JPWO2020050245A1 - Film and packaging - Google Patents

Film and packaging Download PDF

Info

Publication number
JPWO2020050245A1
JPWO2020050245A1 JP2020541224A JP2020541224A JPWO2020050245A1 JP WO2020050245 A1 JPWO2020050245 A1 JP WO2020050245A1 JP 2020541224 A JP2020541224 A JP 2020541224A JP 2020541224 A JP2020541224 A JP 2020541224A JP WO2020050245 A1 JPWO2020050245 A1 JP WO2020050245A1
Authority
JP
Japan
Prior art keywords
group
component
film
less
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020541224A
Other languages
Japanese (ja)
Other versions
JP7200998B2 (en
Inventor
直子 越智
直子 越智
雄也 岡積
雄也 岡積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPWO2020050245A1 publication Critical patent/JPWO2020050245A1/en
Application granted granted Critical
Publication of JP7200998B2 publication Critical patent/JP7200998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

落袋強度に優れる包装容器を与えることのできるフィルム及び落袋強度に優れる包装容器を提供する。0)〜7)により求められるS1が220MPa以上2000MPa以下であり、引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上30.0MPa以下であるフィルム。1)試験片を高速引張試験機にて1m/sの速度で引張試験を行う。7)7a)または7b)により、S1を求める。7a)1)の引張試験において、最大主歪みが2.0の時点で、試験片が破断していない場合は、下式(11)によりS1を求める。S1=(p−q)/0.3 ・・・(11)(式(11)中、pは、最大主歪みが2.0における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)である。)Provided are a film capable of providing a packaging container having excellent bag-dropping strength and a packaging container having excellent bag-dropping strength. S1 determined by 0) to 7) is 220 MPa or more and 2000 MPa or less, and the nominal stress at 100% elongation in the MD direction when a tensile test is performed under the condition of a tensile speed of 500 mm / min is 11.0 MPa or more and 30.0 MPa or less. the film. 1) Perform a tensile test on the test piece with a high-speed tensile tester at a speed of 1 m / s. 7) S1 is determined by 7a) or 7b). 7a) In the tensile test of 1), if the test piece is not broken at the time when the maximum principal strain is 2.0, S1 is obtained by the following formula (11). S1 = (p−q) /0.3 ・ ・ ・ (11) (In equation (11), p is the true stress (MPa) when the maximum principal strain is 2.0, and q is the maximum principal strain. True stress (MPa) at 1.7.)

Description

本発明は、フィルムおよび該フィルムを含む包装容器に関する。 The present invention relates to a film and a packaging container containing the film.

プラスチックフィルムは包装容器の材料として使用されている。包装容器に含まれるフィルムとして、例えば特許文献1には、エチレン−α−オレフィン共重合体と、高圧ラジカル重合法により得られる低密度ポリエチレンとを含有する樹脂組成物からなるフィルムが記載されている。 Plastic film is used as a material for packaging containers. As a film contained in a packaging container, for example, Patent Document 1 describes a film composed of a resin composition containing an ethylene-α-olefin copolymer and low-density polyethylene obtained by a high-pressure radical polymerization method. ..

特開平11−181173号公報Japanese Unexamined Patent Publication No. 11-181173

内容物が収容された包装容器が落下した際に、包装容器が破損することがあり、近年、包装容器の落袋強度の改良が求められている。 When the packaging container containing the contents is dropped, the packaging container may be damaged, and in recent years, improvement in the bag-dropping strength of the packaging container has been required.

かかる状況のもと、本発明が解決しようとする課題は、落袋強度に優れる包装容器を与えることのできるフィルム及び落袋強度に優れる包装容器を提供することにある。 Under such circumstances, an object to be solved by the present invention is to provide a film capable of providing a packaging container having excellent bag-dropping strength and a packaging container having excellent bag-dropping strength.

本発明は、以下を提供する。
[1]下記の0)〜7)により求められるS1が220MPa以上2000MPa以下であり、
引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上30.0MPa以下であるフィルム。

0)フィルムから、ASTM D1822 Type S規格に準拠したダンベルカッターでMD方向が長辺となるように試験片を打ち抜く。
1)試験片を高速引張試験機にて1m/sの速度で引張試験を行う。
2)1)の引張試験中の試験片を、ハイスピードカメラにより撮影する。
3)撮影した画像について、3D検査・解析ソフトウェアにより解析を行い、試験片のくびれ部における最大主歪み(ε)、及び最小主歪み(ε)を求める。
4)試験片のくびれ部の断面積を、下式により求める。
(試験片くびれ部の断面積)
=(試験実施前のくびれ部の幅)×(試験実施前のくびれ部の厚み)×{exp (ε)}2
5)引張試験により得られる各時刻における荷重を、各時刻における試験片のくびれ部の断面積で除し、各時刻における真応力を求める。
6)5)で得られた各時刻における真応力を、各時刻における最大主歪み(ε)に対してプロットし、真応力-最大主歪み曲線を求める。
7)7a)または7b)により、S1を求める。
7a)1)の引張試験において、最大主歪みが2.0の時点で、試験片が破断していない場合は、下式(11)によりS1を求める。
S1=(p−q)/0.3 ・・・(11)
(式(11)中、pは、最大主歪みが2.0における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)である。)
7b)1)の引張試験において、最大主歪みが1.7より大きく2.0未満の範囲内で試験片が破断した場合は、下式(12)によりS1を求める。
S1=(p’−q)/(r−1.7) ・・・(12)
(式(12)中、p’は、破断点における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)であり、rは、破断点における最大主歪みである。)
[2][1]に記載のフィルムからなる層αを含む多層フィルムであって、
該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルム。
[3][1]に記載のフィルムを含む包装容器。
The present invention provides:
[1] S1 obtained by the following 0) to 7) is 220 MPa or more and 2000 MPa or less.
A film having a nominal stress of 11.0 MPa or more and 30.0 MPa or less at 100% elongation in the MD direction when a tensile test is performed under a tensile speed of 500 mm / min.

0) Punch a test piece from the film with a dumbbell cutter conforming to the ASTM D1822 Type S standard so that the MD direction is the long side.
1) Perform a tensile test on the test piece with a high-speed tensile tester at a speed of 1 m / s.
2) Take a picture of the test piece under the tensile test of 1) with a high-speed camera.
3) The captured image is analyzed by 3D inspection / analysis software to obtain the maximum principal strain (ε 1 ) and the minimum principal strain (ε 3) at the constricted part of the test piece.
4) The cross-sectional area of the constricted part of the test piece is calculated by the following formula.
(Cross-sectional area of test piece constriction)
= (Width of constriction before test) × (Thickness of constriction before test) × {exp (ε 3 )} 2
5) Divide the load obtained by the tensile test at each time by the cross-sectional area of the constricted part of the test piece at each time to obtain the true stress at each time.
6) The true stress at each time obtained in 5) is plotted against the maximum principal strain (ε 1 ) at each time, and the true stress-maximum principal strain curve is obtained.
7) S1 is determined by 7a) or 7b).
7a) In the tensile test of 1), if the test piece is not broken at the time when the maximum principal strain is 2.0, S1 is obtained by the following formula (11).
S1 = (p−q) /0.3 ・ ・ ・ (11)
(In equation (11), p is the true stress (MPa) when the maximum principal strain is 2.0, and q is the true stress (MPa) when the maximum principal strain is 1.7.)
7b) In the tensile test of 1), if the test piece breaks within the range where the maximum principal strain is larger than 1.7 and less than 2.0, S1 is calculated by the following formula (12).
S1 = (p'-q) / (r-1.7) ... (12)
(In equation (12), p'is the true stress (MPa) at the breaking point, q is the true stress (MPa) at the maximum principal strain of 1.7, and r is the maximum principal strain at the breaking point. Is.)
[2] A multilayer film containing the layer α composed of the film according to [1].
A multilayer film in which at least one of the two surface layers of the multilayer film is layer α.
[3] A packaging container containing the film according to [1].

本発明によれば、落袋強度に優れる包装容器を提供することができる。 According to the present invention, it is possible to provide a packaging container having excellent bag-dropping strength.

[定義]
本明細書において、下記の用語は次のように定義されるか、または説明される。
「エチレン系重合体」とは、エチレンに基づく単量体単位を有する重合体であって、該重合体の全重量を100重量%に対して、エチレンに基づく単量体単位の含有量が50重量%以上である重合体である。
「エチレン−α−オレフィン共重合体」とは、エチレンに基づく単量体単位とのα−オレフィンに基づく単量体単位とを有する共重合体であって、該共重合体の全重量を100重量%に対して、エチレンに基づく単量体単位とα−オレフィンに基づく単量体単位との合計量が95重量%以上である共重合体である。
「α−オレフィン」とは、α位に炭素−炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。
「エチレン系樹脂組成物」とは、エチレン系重合体を含有する組成物をいう。
「高圧法低密度ポリエチレン」とは、100〜400MPaの圧力下でラジカル重合によりエチレン、もしくはエチレンと少量の共重合成分とを重合して製造される密度が930kg/m以下の重合体をいう。
「滑剤」とは、それが加えられる材料の摩擦係数を低下させる作用を有する剤をいう。
「アンチブロッキング剤」とは、フィルムの保存中又は使用中にフィルム同士が互着、粘着または融着して剥がれなくなるのを防止する機能を有する剤をいう。
[Definition]
In the present specification, the following terms are defined or explained as follows.
The "ethylene-based polymer" is a polymer having a monomer unit based on ethylene, and the content of the monomer unit based on ethylene is 50 with respect to 100% by weight of the total weight of the polymer. It is a polymer having a weight of% by weight or more.
The "ethylene-α-olefin copolymer" is a copolymer having a monomer unit based on ethylene and a monomer unit based on α-olefin, and the total weight of the copolymer is 100. It is a copolymer in which the total amount of ethylene-based monomer units and α-olefin-based monomer units is 95% by weight or more with respect to% by weight.
The "α-olefin" is a linear or branched olefin having a carbon-carbon unsaturated double bond at the α-position.
The "ethylene-based resin composition" refers to a composition containing an ethylene-based polymer.
"High-pressure low-density polyethylene" refers to a polymer produced by polymerizing ethylene or ethylene with a small amount of copolymerization component by radical polymerization under a pressure of 100 to 400 MPa and having a density of 930 kg / m 3 or less. ..
"Glidant" refers to an agent that has the effect of reducing the coefficient of friction of the material to which it is applied.
The "anti-blocking agent" refers to an agent having a function of preventing the films from adhering to each other, adhering to each other, or fusing together and not peeling off during storage or use of the films.

本明細書における密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に規定されたA法に従い測定される値である。
本明細書におけるメルトフローレート(以下、MFRと記載することがある;単位はg/10分である)は、JIS K7210−1995に規定された方法に従い、温度190℃、荷重21.18Nの条件で測定される値である。
本明細書におけるメルトフローレート比(以下、MFRRと記載することがある)は、温度190℃、荷重21.18Nの条件で測定されるメルトフローレートに対する、温度190℃、荷重211.82Nの条件で測定されるメルトフローレートの比である。
本明細書において、数平均分子量(以下、Mnと記載することがある)、重量平均分子量(以下、Mwと記載することがある)、z平均分子量(以下、Mzと記載することがある)は、ゲル・パーミエイション・クロマトグラフ(GPC)法により求められる。また、GPC測定は、次の条件(1)〜(8)で行う。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
The density in the present specification is a value measured according to the method A specified in JIS K7112-1980 after performing the annealing described in JIS K6760-1980.
The melt flow rate (hereinafter sometimes referred to as MFR; the unit is g / 10 minutes) in the present specification is a condition of a temperature of 190 ° C. and a load of 21.18 N according to the method specified in JIS K7210-1995. It is a value measured by.
The melt flow rate ratio (hereinafter, may be referred to as MFRR) in the present specification is a condition of a temperature of 190 ° C. and a load of 211.82 N with respect to a melt flow rate measured under the conditions of a temperature of 190 ° C. and a load of 21.18 N. It is the ratio of the melt flow rate measured in.
In the present specification, the number average molecular weight (hereinafter, may be referred to as Mn), the weight average molecular weight (hereinafter, may be referred to as Mw), and the z average molecular weight (hereinafter, may be referred to as Mz) are defined. , Determined by gel permeation chromatography (GPC) method. The GPC measurement is performed under the following conditions (1) to (8).
(1) Equipment: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH 6- HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Ortodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection amount: 500 μL
(7) Detector: Differential refractometer
(8) Molecular weight standard substance: Standard polystyrene

「MD方向」とは、フィルム成形時のフィルムの進行方向である。
「TD方向」とは、MD方向に直交する方向である。
フィルムが巻物である場合は、長手方向がMD方向である。通常、市場に流通しているフィルムや包装容器中の一辺は、MD方向に平行である。
「真歪み」は、変形後の長さをl、 変形前の長さをlとした際に、下記式によって表されるεである。

Figure 2020050245
「主歪み」は、物体内にはたらく歪みをテンソルで表した際、せん断ひずみがゼロになる座標系を基準としたテンソル(主歪みテンソル)における垂直ひずみ成分である。主歪みは、値の大きい方から順に「最大主歪み(ε)」、「中間主歪み(ε)」、「最小主歪み(ε)」と定義される。The "MD direction" is the traveling direction of the film at the time of film molding.
The "TD direction" is a direction orthogonal to the MD direction.
When the film is a scroll, the longitudinal direction is the MD direction. Normally, one side of a film or packaging container on the market is parallel to the MD direction.
"True strain" is the length after deformation l, a length before deformation upon the l 0, a ε represented by the following formula.
Figure 2020050245
The "main strain" is a vertical strain component in a tensor (main strain tensor) based on a coordinate system in which the shear strain becomes zero when the strain acting in the object is expressed by a tensor. The principal strain is defined as "maximum principal strain (ε 1 )", "intermediate principal strain (ε 2 )", and "minimum principal strain (ε 3 )" in descending order of value.

<フィルム>
本発明に係るフィルムは、重合体を含む。前記フィルムは、好ましくはエチレン系重合体を含むフィルムである。フィルム中のエチレン系重合体の含有量は好ましくは70.0重量%以上99.9重量%以下であり、より好ましくは80.0重量%以上99.8重量%以下であり、さらに好ましくは90.0重量%以上99.7重量%以下であり、特に好ましくは95.0重量%以上99.6重量%以下である。フィルムに含まれるエチレン系重合体は、好ましくは、エチレンに基づく単量体単位を有する重合体であって、該重合体の全重量を100重量%に対して、エチレンに基づく単量体単位の含有量が90重量%以上である重合体である。
<Film>
The film according to the present invention contains a polymer. The film is preferably a film containing an ethylene polymer. The content of the ethylene-based polymer in the film is preferably 70.0% by weight or more and 99.9% by weight or less, more preferably 80.0% by weight or more and 99.8% by weight or less, and further preferably 90% by weight. It is 0.0% by weight or more and 99.7% by weight or less, and particularly preferably 95.0% by weight or more and 99.6% by weight or less. The ethylene-based polymer contained in the film is preferably a polymer having a monomer unit based on ethylene, and the monomer unit based on ethylene is preferably 100% by weight based on the total weight of the polymer. It is a polymer having a content of 90% by weight or more.

[S1]
本発明に係るフィルムは、下記の0)〜7)により求められるS1が220MPa以上、2000MPa以下である。
0)フィルムから、ASTM D1822 Type S規格に準拠したダンベルカッターでMD方向が長辺となるように試験片を打ち抜く。
1)試験片を高速引張試験機にて1m/sの速度で引張試験を行う。
2)1)の引張試験中の試験片を、ハイスピードカメラにより撮影する。
3)撮影した画像について、3D検査・解析ソフトウェアにより解析を行い、試験片のくびれ部における最大主歪み(ε)、及び最小主歪み(ε)を求める。
4)試験片のくびれ部の断面積を、下式により求める。
(試験片くびれ部の断面積)
=(試験実施前のくびれ部の幅)×(試験実施前のくびれ部の厚み)×{exp (ε)}2
5)引張試験により得られる各時刻における荷重を、各時刻における試験片のくびれ部の断面積で除し、各時刻における真応力を求める。
6)5)で得られた各時刻における真応力を、各時刻における最大主歪み(ε)に対してプロットし、真応力-最大主歪み曲線を求める。
7)7a)または7b)により、S1を求める。
7a)1)の引張試験において、最大主歪みが2.0の時点で、試験片が破断していない場合は、下式(11)によりS1を求める。
S1=(p−q)/0.3 ・・・(11)
(式(11)中、pは、最大主歪みが2.0における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)である。)
7b)1)の引張試験において、最大主歪みが1.7より大きく2.0未満の範囲内で試験片が破断した場合は、下式(12)によりS1を求める。
S1=(p’−q)/(r−1.7) ・・・(12)
(式(12)中、p’は、破断点における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)であり、rは、破断点における最大主歪みである。)
[S1]
In the film according to the present invention, S1 determined by the following 0) to 7) is 220 MPa or more and 2000 MPa or less.
0) Punch a test piece from the film with a dumbbell cutter conforming to the ASTM D1822 Type S standard so that the MD direction is the long side.
1) Perform a tensile test on the test piece with a high-speed tensile tester at a speed of 1 m / s.
2) Take a picture of the test piece under the tensile test of 1) with a high-speed camera.
3) The captured image is analyzed by 3D inspection / analysis software to obtain the maximum principal strain (ε 1 ) and the minimum principal strain (ε 3) at the constricted part of the test piece.
4) The cross-sectional area of the constricted part of the test piece is calculated by the following formula.
(Cross-sectional area of test piece constriction)
= (Width of constriction before test) × (Thickness of constriction before test) × {exp (ε 3 )} 2
5) Divide the load obtained by the tensile test at each time by the cross-sectional area of the constricted part of the test piece at each time to obtain the true stress at each time.
6) The true stress at each time obtained in 5) is plotted against the maximum principal strain (ε 1 ) at each time, and the true stress-maximum principal strain curve is obtained.
7) S1 is determined by 7a) or 7b).
7a) In the tensile test of 1), if the test piece is not broken at the time when the maximum principal strain is 2.0, S1 is obtained by the following formula (11).
S1 = (p−q) /0.3 ・ ・ ・ (11)
(In equation (11), p is the true stress (MPa) when the maximum principal strain is 2.0, and q is the true stress (MPa) when the maximum principal strain is 1.7.)
7b) In the tensile test of 1), if the test piece breaks within the range where the maximum principal strain is larger than 1.7 and less than 2.0, S1 is calculated by the following formula (12).
S1 = (p'-q) / (r-1.7) ... (12)
(In equation (12), p'is the true stress (MPa) at the breaking point, q is the true stress (MPa) at the maximum principal strain of 1.7, and r is the maximum principal strain at the breaking point. Is.)

