短径の傾きが、先に図12に示したように変化する。本発明では、前述したように、左に傾いた場合はLeft、右に傾いたときはRightと定義している。短径が左右に傾くことで長さも変化し、その結果、頭部と尾部の面積歪が変化する。そして、傾き0度の位相を90度進め、両者の論理積を求めると、90度ごとに特性が反転することが明らかとなった。例えば、図20(c)は、短径の傾きIncSR0とIncSR90の論理積AIP_SRRLを示している。この特性は、短径の位相差と同種の特性となるので、短径の位相差と同じように、論理積の特性は雌雄鑑定に利用できる。かかる観点から、本発明では、短径の位相差、及び前記論理積を用いて雌雄の判定を行うことを可能とした。 As described in detail above, the inclination of the minor axis of the egg changes as shown in FIG. 12 when the photograph is taken while rotating the egg 360 degrees to the right with respect to the major axis of the egg. In the present invention, as described above, when it is tilted to the left, it is defined as Left, and when it is tilted to the right, it is defined as Right. As the minor axis tilts to the left and right, the length also changes, and as a result, the area strain of the head and tail changes. Then, when the phase with a slope of 0 degrees was advanced by 90 degrees and the logical product of the two was obtained, it became clear that the characteristics were inverted every 90 degrees. For example, FIG. 20 (c) shows the logical product AIP_SRRL of the slopes IncSR0 and IncSR90 of the minor axis. Since this characteristic has the same kind of characteristic as the phase difference of the minor axis, the characteristic of the logical product can be used for sex discrimination as well as the phase difference of the minor diameter. From this point of view, in the present invention, it is possible to determine the sex by using the phase difference of the minor axis and the logical product.

さらに、卵の速度曲線は短径の傾きで求めることができ、且つ振り子の強制振動の原理と一致している。撮影角度により、その値は急激に、即ち非線形に変化するが、その変化パターンを特定しない限り、雌雄の自動鑑別は不可能である。そこで、本発明では、1次領域基準を「短径の傾き」としている。位相変化の起こらない卵の大きさで変化する歪みは、短径の傾きに代わるパラメータではない。そして、本願発明では「短径の傾きの論理積」により卵の雌雄鑑別を実現している。 Furthermore, the velocity curve of the egg can be obtained by the slope of the minor axis, which is consistent with the principle of forced vibration of the pendulum. The value changes rapidly, that is, non-linearly, depending on the shooting angle, but automatic discrimination between male and female is impossible unless the change pattern is specified. Therefore, in the present invention, the primary region reference is set to "slope of minor axis". The strain that changes with the size of the egg, which does not undergo a phase change, is not a parameter that replaces the slope of the minor axis. Then, in the present invention, the sex of the egg is discriminated by the "logical product of the inclination of the minor axis".

また、卵の回転方向は90°毎(4象限)に雌雄で逆に見える。したがって、4象限を自動的に検知する技術が卵の雌雄鑑別には必要となる。そこで、本発明では、その検知を卵の傾き方向による回転速度により行っている。すなわち、具体的な手法としては、卵の短径の傾きの論理積により求めている。論理積は、卵の非線形特性を活用しており、特に逆相特性を持つパラメータも4象限検知には有効であることが分かった。 In addition, the direction of rotation of the egg appears to be opposite for males and females every 90 ° (4 quadrants). Therefore, a technique for automatically detecting four quadrants is required for sexing eggs. Therefore, in the present invention, the detection is performed by the rotation speed in the tilting direction of the egg. That is, as a specific method, it is obtained by the logical product of the slope of the minor axis of the egg. It was found that the logical product utilizes the non-linear characteristics of the egg, and in particular, the parameters having the opposite phase characteristics are also effective for the detection of four quadrants.

