JPWO2020090283A1 - Method and detection device for detecting abnormal detection - Google Patents

Method and detection device for detecting abnormal detection Download PDF

Info

Publication number
JPWO2020090283A1
JPWO2020090283A1 JP2020554817A JP2020554817A JPWO2020090283A1 JP WO2020090283 A1 JPWO2020090283 A1 JP WO2020090283A1 JP 2020554817 A JP2020554817 A JP 2020554817A JP 2020554817 A JP2020554817 A JP 2020554817A JP WO2020090283 A1 JPWO2020090283 A1 JP WO2020090283A1
Authority
JP
Japan
Prior art keywords
detection
sample
detected
pipette
pipette tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020554817A
Other languages
Japanese (ja)
Inventor
祐也 庄司
祐也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2020090283A1 publication Critical patent/JPWO2020090283A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本発明における検出の異常を検知する方法は、ピペットノズルに装着された液体を吸引または排出するためのピペットチップを用いて試薬貯留領域の検体を反応領域に移すとともに、反応領域において検体内の被検出物質を検出する工程と、試薬貯留領域に残留した検体をピペットチップで吸引した後、ピペットチップ内の検体を排出する際の圧力を測定する工程と、測定した圧力により得られる情報と、基準値とを比較することで、検出する工程の検出結果を判定する工程と、を含む。In the method for detecting a detection abnormality in the present invention, a sample in the reagent storage region is transferred to the reaction region using a pipette tip for sucking or discharging the liquid mounted on the pipette nozzle, and the sample in the sample in the reaction region is covered. A step of detecting a substance to be detected, a step of measuring the pressure at the time of discharging the sample in the pipette tip after sucking the sample remaining in the reagent storage area with the pipette tip, information obtained by the measured pressure, and a reference. It includes a step of determining the detection result of the step of detecting by comparing with the value.

Description

本発明は、検出の異常を検知する方法および検出装置に関する。 The present invention relates to a method and a detection device for detecting a detection abnormality.

臨床検査などにおいて、タンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出できれば、患者の状態を迅速に把握して治療を行うことができる。このため、微量の被検出物質を高感度かつ定量的に検出できる方法が求められている。微量の被検出物質を高感度かつ定量的に検出するためには、被検出物質を含む検体や検出に使用される試薬を正確に計量する必要がある。 If a small amount of a substance to be detected such as protein or DNA can be detected with high sensitivity and quantitatively in a clinical test or the like, the patient's condition can be quickly grasped and treated. Therefore, there is a demand for a method capable of detecting a trace amount of a substance to be detected with high sensitivity and quantitatively. In order to detect a small amount of a substance to be detected with high sensitivity and quantitatively, it is necessary to accurately measure a sample containing the substance to be detected and a reagent used for detection.

検体や試薬などの液体を正確に計量するために、ピペットチップの先端から気体を出し入れして、ピペットチップの先端位置を検出する方法が知られている(例えば、特許文献1参照)。 In order to accurately measure a liquid such as a sample or a reagent, a method is known in which a gas is taken in and out from the tip of a pipette tip to detect the position of the tip of the pipette tip (see, for example, Patent Document 1).

特許文献1には、ピペットチップの先端と収容部に収容された液体の表面とを離した状態と、これらを近づけた状態とで、ピペットチップの先端から気体を吸引または排出したときのピペットチップ内の圧力をそれぞれ測定し、測定した圧力差に基づいて液体表面に対するピペットチップの先端位置を検出する検出方法が記載されている。特許文献1に記載の技術では、検出されたピペットチップの先端位置に基づいて、ピペットチップを移動させて、液体を吸引している。そして、吸引した検体中の被検出物質を検出している。 Patent Document 1 describes a pipette tip when gas is sucked or discharged from the tip of the pipette tip in a state where the tip of the pipette tip and the surface of the liquid contained in the storage portion are separated from each other and in a state where they are brought close to each other. A detection method is described in which the pressure inside is measured and the position of the tip of the pipette tip with respect to the liquid surface is detected based on the measured pressure difference. In the technique described in Patent Document 1, the pipette tip is moved based on the detected tip position of the pipette tip to suck the liquid. Then, the substance to be detected in the aspirated sample is detected.

国際公開第2016/132793号International Publication No. 2016/132793

しかしながら、特許文献1に記載の技術では、液体に気泡が含まれている場合、気泡の上端部を液体の表面と誤検知してしまうことがある。これにより、吸引した液体が規定量よりも極端に少ない場合であっても、規定量通りの検体を吸引していると誤認識してしまう。検体が極端に少ない状態で、装置がそのまま動作してしまうと、正常なシグナルを得ることができないことがある。 However, in the technique described in Patent Document 1, when bubbles are contained in the liquid, the upper end of the bubbles may be erroneously detected as the surface of the liquid. As a result, even when the amount of the sucked liquid is extremely smaller than the specified amount, it is erroneously recognized that the sample is sucked according to the specified amount. If the device operates as it is with an extremely small amount of sample, it may not be possible to obtain a normal signal.

本発明の目的は、検体量を適切に検知し、検出結果の異常を検知できる検出の異常を検知する方法および検出装置を提供することである。 An object of the present invention is to provide a method and a detection device for detecting a detection abnormality capable of appropriately detecting a sample amount and detecting an abnormality in the detection result.

上記の課題を解決するための一態様として、本発明の検出の異常を検知する方法は、ピペットノズルに装着された液体を吸引または排出するためのピペットチップを用いて試薬貯留領域の検体を反応領域に移すとともに、反応領域において検体内の被検出物質を検出する工程と、前記試薬貯留領域に残留した検体を前記ピペットチップで吸引した後、前記ピペットチップ内の検体を排出する際の圧力を測定する工程と、測定した前記圧力により得られる情報と、基準値とを比較することで、前記検出する工程の検出結果を判定する工程と、を含む。 As one aspect for solving the above-mentioned problems, the method for detecting a detection abnormality of the present invention reacts a sample in a reagent storage area with a pipette tip for sucking or draining a liquid mounted on a pipette nozzle. The step of detecting the substance to be detected in the sample in the reaction region while moving to the region, and the pressure at the time of discharging the sample in the pipette tip after sucking the sample remaining in the reagent storage region with the pipette tip. It includes a step of measuring, a step of determining a detection result of the step to be detected by comparing the information obtained by the measured pressure with a reference value, and a step of determining the detection result of the step to be detected.