本明細書において「試験片のくびれ部」とは、試験片の長辺方向の中央を意味する。p、p’およびqはスムージング処理を行った値を使用する。 As used herein, the "necked portion of the test piece" means the center of the test piece in the long side direction. For p, p'and q, the smoothed values are used.

1)〜3)でε及びεを求める手法は、デジタル画像相関法と呼ばれる。εは引張方向に生じた歪みであり、真歪みとして表した。S1は、最大主歪みが1.7〜2.0の範囲内または最大主歪みが1.7から破断点までの範囲内における真応力-最大主歪み曲線の傾きである。 The method of obtaining ε 1 and ε 3 in 1) to 3) is called a digital image correlation method. ε 1 is the strain generated in the tensile direction and is expressed as true strain. S1 is the slope of the true stress-maximum principal strain curve when the maximum principal strain is in the range of 1.7 to 2.0 or the maximum principal strain is in the range of 1.7 to the breaking point.

2)のハイスピードカメラは、通常、フレームレートが30fps以上であり、10000fpsであることが好ましい。また、ハイスピードカメラのシャッタースピードは、20.1μs以下であることが好ましい。 The high-speed camera of 2) usually has a frame rate of 30 fps or more, preferably 10000 fps. The shutter speed of the high-speed camera is preferably 20.1 μs or less.

1)および7)で規定の引張試験において、本発明のフィルムからなる試験片は、通常、最大主歪みが1.7未満で破断しない。 In the tensile test specified in 1) and 7), the test piece made of the film of the present invention usually does not break when the maximum principal strain is less than 1.7.

7)の破断点とは、フィルムが破断し、引張荷重がゼロ以下となった点である。 The breaking point of 7) is a point where the film is broken and the tensile load becomes zero or less.

S1は、一態様では250以上1000以下であってもよく、280以上800以下であってもよく、290以上650以下であってもよく、290以上500以下であってもよく、300以上500以下であってもよい。 In one aspect, S1 may be 250 or more and 1000 or less, 280 or more and 800 or less, 290 or more and 650 or less, 290 or more and 500 or less, and 300 or more and 500 or less. It may be.

[伸び100%における公称応力]
本発明に係るフィルムは、引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上30.0MPa以下である。以下、MD方向の伸び100%における公称応力を「S2」と記載する。
S2は、好ましくは11.0以上18.0以下、より好ましくは11.0以上14.0以下、さらに好ましくは12.0以上14.0以下である。
[Nominal stress at 100% elongation]
The film according to the present invention has a nominal stress of 11.0 MPa or more and 30.0 MPa or less at 100% elongation in the MD direction when a tensile test is performed under a tensile speed of 500 mm / min. Hereinafter, the nominal stress at 100% elongation in the MD direction is referred to as "S2".
S2 is preferably 11.0 or more and 18.0 or less, more preferably 11.0 or more and 14.0 or less, and further preferably 12.0 or more and 14.0 or less.

MD方向の伸び100%における公称応力は以下の方法により求める。
フィルムから、JIS K6781−1994の「6.4 引張切断荷重及び伸び」に記載の方法に従って、長手方向がMD方向となる試験片を作製する。該試験片をチャック間80mm、標線間40mm、引張速度500mm/分の条件で引張試験を行い、伸び100%における公称応力を求める。本明細書において、「公称応力」とは、所定の伸びにおける引張荷重を、引張試験前の試験片の断面積で除した値である。引張試験前の試験片の断面積は、引張試験前の試験片の長辺方向の中央の幅と、引張試験前の試験片の長辺方向の中央の厚みの積である。
The nominal stress at 100% elongation in the MD direction is determined by the following method.
From the film, a test piece having the MD direction in the longitudinal direction is prepared according to the method described in "6.4 Tension cutting load and elongation" of JIS K6781-1994. The test piece is subjected to a tensile test under the conditions of a chuck distance of 80 mm, a marked line distance of 40 mm, and a tensile speed of 500 mm / min to obtain a nominal stress at 100% elongation. In the present specification, the "nominal stress" is a value obtained by dividing the tensile load at a predetermined elongation by the cross-sectional area of the test piece before the tensile test. The cross-sectional area of the test piece before the tensile test is the product of the width of the center of the test piece in the long side direction before the tensile test and the thickness of the center of the test piece in the long side direction before the tensile test.

S1およびS2の組み合わせは、S1が290以上650以下であり、S2が11.0以上18.0以下の組み合わせが好ましく、S2が290以上500以下であり、S2が11.0以上14.0以下である組み合わせがより好ましく、S1が300以上500以下であり、S2が12.0以上14.0以下である組み合わせがさらに好ましい。 As for the combination of S1 and S2, S1 is preferably 290 or more and 650 or less, S2 is preferably 11.0 or more and 18.0 or less, S2 is 290 or more and 500 or less, and S2 is 11.0 or more and 14.0 or less. Is more preferable, and a combination in which S1 is 300 or more and 500 or less and S2 is 12.0 or more and 14.0 or less is further preferable.

[フィルムの樹脂密度]
フィルムの樹脂密度は、好ましくは890kg/m以上930kg/m以下であり、より好ましくは900kg/m以上925kg/m以下であり、さらに好ましくは910kg/m以上920kg/m以下である。
本明細書において、「樹脂密度」とは、該フィルムに含まれる樹脂成分の密度をいう。
フィルムは、無機成分を含んでいてもよい。フィルムが無機成分を含まない場合は、フィルムの密度をフィルムの樹脂密度とする。樹脂成分と無機成分とからなるフィルムである場合、フィルムの樹脂密度は、フィルムから無機物を除いた樹脂成分の密度である。
樹脂成分とは、フィルム中の無機成分以外の成分をいう。
[Film resin density]
Resin density of the film is preferably not more than 890 kg / m 3 or more 930 kg / m 3, more preferably not more than 900 kg / m 3 or more 925 kg / m 3, more preferably 910 kg / m 3 or more 920 kg / m 3 or less Is.
As used herein, the term "resin density" refers to the density of resin components contained in the film.
The film may contain an inorganic component. When the film does not contain an inorganic component, the density of the film is defined as the resin density of the film. In the case of a film composed of a resin component and an inorganic component, the resin density of the film is the density of the resin component excluding the inorganic substance from the film.
The resin component refers to a component other than the inorganic component in the film.

[フィルムに含まれる成分]
フィルムは、例えば、下記成分(A)と下記成分(B)とを含むことが好ましい。
成分(A):エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有し、密度が920kg/m3以上950kg/m3以下であり、MFRが0.0001g/10分以上0.1g/10分未満であり、MFRRが150以上1000以下であり、温度190℃におけるゼロせん断粘度が1×10Pa・sec以上1×10Pa・sec以下であり、エチレン−α−オレフィン共重合体。
成分(B):エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有し、密度が890kg/m以上930kg/m以下であり、MFRが0.5g/10分以上5g/10分以下であり、MFRRが10以上30以下であるエチレン−α−オレフィン共重合体。
フィルム中の成分(A)の含有量は、フィルムの樹脂成分100重量%に対して、好ましくは31重量%以上59重量%以下であり、より好ましくは35重量%以上59重量%以下であり、さらに好ましくは40重量%以上59重量%以下であり、特に好ましくは45重量%以上59重量%以下である。
フィルム中の成分(B)の含有量は、フィルムの樹脂成分100重量%に対して、好ましくは41重量%以上69重量%以下であり、より好ましくは41重量%以上65重量%以下であり、さらに好ましくは41重量%以上60重量%以下であり、特に好ましくは41重量%以上55重量%以下である。
成分(A)および成分(B)の詳細は後述する。
[Ingredients contained in film]
The film preferably contains, for example, the following component (A) and the following component (B).
Component (A): It has a monomer unit based on ethylene and a monomer unit based on α-olefin having 3 to 20 carbon atoms, has a density of 920 kg / m 3 or more and 950 kg / m 3 or less, and has an MFR. Is 0.0001 g / 10 minutes or more and less than 0.1 g / 10 minutes, MFRR is 150 or more and 1000 or less, and zero shear viscosity at a temperature of 190 ° C. is 1 × 10 5 Pa · sec or more and 1 × 10 7 Pa · sec. The following is an ethylene-α-olefin copolymer.
Component (B): and a monomer unit based on α- olefin monomer units and 3 to 20 carbon atoms based on ethylene, the density is at 890 kg / m 3 or more 930 kg / m 3 or less, MFR Is 0.5 g / 10 minutes or more and 5 g / 10 minutes or less, and an ethylene-α-olefin copolymer having an MFRR of 10 or more and 30 or less.
The content of the component (A) in the film is preferably 31% by weight or more and 59% by weight or less, more preferably 35% by weight or more and 59% by weight or less, based on 100% by weight of the resin component of the film. More preferably, it is 40% by weight or more and 59% by weight or less, and particularly preferably 45% by weight or more and 59% by weight or less.
The content of the component (B) in the film is preferably 41% by weight or more and 69% by weight or less, more preferably 41% by weight or more and 65% by weight or less, based on 100% by weight of the resin component of the film. It is more preferably 41% by weight or more and 60% by weight or less, and particularly preferably 41% by weight or more and 55% by weight or less.
Details of the component (A) and the component (B) will be described later.

フィルムは、包装容器の落袋強度の観点から、成分(A)と成分(B)とを含み、成分(A)と成分(B)の合計量100重量%に対して、成分(A)の含有量が35重量%以上65重量%以下であるフィルムが好ましい。
フィルムの全重量100重量%に対して、成分(A)および成分(B)の合計量が90重量%以上であることが好ましい。
The film contains the component (A) and the component (B) from the viewpoint of the bag-dropping strength of the packaging container, and the total amount of the component (A) and the component (B) is 100% by weight, of the component (A). A film having a content of 35% by weight or more and 65% by weight or less is preferable.
It is preferable that the total amount of the component (A) and the component (B) is 90% by weight or more with respect to 100% by weight of the total weight of the film.

成分(A)および成分(B)の合計量100重量%に対して、成分(A)の含有量が35重量%以上65重量%以下であることが好ましく、40重量%以上60重量%以下であることがより好ましく、45重量%以上60重量%以下であることがさらに好ましい。 The content of the component (A) is preferably 35% by weight or more and 65% by weight or less, and 40% by weight or more and 60% by weight or less, based on 100% by weight of the total amount of the component (A) and the component (B). More preferably, it is more preferably 45% by weight or more and 60% by weight or less.

フィルム中のエチレン系重合体の組成分布、エチレン系重合体の分子量分布、エチレン系重合体のMFR、及びエチレン系重合体の[η]を調整することによって、S1を制御することができる。エチレン系重合体の組成分布を狭くすることにより、S1を大きくすることができる。エチレン系重合体の分子量分布を広げることにより、S1を大きくすることができる。エチレン系重合体のMFRを下げることにより、S1を大きくすることができる。エチレン系重合体の[η]を大きくすることにより、S1を大きくすることができる。
組成分布が狭く、分子量分布が広く、MFRが小さく、[η]が大きいエチレン系重合体の一例として、成分(A)が挙げられる。また、組成分布が狭く、[η]が大きいエチレン系重合体の一例として、成分(B)が挙げられる。そのため、フィルムは成分(A)と成分(B)とを含み、フィルム中の成分(A)と成分(B)の合計量100重量%に対して、成分(A)の含有量を35重量%以上65重量%以下とすることで、S1を220MPa以上2000MPa以下とすることができる。
S1 can be controlled by adjusting the composition distribution of the ethylene-based polymer in the film, the molecular weight distribution of the ethylene-based polymer, the MFR of the ethylene-based polymer, and [η] of the ethylene-based polymer. S1 can be increased by narrowing the composition distribution of the ethylene polymer. By widening the molecular weight distribution of the ethylene polymer, S1 can be increased. S1 can be increased by lowering the MFR of the ethylene polymer. S1 can be increased by increasing [η] of the ethylene polymer.
Component (A) is an example of an ethylene polymer having a narrow composition distribution, a wide molecular weight distribution, a small MFR, and a large [η]. Further, as an example of the ethylene-based polymer having a narrow composition distribution and a large [η], the component (B) can be mentioned. Therefore, the film contains the component (A) and the component (B), and the content of the component (A) is 35% by weight with respect to the total amount of the component (A) and the component (B) in the film of 100% by weight. By setting the content to 65% by weight or less, S1 can be set to 220 MPa or more and 2000 MPa or less.

フィルム中のエチレン系重合体の長鎖分岐量、エチレン系重合体の長鎖の長さ、分子量分布、及びフィルムの樹脂密度を調整することにより、S2を制御することができる。
エチレン系重合体の長鎖分岐量を多くすることにより、S2を大きくすることができる。エチレン系重合体の長鎖の長さを長くすることにより、S2を大きくすることができる。エチレン系重合体の分子量分布を広くすることにより、S2を大きくすることができる。
フィルムの樹脂密度を大きくすることにより、S2を大きくすることができる。
長鎖分岐量が多く、長鎖の長さが長く、分子量分布の広いエチレン系重合体の一例として、成分(A)が挙げられる。そのため、フィルム中の成分(A)の含有量、及び/または、フィルムの樹脂密度を調整することによって、S2を制御することができる。
フィルムの樹脂成分中の成分(A)の含有量を増やすことにより、S2を大きくすることができる。
フィルムの樹脂成分100重量%に対して、成分(A)の含有量を31重量%以上59重量%以下とし、かつ、フィルムの樹脂密度を915kg/m以上930kg/m以下とすることで、S2を11.0MPa以上30.0MPa以下、とすることができる。
S2 can be controlled by adjusting the amount of long chain branching of the ethylene-based polymer in the film, the length of the long chain of the ethylene-based polymer, the molecular weight distribution, and the resin density of the film.
S2 can be increased by increasing the amount of long-chain branching of the ethylene polymer. S2 can be increased by increasing the length of the long chain of the ethylene polymer. By widening the molecular weight distribution of the ethylene polymer, S2 can be increased.
S2 can be increased by increasing the resin density of the film.
Component (A) is an example of an ethylene polymer having a large amount of long chain branching, a long long chain length, and a wide molecular weight distribution. Therefore, S2 can be controlled by adjusting the content of the component (A) in the film and / or the resin density of the film.
S2 can be increased by increasing the content of the component (A) in the resin component of the film.
Relative to 100% by weight resin component of the film, and less 59% by weight of 31 wt% or more the content of the component (A), and the resin density of the film 915 kg / m 3 or more 930 kg / m 3 is set to be lower than or equal , S2 can be 11.0 MPa or more and 30.0 MPa or less.

落袋強度の観点から、フィルムのMD方向およびTD方向の引張破断強度は、ともに43MPa以上50MPa以下、であることが好ましい。
また、落袋強度の観点から、本発明に係るフィルムのMD方向およびTD方向の引張破断伸びは、ともに660MPa以上730MPa以下、であることが好ましい。
From the viewpoint of bag-dropping strength, the tensile breaking strength of the film in the MD direction and the TD direction is preferably 43 MPa or more and 50 MPa or less.
From the viewpoint of bag-fall strength, the tensile elongation at break of the film according to the present invention in the MD direction and the TD direction is preferably 660 MPa or more and 730 MPa or less.

フィルムは、滑剤および/またはアンチブロッキング剤を含んでいてもよい。
さらに、添加剤として、例えば、酸化防止剤、中和剤、耐候剤、帯電防止剤、防曇剤、無滴剤、顔料またはフィラーを含んでいてもよい。
フィルム中の酸化防止剤の含有量は、200重量ppm以上1000重量ppm以下であることが好ましい。フィルム中の滑剤の含有量は、100重量ppm以上500重量ppm以下であることがより好ましい。フィルム中のアンチブロッキング剤の含有量は、1000重量ppm以上5000重量ppm以下であることが好ましい。
The film may contain a lubricant and / or an anti-blocking agent.
Further, as the additive, for example, an antioxidant, a neutralizing agent, a weather resistant agent, an antistatic agent, an anti-fog agent, a drip-free agent, a pigment or a filler may be contained.
The content of the antioxidant in the film is preferably 200% by weight or more and 1000% by weight or less. The content of the lubricant in the film is more preferably 100% by weight or more and 500% by weight or less. The content of the anti-blocking agent in the film is preferably 1000% by weight or more and 5000% by weight or less.

<成分(A)>
成分(A)中の炭素原子数3〜20のα−オレフィンに基づく単量体単位を形成する炭素原子数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、および4−メチル−1−ヘキセンが挙げられる。成分(A)は、これらの炭素原子数3〜20のα−オレフィンに基づく単量体単位を一種のみ有してもよく、2種以上有してもよい。炭素原子数3〜20のα−オレフィンは、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、または1−オクテンであることが好ましく、1−ブテン、または1−ヘキセンであることがより好ましい。
<Ingredient (A)>
Examples of the α-olefin having 3 to 20 carbon atoms forming a monomer unit based on the α-olefin having 3 to 20 carbon atoms in the component (A) include propylene, 1-butene, 1-pentene, and 1-. Examples include hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, and 4-methyl-1-hexene. The component (A) may have only one type of monomer unit based on these α-olefins having 3 to 20 carbon atoms, or may have two or more types. The α-olefin having 3 to 20 carbon atoms is preferably 1-butene, 1-hexene, 4-methyl-1-pentene, or 1-octene, and is preferably 1-butene or 1-hexene. More preferred.

成分(A)中のエチレンに基づく単量体単位の含有量は、成分(A)の全重量を100重量%に対して、80〜97重量%であることが好ましい。またα−オレフィンに基づく単量体単位の含有量は、成分(A)の全重量を100重量%に対して、3〜20重量%であることが好ましい。 The content of the ethylene-based monomer unit in the component (A) is preferably 80 to 97% by weight with respect to 100% by weight of the total weight of the component (A). The content of the monomer unit based on the α-olefin is preferably 3 to 20% by weight based on 100% by weight of the total weight of the component (A).

成分(A)は、エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体に基づく単量体単位を有していてもよい。エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体としては、例えば、ブタジエンまたはイソプレン等の共役ジエン;1,4−ペンタジエン等の非共役ジエン;アクリル酸;アクリル酸メチルまたはアクリル酸エチル等のアクリル酸エステル;メタクリル酸;メタクリル酸メチルまたはメタクリル酸エチル等のメタクリル酸エステル;および酢酸ビニルが挙げられる。 The component (A) may have a monomer unit based on a monomer other than ethylene and α-olefin having 3 to 20 carbon atoms. Examples of monomers other than ethylene and α-olefin having 3 to 20 carbon atoms include conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadiene; acrylic acid; methyl acrylate or acrylic acid. Acrylic acid esters such as ethyl; methacrylic acid; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; and vinyl acetate.