さらに、卵の傾きIncSRを基準にすると頭部面積歪みHLMCは傾きと位相が一致し、尾部面積歪みTLMCは雌の卵では短径の傾きIncSRより位相が90度進み、オスの卵では位相が90度遅れることが明らかとなった。従って、尾部面積歪でも雌雄鑑定ができることが明らかとなった。従って、面積歪を加味することで、より一層、精度の高い雌雄鑑定が実現されるのである。 Furthermore, when the tilt IncSR of the egg is used as a reference, the head area distortion HLMC is in phase with the tilt, and the tail area distortion TLMC is 90 degrees ahead of the minor axis tilt IncSR in the female egg and the phase in the male egg. It became clear that it was delayed by 90 degrees. Therefore, it was clarified that the sex can be identified even with the tail area distortion. Therefore, by adding the area distortion, even more accurate male-female identification can be realized.

また、本願発明では、世界で初めて3面同時撮影による雌雄鑑定を実現したことを明確にしたものである。一般に、親鳥が卵を産み始めてから廃鶏になるまでに卵のサイズは20%近く変化することが知られているが、この変化によって載置台に置かれた卵の中心も変化し、この変化に伴って卵の長軸の位置が水平面上と垂直線上で変化し撮影に影響するが、本願発明では、3軸制御部による載置台の調整により、当該影響が及ぶのを防止している。 Further, in the present invention, it is clarified that the sex identification by simultaneous three-sided imaging is realized for the first time in the world. It is generally known that the size of an egg changes by nearly 20% from the time the parent bird begins laying eggs until it becomes abandoned chicken, but this change also changes the center of the egg placed on the pedestal, and this change. As a result, the position of the long axis of the egg changes on the horizontal plane and on the vertical line, which affects the imaging. However, in the present invention, the influence is prevented by adjusting the mounting table by the 3-axis control unit.

したがって、本発明の第1及び第2実施形態に係る有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラムによれば、有精卵を、非破壊、非接触、且つ高い鑑定率で雌卵を鑑定することができるために、雌卵や希に混在する鑑別不能卵などの雌卵以外をワクチン製造、あるいは食材に回すことができる。これにより、孵化した雄雛の処分は不要となるので、倫理的な問題も解消できる。さらに、雌卵のみを孵化対象とすることで孵化設備の半数は雌雛の増産に使うことができる。また、雌卵以外を食材に回すことで、世界的な蛋白源不足の事態にも対応できる。 Therefore, according to the fertilized egg sex identification device, the fertilized egg sex identification method, and the program according to the first and second embodiments of the present invention, the fertilized egg is non-destructively, non-contacted, and has a high identification rate. Since female eggs can be identified, non-male eggs such as female eggs and rarely mixed indistinguishable eggs can be produced as vaccines or used as foodstuffs. This eliminates the need to dispose of hatched male chicks and eliminates ethical issues. Furthermore, by targeting only female eggs for hatching, half of the hatching equipment can be used to increase the production of female chicks. In addition, by turning non-female eggs into foodstuffs, it is possible to deal with the situation of global protein source shortage.

以上、本発明の第1及び第2実施形態について説明したが、本発明はこれに限定されることなくその趣旨を逸脱しない範囲で種々の改良・変更が可能であることは勿論である。 Although the first and second embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to this and various improvements and changes can be made without departing from the spirit of the present invention.

例えば、測定の過程で得られる卵の長軸の傾きが所定値以上である場合には、測定エラーを予見し、調整又は撮影の中止を促すような警告を行ってもよい。 For example, when the inclination of the long axis of the egg obtained in the process of measurement is equal to or greater than a predetermined value, a measurement error may be foreseen and a warning may be given to urge adjustment or stop of imaging.