上記の課題を解決するための一態様として、本発明の検出装置は、ピペットノズルに装着されたピペットチップと、検体を貯留するための液体貯留領域および検体を反応させるための反応領域を有する反応チップとを使用して、前記反応領域において検体内の被検出物質を検出する検出装置であって、前記反応チップを保持するためのチップホルダーと、前記ピペットチップを着脱可能なピペットノズルを含むピペットと、前記試薬貯留領域に残留した検体を前記ピペットチップで吸引した後、前記ピペットチップ内の検体を排出する際の圧力を測定する空気圧センサーと、前記ピペットと、前記空気圧センサーとを制御する制御部とを有し、前記制御部は、測定した前記圧力により得られる情報と、基準値とを比較することで、被検出物質の検出結果を判定する。 As one aspect for solving the above-mentioned problems, the detection device of the present invention has a pipette tip attached to a pipette nozzle, a liquid storage area for storing a sample, and a reaction area for reacting the sample. A detection device that detects a substance to be detected in a sample in the reaction region using a tip, and is a pipette including a tip holder for holding the reaction tip and a pipette nozzle to which the pipette tip can be attached and detached. And, after sucking the sample remaining in the reagent storage area with the pipette tip, the air pressure sensor for measuring the pressure at the time of discharging the sample in the pipette tip, and the control for controlling the pipette and the air pressure sensor. The control unit determines the detection result of the substance to be detected by comparing the information obtained by the measured pressure with the reference value.

本発明によれば、検体量を適切に検知し、検出結果の異常を検知できるため、検出結果の信頼性を高めることができる。 According to the present invention, since the sample amount can be appropriately detected and an abnormality in the detection result can be detected, the reliability of the detection result can be improved.

図1は、検出装置の模式図である。FIG. 1 is a schematic view of a detection device. 図2は、検出チップの模式図である。FIG. 2 is a schematic view of the detection chip. 図3は、検出装置の動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the detection device. 図4Aは、位置情報を取得する工程の内容を示すフローチャートであり、図4Bは、検出結果の判定の内容を示すフローチャートである。FIG. 4A is a flowchart showing the contents of the process of acquiring the position information, and FIG. 4B is a flowchart showing the contents of the determination of the detection result. 図5は、検体の量と、検体を排出したときの圧力との関係を示す模式的なグラフである。FIG. 5 is a schematic graph showing the relationship between the amount of the sample and the pressure when the sample is discharged.

以下、本発明の一実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described.

まず、検出の異常を検知する方法を実施するための検出装置100の一例について説明する。 First, an example of the detection device 100 for implementing the method of detecting the detection abnormality will be described.

図1は、検出装置100の構成を示す図である。図2は、検出チップ200の模式図である。図1に示されるように、検出装置100は、送液部110と、搬送部120と、位置情報取得部130と、検出部140と、制御部150とを有する。検出装置100は、検出チップ200を装着した状態で使用される。 FIG. 1 is a diagram showing the configuration of the detection device 100. FIG. 2 is a schematic view of the detection chip 200. As shown in FIG. 1, the detection device 100 includes a liquid feeding unit 110, a transport unit 120, a position information acquisition unit 130, a detection unit 140, and a control unit 150. The detection device 100 is used with the detection chip 200 attached.

(検出チップの構成)
図2に示されるように、検出チップ200は、反応領域210と、試薬貯留領域220とを有する。検出チップ200は、再生可能なチップであってもよいし、使い捨てのチップであってもよい。本実施の形態では、検出チップ200は、使い捨てのチップである。また、試薬貯留領域220に貯留されている液体の例には、被検出物質を含む検体(例えば、血液や血清、血漿、尿、鼻孔液、唾液、精液など)や、蛍光物質で標識された捕捉体を含む標識液、洗浄液が含まれる。
(Configuration of detection chip)
As shown in FIG. 2, the detection chip 200 has a reaction region 210 and a reagent storage region 220. The detection chip 200 may be a reproducible chip or a disposable chip. In this embodiment, the detection chip 200 is a disposable chip. Examples of the liquid stored in the reagent storage area 220 include a sample containing the substance to be detected (for example, blood, serum, plasma, urine, nasal fluid, saliva, semen, etc.) and a fluorescent substance. A labeling solution containing a trap and a cleaning solution are included.

反応領域210は、検体中の被検出物質を検出するために反応などを行う領域である。反応領域には、流路212が配置されていてもよいし、ウェルが配置されていてもよい。本実施の形態では、反応領域210には、流路212が形成されている。 The reaction region 210 is a region in which a reaction or the like is carried out in order to detect a substance to be detected in a sample. A flow path 212 may be arranged or a well may be arranged in the reaction region. In the present embodiment, the flow path 212 is formed in the reaction region 210.

試薬貯留領域220は、検体、標識液、洗浄液などが貯留される領域である。試薬貯留領域220は、複数の凹部222を有する。凹部222の数は、特に限定されない。本実施の形態では、凹部222の数は、2個である。凹部222には、検体、標識液、洗浄液などが貯留されている。 The reagent storage area 220 is an area in which a sample, a labeling liquid, a washing liquid, and the like are stored. The reagent storage region 220 has a plurality of recesses 222. The number of recesses 222 is not particularly limited. In the present embodiment, the number of recesses 222 is two. A sample, a labeling liquid, a cleaning liquid, and the like are stored in the recess 222.

(検出装置の構成)
次に、本実施の形態に係る検出装置100の各構成部材について説明する。前述したように、検出装置100は、送液部110と、搬送部120と、位置情報取得部130と、検出部140と、制御部150とを有する。検出チップ200は、搬送部120のチップホルダー121に保持されうる。
(Configuration of detection device)
Next, each component of the detection device 100 according to the present embodiment will be described. As described above, the detection device 100 includes a liquid feeding unit 110, a transport unit 120, a position information acquisition unit 130, a detection unit 140, and a control unit 150. The detection chip 200 can be held in the chip holder 121 of the transport unit 120.