成分(A)は、エチレンに基づく単量体単位と炭素原子数4〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることが好ましく、エチレンに基づく単量体単位と炭素原子数4〜10のα−オレフィンに基づく単量体単位とを有する共重合体であることがより好ましく、エチレンに基づく単量体単位と炭素原子数4〜8のα−オレフィンに基づく単量体単位とを有する共重合体であることがさらに好ましい。 The component (A) is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on α-olefin having 4 to 20 carbon atoms, and is preferably a monomer unit based on ethylene. It is more preferable that the polymer has a monomer unit based on α-olefin having 4 to 10 carbon atoms, and a simple polymer having a monomer unit based on ethylene and an α-olefin based on α-olefin having 4 to 8 carbon atoms. It is more preferable that it is a copolymer having a monomer unit.

成分(A)としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、およびエチレン−1−ブテン−1−オクテン共重合体が挙げられる。成分(A)は、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体、またはエチレン−1−ブテン−1−オクテン共重合体であることが好ましく、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、またはエチレン−1−ブテン−1−オクテン共重合体であることがより好ましく、エチレン−1−ヘキセン共重合体、またはエチレン−1−ブテン−1−ヘキセン共重合体であることがさらに好ましい。 Examples of the component (A) include ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-octene copolymer, and ethylene. Examples include -1-butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, and ethylene-1-butene-1-octene copolymer. The component (A) is an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, an ethylene-1-butene-1-hexene copolymer, and the like. Ethethylene-1-butene-4-methyl-1-pentene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene-1-octene copolymer, or ethylene-1-butene-1-octene It is preferably a polymer, and is a combination of ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, or ethylene-1-butene-1-octene. It is more preferably a polymer, and even more preferably an ethylene-1-hexene copolymer or an ethylene-1-butene-1-hexene copolymer.

成分(A)の密度は、フィルムの落袋強度をより向上させる観点から、921kg/m3以上であることが好ましく、922kg/m3以上であることがより好ましく、923kg/m3以上であることがさらに好ましい。成分(A)の密度は、フィルムのフィッシュアイのような外観不良を低減する観点から、945kg/m3以下であることが好ましく、940kg/m3以下であることがより好ましく、930kg/m3以下であることがさらに好ましい。
一つの態様において、成分(A)の密度は、921kg/m3以上945kg/m3以下であり、他の態様において、成分(A)の密度は、922kg/m3以上940kg/m3以下であり、更に他の態様において、成分(A)の密度は、923kg/m3以上930kg/m3以下である。
The density of the component (A), from the viewpoint of further improving the落袋strength of the film, is preferably 921kg / m 3 or more, more preferably 922 kg / m 3 or more, is 923 kg / m 3 or more Is even more preferable. The density of the component (A), from the viewpoint of reducing the appearance defect such as fish eyes of the film, is preferably 945 kg / m 3 or less, more preferably 940 kg / m 3 or less, 930 kg / m 3 The following is more preferable.
In one embodiment, the density of component (A), or less 921kg / m 3 or more 945 kg / m 3, in another embodiment, the density of component (A), 922kg / m 3 or more 940 kg / m 3 or less There, in yet another embodiment, the density of component (a), is 923 kg / m 3 or more 930 kg / m 3 or less.

成分(A)のMFRは、フィルムの製膜時の押出負荷を低減する観点から、0.0005g/10分以上であること好ましく、0.001g/10分以上であることがより好ましい。成分(A)のMFRは、フィルムの落袋強度をより向上させる観点から、0.08g/10分以下であることが好ましく、0.06g/10分以下であることがより好ましく、0.05g/10分以下であることがさらに好ましい。
一つの態様において、成分(A)のMFRは、0.0005g/10分以上0.08g/10分以下であり、他の態様において、成分(A)のMFRは、0.001g/10分以上0.06g/10分以下であり、更に他の態様において、成分(A)のMFRは、0.005g/10分以上0.05g/10分以下である。なお、成分(A)のMFRの測定では、通常、成分(A)に酸化防止剤を1000ppm程度配合した試料を用いる。
The MFR of the component (A) is preferably 0.0005 g / 10 minutes or more, and more preferably 0.001 g / 10 minutes or more, from the viewpoint of reducing the extrusion load during film formation. The MFR of the component (A) is preferably 0.08 g / 10 minutes or less, more preferably 0.06 g / 10 minutes or less, and 0.05 g, from the viewpoint of further improving the bagging strength of the film. It is more preferably less than / 10 minutes.
In one embodiment, the MFR of component (A) is 0.0005 g / 10 min or more and 0.08 g / 10 min or less, and in another embodiment, the MFR of component (A) is 0.001 g / 10 min or more. It is 0.06 g / 10 minutes or less, and in still another embodiment, the MFR of the component (A) is 0.005 g / 10 minutes or more and 0.05 g / 10 minutes or less. In the measurement of the MFR of the component (A), a sample containing about 1000 ppm of an antioxidant in the component (A) is usually used.

成分(A)の温度190℃におけるゼロせん断粘度(以下、ηと表記する;単位はPa・secである。)は、フィルムの落袋強度をより向上させる観点から、2×10Pa・sec以上であることが好ましく、3×10Pa・sec以上であることがより好ましく、5×10Pa・sec以上であることがさらに好ましい。成分(A)のηは、フィルムの製膜時の押出負荷を低減する観点から、5×10Pa・sec以下であることが好ましく、3×10Pa・sec以下であることがより好ましく、1×10Pa・sec以下であることがさらに好ましい。
一つの態様において、成分(A)のηは、2×10Pa・sec以上5×10Pa・sec以下であり、他の態様において、成分(A)のηは、3×10Pa・sec以上3×10Pa・sec以下であり、更に他の態様において、成分(A)のηは、5×10Pa・sec以上1×10Pa・sec以下である。
The zero shear viscosity of the component (A) at a temperature of 190 ° C. (hereinafter referred to as η 0 ; the unit is Pa · sec) is 2 × 10 5 Pa · from the viewpoint of further improving the bagging strength of the film. It is preferably sec or more, more preferably 3 × 10 5 Pa · sec or more, and even more preferably 5 × 10 5 Pa · sec or more. From the viewpoint of reducing the extrusion load during film formation, the η 0 of the component (A) is preferably 5 × 10 6 Pa · sec or less, and more preferably 3 × 10 6 Pa · sec or less. It is preferably 1 × 10 6 Pa · sec or less, and more preferably 1 × 10 6 Pa · sec or less.
In one embodiment, the η 0 of the component (A) is 2 × 10 5 Pa · sec or more and 5 × 10 6 Pa · sec or less, and in the other embodiment, the η 0 of the component (A) is 3 × 10 It is 5 Pa · sec or more and 3 × 10 6 Pa · sec or less, and in still another embodiment, η 0 of the component (A) is 5 × 10 5 Pa · sec or more and 1 × 10 6 Pa · sec or less.

成分(A)は、後述の助触媒担体(以下、成分(H)と記載する。)とメタロセン系錯体と有機アルミニウム化合物と電子供与性化合物とを接触させることにより得られる重合触媒の存在下、スラリー重合法、または、気相重合法で、エチレンとα−オレフィンとを共重合することにより得られる。該共重合では、該重合触媒の有機アルミニウム化合物100mol%に対して、電子供与性化合物の比率を2〜50mol%とし、かつ、エチレン100mol%に対して水素の比率を0.01〜1.1mol%とすることにより、得られる成分(A)のηを1×10Pa・sec以上1×10Pa・sec以下とすることができる。The component (A) is in the presence of a polymerization catalyst obtained by contacting a cocatalyst carrier (hereinafter referred to as a component (H)) described later, a metallocene-based complex, an organoaluminum compound, and an electron-donating compound. It is obtained by copolymerizing ethylene and α-olefin by a slurry polymerization method or a vapor phase polymerization method. In the copolymerization, the ratio of the electron donating compound to 100 mol% of the organoaluminum compound of the polymerization catalyst is 2 to 50 mol%, and the ratio of hydrogen to 100 mol% of ethylene is 0.01 to 1.1 mol. By setting%, η 0 of the obtained component (A) can be set to 1 × 10 5 Pa · sec or more and 1 × 10 7 Pa · sec or less.

温度190℃におけるηは、下記式(1)で表されるCarreau―Yasudaモデルを非線形最小二乗法により、測定温度190℃におけるせん断粘度(η*;単位はPa・secである。)−角周波数(ω、単位はrad/secである)曲線にフィッティングさせることにより算出される値である。
η*=η(1+(λω)(n−1)/a (1)
λ: 時定数 (Time constant)
a:幅パラメータ (Breadth parameter)
n:べき乗則インデックス (Power-Law index)
せん断粘度測定は、粘弾性測定装置(例えば、レオメトリックス社製Rheometrics社製Rheometrics Mechanical Spectrometer RMS800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、測定試料の厚み:約2.0mm、角周波数:0.1〜100rad/sec、測定点:ω一桁当たり5点の条件で行われる。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、3〜10%の範囲で適宜選択する。測定試料は、150℃の熱プレス機により2MPaの圧力で5分間プレスした後、30℃の冷却プレス機により5分間冷却して、厚さ2mmにプレス成形することにより調製される。
Η 0 at a temperature of 190 ° C. is a shear viscosity (η *; unit is Pa · sec) at a measurement temperature of 190 ° C. using the Carreau-Yasuda model represented by the following equation (1) by the nonlinear least squares method. It is a value calculated by fitting to a frequency (ω, unit is rad / sec) curve.
η * = η 0 (1+ (λω) a ) (n-1) / a (1)
λ: Time constant
a: Breadth parameter
n: Power-Law index
The shear viscosity is measured by using a viscoelasticity measuring device (for example, Rheometrics Mechanical Spectrometer RMS800 manufactured by Leometrics), and usually, geometry: parallel plate, plate diameter: 25 mm, thickness of measurement sample: about 2.0 mm. , Angle frequency: 0.1 to 100 rad / sec, Measurement point: ω 5 points per digit. The amount of strain is appropriately selected in the range of 3 to 10% so that the torque in the measurement range can be detected and the torque is not exceeded. The measurement sample is prepared by pressing at a pressure of 2 MPa for 5 minutes with a hot press at 150 ° C., cooling with a cooling press at 30 ° C. for 5 minutes, and press-molding to a thickness of 2 mm.

成分(A)の流動の活性化エネルギー(以下、Eaと表記する;単位はkJ/molである。)は、フィルムの落袋強度をより向上させる観点から、50kJ/mol以上であることが好ましく、60kJ/mol以上であることがより好ましく、70kJ/mol以上であることがさらに好ましい。また、フィルムの製膜時の押出負荷を低減する観点から、成分(A)のEaは、120kJ/mol以下であることが好ましく、110kJ/mol以下であることがより好ましく、100kJ/mol以下であることがさらに好ましい。一つの態様において、成分(A)のEaは、50kJ/mol以上120kJ/mol以下であり、他の態様において、成分(A)のEaは、60kJ/mol以上110kJ/mol以下であり、更に他の態様において、成分(A)のEaは、70kJ/mol以上100kJ/mol以下である。 The activation energy of the flow of the component (A) (hereinafter referred to as Ea; the unit is kJ / mol) is preferably 50 kJ / mol or more from the viewpoint of further improving the bag-falling strength of the film. , 60 kJ / mol or more, and even more preferably 70 kJ / mol or more. Further, from the viewpoint of reducing the extrusion load during film formation, the Ea of the component (A) is preferably 120 kJ / mol or less, more preferably 110 kJ / mol or less, and 100 kJ / mol or less. It is more preferable to have. In one embodiment, the Ea of the component (A) is 50 kJ / mol or more and 120 kJ / mol or less, and in the other embodiment, the Ea of the component (A) is 60 kJ / mol or more and 110 kJ / mol or less, and further. In the embodiment, the Ea of the component (A) is 70 kJ / mol or more and 100 kJ / mol or less.

流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位はrad/secである。)への依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値である。Eaは、以下の方法により求められる値である。130℃、150℃、170℃および190℃それぞれの温度(Tと表記する;単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線に、190℃でのエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求める。各温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小二乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出し、一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算には、市販の計算ソフトウェアを用いてもよい。計算ソフトウェアとしては、例えば、Rheometrics社製 Rhios V.4.4.4などが挙げられる。
なお、シフトファクター(aT)は、それぞれの温度(T)における溶融複素粘度の常用対数をX軸とし、角周波数の常用対数をY軸としてプロットして溶融複素粘度−角周波数の両対数曲線を作成し、130℃、150℃および170℃での溶融複素粘度−角周波数の両対数曲線をそれぞれX軸方向に移動させて、190℃での溶融複素粘度−角周波数の両対数曲線に重ね合わせた際の移動量である。該重ね合わせでは、各温度(T)における溶融複素粘度−角周波数の両対数曲線を、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小二乗法で求めるときの相関係数は、通常、0.99以上である。
The activation energy (Ea) of the flow is the angular frequency (unit is rad / sec) of the molten complex viscosity (unit is Pa · sec) at 190 ° C. based on the temperature-time superposition principle. It is a numerical value calculated by the Arenius type equation from the shift factor (a T ) when creating the master curve showing the dependence on. Ea is a value obtained by the following method. The melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at each temperature of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (expressed as T; unit: ° C.) is based on the temperature-time superposition principle. Based on this, each temperature obtained when the molten complex viscosity-angular frequency curve at each temperature (T) is superimposed on the molten complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at 190 ° C. Find the shift factor (a T ) at T). And each temperature (T), from a shift factor (a T) at each temperature (T), by the least squares method [ln (a T)] and [1 / (T + 273.16) ] and the primary approximate expression ( The following equation (I)) is calculated, and Ea is obtained from the slope m of the linear equation and the following equation (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor
Ea: Flow activation energy (unit: kJ / mol)
T: Temperature (Unit: ° C)
Commercially available calculation software may be used for the above calculation. As the calculation software, for example, Rhios V. manufactured by Rheometrics Co., Ltd. 4.4.4 and the like.
For the shift factor (a T ), the common logarithm of the molten complex viscosity at each temperature (T) is plotted on the X-axis, and the common logarithm of the angular frequency is plotted on the Y-axis. Is created, and the both logarithmic curves of the molten complex viscosity-angular frequency at 130 ° C., 150 ° C. and 170 ° C. are moved in the X-axis direction, respectively, and superimposed on the both logarithmic curves of the molten complex viscosity-angular frequency at 190 ° C. It is the amount of movement when combined. In the superposition, the melt complex viscosity at each temperature (T) - the angular log-log curve of the frequency, the angular frequency to a T times, moving the melt complex viscosity 1 / a T times. Further, the correlation coefficient when the equation (I) is obtained by the least squares method from the values of four points of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. is usually 0.99 or more.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。 The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring device (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate spacing: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, and angular frequency: 0.1 to 100 rad / sec. The measurement is carried out in a nitrogen atmosphere, and it is preferable to add an appropriate amount (for example, 1000 ppm) of an antioxidant in advance to the measurement sample.

成分(A)の、数平均分子量に対する重量平均分子量の比(以下、Mw/Mnと表記する。)は、フィルムの落袋強度をより向上させる観点から、6.0以上であることが好ましく、6.5以上であることがより好ましい。成分(A)のMw/Mnは、フィルムの製膜時の押出負荷を低減する観点から、12以下であることが好ましく、10以下であることがより好ましく、10以下であることがさらに好ましい。成分(A)のMw/Mnは、6.0以上12以下であることが好ましく、6.5以上10以下であることがより好ましい。 The ratio of the weight average molecular weight of the component (A) to the number average molecular weight (hereinafter referred to as Mw / Mn) is preferably 6.0 or more from the viewpoint of further improving the bag-falling strength of the film. More preferably, it is 6.5 or more. The Mw / Mn of the component (A) is preferably 12 or less, more preferably 10 or less, and further preferably 10 or less, from the viewpoint of reducing the extrusion load during film formation of the film. The Mw / Mn of the component (A) is preferably 6.0 or more and 12 or less, and more preferably 6.5 or more and 10 or less.

成分(A)の、重量平均分子量に対するz平均分子量の比(以下、Mz/Mwと表記する。)は、フィルムの落袋強度をより向上させる観点から、2.0以上であることが好ましく、2.1以上であることがより好ましく、2.2以上であることがさらに好ましい。
成分(A)のMz/Mwは、フィルムのフィッシュアイのような外観不良を低減する観点から、5以下であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。成分(A)のMz/Mwは、2.0以上5以下であることが好ましく、2.1以上4以下であることがより好ましく、2.2以上3以下であることがさらに好ましい。
The ratio of the z-average molecular weight of the component (A) to the weight average molecular weight (hereinafter referred to as Mz / Mw) is preferably 2.0 or more from the viewpoint of further improving the bagging strength of the film. It is more preferably 2.1 or more, and further preferably 2.2 or more.
The Mz / Mw of the component (A) is preferably 5 or less, more preferably 4 or less, and further preferably 3 or less, from the viewpoint of reducing appearance defects such as fish eyes of the film. .. The Mz / Mw of the component (A) is preferably 2.0 or more and 5 or less, more preferably 2.1 or more and 4 or less, and further preferably 2.2 or more and 3 or less.

成分(A)の引張衝撃強度(単位はkJ/mである。)は、フィルムの機械強度を高める観点から、400kJ/m以上であることが好ましく、500kJ/m以上であることがより好ましく、600kJ/m以上であることがさらに好ましい。また、フィルムを含む包装容器の開封性を高める観点から、2000kJ/m以下であることが好ましく、1800kJ/m以下であることがより好ましく、1500kJ/m以下であることがさらに好ましい。成分(A)の引張衝撃強度は、400kJ/m以上で2000kJ/m以下あることが好ましく、500kJ/m以上1800kJ/m以下であることがより好ましく、600kJ/m以上1500kJ/m以下であることがさらに好ましい。
成分(A)の引張衝撃強度は、ASTM D1822−68に従って、成形温度190℃、予熱時間10分、圧縮時間5分、圧縮圧力5MPaの条件で圧縮成形された厚み2mmのシートで測定される。
重合時のエチレンとα−オレフィンの比率を調整することにより、成分(A)の引張衝撃強度を調節することができる。エチレンに対するα−オレフィンの比率を増加させると、成分(A)の引張衝撃強度は大きくなり、比率を減少させると、成分(A)の引張衝撃強度は小さくなる。
エチレンと共重合させるα−オレフィンの炭素原子数を調整することによっても、成分(A)の引張衝撃強度を調節することができる。α−オレフィンの炭素原子数を増加させると、成分(A)の引張衝撃強度は大きくなり、炭素原子数を減少させると、成分(A)の引張衝撃強度は小さくなる。
Tensile impact strength of the component (A) (unit is kJ / m 2.), From the viewpoint of enhancing the mechanical strength of the film, it is preferably 400 kJ / m 2 or more, that is 500 kJ / m 2 or more More preferably, it is 600 kJ / m 2 or more. Further, in view of enhancing the opening of a packaging container comprising the film, it is preferably 2000 kJ / m 2 or less, more preferably 1800kJ / m 2 or less, and more preferably 1500kJ / m 2 or less. Tensile impact strength of the components (A), preferably in a 2000 kJ / m 2 or less at 400 kJ / m 2 or more, 500 kJ / m 2 or more 1800kJ more preferably / m 2 or less, 600 kJ / m 2 or more 1500KJ / It is more preferably m 2 or less.
The tensile impact strength of the component (A) is measured on a sheet having a thickness of 2 mm, which is compression-molded under the conditions of a molding temperature of 190 ° C., a preheating time of 10 minutes, a compression time of 5 minutes, and a compression pressure of 5 MPa according to ASTM D1822-68.
By adjusting the ratio of ethylene and α-olefin during polymerization, the tensile impact strength of the component (A) can be adjusted. Increasing the ratio of α-olefin to ethylene increases the tensile impact strength of the component (A), and decreasing the ratio decreases the tensile impact strength of the component (A).
The tensile impact strength of the component (A) can also be adjusted by adjusting the number of carbon atoms of the α-olefin copolymerized with ethylene. When the number of carbon atoms of the α-olefin is increased, the tensile impact strength of the component (A) increases, and when the number of carbon atoms is decreased, the tensile impact strength of the component (A) decreases.