50,51,52…カメラ、53…制御部、54…0度輪郭生成部、55…45度輪郭生成部、56…90度輪郭生成部、57…3面輪郭合成部、58…解析部、59…角度指令部、60…角度制御部、61…ウェーブドライバ、62…回転ドライバ、63…リフトドライバ、64…水平角調整機構、65…回転角制御調整機構、66…高さ調整機構、67…表示部、68…操作部、69…記憶部、70…載置台。 50, 51, 52 ... Camera, 53 ... Control unit, 54 ... 0 degree contour generation unit, 55 ... 45 degree contour generation unit, 56 ... 90 degree contour generation unit, 57 ... 3-plane contour synthesis unit, 58 ... Analysis unit, 59 ... Angle command unit, 60 ... Angle control unit, 61 ... Wave driver, 62 ... Rotation driver, 63 ... Lift driver, 64 ... Horizontal angle adjustment mechanism, 65 ... Rotation angle control adjustment mechanism, 66 ... Height adjustment mechanism, 67 ... Display unit, 68 ... Operation unit, 69 ... Storage unit, 70 ... Mounting stand.

Claims (7)

コンピュータにより、複数のカメラによる撮影で得られた画像データに基づいて、有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、
前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く第1及び第2カメラが設置されており、
前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる前記角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う
有精卵雌雄鑑定方法。
It is a method for determining the sex of a fertilized egg based on the image data obtained by taking pictures with a plurality of cameras by a computer to determine the sex of the fertilized egg based on the contour of the fertilized egg.
A two-dimensional plane composed of the long axis of the fertilized egg as the X axis, the short axis as the Y axis, the axis perpendicular to the X axis and the Y axis as the Z axis, and the X axis and the Y axis. Above, the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y axis with respect to the Z axis, and both the optical axis on one side and the optical axis on the other side are on the two-dimensional plane. The first and second cameras are installed so as to intersect the Y-axis at the center of the fertilized egg in.
The contour of the fertilized egg is extracted based on the image data obtained by photographing the fertilized egg at different angles, the minor axis is calculated from the contour, and the minor axis obtained by photographing at an angle of 0 degrees with the first camera and the above. The phase difference of the minor axis, which is the difference in minor axis due to shooting at an angle of 90 degrees by the second camera, is calculated, and the phase difference of the minor axis is calculated, and the shooting at an angle of 0 degrees by the first camera and the angle of 90 degrees by the second camera are used. A fertilized egg sex identification method in which the logical product of the inclination of the minor axis obtained by the imaging of the above is calculated, and the sex is determined using the phase difference of the minor axis and the logical product.
前記雌雄の判定においては、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
請求項1に記載の有精卵雌雄鑑定方法。
In the determination of male and female, the head area strain, which is the difference between the area on the right side of the head from the minor axis and the area on the left side of the head from the minor axis, with the minor axis as the boundary from the contour, and the minor axis 2. Fertilized egg sex identification method.
有精卵の輪郭で雌雄を判定する有精卵雌雄鑑定装置であって、
前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある有精卵の中心で前記Y軸と交差する如く設置された第1及び第2カメラと、
前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部と、を備えた
有精卵雌雄鑑定装置。
A fertilized egg sex identification device that determines male and female based on the contour of the fertilized egg.
A two-dimensional plane composed of the long axis of the fertilized egg as the X axis, the short axis as the Y axis, the axis perpendicular to the X axis and the Y axis as the Z axis, and the X axis and the Y axis. Above, the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y axis with respect to the Z axis, and both the optical axis on one side and the optical axis on the other side are on the two-dimensional plane. The first and second cameras installed so as to intersect the Y-axis at the center of the fertilized egg in
The contour of the fertilized egg is extracted based on the image data obtained by photographing the fertilized egg at different angles, the minor axis is calculated from the contour, and the minor axis obtained by photographing at an angle of 0 degrees with the first camera and the above. The phase difference of the minor axis, which is the difference in the minor axis due to the shooting at an angle of 90 degrees by the second camera, is calculated, and the shooting at an angle of 0 degrees by the first camera and the angle of 90 degrees by the second camera are calculated. A fertilized egg sex identification device including a control unit that calculates the logical product of the inclination of the minor axis obtained by imaging and determines the sex using the phase difference of the minor axis and the logical product.
前記制御部は、前記雌雄の判定において、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
請求項3に記載の有精卵雌雄鑑定装置。