送液部110は、ピペット111と、ピペット移動部112と、送液ポンプ駆動機構113とを有する。送液部110は、チップホルダー121に保持された検出チップ200の試薬貯留領域220の凹部222に貯留された検体、標識液、洗浄液などの液体を反応領域210の流路212内に移動させたりする。また、送液部110は、流路212から液体を排出したり、流路212内の液体を攪拌したりもする。送液部110は、ピペット111のピペットノズル116にピペットチップ170を装着した状態で使用される。なお、ピペットチップ170は、市販されている任意のピペットチップを使用できる。不純物の混入などを防止する観点から、ピペットチップ170は、交換可能であることが好ましい。 The liquid feeding unit 110 includes a pipette 111, a pipette moving unit 112, and a liquid feeding pump driving mechanism 113. The liquid feeding unit 110 moves liquids such as a sample, a labeling liquid, and a washing liquid stored in the recess 222 of the reagent storage region 220 of the detection chip 200 held in the chip holder 121 into the flow path 212 of the reaction region 210. do. In addition, the liquid feeding unit 110 also discharges the liquid from the flow path 212 and agitates the liquid in the flow path 212. The liquid feeding unit 110 is used with the pipette tip 170 attached to the pipette nozzle 116 of the pipette 111. As the pipette tip 170, any commercially available pipette tip can be used. From the viewpoint of preventing impurities from being mixed in, the pipette tip 170 is preferably replaceable.

ピペット111は、流路212に液体を注入したり、流路212から液体を除去したりする際に液体を吸引し、排出する。ピペット111は、シリンジ114と、シリンジ114内を往復動作可能なプランジャー115と、シリンジ114に接続されたピペットノズル116とを有する。また、ピペット111は、プランジャー115の往復運動によって、液体の吸引および排出を定量的に行うことができる。これによりピペット111は、流路212に液体を注入したり、流路212から液体を除去したりできる。また、ピペット111は、液体の吸引および排出を繰り返すことで、流路212内の液体を攪拌できる。 The pipette 111 sucks and discharges the liquid when injecting the liquid into the flow path 212 or removing the liquid from the flow path 212. The pipette 111 has a syringe 114, a plunger 115 capable of reciprocating in the syringe 114, and a pipette nozzle 116 connected to the syringe 114. Further, the pipette 111 can quantitatively suck and discharge the liquid by the reciprocating motion of the plunger 115. As a result, the pipette 111 can inject a liquid into the flow path 212 and remove the liquid from the flow path 212. Further, the pipette 111 can agitate the liquid in the flow path 212 by repeating suction and discharge of the liquid.

ピペット移動部112は、ピペットチップ170内への液体の吸入のため、またはピペットチップ170内からの液体の排出のために、ピペットノズル116を移動させる。ピペット移動部112は、例えば、ピペットノズル116をピペットノズル116の軸方向(例えば垂直方向)に自在に動かす。ピペット移動部112は、例えば、ソレノイドアクチュエーターおよびステッピングモーターを含む。 The pipette moving unit 112 moves the pipette nozzle 116 for sucking the liquid into the pipette tip 170 or for discharging the liquid from the pipette tip 170. The pipette moving portion 112, for example, freely moves the pipette nozzle 116 in the axial direction (for example, the vertical direction) of the pipette nozzle 116. The pipette moving unit 112 includes, for example, a solenoid actuator and a stepping motor.

送液ポンプ駆動機構113は、プランジャー115を移動させて、外部の液体をピペットチップ170内に吸入させたり、ピペットチップ170内の液体を外部に排出させたりする。送液ポンプ駆動機構113は、ステッピングモーターなどのプランジャー115を往復運動させるための装置を含む。ステッピングモーターは、ピペット111の送液量や送液速度を管理できるため、試薬貯留領域220の残液量を管理する観点から好ましい。 The liquid feed pump drive mechanism 113 moves the plunger 115 to suck the external liquid into the pipette tip 170 or discharge the liquid in the pipette tip 170 to the outside. The liquid feed pump drive mechanism 113 includes a device for reciprocating the plunger 115 such as a stepping motor. Since the stepping motor can control the liquid feed amount and the liquid feed rate of the pipette 111, it is preferable from the viewpoint of controlling the residual liquid amount in the reagent storage region 220.

前述したように、送液部110は、凹部222より各種液体を吸引し、検出チップ200の流路212内に注入する。このとき、ピペットチップ170の先端が流路212内において流路212の底面と近接した状態で、シリンジ114に対するプランジャー115の往復動作を繰り返すことで、検出チップ200中の流路212内で液体が攪拌される。これにより、液体の濃度の均一化や、流路212内における反応の促進などを実現できる。 As described above, the liquid feeding unit 110 sucks various liquids from the recess 222 and injects them into the flow path 212 of the detection chip 200. At this time, while the tip of the pipette tip 170 is close to the bottom surface of the flow path 212 in the flow path 212, the reciprocating operation of the plunger 115 with respect to the syringe 114 is repeated, so that the liquid is liquid in the flow path 212 in the detection tip 200. Is agitated. As a result, it is possible to make the concentration of the liquid uniform and promote the reaction in the flow path 212.

搬送部120は、検出チップ200を検出位置または送液位置に搬送するとともに、検出チップ200を保持する。ここで「検出位置」とは、検出部140が検体中の被検出物質を検出する位置である。また、「送液位置」とは、送液部110が検出チップ200の流路212内に液体を注入するか、または検出チップ200の流路212内の液体を除去する位置である。搬送部120は、チップホルダー121および搬送ステージ122を含む。 The transport unit 120 transports the detection chip 200 to the detection position or the liquid feeding position, and holds the detection chip 200. Here, the "detection position" is a position where the detection unit 140 detects the substance to be detected in the sample. The "liquid feeding position" is a position where the liquid feeding unit 110 injects the liquid into the flow path 212 of the detection chip 200 or removes the liquid in the flow path 212 of the detection chip 200. The transport unit 120 includes a tip holder 121 and a transport stage 122.

チップホルダー121は、搬送ステージ122に固定されており、検出チップ200を着脱可能に保持する。チップホルダー121の形状は、検出チップ200を保持することが可能であり、かつ被検出物質の検出を妨害しなければ特に限定されない。本実施の形態では、チップホルダー121の形状は、検出チップ200を側面方向から保持できるように構成されている。 The chip holder 121 is fixed to the transport stage 122 and holds the detection chip 200 in a detachable manner. The shape of the chip holder 121 is not particularly limited as long as it can hold the detection chip 200 and does not interfere with the detection of the substance to be detected. In the present embodiment, the shape of the chip holder 121 is configured so that the detection chip 200 can be held from the side surface direction.