成分(A)の極限粘度(以下、[η]と表記する;単位はdl/gである。)は、フィルムの落袋強度をより向上させる観点から、1.0dl/g以上であることが好ましく、1.2dl/g以上であることがより好ましく、1.3dl/g以上であることがさらに好ましい。成分(A)の[η]は、フィルムのフィッシュアイのような外観不良を低減する観点から、2.0dl/g以下であることが好ましく、1.9dl/g以下であることがより好ましく、1.7dl/g以下であることがさらに好ましい。成分(A)の[η]は、1.0dl/g以上2.0dl/g以下であることが好ましく、1.2dl/g以上1.9dl/g以下であることがより好ましく、1.3dl/g以上1.7dl/g以下であることがさらに好ましい。成分(A)の[η]は、テトラリンを溶媒として用い、温度135℃でウベローデ型粘度計を用いて測定される。 The ultimate viscosity of the component (A) (hereinafter referred to as [η]; the unit is dl / g) is 1.0 dl / g or more from the viewpoint of further improving the bagging strength of the film. It is more preferably 1.2 dl / g or more, and even more preferably 1.3 dl / g or more. The [η] of the component (A) is preferably 2.0 dl / g or less, more preferably 1.9 dl / g or less, from the viewpoint of reducing appearance defects such as fish eyes of the film. It is more preferably 1.7 dl / g or less. The [η] of the component (A) is preferably 1.0 dl / g or more and 2.0 dl / g or less, more preferably 1.2 dl / g or more and 1.9 dl / g or less, and 1.3 dl or more. It is more preferably / g or more and 1.7 dl / g or less. [Η] of the component (A) is measured using a Ubbelohde viscometer at a temperature of 135 ° C. using tetralin as a solvent.

成分(A)の特性緩和時間(τ;単位は秒である。)は、フィルムの落袋強度をより向上させる観点から、10秒以上であることが好ましく、15秒以上であることがより好ましく、18秒以上であることがさらに好ましい。また、フィルムの製膜時の押出負荷を低減する観点およびフィルム外観の観点から、成分(A)の特性緩和時間は、50秒以下であることが好ましく、45秒以下であることがより好ましく、40秒以下であることがさらに好ましい。成分(A)の特性緩和時間は、10秒以上50秒以下であることが好ましく、15秒以上45秒以下であることがより好ましく、18秒以上40秒以下であることがさらに好ましい。 The characteristic relaxation time (τ; unit is seconds) of the component (A) is preferably 10 seconds or more, more preferably 15 seconds or more, from the viewpoint of further improving the bagging strength of the film. , 18 seconds or more is more preferable. Further, from the viewpoint of reducing the extrusion load during film formation and the appearance of the film, the characteristic relaxation time of the component (A) is preferably 50 seconds or less, more preferably 45 seconds or less. It is more preferably 40 seconds or less. The characteristic relaxation time of the component (A) is preferably 10 seconds or more and 50 seconds or less, more preferably 15 seconds or more and 45 seconds or less, and further preferably 18 seconds or more and 40 seconds or less.

特性緩和時間(τ)は、エチレン−α−オレフィン共重合体が有する長鎖分岐の長さと長鎖分岐の量、および分子量分布に関係する数値である。長鎖分岐が短い、長鎖分岐量が少ないまたは、高分子量成分が少ない、と特性緩和時間は小さな値となる。長鎖分枝が長い、長鎖分岐量が多いまたは、高分子量成分が多い、と特性緩和時間は大きな値となる。
特性緩和時間が長いエチレン−α−オレフィン共重合体は、インフレーション製膜機のダイから押し出された後、分子鎖絡み合いにより引取方向に配向結晶を生じ、そのため、フィルムのMD方向の剛性が上がる。特性緩和時間が10秒以上である成分(A)を含むフィルムは、MD方向の剛性が高いため、MD方向の伸び100%における公称応力が高く、落袋強度により優れる。
The property relaxation time (τ) is a numerical value related to the length of the long-chain branch, the amount of the long-chain branch, and the molecular weight distribution of the ethylene-α-olefin copolymer. If the long chain branch is short, the amount of long chain branch is small, or the high molecular weight component is small, the characteristic relaxation time becomes a small value. If the long chain branch is long, the amount of long chain branch is large, or the amount of high molecular weight component is large, the characteristic relaxation time becomes a large value.
After the ethylene-α-olefin copolymer having a long property relaxation time is extruded from the die of the inflation film forming machine, molecular chain entanglement causes oriented crystals to be formed in the take-up direction, so that the rigidity of the film in the MD direction is increased. Since the film containing the component (A) having a characteristic relaxation time of 10 seconds or more has high rigidity in the MD direction, the nominal stress at 100% elongation in the MD direction is high, and the film is more excellent in bagging strength.

特性緩和時間は、温度−時間重ね合わせ原理に基づいて作成される、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブから算出される数値である。特性緩和時間は、以下に示す方法により求められる。130℃、150℃、170℃および190℃それぞれの温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、190℃における溶融複素粘度−角周波数曲線に重ね合わせてマスターカーブを作成し、得られたマスターカーブを下記式(5)で近似することにより算出される値である。
η=η0/[1+(τ×ω)n] (5)
η:溶融複素粘度(単位:Pa・sec)
ω:角周波数(単位:rad/sec)
τ:特性緩和時間(単位:sec)
η0:エチレン−α−オレフィン共重合体毎に求まる定数(単位:Pa・sec)
n:エチレン−α−オレフィン共重合体毎に求まる定数
上記計算は、市販の計算ソフトウェアを用いてもよい。計算ソフトウェアとしては、例えば、Rheometrics社製 Rhios V.4.4.4が挙げられる。
The characteristic relaxation time is calculated from the master curve showing the angular frequency (unit: rad / sec) dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C., which is created based on the temperature-time superposition principle. It is a numerical value to be done. The characteristic relaxation time is determined by the method shown below. Molten complex viscosity-angular frequency curve of ethylene-α-olefin copolymer at 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (Unit of molten complex viscosity is Pa · sec, angle The unit of frequency is rad / sec) is superposed on the melt complex viscosity-angular frequency curve at 190 ° C. based on the temperature-time superposition principle to create a master curve, and the obtained master curve is shown below. It is a value calculated by approximating with the equation (5).
η = η0 / [1+ (τ × ω) n] (5)
η: Molten complex viscosity (unit: Pa · sec)
ω: Angular frequency (unit: rad / sec)
τ: Characteristic relaxation time (unit: sec)
η0: Constant (unit: Pa · sec) obtained for each ethylene-α-olefin copolymer
n: Constant obtained for each ethylene-α-olefin copolymer
Commercially available calculation software may be used for the above calculation. As the calculation software, for example, Rhios V. manufactured by Rheometrics Co., Ltd. 4.4.4 can be mentioned.

溶融複素粘度−角周波数曲線の測定は、前述の流動の活性化エネルギーを算出するために測定する溶融複素粘度−角周波数曲線と同様に測定する。 The melt complex viscosity-angular frequency curve is measured in the same manner as the melt complex viscosity-angular frequency curve measured for calculating the activation energy of the flow described above.

成分(A)の、温度170℃および角周波数0.1rad/秒における溶融複素粘度(η*0.1;単位はPa・秒である。)と、温度170℃および角周波数100rad/秒における溶融複素粘度(η*100;単位はPa・秒である)の比、η*0.1/η*100は、フィルムの製膜時の押出負荷を低減する観点から、70以上であることが好ましく、80以上であることがより好ましく、90以上であることがさらに好ましく、100以上であることが特に好ましい。また、フィルムのフィッシュアイのような外観不良を低減する観点から、成分(A)のη*0.1/η*100は、150以下であることが好ましく、140以下であることがより好ましく、130以下であることがさらに好ましく、120以下であることが特に好ましい。成分(A)のη*0.1/η*100は、70以上150以下であることが好ましく、80以上140以下であることがより好ましく、90以上130以下であることがさらに好ましく、100以上120以下であることが特に好ましい。 The melt complex viscosity (η * 0.1; unit is Pa · sec.) Of the component (A) at a temperature of 170 ° C. and an angular frequency of 0.1 rad / sec, and the melt complex viscosity at a temperature of 170 ° C. and an angular frequency of 100 rad / sec. The ratio of (η * 100; the unit is Pa · sec), η * 0.1 / η * 100, is preferably 70 or more, preferably 80 or more, from the viewpoint of reducing the extrusion load during film formation. It is more preferably 90 or more, and particularly preferably 100 or more. Further, from the viewpoint of reducing appearance defects such as fish eyes of the film, the η * 0.1 / η * 100 of the component (A) is preferably 150 or less, more preferably 140 or less, and 130 or less. Is more preferable, and 120 or less is particularly preferable. The η * 0.1 / η * 100 of the component (A) is preferably 70 or more and 150 or less, more preferably 80 or more and 140 or less, further preferably 90 or more and 130 or less, and 100 or more and 120 or less. Is particularly preferable.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。 The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring device (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate spacing: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, and angular frequency: 0.1 to 100 rad / sec. The measurement is carried out in a nitrogen atmosphere, and it is preferable to add an appropriate amount (for example, 1000 ppm) of an antioxidant in advance to the measurement sample.

ビカット軟化点(単位:℃)は、エチレン−α−オレフィン共重合体の分子量、密度、および、組成分布に関係する数値である。分子量が高い、密度が高い、または、組成分布が狭い、とビカット軟化点は小さい値となる。分子量が低い、密度が低い、または、組成分布が広い、とビカット軟化点は大きい値となる。落袋強度を高める観点から、成分(A)のビカット軟化点は、108℃以下であることが好ましく、106℃以下であることがより好ましく、104℃以下であることがさらに好ましい。包装容器の耐熱性を高める観点から、98℃以上であることが好ましく、100℃以上であることがより好ましく、102℃以上であることがさらに好ましい。 The Vicat softening point (unit: ° C.) is a numerical value related to the molecular weight, density, and composition distribution of the ethylene-α-olefin copolymer. When the molecular weight is high, the density is high, or the composition distribution is narrow, the Vicat softening point becomes a small value. When the molecular weight is low, the density is low, or the composition distribution is wide, the Vicat softening point becomes a large value. From the viewpoint of increasing the bag-dropping strength, the Vicat softening point of the component (A) is preferably 108 ° C. or lower, more preferably 106 ° C. or lower, and even more preferably 104 ° C. or lower. From the viewpoint of increasing the heat resistance of the packaging container, the temperature is preferably 98 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 102 ° C. or higher.

融点(単位:℃)は、エチレン−α−オレフィン共重合体の密度、および、組成分布に関係する数値である。密度が低い、または、組成分布が狭い、と融点は小さい値となる。
密度が高い、または、組成分布が広い、と融点は大きい値となる。落袋強度を高める観点から、成分(A)の融点は、120℃以下であることが好ましく、115℃以下であることがより好ましく、112℃以下であることがさらに好ましい。フィルムの剛性を高める観点から、95℃以上であることが好ましく、98℃以上であることがより好ましく、100℃以上であることがさらに好ましい。
The melting point (unit: ° C.) is a numerical value related to the density and composition distribution of the ethylene-α-olefin copolymer. If the density is low or the composition distribution is narrow, the melting point will be a small value.
If the density is high or the composition distribution is wide, the melting point becomes a large value. From the viewpoint of increasing the bag-dropping strength, the melting point of the component (A) is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and further preferably 112 ° C. or lower. From the viewpoint of increasing the rigidity of the film, the temperature is preferably 95 ° C. or higher, more preferably 98 ° C. or higher, and even more preferably 100 ° C. or higher.

成分(A)の結晶化温度(単位:℃)は、エチレン−α−オレフィン共重合体の密度、分子量分布、および、組成分布に関係する数値である。密度が低い、分子量分布が狭い、または、組成分布が狭い、と結晶化温度は小さい値となる。密度が高い、分子量分布が広い、または、組成分布が広い、と結晶化温度は大きい値となる。低温衝撃強度を高める観点から、成分(A)の融点は、112℃以下であることが好ましく、110℃以下であることがより好ましく、108℃以下であることがさらに好ましい。フィルムの剛性を高める観点から、95℃以上であることが好ましく、98℃以上であることがより好ましく、100℃以上であることがさらに好ましい。 The crystallization temperature (unit: ° C.) of the component (A) is a numerical value related to the density, molecular weight distribution, and composition distribution of the ethylene-α-olefin copolymer. If the density is low, the molecular weight distribution is narrow, or the composition distribution is narrow, the crystallization temperature will be a small value. When the density is high, the molecular weight distribution is wide, or the composition distribution is wide, the crystallization temperature becomes a large value. From the viewpoint of increasing the low temperature impact strength, the melting point of the component (A) is preferably 112 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 108 ° C. or lower. From the viewpoint of increasing the rigidity of the film, the temperature is preferably 95 ° C. or higher, more preferably 98 ° C. or higher, and even more preferably 100 ° C. or higher.

成分(A)は、融点からビカット軟化点を差し引いた値が好ましくは14℃以下であり、より好ましくは12度以下であり、さらに好ましくは10度以下である。 The value of the component (A) obtained by subtracting the Vicat softening point from the melting point is preferably 14 ° C. or lower, more preferably 12 ° C. or lower, and further preferably 10 ° C. or lower.

成分(A)の製造方法としては、活性化助触媒成分(以下、成分(I)と称する。)が微粒子状担体に担持されてなる成分(H)と、メタロセン系錯体と、電子供与性化合物と、を接触させてなるオレフィン重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法が挙げられる。 As a method for producing the component (A), a component (H) in which an activation cocatalyst component (hereinafter referred to as a component (I)) is supported on a fine particle carrier, a metallocene-based complex, and an electron-donating compound. In the presence of an olefin polymerization catalyst formed by contacting with and, a method of copolymerizing ethylene and α-olefin can be mentioned.

成分(I)としては、亜鉛化合物が挙げられる。 亜鉛化合物としては、例えば、ジエチル亜鉛とフッ素化フェノールと水とを接触させることにより得られる化合物が挙げられる。 Examples of the component (I) include zinc compounds. Examples of the zinc compound include compounds obtained by contacting diethylzinc, fluorinated phenol, and water.

微粒子状担体とは、50%体積平均粒子径が10〜500μmである多孔質の物質である。50%体積平均粒子径は、例えば、光散乱式レーザー回折法により測定される。
微粒子状担体としては、例えば、無機物質、有機ポリマーが挙げられる。無機物質としては、例えば、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土および粘土鉱物が挙げられる。有機ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体が挙げられる。微粒子状担体は、無機物質からなる微粒子状担体(以下、無機微粒子状担体と称する)が好ましい。
微粒子状担体の細孔容量は、通常0.3〜10ml/gである。微粒子状担体の比表面積は、通常10〜1000m2/gである。細孔容量と比表面積は、ガス吸着法により測定され、細孔容量はガス脱着量をBJH法で、比表面積はガス吸着量をBET法で解析することにより求められる。
The fine particle carrier is a porous substance having a 50% volume average particle diameter of 10 to 500 μm. The 50% volume average particle size is measured by, for example, a light scattering laser diffraction method.
Examples of the fine particle carrier include inorganic substances and organic polymers. Examples of the inorganic substance include inorganic oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; smectite, montmorillonite, hectorite, and laponite. , Clays such as saponite and clay minerals. Examples of the organic polymer include polyethylene, polypropylene, and a styrene-divinylbenzene copolymer. As the fine particle carrier, a fine particle carrier made of an inorganic substance (hereinafter, referred to as an inorganic fine particle carrier) is preferable.
The pore volume of the fine particle carrier is usually 0.3 to 10 ml / g. The specific surface area of the fine particle carrier is usually 10 to 1000 m 2 / g. The pore volume and the specific surface area are measured by the gas adsorption method, and the pore volume is determined by analyzing the amount of gas desorption by the BJH method and the specific surface area by analyzing the amount of gas adsorption by the BET method.

[成分(H)]
成分(H)は、成分(I)が微粒子状担体に担持されてなる担体である。
成分(H)は、ジエチル亜鉛(以下、成分(a)と称する)、フッ素化フェノール(以下、成分(b)と称する)、水(以下、成分(c)と称する)、無機微粒子状担体(以下、成分(d)と称する)、およびトリメチルジシラザン(((CH33Si)2NH)(以下、成分(e)と称する)を接触させて得ることができる。
[Component (H)]
The component (H) is a carrier in which the component (I) is supported on a fine particle carrier.
The component (H) includes diethylzinc (hereinafter referred to as component (a)), fluorinated phenol (hereinafter referred to as component (b)), water (hereinafter referred to as component (c)), and an inorganic fine particle carrier (hereinafter referred to as component (c)). It can be obtained by contacting component (d)) and trimethyldisilazane (((CH 3 ) 3 Si) 2 NH) (hereinafter referred to as component (e)).

成分(b)としては、例えば、3,4,5−トリフルオロフェノール、3,4,5−トリス(トリフルオロメチル)フェノール、3,4,5−トリス(ペンタフルオロフェニル)フェノール、3,5−ジフルオロ−4−ペンタフルオロフェニルフェノール、または4,5,6,7,8−ペンタフルオロ−2−ナフトールが挙げられ、3,4,5−トリフルオロフェノールであることが好ましい。上記の成分(b)を使用することにより、得られる成分(A)の長鎖分岐量を増やすことができる。 The component (b) includes, for example, 3,4,5-trifluorophenol, 3,4,5-tris (trifluoromethyl) phenol, 3,4,5-tris (pentafluorophenyl) phenol, 3,5. −Difluoro-4-pentafluorophenylphenol, or 4,5,6,7,8-pentafluoro-2-naphthol, preferably 3,4,5-trifluorophenol. By using the above component (b), the amount of long chain branching of the obtained component (A) can be increased.