In the determination of male and female, the control unit determines the head area distortion, which is the difference between the area on the right side of the head from the minor axis and the area on the left side of the head from the minor axis, with the minor axis as the boundary from the contour. Claim 3 which calculates the tail area strain which is the difference between the right side area of the tail from the minor axis and the left side area of the tail from the minor axis, and further uses the head area strain and the relationship between the tail area and the inclination of the minor axis. The fertilized egg sex identification device described in 1.
前記X軸と前記Y軸で構成される前記二次元平面の上方で且つ前記X軸と前記Y軸との交叉部で前記有精卵の前記Z軸の上方に配置された第3カメラと、
水平角制御、回転角制御、及び高さ制御が可能な載置台と、
前記水平角制御、回転角制御、及び高さ制御を行う3軸制御部と、を備え、
前記有精卵は前記載置台に置かれ、
前記3制御部は、前記第3カメラで見た前記有精卵の長軸を前記X軸に平行となるようにサーボ制御し、前記有精卵の前記短径が予め設定された固定値となるように高さ制御を行い、前記第1カメラ及び前記第2カメラの光軸が往査する点と前記有精卵の長軸を合わせるように前記載置台を駆動制御し、前記第1乃至第3カメラによる3面画像撮影を行う
請求項3に記載の有精卵鑑定装置。
A third camera arranged above the two-dimensional plane composed of the X-axis and the Y-axis and above the Z-axis of the fertilized egg at the intersection of the X-axis and the Y-axis.
A mounting table capable of horizontal angle control, rotation angle control, and height control,
The three-axis control unit that performs the horizontal angle control, the rotation angle control, and the height control is provided.
The fertilized egg is placed on the above-mentioned stand and
The three control units servo-control the long axis of the fertilized egg as seen by the third camera so as to be parallel to the X axis, and the minor axis of the fertilized egg is set to a preset fixed value. The height is controlled so that the above-mentioned pedestal is driven and controlled so that the points visited by the optical axes of the first camera and the second camera and the long axis of the fertilized egg are aligned with each other. The fertilized egg appraisal device according to claim 3, wherein a three-sided image is taken by a three-camera.
有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く配置された第1及び第2カメラによる撮影で得られた画像データに基づいて前記有精卵の雌雄判定を行うプログラムであって、
コンピュータを、
前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部として機能させる
プログラム。
A two-dimensional plane composed of the long axis of a fertilized egg as the X-axis, the short-axis as the Y-axis, the axis perpendicular to the X-axis and the Y-axis as the Z-axis, and the X-axis and the Y-axis. Above, the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y axis with respect to the Z axis, and both the optical axis on one side and the optical axis on the other side are on the two-dimensional plane. A program for determining the sex of a fertilized egg based on image data obtained by photographing with the first and second cameras arranged so as to intersect the Y-axis at the center of the fertilized egg.
Computer,
The contour of the fertilized egg is extracted based on the image data obtained by photographing the fertilized egg at different angles, the minor axis is calculated from the contour, and the minor axis obtained by photographing at an angle of 0 degrees with the first camera and the above. The phase difference of the minor axis, which is the difference in the minor axis due to the shooting at an angle of 90 degrees by the second camera, is calculated, and the shooting at an angle of 0 degrees by the first camera and the angle of 90 degrees by the second camera are calculated. A program that calculates the logical product of the inclination of the minor axis obtained by photographing and functions as a control unit that determines the sex using the phase difference of the minor axis and the logical product.
前記制御部は、前記雌雄の判定において、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
請求項6に記載のプログラム。
In the determination of male and female, the control unit determines the head area distortion, which is the difference between the area on the right side of the head from the minor axis and the area on the left side of the head from the minor axis, with the minor axis as the boundary from the contour. Claim 6 that calculates the tail area strain, which is the difference between the right side area of the tail from the minor axis and the left side area of the tail from the minor axis, and further uses the head area strain and the relationship between the tail area and the inclination of the minor axis. The program described in.
JP2020556057A 2018-11-07 2019-11-05 Fertilized egg sex identification device, fertilized egg sex identification method, and program Active JP7320710B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/041388 2018-11-07
PCT/JP2018/041388 WO2020095394A1 (en) 2018-11-07 2018-11-07 Fertilized egg male-or-female determination device, fertilized egg male-or-female determination method, and program
PCT/JP2019/043191 WO2020095868A1 (en) 2018-11-07 2019-11-05 Sex identification device for fertilized eggs, sex identification method for fertilized eggs, and program