搬送ステージ122は、チップホルダー121を一方向およびその逆方向(図1の紙面における左右方向)に移動させる。搬送ステージ122も、被検出物質の検出を妨げない形状である。搬送ステージ122は、例えば、ステッピングモーターなどで駆動される。 The transport stage 122 moves the chip holder 121 in one direction and vice versa (left-right direction on the paper surface of FIG. 1). The transport stage 122 also has a shape that does not interfere with the detection of the substance to be detected. The transport stage 122 is driven by, for example, a stepping motor or the like.

位置情報取得部130は、液体表面に対するピペットチップ170の先端の位置に関する位置情報(以下、単に「位置情報」ともいう)を取得する。位置情報取得部130には、空気圧センサー131が含まれる。空気圧センサー131は、ピペットノズル116とシリンジ114との間に接続されている。空気圧センサー131の種類は、ピペットチップ170内の空気圧(圧力)を測定できれば特に限定されない。空気圧センサー131の種類の例には、ブルドン管を用いた機械式のセンサーや、半導体などを用いた電子式のセンサーなどが含まれる。 The position information acquisition unit 130 acquires position information (hereinafter, also simply referred to as “position information”) regarding the position of the tip of the pipette tip 170 with respect to the liquid surface. The position information acquisition unit 130 includes an air pressure sensor 131. The air pressure sensor 131 is connected between the pipette nozzle 116 and the syringe 114. The type of the air pressure sensor 131 is not particularly limited as long as it can measure the air pressure (pressure) in the pipette tip 170. Examples of the types of the air pressure sensor 131 include a mechanical sensor using a Bourdon tube, an electronic sensor using a semiconductor, and the like.

検出部140は、反応領域210の流路212内の被検出物質を検出する。検出部140の構成は、被検出物質を検出できれば特に限定されない。検出部140の構成は、被検出物質の検出方法によって適宜選択される。例えば、検出装置100が表面プラズモン共鳴励起増強蛍光分光(SPFS)装置の場合には、検出部140は、生じるプラズモン散乱光や蛍光を検出できるように構成されればよい。 The detection unit 140 detects the substance to be detected in the flow path 212 of the reaction region 210. The configuration of the detection unit 140 is not particularly limited as long as the substance to be detected can be detected. The configuration of the detection unit 140 is appropriately selected depending on the method for detecting the substance to be detected. For example, when the detection device 100 is a surface plasmon resonance excitation enhanced fluorescence spectroscopy (SPFS) device, the detection unit 140 may be configured to be able to detect the generated plasmon scattered light and fluorescence.

制御部150は、送液ポンプ駆動機構113、搬送ステージ122、空気圧センサー131などを制御する。制御部150は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The control unit 150 controls the liquid feed pump drive mechanism 113, the transfer stage 122, the air pressure sensor 131, and the like. The control unit 150 is composed of, for example, a known computer or microcomputer including an arithmetic unit, a control device, a storage device, an input device, and an output device.

(検出装置の検出動作)
次に、検出装置100の被検出物質の検出動作について説明する。図3は、検出装置100の動作手順の一例を示すフローチャートである。図4Aは、位置情報を取得する工程(図3における工程S120)の内容を示すフローチャートであり、図4Bは、検出結果を判定する工程(図3における工程S150)の内容を示すフローチャートである。
(Detection operation of detection device)
Next, the detection operation of the substance to be detected of the detection device 100 will be described. FIG. 3 is a flowchart showing an example of the operation procedure of the detection device 100. FIG. 4A is a flowchart showing the contents of the step of acquiring the position information (step S120 in FIG. 3), and FIG. 4B is a flowchart showing the contents of the step of determining the detection result (step S150 in FIG. 3).

まず、測定の準備をする(工程S110)。具体的には、検出チップ200を準備して、検出チップ200のセット位置においてチップホルダー121に検出チップ200を設置する。また、ピペットノズル116の先端部にピペットチップ170を装着する。 First, preparation for measurement is performed (step S110). Specifically, the detection chip 200 is prepared, and the detection chip 200 is installed in the chip holder 121 at the set position of the detection chip 200. Further, the pipette tip 170 is attached to the tip of the pipette nozzle 116.

次いで、位置情報を取得する(工程S120)。まず、ピペットチップ170内の第1圧力を測定する(工程S121)。具体的には、制御部150は、ピペット移動部112を駆動して、ピペットチップ170の先端を凹部222に貯留された液体の液面の直上に移動させる。そして、制御部150は、送液ポンプ駆動機構113を駆動して、プランジャー115をシリンジ114に対して進行させて、ピペットチップ170の先端から空気を連続してはき出しながら、空気圧センサー131によってピペットチップ170内の第1圧力を測定する。 Next, the position information is acquired (step S120). First, the first pressure in the pipette tip 170 is measured (step S121). Specifically, the control unit 150 drives the pipette moving unit 112 to move the tip of the pipette tip 170 directly above the liquid level of the liquid stored in the recess 222. Then, the control unit 150 drives the liquid feed pump drive mechanism 113 to advance the plunger 115 with respect to the syringe 114, and while continuously ejecting air from the tip of the pipette tip 170, the pipette is operated by the air pressure sensor 131. The first pressure in the chip 170 is measured.

次いで、ピペットチップ170内の第2圧力を測定する(工程S122)。具体的には、制御部150は、ピペット移動部112を駆動して、第1圧力を測定した工程(工程S121)時よりもピペットチップ170の先端を凹部222に貯留された液体の液面側に移動させる。そして、制御部150は、送液ポンプ駆動機構113を駆動して、プランジャー115をシリンジ114に対して進行させて、ピペットチップ170の先端から空気を連続してはき出しながら、空気圧センサー131によってピペットチップ170内の第2圧力を測定する。 Next, the second pressure in the pipette tip 170 is measured (step S122). Specifically, the control unit 150 drives the pipette moving unit 112 and makes the tip of the pipette tip 170 closer to the liquid level side of the liquid stored in the recess 222 than in the step of measuring the first pressure (step S121). Move to. Then, the control unit 150 drives the liquid feed pump drive mechanism 113 to advance the plunger 115 with respect to the syringe 114, and while continuously ejecting air from the tip of the pipette tip 170, the pipette is operated by the air pressure sensor 131. The second pressure in the chip 170 is measured.