成分(d)は、シリカゲルであることが好ましい。 The component (d) is preferably silica gel.

成分(I)の製造方法において、成分(a)、成分(b)、成分(c)の各成分の使用量が、各成分の使用量のモル比率を成分(a):成分(b):成分(c)=1:y:zとするとき、yおよびzが下記式を満足するように使用することができる。
|2−y−2z|≦1 (2)
z≧−2.5y+2.48 (3)
y<1 (4)
(上記式(2)〜(4)において、yおよびzは0よりも大きな数を表す。)
成分(a)の使用量に対する成分(b)の使用量のモル比率y、および成分(a)の使用量に対する成分(c)の使用量のモル比率zは、上記式(2)、(3)および(4)を満たす限り特に制限されない。yは、通常0.55〜0.99であり、0.55〜0.95であることが好ましく、0.6〜0.9であることがよりに好ましく、0.7〜0.8であることがさらに好ましい。η*0.1/η*100が50以上のエチレン−α−オレフィン共重合体を得るためには、yが0.55以上であることが好ましい。yが1以上の場合、得られるエチレン−α−オレフィン共重合体を含むフィルムは、フィッシュアイのような外観不良が生じる。
In the method for producing the component (I), the amount of each component of the component (a), the component (b), and the component (c) determines the molar ratio of the amount of each component used. When the component (c) = 1: y: z, y and z can be used so as to satisfy the following formula.
| 2-y-2z | ≦ 1 (2)
z ≧ −2.5y + 2.48 (3)
y <1 (4)
(In the above equations (2) to (4), y and z represent numbers larger than 0.)
The molar ratio y of the amount of the component (b) used to the amount of the component (a) used and the molar ratio z of the amount of the component (c) used to the amount of the component (a) used are the above formulas (2) and (3). ) And (4) are not particularly limited. y is usually 0.55 to 0.99, preferably 0.55 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0.8. It is more preferable to have. In order to obtain an ethylene-α-olefin copolymer having η * 0.1 / η * 100 of 50 or more, y is preferably 0.55 or more. When y is 1 or more, the obtained film containing the ethylene-α-olefin copolymer has a poor appearance such as fish eye.

成分(a)と成分(d)との接触により得られる粒子1gに含まれる成分(a)に由来する亜鉛原子のモル数が、好ましくは0.1mmol以上、より好ましくは0.5〜20mmolとなるように成分(a)と成分(d)との使用量を調整する。成分(d)に対して、成分(e)の使用量は、成分(d)1gに対して、成分(e)0.1mmol以上あることが好ましく、0.5〜20mmolであることがより好ましい。 The number of moles of zinc atoms derived from the component (a) contained in 1 g of the particles obtained by the contact between the component (a) and the component (d) is preferably 0.1 mmol or more, more preferably 0.5 to 20 mmol. The amount of the component (a) and the component (d) used is adjusted so as to be. The amount of the component (e) used with respect to the component (d) is preferably 0.1 mmol or more, more preferably 0.5 to 20 mmol, based on 1 g of the component (d). ..

メタロセン系錯体とは、シクロペンタジエン形アニオン骨格を含む配位子を有する遷移金属化合物である。
メタロセン系錯体としては、下記一般式[1]で表される遷移金属化合物、または、そのμ−オキソタイプの遷移金属化合物二量体が好ましい。
2 a21 b [1]
(式中、M2は周期律表第3〜11族もしくはランタノイド系列の遷移金属原子である。
2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。aは2、bは2を表す。)
The metallocene complex is a transition metal compound having a ligand containing a cyclopentadiene-type anionic skeleton.
As the metallocene complex, a transition metal compound represented by the following general formula [1] or a μ-oxo type transition metal compound dimer thereof is preferable.
L 2 a M 2 X 1 b [1]
(In the equation, M 2 is a transition metal atom of the Group 3-11 of the Periodic Table or the lanthanoid series.
L 2 is a group having a cyclopentadiene type anion skeleton, or a plurality of L 2 are connected directly to each other or residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or phosphorus atom It may be connected via. X 1 is a halogen atom, a hydrocarbon group (excluding a group having a cyclopentadiene anion skeleton), or a hydrocarbon oxy group. a represents 2 and b represents 2. )

一般式[1]において、M2は周期律表(IUPAC1989年)第3〜11族もしくはランタノイド系列の遷移金属原子であり、例えば、スカンジウム原子、イットリウム原子、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、鉄原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、サマリウム原子、イッテルビウム原子が挙げられる。一般式[1]におけるM2は、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、クロム原子、鉄原子、コバルト原子またはニッケル原子であることが好ましく、はチタン原子、ジルコニウム原子またはハフニウム原子であることがより好ましく、ジルコニウム原子であることがさらに好ましい。 In the general formula [1], M 2 is a transition metal atom of the Group 3-11 or Lantanoid series of the Periodic Table (IUPAC 1989), for example, a scandium atom, an yttrium atom, a titanium atom, a zirconium atom, a hafnium atom, and a vanadium. Examples include atoms, niobium atoms, tantalum atoms, chromium atoms, iron atoms, ruthenium atoms, cobalt atoms, rhodium atoms, nickel atoms, palladium atoms, samarium atoms, and itterbium atoms. M 2 in the general formula [1] is preferably a titanium atom, a zirconium atom, a hafnium atom, a vanadium atom, a chromium atom, an iron atom, a cobalt atom or a nickel atom, and is a titanium atom, a zirconium atom or a hafnium atom. More preferably, it is further preferably a zirconium atom.

一般式[1]において、L2はη5−(置換)インデニル基であり、2つのL2は同じであっても異なっていてもよい。2つのL2は互いに、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されている。
η5−(置換)インデニル基とは、置換基を有していてもよいη5−インデニル基を表す。
In the general formula [1], L 2 is eta 5 - a (substituted) indenyl group, the two L 2 may be different even in the same. Two L 2 each other, a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, are linked via a bridging group containing a sulfur atom or a phosphorus atom.
The η 5- (substituted) indenyl group represents a η 5 --indenyl group which may have a substituent.

2におけるη5−(置換)インデニル基としては、少なくとも、5位、6位が水素原子であるη5−(置換)インデニル基であり、具体的には、η5−インデニル基、η5−2−メチルインデニル基、η5−3−メチルインデニル基、η5−4−メチルインデニル基、η5−7−メチルインデニル基、η5−2−tert−ブチルインデニル基、η5−3−tert−ブチルインデニル基、η5−4−tert−ブチルインデニル基、η5−7−tert−ブチルインデニル基、η5−2,3−ジメチルインデニル基、η5−4,7−ジメチルインデニル基、η5−2,4,7−トリメチルインデニル基、η5−2−メチル−4−イソプロピルインデニル基、η5−4−フェニルインデニル基、η5−2−メチル−4−フェニルインデニル基、η5−2−メチル−4−ナフチルインデニル基、およびこれらの置換体が挙げられる。
本明細書においては、遷移金属化合物の名称については「η5−」を省略することがある。L2は、インデニル基であることが好ましい。
The (substituted) indenyl group, at least, 5, eta 5 6-position is a hydrogen atom - - eta 5 in L 2 (substituted) indenyl group, specifically, eta 5 - indenyl group, eta 5 -2-methylindenyl group, eta 5-3-methylindenyl group, eta 5-4-methylindenyl group, eta 5-7-methylindenyl group, η 5 -2-tert- butyl indenyl group, eta 5 -3-tert-butyl indenyl group, η 5 -4-tert- butylindenyl group, η 5 -7-tert- butyl indenyl group, eta 5-2,3-dimethyl-indenyl group, eta 5 4,7-dimethyl-indenyl group, eta 5-2,4,7-trimethyl indenyl group, eta 5-2-methyl-4-isopropylindenyl group, eta 5-4-phenyl indenyl group, eta 5 -2-methyl-4-phenyl indenyl group, eta 5-2-methyl-4-naphthyl indenyl group, and substituted products thereof.
In the present specification, "η 5 −" may be omitted from the name of the transition metal compound. L 2 is preferably an indenyl group.

2つの(置換)インデニル基は、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されている。架橋基としては、例えば、エチレン基、プロピレン基等のアルキレン基;ジメチルメチレン基、ジフェニルメチレン基などの置換アルキレン基;またはシリレン基、ジメチルシリレン基、ジフェニルシリレン基、テトラメチルジシリレン基などの置換シリレン基;窒素原子、酸素原子、硫黄原子、リン原子などのヘテロ原子が挙げられる。 架橋基は、エチレン基、ジメチルメチレン基、ジメチルシリレン基が好ましく、エチレン基であることがより好ましい。 The two (substituted) indenyl groups are linked via a cross-linking group containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom. Examples of the cross-linking group include an alkylene group such as an ethylene group and a propylene group; a substituted alkylene group such as a dimethylmethylene group and a diphenylmethylene group; or a substitution such as a silylene group, a dimethylsilylene group, a diphenylsilylene group and a tetramethyldisylylene group. Syrylene group; heteroatoms such as nitrogen atom, oxygen atom, sulfur atom and phosphorus atom can be mentioned. The cross-linking group is preferably an ethylene group, a dimethylmethylene group, or a dimethylsilylene group, and more preferably an ethylene group.

一般式[1]におけるX1は、ハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ここでいう炭化水素基としては、例えば、アルキル基、アラルキル基、アリール基、アルケニル基が挙げられる。炭化水素オキシ基としては、例えば、アルコキシ基、アラルキルオキシ基やアリールオキシ基が挙げられる。 X 1 in the general formula [1] is a halogen atom, a hydrocarbon group (excluding a group having a cyclopentadiene-type anion skeleton), or a hydrocarbon oxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Examples of the hydrocarbon group referred to here include an alkyl group, an aralkyl group, an aryl group and an alkenyl group. Examples of the hydrocarbon oxy group include an alkoxy group, an aralkyloxy group and an aryloxy group.

アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、アミル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−エイコシル基が挙げられ。アルキル基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子で置換されていてもよい。ハロゲン原子で置換されたアルキル基としては、例えば、フルオロメチル基、トリフルオロメチル基、クロロメチル基、トリクロロメチル基、フルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パークロロプロピル基、パークロロブチル基、パーブロモプロピル基が挙げられる。これらのアルキル基はいずれも、メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基;またはベンジルオキシ基などのアラルキルオキシ基などで、その一部の水素原子が置換されていてもよい。 Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, an n-pentyl group, a neopentyl group and an amyl group. Examples thereof include an n-hexyl group, an n-octyl group, an n-decyl group, an n-dodecyl group, an n-pentadecyl group and an n-eicosyl group. The alkyl group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Examples of the alkyl group substituted with the halogen atom include a fluoromethyl group, a trifluoromethyl group, a chloromethyl group, a trichloromethyl group, a fluoroethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a per. Examples thereof include a fluorohexyl group, a perfluorooctyl group, a perchloropropyl group, a perchlorobutyl group and a perbromopropyl group. All of these alkyl groups are alkoxy groups such as methoxy group and ethoxy group; aryloxy group such as phenoxy group; or aralkyloxy group such as benzyloxy group, even if some hydrogen atoms are substituted. good.

アラルキル基としては、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−ドデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基が挙げられる。アラルキル基は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基;またはベンジルオキシ基などのアラルキルオキシ基を置換基として有していてもよい。 Examples of the aralkyl group include a benzyl group, a (2-methylphenyl) methyl group, a (3-methylphenyl) methyl group, a (4-methylphenyl) methyl group, a (2,3-dimethylphenyl) methyl group, and (2). , 4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) Methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, (3,4,5-trimethyl) (Phenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n- Butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, Examples thereof include a (n-octylphenyl) methyl group, a (n-decylphenyl) methyl group, a (n-dodecylphenyl) methyl group, a naphthylmethyl group, and an anthrasenyl methyl group. The aralkyl group may be, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group; or an aralkyloxy group such as a benzyloxy group. It may have as a substituent.

アリール基としては、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基が挙げられる。アリール基は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基を置換基として有していてもよい。 Examples of the aryl group include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, a 2,3-kisilyl group, a 2,4-kisilyl group, a 2,5-kisilyl group, and 2,6-. Kisilyl group, 3,4-kisilyl group, 3,5-kisilyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, -trimethylphenyl Group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,5-trimethylphenyl group, 2,3,5,6-tetramethylphenyl group , Pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n-pentylphenyl group, neopentylphenyl group, n Examples thereof include −hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecylphenyl group, naphthyl group and anthracenyl group. The aryl group is, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group. It may have as a group.

アルケニル基としては、例えば、アリル基、メタリル基、クロチル基、1,3−ジフェニル−2−プロペニル基が挙げられる。 Examples of the alkenyl group include an allyl group, a metharyl group, a crotyl group, and a 1,3-diphenyl-2-propenyl group.

アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基が挙げられる。アルコキシ基は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基を置換基として有していてもよい。 Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group, a neopentoxy group and an n-hexoxy group. Examples thereof include an n-octoxy group, an n-dodesoxy group, an n-pentadesoxy group and an n-icosoxy group. The alkoxy group is, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group. It may have as a group.

アラルキルオキシ基としては、例えば、ベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2、3−ジメチルフェニル)メトキシ基、(2、4−ジメチルフェニル)メトキシ基、(2、5−ジメチルフェニル)メトキシ基、(2、6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基が挙げられる。アラルキルオキシ基は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基を置換基として有していてもよい。 Examples of the aralkyloxy group include a benzyloxy group, a (2-methylphenyl) methoxy group, a (3-methylphenyl) methoxy group, a (4-methylphenyl) methoxy group, and a (2,3-dimethylphenyl) methoxy group. (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4-dimethylphenyl) methoxy group, (3,5-dimethyl) (Phenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6-trimethylphenyl) methoxy group, (2,4,5 -Trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, (3,4,5-trimethylphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, ( 2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propyl) (Phenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n) Examples thereof include a (octylphenyl) methoxy group, a (n-decylphenyl) methoxy group, a naphthylmethoxy group, and an anthracenylmethoxy group. The aralkyloxy group includes, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group. It may have as a substituent.

アリールオキシ基としては、例えば、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2、3−ジメチルフェノキシ基、2、4−ジメチルフェノキシ基、2、5−ジメチルフェノキシ基、2、6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2−tert−ブチル−5−メチルフェノキシ基、2−tert−ブチル−6−メチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−tert−ブチル−3,4−ジメチルフェノキシ基、2−tert−ブチル−3,5−ジメチルフェノキシ基、2−tert−ブチル−3,6−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4,5−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−4−メチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2−tert−ブチル−3,4,5−トリメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2−tert−ブチル−3,4,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,4−ジメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、2−tert−ブチル−3,5,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,5−ジメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基が挙げられる。アリールオキシ基は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基を置換基として有していてもよい。X1は、塩素原子、メトキシ基、フェノキシ基であることが好ましく、塩素原子、フェノキシ基であることがより好ましく、フェノキシ基であることがさらに好ましい。Examples of the aryloxy group include a phenoxy group, a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a 2,3-dimethylphenoxy group, a 2,4-dimethylphenoxy group, and a 2,5-dimethyl group. Phenoxy group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2-tert-butyl-3-methylphenoxy group, 2-tert-butyl-4-methylphenoxy group , 2-tert-butyl-5-methylphenoxy group, 2-tert-butyl-6-methylphenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6 -Trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 2-tert-butyl-3,4-dimethylphenoxy group, 2-tert-butyl-3,5-dimethyl Phenoxy group, 2-tert-butyl-3,6-dimethylphenoxy group, 2,6-di-tert-butyl-3-methylphenoxy group, 2-tert-butyl-4,5-dimethylphenoxy group, 2,6 -Di-tert-butyl-4-methylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2-tert-butyl-3,4,5-trimethylphenoxy Group, 2,3,4,6-tetramethylphenoxy group, 2-tert-butyl-3,4,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,4-dimethylphenoxy group, 2 , 3,5,6-tetramethylphenoxy group, 2-tert-butyl-3,5,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,5-dimethylphenoxy group, pentamethylphenoxy group , Ethylphenoxy group, n-propylphenoxy group, isopropylphenoxy group, n-butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, n-hexylphenoxy group, n-octylphenoxy group, n-decylphenoxy group , N-Tetradecylphenoxy group, naphthoxy group, anthracenoxy group and the like. The aryloxy group is, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group. It may have as a substituent. X 1 is preferably a chlorine atom, a methoxy group, or a phenoxy group, more preferably a chlorine atom or a phenoxy group, and even more preferably a phenoxy group.

一般式[1]におけるaは2を、bは2を表す。 In the general formula [1], a represents 2 and b represents 2.

メタロセン系錯体の具体例としては、 ジメチルシリレンビス(インデニル)チタンジクロライド、ジメチルシリレンビス(2−メチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−tert−ブチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,4,7−トリメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−イソプロピルインデニル)チタンジクロライド、ジメチルシリレンビス(2−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−ナフチルインデニル)チタンジクロライドや、これらの化合物のチタンをジルコニウムまたはハフニウムに変更した化合物、ジメチルシリレンをメチレン、エチレン、ジメチルメチレン(イソプロピリデン)、ジフェニルメチレン、ジエチルシリレン、ジフェニルシリレン、またはジメトキシシリレンに変更した化合物、ジクロライドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジフェニル、ジベンジル、ジメトキシド、ジエトキシド、ジ(n−プロポキシド)、ジ(イソプロポキシド)、ジフェノキシド、またはジ(ペンタフルオロフェノキシド)に変更した化合物が挙げられる。 Specific examples of the metallocene-based complex include dimethylsilylenebis (indenyl) titanium dichloride, dimethylsilylenebis (2-methylindenyl) titanium dichloride, dimethylsilylenebis (2-tert-butylindenyl) titanium dichloride, and dimethylsilylenebis (". 2,3-Dimethylindenyl) titanium dichloride, dimethylsilylenebis (2,4,7-trimethylindenyl) titanium dichloride, dimethylsilylenebis (2-methyl-4-isopropylindenyl) titanium dichloride, dimethylsilylenebis (2) -Phenylindenyl) titanium dichloride, dimethylsilylenebis (4-phenylindenyl) titanium dichloride, dimethylsilylenebis (2-methyl-4-phenylindenyl) titanium dichloride, dimethylsilylenebis (2-methyl-4-naphthylinde) Nyl) Titanium dichloride, compounds in which titanium of these compounds is changed to zirconium or hafnium, compounds in which dimethylsilylene is changed to methylene, ethylene, dimethylmethylene (isopropyridene), diphenylmethylene, diethylsilylene, diphenylsilylene, or dimethoxycilylene. , Dichloride to difluoride, dibromide, diiodide, dimethyl, diethyl, diisopropyl, diphenyl, dibenzyl, dimethoxydo, diethoxydo, di (n-propoxide), di (isopropoxide), diphenoxide, or di (pentafluorophenoxide) Examples include modified compounds.