Publications (2)

Publication Number Publication Date
JPWO2020095868A1 true JPWO2020095868A1 (en) 2021-09-30
JP7320710B2 JP7320710B2 (en) 2023-08-04

Family

ID=70611893

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019518121A Pending JPWO2020095394A1 (en) 2018-11-07 2018-11-07 Fertilized egg sex identification device, fertilized egg sex identification method, and program
JP2020556057A Active JP7320710B2 (en) 2018-11-07 2019-11-05 Fertilized egg sex identification device, fertilized egg sex identification method, and program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019518121A Pending JPWO2020095394A1 (en) 2018-11-07 2018-11-07 Fertilized egg sex identification device, fertilized egg sex identification method, and program

Country Status (4)

Country Link
US (1) US11819010B2 (en)
EP (1) EP3878274A4 (en)
JP (2) JPWO2020095394A1 (en)
WO (2) WO2020095394A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274791A (en) * 2002-03-27 2003-09-30 Horiuchi:Kk Sex discrimination technique of fertilized egg
US20040040515A1 (en) * 2002-08-30 2004-03-04 Kabusiki Kaisya Horiuchi Method and apparatus for determining the sex of a fertilized egg
JP2005087123A (en) * 2003-09-18 2005-04-07 Towa Sangyo Kk Apparatus for horizontally installing egg and apparatus for discriminating male and female of sperm egg by utilzing the same
JP2010038897A (en) * 2008-07-07 2010-02-18 Ryosuke Taniguchi Steric strain measuring method of egg
JP2011142866A (en) * 2010-01-15 2011-07-28 Ryosuke Taniguchi Method for identifying sex of fertilized egg based on outline thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029080A (en) * 1997-07-09 2000-02-22 Reynnells; Richard D. Method and apparatus for avian pre-hatch sex determination
CN102803952A (en) * 2009-06-25 2012-11-28 耶路撒冷希伯来大学伊萨姆研发有限公司 Hyperspectral identification of egg fertility and gender
DK2336751T3 (en) * 2009-12-16 2014-11-17 Fraunhofer Ges Forschung Method for determining the sex of the bird eggs
DE102010006161B3 (en) * 2010-01-21 2011-01-13 Technische Universität Dresden Determining gender of fertilized and non-incubated bird eggs, where egg has yolk surrounded by egg shell and embryonic disk arranged to yolk, by guiding probe into egg shell through hole in direction to the disk with embryonic disk cells
US8908945B2 (en) * 2012-10-22 2014-12-09 General Electric Company Biological unit identification based on supervised shape ranking
MX2017010333A (en) * 2015-02-17 2018-11-12 Matrixspec Solutions Inc Systems, devices, and methods for detecting fertility and gender of unhatched eggs.
JP2019058073A (en) * 2017-09-25 2019-04-18 オリンパス株式会社 Image processing apparatus, cell recognition apparatus, cell recognition method, and cell recognition program
EP3914150B1 (en) * 2019-12-05 2023-11-22 The State of Israel, Ministry of Agriculture & Rural Development Agricultural Research Organization System and method for chicks sexing of newly-hatched chicks
US11703457B2 (en) * 2020-12-29 2023-07-18 Industrial Technology Research Institute Structure diagnosis system and structure diagnosis method
US20230088338A1 (en) * 2021-09-10 2023-03-23 Illumina, Inc. Sequencer focus quality metrics and focus tracking for periodically patterned surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274791A (en) * 2002-03-27 2003-09-30 Horiuchi:Kk Sex discrimination technique of fertilized egg
US20030185422A1 (en) * 2002-03-27 2003-10-02 Kabusiki Kaisya Horiuchi Method and apparatus for determining the sex of a fertilized egg
US20040040515A1 (en) * 2002-08-30 2004-03-04 Kabusiki Kaisya Horiuchi Method and apparatus for determining the sex of a fertilized egg
JP2005087123A (en) * 2003-09-18 2005-04-07 Towa Sangyo Kk Apparatus for horizontally installing egg and apparatus for discriminating male and female of sperm egg by utilzing the same
JP2010038897A (en) * 2008-07-07 2010-02-18 Ryosuke Taniguchi Steric strain measuring method of egg
JP2011142866A (en) * 2010-01-15 2011-07-28 Ryosuke Taniguchi Method for identifying sex of fertilized egg based on outline thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野崎 剛一: "高精細デジタル画像処理による有精卵の雌雄識別技術の実現・検証に関する研究", 科学研究費助成事業 研究成果報告書, JPN6018050220, 2 June 2015 (2015-06-02), JP, pages 1 - 4, ISSN: 0004926138 *