次いで、第1圧力と第2圧力との差を求める(工程S123)。具体的には、制御部150は、第1圧力(第2圧力)から第2圧力(第1圧力)を差し引くことで第1圧力と第2圧力との差を求める。そして、制御部150は、第1圧力と第2圧力との差が生じたことにより、液面に対するピペットチップ170の先端の位置または、液面の高さを検出する。すなわち、制御部150は、空気圧センサー131が圧力を検出することで、液面に対するピペットチップ170の先端または、液面の高さの位置情報を取得する。なお、第1圧力と第2圧力との差が所定の閾値以上になるまで、ピペットチップ170の先端の移動と、第2圧力を測定する工程とを繰り返す。 Next, the difference between the first pressure and the second pressure is obtained (step S123). Specifically, the control unit 150 obtains the difference between the first pressure and the second pressure by subtracting the second pressure (first pressure) from the first pressure (second pressure). Then, the control unit 150 detects the position of the tip of the pipette tip 170 with respect to the liquid level or the height of the liquid level due to the difference between the first pressure and the second pressure. That is, the control unit 150 acquires the position information of the tip of the pipette tip 170 with respect to the liquid level or the height of the liquid level by detecting the pressure by the air pressure sensor 131. The steps of moving the tip of the pipette tip 170 and measuring the second pressure are repeated until the difference between the first pressure and the second pressure becomes equal to or higher than a predetermined threshold value.

なお、位置情報を取得する工程(工程S120)では、ピペットチップ170の先端から空気を連続してまたは間欠的にはき出しながら、かつピペットチップ170の先端を液面に近づけながら空気圧センサー131によりピペットチップ170内の圧力を測定してもよい。この場合、ピペットチップ170を移動する前の圧力が第1圧力となる。また、ピペットチップ170の先端を液面に近づけながら空気圧センサー131により測定したピペットチップ170内の圧力が第2圧力となる。 In the step of acquiring the position information (step S120), the pipette tip is continuously or intermittently ejected from the tip of the pipette tip 170, and the tip of the pipette tip 170 is brought close to the liquid level by the pipette tip 131. The pressure in 170 may be measured. In this case, the pressure before moving the pipette tip 170 becomes the first pressure. Further, the pressure inside the pipette tip 170 measured by the air pressure sensor 131 while bringing the tip of the pipette tip 170 close to the liquid level becomes the second pressure.

次いで、検体中の被検出物質を検出する(工程S130)。なお、本実施の形態では、検体および試薬を混合して、検体に含まれる被検出物質を検出するものとする。制御部150は、搬送ステージ122を操作して、検体が貯留されている凹部222をピペットチップ170の直下に移動させる。そして、取得した位置情報に基づいて、ピペットチップ170の先端を検体が貯留されている凹部222に向かって移動させて、ピペットチップ170内に検体を吸入させる。そして、制御部150は、ピペット移動部112を駆動して、ピペットチップ170の先端を流路212内に移動させて、流路212内に検体を注入する。 Next, the substance to be detected in the sample is detected (step S130). In this embodiment, the sample and the reagent are mixed to detect the substance to be detected contained in the sample. The control unit 150 operates the transport stage 122 to move the recess 222 in which the sample is stored to directly below the pipette tip 170. Then, based on the acquired position information, the tip of the pipette tip 170 is moved toward the recess 222 in which the sample is stored, and the sample is sucked into the pipette tip 170. Then, the control unit 150 drives the pipette moving unit 112 to move the tip of the pipette tip 170 into the flow path 212, and injects the sample into the flow path 212.

このとき、図2に示されるように、検体の表面に気泡Bが存在する場合、制御部150は、気泡Bの上端部を液面と認識してしまう。この場合、ピペットチップ170の先端が凹部222内に十分に移動されないため、検出に必要な検体量を吸入できない場合がある。そして、検体量が少ないまま、被検出物質を検出すると、正確でない検出結果が得られてしまう。そこで、本実施の形態では、試薬貯留領域220における検出工程後の検体量を測定することで、検出する工程が適正に行われたか否かを判定する。 At this time, as shown in FIG. 2, when the bubbles B are present on the surface of the sample, the control unit 150 recognizes the upper end of the bubbles B as the liquid level. In this case, since the tip of the pipette tip 170 is not sufficiently moved into the recess 222, it may not be possible to inhale the sample amount required for detection. Then, if the substance to be detected is detected while the amount of the sample is small, an inaccurate detection result will be obtained. Therefore, in the present embodiment, it is determined whether or not the detection step is properly performed by measuring the sample amount after the detection step in the reagent storage region 220.

また、制御部150は、搬送ステージ122を操作して、試薬が貯留されている凹部222をピペットチップ170の直下に移動させる。そして、取得した位置情報に基づいて、ピペットチップ170の先端を試薬が貯留されている凹部222に向かって移動させて、ピペットチップ170内に試薬を吸入させる。そして、制御部150は、ピペット移動部112を駆動して、ピペットチップ170の先端を流路212内に移動させて、流路212内に試薬を注入する。 Further, the control unit 150 operates the transfer stage 122 to move the recess 222 in which the reagent is stored to directly below the pipette tip 170. Then, based on the acquired position information, the tip of the pipette tip 170 is moved toward the recess 222 in which the reagent is stored, and the reagent is sucked into the pipette tip 170. Then, the control unit 150 drives the pipette moving unit 112 to move the tip of the pipette tip 170 into the flow path 212, and injects the reagent into the flow path 212.

次いで、検出部140により被検出物質を検出する。具体的には、制御部150は、搬送ステージ122を操作して、検出チップ200を検出位置に移動させる。そして、検出部140により検体中の被検出物質を検出する。 Next, the detection unit 140 detects the substance to be detected. Specifically, the control unit 150 operates the transport stage 122 to move the detection chip 200 to the detection position. Then, the detection unit 140 detects the substance to be detected in the sample.

なお、検体は、他の容器に貯留されていてもよい。この場合、検出チップ200には、当該容器を収容するための収容穴が形成される。 The sample may be stored in another container. In this case, the detection chip 200 is formed with a storage hole for housing the container.