メタロセン系錯体は、エチレンビス(インデニル)ジルコニウムジクロライド、ジメチルシリレンビス(インデニル)ジルコニウムジクロライド、ジメチルメチレンビス(インデニル)ジルコニウムジクロライド、エチレンビス(インデニル)ジルコニウムジフェノキシド、ジメチルシリレンビス(インデニル)ジルコニウムジフェノキシド、ジメチルメチレンビス(インデニル)ジルコニウムジフェノキシドであることが好ましく、エチレンビス(インデニル)ジルコニウムジフェノキシドであることがより好ましい。 Metallocene-based complexes include ethylenebis (indenyl) zirconium dichloride, dimethylsilylenebis (indenyl) zirconium dichloride, dimethylmethylenebis (indenyl) zirconium dichloride, ethylenebis (indenyl) zirconium diphenoxide, dimethylsilylenebis (indenyl) zirconium diphenoxide, It is preferably dimethylmethylenebis (indenyl) zirconium diphenoxide, more preferably ethylenebis (indenyl) zirconium diphenoxide.

成分(H)とメタロセン系錯体とを接触させてなるオレフィン重合触媒は、成分(H)と、メタロセン系錯体と、有機アルミニウム化合物とを接触させてなるオレフィン重合触媒が好ましい。 The olefin polymerization catalyst formed by contacting the component (H) with the metallocene complex is preferably an olefin polymerization catalyst formed by contacting the component (H), the metallocene complex, and the organoaluminum compound.

有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムが挙げられ、トリイソブチルアルミニウム、トリノルマルオクチルアルミニウムであることが好ましく、トリイソブチルアルミニウムであることがより好ましい。 Examples of the organic aluminum compound include trimethylaluminum, triethylaluminum, tributylaluminum triisobutylaluminum, and trinormaloctylaluminum, preferably triisobutylaluminum and trinormaloctylaluminum, and more preferably triisobutylaluminum. preferable.

電子供与性化合物としては、例えば、トリエチルアミン、トリイソブチルアミン、トリノルマルオクチルアミンが挙げられ、トリエチルアミンであることが好ましい。 Examples of the electron donating compound include triethylamine, triisobutylamine, and trinormal octylamine, and triethylamine is preferable.

メタロセン系錯体の使用量は、成分(H)1gに対し、5×10-5〜5×10-4molであることが好ましい。有機アルミニウム化合物の使用量は、メタロセン系錯体の金属原子モル数に対する有機アルミニウム化合物のアルミニウム原子のモル数の比(Al/M)で表して、50〜500であることが好ましい。 The amount of the metallocene complex used is preferably 5 × 10 -5 to 5 × 10 -4 mol with respect to 1 g of the component (H). The amount of the organoaluminum compound used is preferably 50 to 500 in terms of the ratio (Al / M) of the number of moles of aluminum atoms of the organoaluminum compound to the number of moles of metal atoms of the metallocene complex.

上記の成分(H)とメタロセン系錯体と有機アルミニウム化合物と電子供与性化合物とを接触させてなる重合触媒においては、必要に応じて、酸素を接触させてなる重合触媒としてもよい。 In the polymerization catalyst formed by contacting the above component (H), the metallocene complex, the organoaluminum compound, and the electron donating compound, a polymerization catalyst formed by contacting oxygen may be used, if necessary.

電子供与性化合物の使用量は、有機アルミニウム化合物のアルミニウム原子のモル数に対して、25〜40mol%であることが好ましく、28〜35mol%であることがより好ましい。有機アルミニウム化合物のアルミニウム原子のモル数に対する電子供与性化合物の使用量を高めることで、得られる成分(A)の長鎖分岐量を増やすことができる。 The amount of the electron donating compound used is preferably 25 to 40 mol%, more preferably 28 to 35 mol%, based on the number of moles of aluminum atoms of the organoaluminum compound. By increasing the amount of the electron-donating compound used with respect to the number of moles of aluminum atoms of the organoaluminum compound, the amount of long-chain branching of the obtained component (A) can be increased.

酸素の使用量は、有機アルミニウム化合物のアルミニウム原子のモル数に対して、1〜100mol%であることが好ましく、10〜20mol%であることがより好ましく、10〜15mol%であることがさらに好ましい。有機アルミニウム化合物のアルミニウム原子のモル数に対する酸素の使用量を高めることで、得られる成分(A)の分子量分布を広げることができる。 The amount of oxygen used is preferably 1 to 100 mol%, more preferably 10 to 20 mol%, and even more preferably 10 to 15 mol% with respect to the number of moles of aluminum atoms of the organoaluminum compound. .. By increasing the amount of oxygen used with respect to the number of moles of aluminum atoms of the organoaluminum compound, the molecular weight distribution of the obtained component (A) can be widened.

オレフィン重合触媒は、前記成分(H)と、メタロセン系錯体と、有機アルミニウム化合物とを接触させてなる触媒成分の存在下、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合触媒成分が好ましい。 The olefin polymerization catalyst is obtained by polymerizing a small amount of olefin (hereinafter referred to as prepolymerization) in the presence of a catalyst component formed by contacting the component (H), a metallocene complex, and an organoaluminum compound. Prepolymerization catalyst components are preferred.

前記予備重合触媒成分の製造方法としては、下記工程(1)、(2)、(3)および(4)を有する予備重合触媒成分の製造方法が挙げられる。
工程(1):メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶液を40℃以上で熱処理して熱処理物を得る工程。
工程(2):工程(1)で得られた熱処理物と成分(H)とを接触させ、接触処理物を得る工程。
工程(3):工程(2)で得られた接触処理物と有機アルミニウム化合物とを接触させ、触媒成分を得る工程。
工程(4):工程(3)で得られた触媒成分の存在下、オレフィンを予備重合して予備重合触媒成分を得る工程。
Examples of the method for producing the prepolymerized catalyst component include a method for producing the prepolymerized catalyst component having the following steps (1), (2), (3) and (4).
Step (1): A step of heat-treating a saturated aliphatic hydrocarbon compound solution containing a metallocene complex at 40 ° C. or higher to obtain a heat-treated product.
Step (2): A step of bringing the heat-treated product obtained in the step (1) into contact with the component (H) to obtain a contact-treated product.
Step (3): A step of contacting the contact-treated product obtained in step (2) with an organoaluminum compound to obtain a catalyst component.
Step (4): A step of prepolymerizing an olefin in the presence of the catalyst component obtained in step (3) to obtain a prepolymerization catalyst component.

工程(1)における、メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶液は、例えば、飽和脂肪族炭化水素化合物溶媒中にメタロセン系錯体を添加する方法により調製される。メタロセン系錯体は、通常、粉体、あるいは、飽和脂肪族炭化水素化合物液のスラリーとして、添加される。 The saturated aliphatic hydrocarbon compound solution containing the metallocene complex in the step (1) is prepared by, for example, a method of adding the metallocene complex to the saturated aliphatic hydrocarbon compound solvent. The metallocene complex is usually added as a powder or a slurry of a saturated aliphatic hydrocarbon compound solution.

メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶液の調製に用いられる飽和脂肪族炭化水素化合物としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタンが挙げられる。飽和脂肪族炭化水素化合物溶液は、これら飽和脂肪族炭化水素化合物を1種のみ含んでもよく、2種以上含んでもよい。飽和脂肪族炭化水素化合物は、常圧における沸点が100℃以下であることが好ましく、常圧における沸点が90℃以下であることがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンであることがさらに好ましい。 Examples of the saturated aliphatic hydrocarbon compound used for preparing a saturated aliphatic hydrocarbon compound solution containing a metallocene-based complex include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, and heptane. .. The saturated aliphatic hydrocarbon compound solution may contain only one kind of these saturated aliphatic hydrocarbon compounds, or may contain two or more kinds. The saturated aliphatic hydrocarbon compound preferably has a boiling point of 100 ° C. or lower at normal pressure, more preferably 90 ° C. or lower at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal. Hexane and cyclohexane are more preferable.

メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶液の熱処理は、メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒の温度を、40℃以上の温度に調整すればよい。熱処理中は、溶媒を静置してもよく、溶媒を撹拌してもよい。該温度は、フィルムの成形加工性を高める観点から、45℃以上であることが好ましく、50℃以上であることがより好ましい。また、触媒活性を高める観点から、100℃以下であることが好ましく、80℃以下であることがより好ましい。熱処理の時間は、通常、0.5〜12時間である。該時間は、フィルムの成形加工性を高める観点から、1時間以上であることが好ましく、2時間以上であることがより好ましい。触媒性能の安定性から、6時間以下であることが好ましく、4時間以下であることがより好ましい。 In the heat treatment of the saturated aliphatic hydrocarbon compound solution containing the metallocene complex, the temperature of the saturated aliphatic hydrocarbon compound solvent containing the metallocene complex may be adjusted to a temperature of 40 ° C. or higher. During the heat treatment, the solvent may be allowed to stand or the solvent may be agitated. The temperature is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of improving the moldability of the film. Further, from the viewpoint of increasing the catalytic activity, the temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. The heat treatment time is usually 0.5 to 12 hours. The time is preferably 1 hour or more, and more preferably 2 hours or more, from the viewpoint of improving the moldability of the film. From the viewpoint of stability of catalyst performance, it is preferably 6 hours or less, and more preferably 4 hours or less.

工程(2)では、熱処理物と成分(H)とが接触すればよい。接触させる方法としては、例えば、熱処理物に成分(H)を添加する方法、または、飽和脂肪族炭化水素化合物中に、熱処理物と成分(H)とを添加する方法が挙げられる。成分(H)は、通常、粉体、あるいは、飽和脂肪族炭化水素化合物溶媒のスラリーとして添加される。 In the step (2), the heat-treated product and the component (H) may come into contact with each other. Examples of the method of contacting include a method of adding the component (H) to the heat-treated product, and a method of adding the heat-treated product and the component (H) to the saturated aliphatic hydrocarbon compound. The component (H) is usually added as a powder or a slurry of a saturated aliphatic hydrocarbon compound solvent.

工程(2)での接触処理の温度は、70℃以下であることが好ましく、60℃以下であることがより好ましく、10℃以上であることが好ましく、20℃以上であることがより好ましい。接触処理の時間は、通常、0.1時間〜2時間である。 The temperature of the contact treatment in the step (2) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower, more preferably 10 ° C. or higher, and even more preferably 20 ° C. or higher. The contact treatment time is usually 0.1 hour to 2 hours.

工程(3)では、工程(2)で得られた接触処理物と有機アルミニウム化合物とが接触すればよい。接触させる方法としては、例えば、工程(2)で得られた接触処理物に有機アルミニウム化合物を添加する方法、または、飽和脂肪族炭化水素化合物中に、工程(2)で得られた接触処理物と有機アルミニウム化合物とを添加する方法が用いられる。 In the step (3), the contact-treated product obtained in the step (2) may be brought into contact with the organoaluminum compound. As a method of contacting, for example, a method of adding an organoaluminum compound to the contact-treated product obtained in the step (2), or a contact-treated product obtained in the step (2) in a saturated aliphatic hydrocarbon compound. And an organoaluminum compound are added.

工程(3)での接触処理の温度は、70℃以下であることが好ましく、60℃以下であることがより好ましい。また、予備重合の活性の発現を効率的に行う観点から、10℃以上であることが好ましく、20℃以上であることがより好ましい。接触処理の時間は、通常、0.01時間〜0.5時間である。 The temperature of the contact treatment in the step (3) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower. Further, from the viewpoint of efficiently expressing the activity of the prepolymerization, the temperature is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. The contact treatment time is usually 0.01 to 0.5 hours.

工程(3)の接触処理は、オレフィンの存在下で行うことが好ましい。該オレフィンとしては、通常、予備重合での原料となるオレフィンが挙げられる。オレフィンの量としては、成分(H)1gあたり、0.05〜1gであることが好ましい。 The contact treatment in step (3) is preferably carried out in the presence of an olefin. Examples of the olefin usually include an olefin as a raw material for prepolymerization. The amount of olefin is preferably 0.05 to 1 g per 1 g of the component (H).

上記の工程(1)〜(3)は、飽和脂肪族炭化水素化合物と成分(H)とメタロセン系錯体と有機アルミニウム化合物とを、予備重合反応器に、別々に添加することにより、工程(1)〜(3)の全ての工程を予備重合反応器内で行ってもよく、工程(2)および(3)を予備重合反応器内で行ってもよく、または、工程(3)を予備重合反応器内で行ってもよい。 In the above steps (1) to (3), the saturated aliphatic hydrocarbon compound, the component (H), the metallocene complex, and the organoaluminum compound are separately added to the prepolymerization reactor, thereby performing the step (1). )-(3) may be performed in a prepolymerization reactor, steps (2) and (3) may be performed in a prepolymerization reactor, or step (3) may be prepolymerized. It may be carried out in a reactor.

工程(4)は、工程(3)で得られた触媒成分の存在下、オレフィンを予備重合(少量のオレフィンを重合)して予備重合触媒成分を得る工程である。該予備重合は、通常、スラリー重合法で行われ、該予備重合は、回分式、半回分式、連続式のいずれの方式を用いてもよい。更には、該予備重合は、水素等の連鎖移動剤を添加して行ってもよい。 The step (4) is a step of prepolymerizing the olefin (polymerizing a small amount of olefin) in the presence of the catalyst component obtained in the step (3) to obtain the prepolymerization catalyst component. The prepolymerization is usually carried out by a slurry polymerization method, and the prepolymerization may be carried out by any of a batch type, a semi-batch type and a continuous type. Further, the prepolymerization may be carried out by adding a chain transfer agent such as hydrogen.

予備重合をスラリー重合法で行う場合、溶媒としては、通常、飽和脂肪族炭化水素化合物が用いられる。飽和脂肪族炭化水素化合物は、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタンが挙げられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和脂肪族炭化水素化合物としては、常圧における沸点が100℃以下であることが好ましく、常圧における沸点が90℃以下であることがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンであることがさらに好ましい。 When the prepolymerization is carried out by the slurry polymerization method, a saturated aliphatic hydrocarbon compound is usually used as the solvent. Examples of the saturated aliphatic hydrocarbon compound include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane and heptane. These are used alone or in combination of two or more. As the saturated aliphatic hydrocarbon compound, the boiling point at normal pressure is preferably 100 ° C. or lower, more preferably the boiling point at normal pressure is 90 ° C. or lower, and propane, normal butane, isobutane, normal pentane, isopentane, It is more preferably normal hexane or cyclohexane.

予備重合をスラリー重合法で行う場合、スラリー濃度としては、溶媒1リットル当たりの成分(H)の量が、通常0.1〜600gであり、0.5〜300gであることが好ましい。予備重合温度は、通常、−20〜100℃であり、0〜80℃であることが好ましい。予備重合中、重合温度は適宜変更してもよいが、予備重合を開始する温度は、45℃以下であることが好ましく、40℃以下であることがより好ましい。また、予備重合中の気相部でのオレフィン類の分圧は、通常0.001〜2MPaであり、0.01〜1MPaであることがより好ましい。予備重合時間は、通常、2分間〜15時間である。 When the prepolymerization is carried out by the slurry polymerization method, the amount of the component (H) per liter of the solvent is usually 0.1 to 600 g, preferably 0.5 to 300 g, as the slurry concentration. The prepolymerization temperature is usually -20 to 100 ° C, preferably 0 to 80 ° C. During the prepolymerization, the polymerization temperature may be changed as appropriate, but the temperature at which the prepolymerization is started is preferably 45 ° C. or lower, and more preferably 40 ° C. or lower. The partial pressure of the olefins in the gas phase portion during the prepolymerization is usually 0.001 to 2 MPa, more preferably 0.01 to 1 MPa. The prepolymerization time is usually 2 minutes to 15 hours.

予備重合に用いられるオレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンが挙げられる。これらは、1種または2種以上組み合わせて用いることができ、エチレンのみ、あるいはエチレンとα−オレフィンとを併用することが好ましく、エチレンのみ、あるいは1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のα−オレフィンとエチレンとを併用することがより好ましい。 Examples of the olefin used for the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene and cyclohexene. These can be used alone or in combination of two or more, preferably ethylene alone, or ethylene and an α-olefin in combination, selected from ethylene alone, or 1-butene, 1-hexene and 1-octene. It is more preferable to use ethylene in combination with at least one α-olefin.

予備重合触媒成分中の予備重合された重合体の含有量は、成分(H)1g当たり、通常1〜1000gであり、10〜100gであることが好ましく、20〜50gであることがより好ましい。 The content of the prepolymerized polymer in the prepolymerization catalyst component is usually 1 to 1000 g, preferably 10 to 100 g, and more preferably 20 to 50 g per 1 g of the component (H).

成分(A)の製造方法としては、スラリー重合、または、気相重合法が好ましく、連続気相重合法がより好ましい。該スラリー重合法に用いられる溶媒としては、例えば、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の不活性炭化水素溶媒が挙げられる。該連続気相重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、拡大部を有する流動層型反応槽を有する装置であることが好ましい。反応槽内に撹拌翼が設置されていてもよい。 As a method for producing the component (A), a slurry polymerization method or a gas phase polymerization method is preferable, and a continuous gas phase polymerization method is more preferable. Examples of the solvent used in the slurry polymerization method include inert hydrocarbon solvents such as propane, butane, isobutane, pentane, hexane, heptane, and octane. The gas phase polymerization reaction apparatus used in the continuous vapor phase polymerization method is usually an apparatus having a fluidized bed type reaction vessel, and an apparatus having a fluidized bed type reaction vessel having an enlarged portion is preferable. A stirring blade may be installed in the reaction vessel.

オレフィン重合触媒が、予備重合触媒成分を含むオレフィン重合触媒である場合、成分(A)の粒子の形成を行う連続重合反応槽に予備重合触媒成分を供給する方法としては、通常、アルゴン等の不活性ガス、窒素、水素またはエチレンを用いて、水分のない状態で供給する方法、または、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。 When the olefin polymerization catalyst is an olefin polymerization catalyst containing a prepolymerization catalyst component, as a method of supplying the prepolymerization catalyst component to the continuous polymerization reaction tank for forming the particles of the component (A), usually, argon or the like is not used. A method of supplying in a water-free state using an active gas, nitrogen, hydrogen or ethylene, or a method of dissolving or diluting each component in a solvent and supplying in a solution or slurry state is used.