Also Published As

Publication number Publication date
US20210400922A1 (en) 2021-12-30
US11819010B2 (en) 2023-11-21
EP3878274A4 (en) 2022-08-03
EP3878274A1 (en) 2021-09-15
WO2020095394A1 (en) 2020-05-14
JPWO2020095394A1 (en) 2021-02-15
WO2020095868A1 (en) 2020-05-14
JP7320710B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
CN113379822B (en) Method for acquiring 3D information of target object based on pose information of acquisition equipment
JP5746477B2 (en) Model generation device, three-dimensional measurement device, control method thereof, and program
US20170160077A1 (en) Method of inspecting an object with a vision probe
CN107561545B (en) Fish shoal detection method and device and detector
WO2012020696A1 (en) Device for processing point group position data, system for processing point group position data, method for processing point group position data and program for processing point group position data
CN109242890A (en) Laser speckle system and method for aircraft
JPWO2011070927A1 (en) Point cloud data processing device, point cloud data processing method, and point cloud data processing program
WO2012053521A1 (en) Optical information processing device, optical information processing method, optical information processing system, and optical information processing program
JP2013101045A (en) Recognition device and recognition method of three-dimensional position posture of article
CN101033972A (en) Method for obtaining three-dimensional information of space non-cooperative object
CN106017404B (en) The detection device and method of the videographic measurment camera optical axis and auxiliary laser optical axis included angle
WO2022078442A1 (en) Method for 3d information acquisition based on fusion of optical scanning and smart vision
CN105717513A (en) Low-cost laser distance measurement apparatus and method based on common pick-up head chip
JP2013101464A (en) Image processing device and image processing method
JP6580761B1 (en) Depth acquisition apparatus and method using polarization stereo camera
US9273954B2 (en) Method and system for analyzing geometric parameters of an object
JP3991040B2 (en) Three-dimensional measuring apparatus and three-dimensional measuring method
JP6425406B2 (en) INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM
JPWO2020095868A1 (en) Fertilized egg sex identification device, fertilized egg sex identification method, and program
JP2006220603A (en) Imaging apparatus
CN108288285B (en) Three-dimensional panoramic scanning system and method based on omnidirectional loop
CN101846514A (en) Image point matching method for industrial digital photogrammetry
JP6485616B2 (en) Appearance measurement system, image processing method, and program
JP7320709B2 (en) Fertilized egg sex identification device, fertilized egg sex identification method, and program
CN104502378B (en) X-ray CT (Computed Tomography) device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7320710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350