また、検体および被検出物質の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液およびその希釈液が含まれる。また、被検出物質の例には、核酸(DNAやRNAなど)、タンパク質(ポリペプチドやオリゴペプチドなど)、アミノ酸、糖質、脂質およびこれらの修飾分子が含まれる。例えば、血液などは、一般に粘性が高いため、気泡が生じやすい。 The types of the sample and the substance to be detected are not particularly limited. Examples of specimens include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva, semen and dilutions thereof. Examples of substances to be detected include nucleic acids (such as DNA and RNA), proteins (such as polypeptides and oligopeptides), amino acids, sugars, lipids and modified molecules thereof. For example, blood and the like are generally highly viscous, so bubbles are likely to be generated.

次いで、ピペットチップ170で凹部222内に残留した検体を吸引した後、ピペットチップ170内の検体を排出する際の圧力を測定する(工程S140)。具体的には、制御部150は、搬送ステージ122を操作して、検体が貯留されている流路212をピペットチップ170の直下に移動させる。そして、ピペットチップ170の先端を検体が貯留されている流路212の底部に移動させて、ピペットチップ170内に、流路212内に残留した検体の全てを吸入させる。なお、流路212の底部の高さは、予め求められている。 Next, the pipette tip 170 sucks the sample remaining in the recess 222, and then the pressure at which the sample in the pipette tip 170 is discharged is measured (step S140). Specifically, the control unit 150 operates the transport stage 122 to move the flow path 212 in which the sample is stored directly below the pipette tip 170. Then, the tip of the pipette tip 170 is moved to the bottom of the flow path 212 in which the sample is stored, and all the samples remaining in the flow path 212 are sucked into the pipette tip 170. The height of the bottom of the flow path 212 has been determined in advance.

制御部150は、搬送ステージ122を操作して、流路212をピペットチップ170の直下に移動させる。そして、ピペットチップ170内の検体を流路212に排出する。この際、制御部150は、空気圧センサー131によりピペットチップ170内の空気圧を測定する。 The control unit 150 operates the transfer stage 122 to move the flow path 212 directly below the pipette tip 170. Then, the sample in the pipette tip 170 is discharged to the flow path 212. At this time, the control unit 150 measures the air pressure in the pipette tip 170 by the air pressure sensor 131.

そして、測定した圧力により得られる情報と、基準値とを比較することで、検出工程(工程S130)の検出結果を判定する(工程S150)。本実施の形態では、測定した圧力が基準値以上の場合(工程S151;Yes)には、検出工程(工程S130)の検出結果を「検出に異常がなかった」と判定し(工程S152)、測定した圧力が既定値未満の場合(工程S152;No)には、検出工程(工程S130)の検出結果を「検出に異常がある」と判定する(工程S153)。 Then, the detection result of the detection step (step S130) is determined by comparing the information obtained from the measured pressure with the reference value (step S150). In the present embodiment, when the measured pressure is equal to or higher than the reference value (step S151; Yes), the detection result of the detection step (step S130) is determined to be "no abnormality in detection" (step S152). When the measured pressure is less than the predetermined value (step S152; No), the detection result of the detection step (step S130) is determined to be "abnormal in detection" (step S153).

測定した圧力に基づいて推定した残留した検体の量が基準値以上の場合には、検出工程(工程S130)の検出結果を「検出に異常がなかった」と判定し、推定した残留した検体の量が基準値未満の場合には、検出工程(工程S130)の検出結果を「検出に異常がある」と判定してもよい。 When the amount of residual sample estimated based on the measured pressure is equal to or greater than the reference value, the detection result of the detection step (step S130) is determined to be "no abnormality in detection", and the estimated residual sample is used. When the amount is less than the reference value, the detection result of the detection step (step S130) may be determined to be "abnormal in detection".

ここで、既定値の考え方について説明する。規定値は、検出工程(工程S130)の後に凹部222内に残留しているべき検体の最低量に対応して決定される。ピペットチップ170内の検体の量が多くなるほど、ピペットチップ170から検体を排出するときの圧力が増大する。したがって、ピペットチップ170から検体を排出するときの圧力で判定する場合は、凹部222内に残留しているべき最低量の検体を排出するときの圧力を規定値とすればよい。また、ピペットチップ170内から検体を排出するときの圧力から推定される検体の量で判定する場合は、凹部222内に残留しているべき最低量の検体の量を規定値とすればよい。 Here, the concept of the default value will be described. The specified value is determined corresponding to the minimum amount of sample that should remain in the recess 222 after the detection step (step S130). As the amount of sample in the pipette tip 170 increases, the pressure at which the sample is ejected from the pipette tip 170 increases. Therefore, when determining by the pressure at the time of discharging the sample from the pipette tip 170, the pressure at the time of discharging the minimum amount of the sample that should remain in the recess 222 may be set as the specified value. Further, when determining the amount of the sample estimated from the pressure when the sample is discharged from the pipette tip 170, the minimum amount of the sample that should remain in the recess 222 may be set as the specified value.

図5は、検体量と、検体を排出したときの圧力との関係を示す模式的なグラフである。 FIG. 5 is a schematic graph showing the relationship between the amount of the sample and the pressure when the sample is discharged.

基準値を求めるためには、まず、ピペットチップ170内の検体量と、検体を排出したときの圧力との関係を求める。具体的には、例えば、0μL、40μL、90μL、140μL、150μLを吸引する。次いで、吸引後に流路内へ全検体を排出し、排出時の最大圧力を求める。この工程を6回繰り返すことで、排出時の圧力の平均値を求める。次いで、流路212に排出する検体量と、検体を排出したときの圧力の平均値との関係を求める。図5に示されるように、凹部222に排出する検体量と、検体を排出したときの圧力とは、比例関係にある。 In order to obtain the reference value, first, the relationship between the amount of the sample in the pipette tip 170 and the pressure when the sample is discharged is obtained. Specifically, for example, 0 μL, 40 μL, 90 μL, 140 μL, and 150 μL are sucked. Then, after suction, all the samples are discharged into the flow path, and the maximum pressure at the time of discharge is obtained. By repeating this process 6 times, the average value of the pressure at the time of discharge is obtained. Next, the relationship between the amount of the sample discharged to the flow path 212 and the average value of the pressure when the sample is discharged is obtained. As shown in FIG. 5, the amount of the sample discharged into the recess 222 and the pressure at the time of discharging the sample are in a proportional relationship.