成分(A)の気相重合の重合温度としては、通常、成分(A)が溶融する温度未満であり、0〜150℃であることが好ましく、30〜100℃であることがより好ましく、70℃〜87℃であることがさらに好ましい。成分(A)の溶融流動性を調節するために、水素を添加してもよい。水素は、エチレン100mol%に対して、0.3〜0.6mol%となるように制御することが好ましい。気相重合中のエチレンに対する水素の比率は、重合中に発生する水素の量および重合中に添加する水素の量によって、制御することができる。重合反応槽の混合ガス中に不活性ガスを共存させてもよい。オレフィン重合触媒が予備重合触媒成分を含むオレフィン重合触媒である場合、オレフィン重合触媒は、有機アルミニウム化合物等の助触媒成分を含んでもよい。気相重合中のエチレンに対する水素の比率を低くすることで、得られる成分(A)の分子量を高めることができる。 The polymerization temperature of the vapor phase polymerization of the component (A) is usually lower than the temperature at which the component (A) melts, preferably 0 to 150 ° C, more preferably 30 to 100 ° C, and 70. It is more preferably ° C. to 87 ° C. Hydrogen may be added to regulate the melt fluidity of component (A). Hydrogen is preferably controlled to be 0.3 to 0.6 mol% with respect to 100 mol% of ethylene. The ratio of hydrogen to ethylene during the vapor phase polymerization can be controlled by the amount of hydrogen generated during the polymerization and the amount of hydrogen added during the polymerization. An inert gas may coexist in the mixed gas of the polymerization reaction tank. When the olefin polymerization catalyst is an olefin polymerization catalyst containing a prepolymerization catalyst component, the olefin polymerization catalyst may contain a co-catalyst component such as an organoaluminum compound. By lowering the ratio of hydrogen to ethylene during gas phase polymerization, the molecular weight of the obtained component (A) can be increased.

<成分(B)>
成分(B)中の炭素原子数3〜20のα−オレフィンに基づく単量体単位を形成する炭素原子数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、および4−メチル−1−ヘキセンが挙げられる。成分(B)は、これらの炭素原子数3〜20のα−オレフィンに基づく単量体単位を一種のみ有してもよく、2種以上有してもよい。炭素原子数3〜20のα−オレフィンとは、好ましくは1−ヘキセン、4−メチル−1−ペンテン、または1−オクテンであり、より好ましくは1−ヘキセン、または1−オクテンである。
<Ingredient (B)>
Examples of the α-olefin having 3 to 20 carbon atoms forming a monomer unit based on the α-olefin having 3 to 20 carbon atoms in the component (B) include propylene, 1-butene, 1-pentene, and 1-. Examples include hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, and 4-methyl-1-hexene. The component (B) may have only one type of monomer unit based on these α-olefins having 3 to 20 carbon atoms, or may have two or more types. The α-olefin having 3 to 20 carbon atoms is preferably 1-hexene, 4-methyl-1-pentene, or 1-octene, and more preferably 1-hexene or 1-octene.

成分(B)中のエチレンに基づく単量体単位の含有量は、成分(B)の全重量を100重量%に対して、50〜99.5重量%であることが好ましい。またα−オレフィンに基づく単量体単位の含有量は、成分(B)の全重量100重量%に対して、0.5〜50重量%であることが好ましい。 The content of the ethylene-based monomer unit in the component (B) is preferably 50 to 99.5% by weight based on 100% by weight of the total weight of the component (B). The content of the monomer unit based on the α-olefin is preferably 0.5 to 50% by weight with respect to 100% by weight of the total weight of the component (B).

成分(B)は、エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体に基づく単量体単位を有していてもよい。エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体としては、例えば、ブタジエンまたはイソプレン等の共役ジエン;1,4−ペンタジエン等の非共役ジエン:アクリル酸;アクリル酸メチルやアクリル酸エチル等のアクリル酸エステル;メタクリル酸;メタクリル酸メチルまたはメタクリル酸エチル等のメタクリル酸エステル;および酢酸ビニルが挙げられる。 The component (B) may have a monomer unit based on a monomer other than ethylene and α-olefin having 3 to 20 carbon atoms. Examples of monomers other than ethylene and α-olefin having 3 to 20 carbon atoms include conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadiene: acrylic acid; methyl acrylate and acrylic acid. Acrylic acid esters such as ethyl; methacrylic acid; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; and vinyl acetate.

成分(B)は、エチレンに基づく単量体単位と炭素原子数4〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることが好ましく、エチレンに基づく単量体単位と炭素原子数5〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることがより好ましく、エチレンに基づく単量体単位と炭素原子数6〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることがさらに好ましい。 The component (B) is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on α-olefin having 4 to 20 carbon atoms, and is preferably a monomer unit based on ethylene. It is more preferable that the polymer has a monomer unit based on α-olefin having 5 to 20 carbon atoms, and a simple polymer having a monomer unit based on ethylene and an α-olefin based on α-olefin having 6 to 20 carbon atoms. It is more preferable that it is a copolymer having a monomer unit.

成分(B)としては、例えば、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、およびエチレン−1−ブテン−1−オクテン共重合体が挙げられる。成分(B)は、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、またはエチレン−1−オクテン共重合体であることが好ましく、エチレン−1−ヘキセン共重合体であることがより好ましい。 Examples of the component (B) include ethylene-1-hexene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-octene copolymer, and ethylene-1-butene-1-hexene. Polymers, ethylene-1-butene-4-methyl-1-pentene copolymers, and ethylene-1-butene-1-octene copolymers can be mentioned. The component (B) is preferably an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, or an ethylene-1-octene copolymer, and is preferably an ethylene-1-hexene copolymer. It is more preferable that they are coalesced.

成分(B)の密度は、890kg/m3以上930kg/m3以下である。フィルムの滑り性をより向上させる観点から、895kg/m3以上であることが好ましく、900kg/m3以上であることがより好ましく、905kg/m3以上であることがさらに好ましく、910kg/m3以上であることが特に好ましい。また、成分(B)の密度は、フィルムの強度の観点から、925kg/m3以下であることが好ましく、920kg/m3以下であることがより好ましく、915kg/m3以下であることがさらに好ましい。成分(B)の密度は、895kg/m3以上925kg/m3以下であることが好ましく、900kg/m3以上920kg/m3以下であることがより好ましく、905kg/m3以上915kg/m3以下であることがさらに好ましく、910kg/m3以上915kg/m3以下であることが特に好ましい。The density of the component (B) is 890 kg / m 3 or more 930 kg / m 3 or less. From the viewpoint of improving the slipperiness of the film, it is preferably 895kg / m 3 or more, more preferably 900 kg / m 3 or more, still more preferably 905 kg / m 3 or more, 910 kg / m 3 The above is particularly preferable. The density of the component (B), from the viewpoint strength of the film, is preferably 925 kg / m 3 or less, more preferably 920 kg / m 3 or less, further not more 915 kg / m 3 or less preferable. Component density of (B) is preferably not more than 895kg / m 3 or more 925 kg / m 3, more preferably at most 900 kg / m 3 or more 920kg / m 3, 905kg / m 3 or more 915 kg / m 3 more preferably less, and particularly preferably not more than 910 kg / m 3 or more 915 kg / m 3.

成分(B)のMFRは、0.5g/10分5g/10分以下である。成分(B)のMFRは、フィルムの成形加工性の観点、特にフィルムの製膜時の押出負荷を低減する観点から、0.8g/10分以上であることが好ましく、1.0g/10分以上であることがより好ましい。成分(B)のMFRは、フィルムの強度の観点から、4.0g/10分以下であることが好ましく、3.0g/10分以下であることがより好ましく、2.5g/10分以下であることがさらに好ましい。成分(B)のMFRは、0.8g/10分以上4.0g/10分以下であることが好ましく、1.0g/10分以上3g/10分以下であることがより好ましく、1g/10分以上2.5g/10分以下であることがさらに好ましい。MFRの測定では、通常、成分(B)に酸化防止剤を1000ppm程度配合した試料を用いる。 The MFR of component (B) is 0.5 g / 10 minutes 5 g / 10 minutes or less. The MFR of the component (B) is preferably 0.8 g / 10 minutes or more, preferably 1.0 g / 10 minutes or more, from the viewpoint of film forming processability, particularly from the viewpoint of reducing the extrusion load during film formation. The above is more preferable. The MFR of the component (B) is preferably 4.0 g / 10 minutes or less, more preferably 3.0 g / 10 minutes or less, and 2.5 g / 10 minutes or less from the viewpoint of film strength. It is more preferable to have. The MFR of the component (B) is preferably 0.8 g / 10 minutes or more and 4.0 g / 10 minutes or less, more preferably 1.0 g / 10 minutes or more and 3 g / 10 minutes or less, and 1 g / 10 minutes. It is more preferably minutes or more and 2.5 g / 10 minutes or less. In the measurement of MFR, a sample containing about 1000 ppm of an antioxidant in the component (B) is usually used.

成分(B)のMFRRは、10以上30以下である。成分(B)のMFRRは、フィルムの成形加工性の観点、特にフィルムの製膜時の押出負荷を低減する観点から、15以上であることが好ましく、17以上であることがより好ましく、20以上であることがさらに好ましい。成分(B)のMFRRは、フィルムの強度の観点から、28以下であることが好ましく、26以下であることがより好ましい。成分(B)のMFRRは、15以上28以下であることが好ましく、17以上26以下であることがより好ましく、20以上26以下であることがさらに好ましい。
成分(B)のMFRRの測定には、通常、成分(B)に酸化防止剤を1000ppm配合した試料を用いる。
The MFRR of component (B) is 10 or more and 30 or less. The MFRR of the component (B) is preferably 15 or more, more preferably 17 or more, and more preferably 20 or more, from the viewpoint of film forming processability, particularly from the viewpoint of reducing the extrusion load during film formation. Is more preferable. The MFRR of the component (B) is preferably 28 or less, more preferably 26 or less, from the viewpoint of film strength. The MFRR of the component (B) is preferably 15 or more and 28 or less, more preferably 17 or more and 26 or less, and further preferably 20 or more and 26 or less.
For the measurement of the MFRR of the component (B), a sample containing 1000 ppm of an antioxidant in the component (B) is usually used.

成分(B)の、数平均分子量に対する重量平均分子量の比(Mw/Mn)は、フィルムをインフレーション製膜法にて製膜する際のバブルの安定性の観点から、2以上であることが好ましく、2.1以上であることがより好ましく、2.2以上であることがさらに好ましく、2.3以上であることが特に好ましい。成分(B)のMw/Mnは、フィルムの強度の観点から、7以下であることが好ましく、6以下であることがより好ましく、5以下であることがさらに好ましく、4以下であることが特に好ましい。成分(B)のMw/Mnは、2以上7以下であることが好ましく、2.1以上6以下であることがより好ましく、2.2以上5以下であることがさらに好ましく、2.3以上4以下であることが特に好ましい。成分(B)のMw/Mnは、成分(A)のMw/Mnと同様の方法により測定される。 The ratio (Mw / Mn) of the weight average molecular weight of the component (B) to the number average molecular weight is preferably 2 or more from the viewpoint of bubble stability when the film is formed by the inflation film forming method. , 2.1 or more, more preferably 2.2 or more, and particularly preferably 2.3 or more. From the viewpoint of film strength, the Mw / Mn of the component (B) is preferably 7 or less, more preferably 6 or less, further preferably 5 or less, and particularly preferably 4 or less. preferable. The Mw / Mn of the component (B) is preferably 2 or more and 7 or less, more preferably 2.1 or more and 6 or less, further preferably 2.2 or more and 5 or less, and 2.3 or more. It is particularly preferably 4 or less. The Mw / Mn of the component (B) is measured by the same method as the Mw / Mn of the component (A).

成分(B)のEaは、フィルムをインフレーション製膜法にて製膜する際のバブルの安定性の観点から、15kJ/mol以上であることが好ましく、20kJ/mol以上であることがより好ましく、25kJ/mol以上であることがさらに好ましい。フィルムの強度の観点から、成分(B)のEaは、50kJ/mol以下であることが好ましく、45kJ/mol以下であることがより好ましく、40kJ/mol以下であることがさらに好ましい。成分(B)のEaは、15kJ/mol以上50kJ/mol以下であることが好ましく、20kJ/mol以上45kJ/mol以下であることがより好ましく、25kJ/mol以上40kJ/mol以下であることがさらに好ましい。該Eaは、成分(A)のEaと同様の方法により測定される。 The Ea of the component (B) is preferably 15 kJ / mol or more, more preferably 20 kJ / mol or more, from the viewpoint of bubble stability when the film is formed by the inflation film forming method. It is more preferably 25 kJ / mol or more. From the viewpoint of film strength, the Ea of the component (B) is preferably 50 kJ / mol or less, more preferably 45 kJ / mol or less, and even more preferably 40 kJ / mol or less. The Ea of the component (B) is preferably 15 kJ / mol or more and 50 kJ / mol or less, more preferably 20 kJ / mol or more and 45 kJ / mol or less, and further preferably 25 kJ / mol or more and 40 kJ / mol or less. preferable. The Ea is measured by the same method as that of the component (A) Ea.

成分(B)は、メタロセン系重合触媒、または、チーグラー・ナッタ系重合触媒の存在下、エチレンとα−オレフィンとを共重合することにより製造することができる。 The component (B) can be produced by copolymerizing ethylene and α-olefin in the presence of a metallocene-based polymerization catalyst or a Ziegler-Natta-based polymerization catalyst.

メタロセン系重合触媒としては、例えば、次の(1)〜(4)の触媒等が挙げられる。
(1)シクロペンタジエン形骨格を有する基を有する遷移金属化合物を含む成分と、アルモキサン化合物とを含む成分からなる触媒
(2)前記遷移金属化合物を含む成分と、トリチルボレート、アニリニウムボレート等のイオン性化合物とを含む成分からなる触媒
(3)前記遷移金属化合物を含む成分と、前記イオン性化合物を含む成分と、有機アルミニウム化合物とを含む成分からなる触媒
(4)(1)〜(3)のいずれか一つに記載の各成分をSiO2、Al23等の無機粒子状担体や、エチレン、スチレン等のオレフィン重合体等の粒子状ポリマー担体に担持または含浸させて得られる触媒
Examples of the metallocene-based polymerization catalyst include the following catalysts (1) to (4).
(1) A catalyst composed of a component containing a transition metal compound having a group having a cyclopentadiene-type skeleton and a component containing an almoxane compound (2) A component containing the transition metal compound and ions such as tritylborate and aniliniumborate. A catalyst composed of a component containing a sex compound (3) A catalyst composed of a component containing the transition metal compound, a component containing the ionic compound, and a component containing an organic aluminum compound (4) (1) to (3) A catalyst obtained by supporting or impregnating each component described in any one of the above with an inorganic particulate carrier such as SiO 2 , Al 2 O 3 or a particulate polymer carrier such as an olefin polymer such as ethylene or styrene.

チーグラー・ナッタ系重合触媒としては、マグネシウム化合物にチタニウム化合物を担持させた固体触媒成分と有機アルミニウムを組合せたいわゆるMg−Ti系チーグラー触媒(例えば「触媒活用大辞典;2004年工業調査会発行」、「出願系統図−オレフィン重合触媒の変遷−;1995年発明協会発行」等を参照)が好ましい。 As the Ziegler-Natta-based polymerization catalyst, a so-called Mg-Ti-based Ziegler catalyst (for example, "Catalyst Utilization Dictionary; published by 2004 Industrial Research Council"), which is a combination of a solid catalyst component in which a titanium compound is supported on a magnesium compound and organoaluminum, is used. "Application system diagram-Transition of olefin polymerization catalyst-; published by Japan Institute of Invention and Innovation in 1995" and the like) is preferable.

成分(B)の製造に用いられる触媒は、フィルムの落袋強度の観点から、メタロセン系重合触媒が好ましい。 The catalyst used for producing the component (B) is preferably a metallocene-based polymerization catalyst from the viewpoint of film bagging strength.

成分(B)の重合方法としては、例えば、バルク重合、溶液重合、スラリー重合、気相重合、または、高圧イオン重合法が挙げられる。ここでバルク重合とは、重合温度において液状のオレフィンを媒体として重合を行う方法をいい、溶液重合又はスラリー重合とは、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の不活性炭化水素溶媒中で重合を行う方法をいう。また気相重合とは、気体状態の単量体を媒体として、その媒体中で気体状態の単量体を重合する方法をいう。 これらの重合方法は、バッチ式および連続式のいずれでもよく、また、単一の重合槽で行われる単段式および複数の重合反応槽を直列に連結させた重合装置で行われる多段式のいずれでもよい。なお、重合工程における各種条件(重合温度、重合圧力、モノマー濃度、触媒添加量、重合時間等)は、適宜決定すればよい。 Examples of the polymerization method of the component (B) include bulk polymerization, solution polymerization, slurry polymerization, vapor phase polymerization, and high-pressure ion polymerization. Here, bulk polymerization refers to a method of polymerizing using a liquid olefin as a medium at a polymerization temperature, and solution polymerization or slurry polymerization refers to inert hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, and octane. A method of polymerizing in a solvent. Further, the gas phase polymerization refers to a method of polymerizing a gaseous monomer in the medium using a gaseous monomer as a medium. These polymerization methods may be either a batch type or a continuous type, and may be a single-stage type performed in a single polymerization tank or a multi-stage type performed in a polymerization apparatus in which a plurality of polymerization reaction tanks are connected in series. It may be. Various conditions (polymerization temperature, polymerization pressure, monomer concentration, catalyst addition amount, polymerization time, etc.) in the polymerization step may be appropriately determined.

フィルムは、さらに下記成分(C)を含有してもよい。フィルム中の成分(C)の含有量は、成分(A)、成分(B)および成分(C)の合計量を100重量%に対して、1重量%以上10重量%以下が好ましく、1重量%以上5重量%以下がより好ましく、1重量%以上2重量%以下がさらに好ましい。 The film may further contain the following component (C). The content of the component (C) in the film is preferably 1% by weight or more and 10% by weight or less, based on 100% by weight of the total amount of the component (A), the component (B) and the component (C). % Or more and 5% by weight or less is more preferable, and 1% by weight or more and 2% by weight or less is further preferable.