例えば、検体に気泡がない状態では、検出工程(工程S130)の検出結果を「検出に異常がある」と判定する検体量の下限値が約146μLとなることがある。そして、検体を最も使用するプロトコルでは、110μLの検体を使用することになり、下限量と使用量から、残検体量の最低液量は36μLとなる。計算上の残検体量の基準値は36μLとなるが、液量のバラツキを含め40μLを基準値として設定する。40μLの液体を排出したときの圧力の平均値(実測値)は、1.7kPa程度となる。ただし、排出圧力のバラツキ(3SD)を考慮すると、圧力の下限値(基準値)は、0.67kPaとなる。 For example, when there are no bubbles in the sample, the lower limit of the amount of the sample for determining that the detection result in the detection step (step S130) is “abnormal in detection” may be about 146 μL. Then, in the protocol that uses the sample most, 110 μL of the sample is used, and the minimum liquid amount of the remaining sample amount is 36 μL from the lower limit amount and the used amount. The calculated reference value of the residual sample amount is 36 μL, but 40 μL is set as the reference value including the variation in the liquid amount. The average value (actual measurement value) of the pressure when 40 μL of the liquid is discharged is about 1.7 kPa. However, considering the variation in discharge pressure (3SD), the lower limit value (reference value) of the pressure is 0.67 kPa.

なお、排出した圧力から残検体量を求める方法は、例えば、上記した凹部222に排出する検体量と、検体を排出したときの圧力との関係から求めればよい。この場合も排出圧力のバラツキ(3SD)を考慮する必要がある。 The method of determining the amount of the remaining sample from the discharged pressure may be obtained from the relationship between the amount of the sample discharged into the recess 222 described above and the pressure at the time of discharging the sample. In this case as well, it is necessary to consider the variation in discharge pressure (3SD).

(効果)
以上のように、本発明によれば、圧力により得られる情報および基準値を比較することで、検出結果の有無を判定するため、検出結果の異常を適切に検知できる。
(effect)
As described above, according to the present invention, since the presence or absence of the detection result is determined by comparing the information obtained by the pressure and the reference value, the abnormality of the detection result can be appropriately detected.

本出願は、2018年10月31日出願の特願2018−205571に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority under Japanese Patent Application No. 2018-205571 filed on October 31, 2018. All the contents described in the application specification and drawings are incorporated in the specification of the present application.

本発明に係る検出の異常を検知する方法は、例えば被検出物質の検出結果の信頼性を高めることができる。よって、微量な被検出物質の検出システムの開発、普及および発展に寄与することも期待される。 The method for detecting a detection abnormality according to the present invention can improve the reliability of the detection result of the substance to be detected, for example. Therefore, it is expected to contribute to the development, dissemination and development of the detection system for trace substances to be detected.

100 検出装置
110 送液部
111 ピペット
112 ピペット移動部
113 送液ポンプ駆動機構
114 シリンジ
115 プランジャー
116 ピペットノズル
120 搬送部
121 チップホルダー
122 搬送ステージ
130 位置情報取得部
131 空気圧センサー
140 検出部
150 制御部
170 ピペットチップ
200 検出チップ
210 反応領域
220 試薬貯留領域
212 流路
222 凹部
100 Detection device 110 Liquid transfer unit 111 Pipette 112 Pipette movement unit 113 Liquid transfer pump drive mechanism 114 Syringe 115 Plunger 116 Pipette nozzle 120 Transfer unit 121 Chip holder 122 Transfer stage 130 Position information acquisition unit 131 Pneumatic sensor 140 Detection unit 150 Control unit 170 Pipette tip 200 Detection tip 210 Reaction area 220 Reagent storage area 212 Channel 222 Recess

Claims (6)

ピペットノズルに装着された液体を吸引または排出するためのピペットチップを用いて試薬貯留領域の検体を反応領域に移すとともに、反応領域において検体内の被検出物質を検出する工程と、
前記試薬貯留領域に残留した検体を前記ピペットチップで吸引した後、前記ピペットチップ内の検体を排出する際の圧力を測定する工程と、
測定した前記圧力により得られる情報と、基準値とを比較することで、前記検出する工程の検出結果を判定する工程と、
を含む、検出の異常を検知する方法。
A step of transferring the sample in the reagent storage area to the reaction area using a pipette tip for sucking or discharging the liquid mounted on the pipette nozzle, and detecting a substance to be detected in the sample in the reaction area.
A step of measuring the pressure at the time of discharging the sample in the pipette tip after sucking the sample remaining in the reagent storage area with the pipette tip, and
A step of determining the detection result of the step to be detected by comparing the information obtained by the measured pressure with a reference value, and a step of determining the detection result of the step to be detected.
How to detect detection anomalies, including.
前記判定する工程では、測定した前記圧力が基準値以上の場合には、前記検出する工程の検出結果を「検出に異常がなかった」と判定し、測定した前記圧力が基準値未満の場合には、前記検出する工程の検出結果を「検出に異常がある」と判定する、
請求項1に記載の検出の異常を検知する方法。
In the determination step, when the measured pressure is equal to or higher than the reference value, the detection result of the detection step is determined to be "no abnormality in detection", and when the measured pressure is less than the reference value. Determines that the detection result of the detection step is "abnormal in detection".
The method for detecting an abnormality in the detection according to claim 1.
前記判定する工程では、測定した前記圧力に基づいて推定した残留した検体の量が基準値以上の場合には、前記検出する工程の検出結果を「検出に異常がなかった」と判定し、推定した残留した検体の量が基準値未満の場合には、前記検出する工程の検出結果を「検出に異常がある」と判定する、
請求項1に記載の検出の異常を検知する方法。
In the determination step, when the amount of residual sample estimated based on the measured pressure is equal to or greater than the reference value, the detection result of the detection step is determined to be "no abnormality in detection" and estimated. When the amount of the remaining sample is less than the reference value, the detection result of the detection step is determined to be "abnormal in detection".
The method for detecting an abnormality in the detection according to claim 1.
ピペットノズルに装着されたピペットチップと、検体を貯留するための試薬貯留領域および検体を反応させるための反応領域を有する反応チップとを使用して、前記反応領域において検体内の被検出物質を検出する検出装置であって、
前記反応チップを保持するためのチップホルダーと、
前記ピペットチップを着脱可能なピペットノズルを含むピペットと、
前記試薬貯留領域に残留した検体を前記ピペットチップで吸引した後、前記ピペットチップ内の検体を排出する際の圧力を測定する空気圧センサーと、
前記ピペットと、前記空気圧センサーとを制御する制御部とを有し、
前記制御部は、測定した前記圧力により得られる情報と、基準値とを比較することで、被検出物質の検出結果を判定する、
検出装置。
Using a pipette tip attached to a pipette nozzle and a reaction tip having a reagent storage area for storing a sample and a reaction area for reacting a sample, a substance to be detected in the sample is detected in the reaction area. It is a detection device that
A chip holder for holding the reaction chip and
A pipette including a pipette nozzle to which the pipette tip can be attached and detached, and
An air pressure sensor that measures the pressure at the time of discharging the sample in the pipette tip after sucking the sample remaining in the reagent storage area with the pipette tip.
It has a control unit that controls the pipette and the air pressure sensor.
The control unit determines the detection result of the substance to be detected by comparing the information obtained by the measured pressure with the reference value.
Detection device.
前記制御部は、測定した前記圧力が基準値以上の場合には、被検出物質の検出結果を「検出に異常がなかった」と判定し、測定した前記圧力が基準値未満の場合には、被検出物質の検出結果を「検出に異常がある」と判定する、
請求項4に記載の検出装置。
When the measured pressure is equal to or higher than the reference value, the control unit determines that the detection result of the substance to be detected is "no abnormality in detection", and when the measured pressure is less than the reference value, the control unit determines. Judge that the detection result of the substance to be detected is "abnormal in detection",
The detection device according to claim 4.
前記制御部は、測定した前記圧力に基づいて推定した残留した検体の量が基準値以上の場合には、被検出物質の検出結果を「検出に異常がなかった」と判定し、推定した残留した検体の量が基準値未満の場合には、被検出物質の検出結果を「検出に異常がある」と判定する、
請求項4に記載の検出装置。
When the amount of residual sample estimated based on the measured pressure is equal to or greater than the reference value, the control unit determines that the detection result of the substance to be detected is "no abnormality in detection" and estimates the residual amount. If the amount of the sample is less than the standard value, the detection result of the substance to be detected is judged to be "abnormal in detection".
The detection device according to claim 4.
JP2020554817A 2018-10-31 2019-09-20 Method and detection device for detecting abnormal detection Pending JPWO2020090283A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018205571 2018-10-31
JP2018205571 2018-10-31
PCT/JP2019/037025 WO2020090283A1 (en) 2018-10-31 2019-09-20 Method for recognizing detection abnormality and detection device

Publications (1)

Publication Number Publication Date
JPWO2020090283A1 true JPWO2020090283A1 (en) 2021-09-24

Family

ID=70463075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020554817A Pending JPWO2020090283A1 (en) 2018-10-31 2019-09-20 Method and detection device for detecting abnormal detection

Country Status (2)

Country Link
JP (1) JPWO2020090283A1 (en)
WO (1) WO2020090283A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350453A (en) * 2001-05-30 2002-12-04 Aloka Co Ltd Dispensation device
US20090007628A1 (en) * 2004-10-11 2009-01-08 Henrik Johansson Method for checking the condition of a sample when metering liquid
JP2010002237A (en) * 2008-06-18 2010-01-07 Olympus Corp Clogging detecting method of nozzle and autoanalyzer
JP2013181903A (en) * 2012-03-02 2013-09-12 Hitachi High-Technologies Corp Analyzer and analytic method
WO2014034293A1 (en) * 2012-08-28 2014-03-06 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2017106791A (en) * 2015-12-09 2017-06-15 株式会社日立ハイテクノロジーズ Automatic analyzer and method for determining abnormality of automatic analyzer
WO2017130369A1 (en) * 2016-01-29 2017-08-03 コニカミノルタ株式会社 Detection method, detection system and detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350453A (en) * 2001-05-30 2002-12-04 Aloka Co Ltd Dispensation device
US20090007628A1 (en) * 2004-10-11 2009-01-08 Henrik Johansson Method for checking the condition of a sample when metering liquid
JP2010002237A (en) * 2008-06-18 2010-01-07 Olympus Corp Clogging detecting method of nozzle and autoanalyzer
JP2013181903A (en) * 2012-03-02 2013-09-12 Hitachi High-Technologies Corp Analyzer and analytic method
WO2014034293A1 (en) * 2012-08-28 2014-03-06 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2017106791A (en) * 2015-12-09 2017-06-15 株式会社日立ハイテクノロジーズ Automatic analyzer and method for determining abnormality of automatic analyzer
WO2017130369A1 (en) * 2016-01-29 2017-08-03 コニカミノルタ株式会社 Detection method, detection system and detection device

Also Published As

Publication number Publication date
WO2020090283A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6013303B2 (en) Pipetting device and pipetting method of test liquid
JP4938082B2 (en) Cleaning device, suction nozzle clogging detection method, and automatic analyzer
JP4593404B2 (en) Liquid sample suction monitoring method and apparatus, and liquid sample analyzer
JP2007114192A (en) Liquid surface detector
JP2018146373A (en) Device and program for detecting pipette chip top end
US9500577B2 (en) Sample analyzer
US8894949B2 (en) Cleaning device, method for cleaning nozzle clogging, and automatic analyzer
WO2011043073A1 (en) Dispensing device, analyzing device, and dispensing method
JP6567873B2 (en) Automatic analyzer
JP2009041961A (en) Washing method of probe for handling liquid and analyzer
US11879904B2 (en) Method of washing an aspiration probe of an in-vitro diagnostic system, in-vitro diagnostic method, and in-vitro diagnostic system
JP2011128075A (en) Automatic analyzer, and specimen stirring method and specimen dispensation method of the automatic analyzer
CN106353519A (en) Method for pipetting liquids in an automated analysis apparatus
JP7423722B2 (en) Sample measuring device and sample measuring method
JP6368536B2 (en) Automatic analyzer and analysis method
JP2009025249A (en) Dispensing device and automatic analyzer
JP7200357B2 (en) How labware works
US20090071269A1 (en) Specimen analyzer and liquid suction assembly
JP4898270B2 (en) Liquid level detector and automatic analyzer
CN112585477A (en) Automatic analysis system
JP6227441B2 (en) Analysis apparatus and method
WO2020090283A1 (en) Method for recognizing detection abnormality and detection device
JP2007322394A (en) Dispensing device and automated analyzer
JP6711690B2 (en) Automatic analyzer
JP2010014434A (en) Dispensing nozzle bore dirt detection method and specimen dispenser

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128