<成分(C)>
成分(C)は、密度が890kg/m以上930kg/m以下であり、MFRが0.5g/10分以上5g/10分以下であり、MFRRが31以上150以下である高圧法低密度ポリエチレン(以下、成分(D)と記載することがある)、および、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有し、密度が890kg/m以上930kg/m以下であり、MFRが0.3g/10分以上5g/10分以下であり、MFRRが31以上150以下であるエチレン−α−オレフィン共重合体(以下、成分(E)と記載することがある)からなる群より選ばれる一種以上のエチレン系重合体である。
<Component (C)>
Component (C) has a density is at 890 kg / m 3 or more 930 kg / m 3 or less, MFR is not more than 5 g / 10 min 0.5 g / 10 min or more, the high-pressure low-density MFRR is 31 to 150 It has polyethylene (hereinafter, may be referred to as component (D)), a monomer unit based on ethylene, and a monomer unit based on α-olefin having 3 to 20 carbon atoms, and has a density of 890 kg. Ethylene-α-olefin copolymer having / m 3 or more and 930 kg / m 3 or less, MFR of 0.3 g / 10 minutes or more and 5 g / 10 minutes or less, and MFRR of 31 or more and 150 or less (hereinafter, components (hereinafter, components (hereinafter, components) It is one or more ethylene-based polymers selected from the group consisting of (may be described as E)).

<成分(D)>
成分(D)は、高圧ラジカル重合法により製造される低密度ポリエチレンである。
高圧法低密度ポリエチレンの一般的な製造方法としては、槽型反応器または管型反応器中、ラジカル発生剤の存在下、重合圧力140〜300MPa、重合温度200〜300℃の条件でエチレンを重合する方法が挙げられる(佐伯康治、「ポリマー製造プロセス」、工業調査会(1971)等)。
<Component (D)>
The component (D) is a low-density polyethylene produced by a high-pressure radical polymerization method.
High-pressure method As a general method for producing low-density polyethylene, ethylene is polymerized in a tank reactor or a tubular reactor under the conditions of a polymerization pressure of 140 to 300 MPa and a polymerization temperature of 200 to 300 ° C. in the presence of a radical generator. (Koji Saeki, "Polymer Manufacturing Process", Industrial Research Council (1971), etc.).

成分(D)のMw/Mnは、好ましくは3以上10以下である。成分(D)の分子量分布(Mw/Mn)は、 成分(A)のMw/Mnと同様の方法により測定される。 The Mw / Mn of the component (D) is preferably 3 or more and 10 or less. The molecular weight distribution (Mw / Mn) of the component (D) is measured by the same method as that of the component (A) Mw / Mn.

成分(D)のEaは、好ましくは30kJ/mol以上80kJ/mol以下である。
成分(D)のEaは、成分(A)のEaと同様の方法により測定される。
The Ea of the component (D) is preferably 30 kJ / mol or more and 80 kJ / mol or less.
The Ea of the component (D) is measured by the same method as the Ea of the component (A).

<成分(E)>
成分(E)は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有し、密度が890kg/m以上930kg/m以下であり、MFRが0.3g/10分以上5g/10分以下であり、MFRRが31以上150以下であるエチレン−α−オレフィン共重合体である。
成分(E)中の炭素原子数3〜20のα−オレフィンに基づく単量体単位を形成する炭素原子数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテンおよび4−メチル−1−ヘキセンが挙げられる。成分(E)は、これらの炭素原子数3〜20のα−オレフィンに基づく単量体単位を一種のみ有してもよく、2種以上有してもよい。炭素原子数3〜20のα−オレフィンは、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、または1−オクテンであることが好ましく、1−ブテン、または1−ヘキセンであることがより好ましい。
<Ingredient (E)>
Component (E) has a monomer unit based on α- olefin monomer units and 3 to 20 carbon atoms based on ethylene, the density is at 890 kg / m 3 or more 930 kg / m 3 or less, MFR Is an ethylene-α-olefin copolymer having an MFRR of 0.3 g / 10 minutes or more and 5 g / 10 minutes or less and an MFRR of 31 or more and 150 minutes or less.
Examples of the α-olefin having 3 to 20 carbon atoms forming a monomer unit based on the α-olefin having 3 to 20 carbon atoms in the component (E) include propylene, 1-butene, 1-pentene, and 1-. Examples include hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene and 4-methyl-1-hexene. The component (E) may have only one type of monomer unit based on these α-olefins having 3 to 20 carbon atoms, or may have two or more types. The α-olefin having 3 to 20 carbon atoms is preferably 1-butene, 1-hexene, 4-methyl-1-pentene, or 1-octene, and is preferably 1-butene or 1-hexene. More preferred.

成分(E)中のエチレンに基づく単量体単位の含有量は、成分(E)の全重量100重量%に対して、50〜99.5重量%であることが好ましい。α−オレフィンに基づく単量体単位の含有量は、成分(E)の全重量100重量%に対して、0.5〜50重量%であることが好ましい。 The content of the ethylene-based monomer unit in the component (E) is preferably 50 to 99.5% by weight with respect to 100% by weight of the total weight of the component (E). The content of the monomer unit based on the α-olefin is preferably 0.5 to 50% by weight with respect to 100% by weight of the total weight of the component (E).

成分(E)は、エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体に基づく単量体単位を有していてもよい。エチレンおよび炭素原子数3〜20のα−オレフィン以外の単量体としては、例えば、ブタジエンまたはイソプレン等の共役ジエン;1,4−ペンタジエン等の非共役ジエン;アクリル酸;アクリル酸メチルやアクリル酸エチル等のアクリル酸エステル;メタクリル酸;メタクリル酸メチルまたはメタクリル酸エチル等のメタクリル酸エステル;および酢酸ビニルが挙げられる。 The component (E) may have a monomer unit based on a monomer other than ethylene and α-olefin having 3 to 20 carbon atoms. Examples of monomers other than ethylene and α-olefin having 3 to 20 carbon atoms include conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadiene; acrylic acid; methyl acrylate and acrylic acid. Acrylic acid esters such as ethyl; methacrylic acid; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; and vinyl acetate.

成分(E)は、エチレンに基づく単量体単位と炭素原子数4〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることが好ましく、エチレンに基づく単量体単位と炭素原子数5〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることがより好ましく、エチレンに基づく単量体単位と炭素原子数6〜20のα−オレフィンに基づく単量体単位とを有する共重合体であることがさらに好ましい。 The component (E) is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on α-olefin having 4 to 20 carbon atoms, and is preferably a monomer unit based on ethylene. It is more preferable that the polymer has a monomer unit based on α-olefin having 5 to 20 carbon atoms, and a simple polymer having a monomer unit based on ethylene and an α-olefin based on α-olefin having 6 to 20 carbon atoms. It is more preferable that it is a copolymer having a monomer unit.

成分(E)としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、およびエチレン−1−ブテン−1−オクテン共重合体が挙げられる。成分(E)は、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、またはエチレン−1−ブテン−1−ヘキセン共重合体であることが好ましい。 Examples of the component (E) include ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-octene copolymer, and ethylene. Examples include -1-butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, and ethylene-1-butene-1-octene copolymer. The component (E) is preferably an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, or an ethylene-1-butene-1-hexene copolymer.

成分(E)のMw/Mnは、好ましくは3以上15以下である。成分(E)の分子量分布(Mw/Mn)は、 成分(A)のMw/Mnと同様の方法により測定される。 The Mw / Mn of the component (E) is preferably 3 or more and 15 or less. The molecular weight distribution (Mw / Mn) of the component (E) is measured by the same method as that of the component (A) Mw / Mn.

成分(E)のEaは、好ましくは30kJ/mol以上80kJ/mol以下である。
成分(E)のEaは、成分(A)のEaと同様の方法により測定される。
The Ea of the component (E) is preferably 30 kJ / mol or more and 80 kJ / mol or less.
The Ea of the component (E) is measured by the same method as the Ea of the component (A).

成分(E)は、メタロセン系重合触媒、または、チーグラー・ナッタ系重合触媒の存在下、エチレンとα−オレフィンとを共重合することにより製造することができる。フィルムをインフレーション製膜法にて製膜する際のバブルの安定性の観点から、成分(E)の製造に用いられる触媒は、メタロセン系重合触媒が好ましい。 The component (E) can be produced by copolymerizing ethylene and α-olefin in the presence of a metallocene-based polymerization catalyst or a Ziegler-Natta-based polymerization catalyst. From the viewpoint of bubble stability when the film is formed by the inflation film forming method, the catalyst used for producing the component (E) is preferably a metallocene-based polymerization catalyst.

成分(E)の製造に用いられるメタロセン系オレフィン重合触媒は、特に限定はされないが、成分(A)の製造に用いられるオレフィン重合触媒と同じオレフィン重合用触媒が挙げられる。 The metallocene-based olefin polymerization catalyst used for producing the component (E) is not particularly limited, and examples thereof include the same olefin polymerization catalyst as the olefin polymerization catalyst used for producing the component (A).

成分(E)の製造方法としては、特に限定はされず、例えば、前述の成分(H)とメタロセン系錯体と有機アルミニウム化合物と電子供与性化合物とを接触させてなる重合触媒の存在下、スラリー重合法、または、気相重合法で、エチレンとα−オレフィンとを共重合することにより得られる。成分(E)は、共重合時、エチレン100mol%に対して、1.1mol%より多く水素を存在させることにより、得られる。成分(E)の重合法は気相重合法が好ましいまた、該気相重合には、電子供与性化合物としてトリエチルアミン、トリイソブチルアミン、トリノルマルオクチルアミンを添加してもよい。 The method for producing the component (E) is not particularly limited, and for example, the slurry is in the presence of a polymerization catalyst formed by contacting the above-mentioned component (H), a metallocene-based complex, an organoaluminum compound, and an electron-donating compound. It is obtained by copolymerizing ethylene and α-olefin by a polymerization method or a vapor phase polymerization method. The component (E) is obtained by allowing more than 1.1 mol% of hydrogen to be present with respect to 100 mol% of ethylene at the time of copolymerization. The polymerization method of the component (E) is preferably a vapor phase polymerization method, and triethylamine, triisobutylamine, and trinormal octylamine may be added as electron-donating compounds to the vapor phase polymerization.

本発明に係るフィルムは、S1が220MPa以上、2000MPa以下であり、引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上、30.0MPa以下である単層フィルムであってもよい。 The film according to the present invention has S1 of 220 MPa or more and 2000 MPa or less, and has a nominal stress of 11.0 MPa or more and 30.0 MPa or less at 100% elongation in the MD direction when a tensile test is performed under the condition of a tensile speed of 500 mm / min. It may be a single-layer film.

<多層フィルム>
本願発明に係る多層フィルムは、S1が220MPa以上、2000MPa以下であり、引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上、30.0MPa以下であるフィルムからなる層(以下、層αと記載することがある)を含む多層フィルムであって、多層フィルムが有する2つの表面層のうち、すくなくとも一方の表面層が、層αである多層フィルムであってもよい。
本発明の一態様は、層αと、エチレン系重合体を含む層β(ただし、層βは層αとは異なる)とを有する多層フィルムであって、
該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルムであってもよい。
<Multilayer film>
The multilayer film according to the present invention has S1 of 220 MPa or more and 2000 MPa or less, and has a nominal stress of 11.0 MPa or more and 30.0 MPa or less at 100% elongation in the MD direction when a tensile test is performed under the condition of a tensile speed of 500 mm / min. A multilayer film including a layer composed of a film (hereinafter, may be referred to as layer α), wherein at least one surface layer of the two surface layers of the multilayer film is layer α. It may be.
One aspect of the present invention is a multilayer film having a layer α and a layer β containing an ethylene-based polymer (however, the layer β is different from the layer α).
Of the two surface layers of the multilayer film, at least one surface layer may be a multilayer film having layer α.

本発明の一態様は、層αと、エチレン系重合体を含まない層γ(ただし、層γは前記層αとは異なる)とを有する多層フィルムであって、
該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルムであってもよい。
One aspect of the present invention is a multilayer film having a layer α and a layer γ containing no ethylene polymer (however, the layer γ is different from the layer α).
Of the two surface layers of the multilayer film, at least one surface layer may be a multilayer film having layer α.

前記多層フィルムにおいて、層βに含まれるエチレン系重合体としては、例えば、高圧法低密度ポリエチレン、成分(A)を含まないエチレン−α−オレフィン共重合体が挙げられる。 Examples of the ethylene-based polymer contained in the layer β in the multilayer film include high-pressure low-density polyethylene and an ethylene-α-olefin copolymer containing no component (A).

前記多層フィルムにおいて、層γを構成する材料としては、例えば、セロハン、紙、板紙、織物、アルミニウム箔、ナイロン6やナイロン66等のポリアミド樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル樹脂、ポリプロピレン樹脂が挙げられる。 In the multilayer film, examples of the material constituting the layer γ include cellophane, paper, paperboard, woven fabric, aluminum foil, polyamide resin such as nylon 6 and nylon 66, polyester resin such as polyethylene terephthalate and polybutylene terephthalate, and polypropylene resin. Can be mentioned.

層αと、層γとを有する多層フィルムであって、該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルムとしては、例えば、層αと層γとを有する二層フィルムであって、一方の表面層が、層αであり、他方の表面層が層γである二層フィルムが挙げられる。
層αと層γとを有する多層フィルムであって、該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルム様としては、例えば、層α、層βおよび層γとを有する多層フィルムであって、一方の表面層が、層αであり、他方の表面層が層γである多層フィルムが挙げられる。
A multilayer film having a layer α and a layer γ, wherein at least one of the two surface layers of the multilayer film is the layer α, for example, the layer α and the layer γ. A bilayer film having the above, wherein one surface layer is the layer α and the other surface layer is the layer γ.
A multilayer film having a layer α and a layer γ, wherein at least one of the two surface layers of the multilayer film is a layer α, for example, a layer α and a layer β. Examples of the multilayer film having the layer γ and the layer γ include a multilayer film in which one surface layer is the layer α and the other surface layer is the layer γ.

単層フィルムおよび多層フィルムの製造方法としては、例えば、インフレーションフィルム成形法やTダイフィルム成形法などの押出成形法、射出成形法、圧縮成形法が挙げられる。単層フィルムおよび多層フィルムの製造方法は、インフレーションフィルム成形法が好ましい。単層フィルムの原料の各重合体を、ドライブレンドまたはメルトブレンドすることにより樹脂組成物とし、該樹脂組成物を用いて単層フィルムを製造することが好ましい。ドライブレンドする方法としては、ヘンシェルミキサー、タンブラーミキサー等の各種ブレンダーを用いる方法が挙げられる。メルトブレンドする方法としては、単軸押出機、二軸押出機、バンバリーミキサー、熱ロール等の各種ミキサーを用いる方法が挙げられる。 Examples of the method for producing a single-layer film and a multilayer film include an extrusion molding method such as an inflation film molding method and a T-die film molding method, an injection molding method, and a compression molding method. As a method for producing a single-layer film and a multilayer film, an inflation film molding method is preferable. It is preferable that each polymer as a raw material of the single-layer film is dry-blended or melt-blended to obtain a resin composition, and the single-layer film is produced using the resin composition. Examples of the dry blending method include a method using various blenders such as a Henschel mixer and a tumbler mixer. Examples of the melt blending method include a method using various mixers such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, and a thermal roll.

多層フィルムが、層αと、層γとを有する多層フィルムである場合、該多層フィルムの製造方法としては、例えば、層αのみからなる単層フィルム、または、層αと層βとを有する多層フィルムを、層γにラミネートするラミネーション法が挙げられる。ラミネーション法としては、例えば、ドライラミネート法、ウェットラミネート法およびサンドラミネート法が挙げられる。ラミネーション法は、ドライラミネート法が好ましい。 When the multilayer film is a multilayer film having a layer α and a layer γ, the method for producing the multilayer film is, for example, a single-layer film composed of only the layer α or a multilayer film having the layer α and the layer β. A lamination method in which a film is laminated on a layer γ can be mentioned. Examples of the lamination method include a dry laminating method, a wet laminating method and a sand laminating method. The lamination method is preferably a dry laminating method.

本発明の多層フィルムは、包装容器の材料として使用することができ、種々の内容物の包装に用いられる。内容物としては、例えば、食品、飲料、調味料、乳等、乳製品、医薬品、半導体製品等電子部品、ペットフード、ペットケア用品、洗剤およびトイレタリー用品が挙げられる。
本発明に係るフィルムを含む包装容器は、多層フィルムの層α同士がヒートシールされて作製されることが好ましい。本発明に係るフィルムを含む包装容器は、包装容器の強度の観点から、層β及び/または層γを含むことが好ましい。包装容器は、層α同士がヒートシールされてなる包装容器であるため、包装容器の落袋強度に優れる。
The multilayer film of the present invention can be used as a material for packaging containers, and is used for packaging various contents. Examples of the contents include foods, beverages, seasonings, milk and the like, dairy products, pharmaceuticals, electronic parts such as semiconductor products, pet foods, pet care products, detergents and toiletry products.
The packaging container containing the film according to the present invention is preferably produced by heat-sealing the layers α of the multilayer film. The packaging container containing the film according to the present invention preferably contains the layer β and / or the layer γ from the viewpoint of the strength of the packaging container. Since the packaging container is a packaging container in which the layers α are heat-sealed with each other, the packaging container has excellent bag-dropping strength.

実施例および比較例での各項目の測定値は、次の方法に従って測定した。 The measured values of each item in Examples and Comparative Examples were measured according to the following method.

[成分(H)]
(1)元素分析
Zn:試料を硫酸水溶液(濃度1M)を入れ、その後超音波を照射して金属成分を抽出した。得られた溶液を、ICP発光分析法により定量した。
F:酸素を充填させたフラスコ中で試料を燃焼させ、生じた燃焼ガスを水酸化ナトリウム水溶液(10%)に吸収させ、得られた水溶液をイオン電極法により定量した。
[Component (H)]
(1) Elemental analysis Zn: A sulfuric acid aqueous solution (concentration 1M) was added to the sample, and then ultrasonic waves were irradiated to extract the metal component. The obtained solution was quantified by ICP emission spectrometry.
F: The sample was burned in a flask filled with oxygen, the generated combustion gas was absorbed by a sodium hydroxide aqueous solution (10%), and the obtained aqueous solution was quantified by an ion electrode method.

[成分(A)の物性]
(2)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法に従い、温度190℃、荷重21.18Nの条件で、A法により測定した。
[Physical characteristics of component (A)]
(2) Melt flow rate (MFR, unit: g / 10 minutes)
The measurement was carried out by the A method under the conditions of a temperature of 190 ° C. and a load of 21.18 N according to the method specified in JIS K7210-1995.

(3)メルトフローレート比(MFRR、単位:−)
MFRRは、JIS K7210−1995に規定された方法に従い、温度190℃、荷重211.82N(21.60kg)の条件で測定されたメルトフローレートを、前記(2)で測定されるMFRで除した値である。
(3) Melt flow rate ratio (MFRR, unit:-)
The MFRR was obtained by dividing the melt flow rate measured under the conditions of a temperature of 190 ° C. and a load of 211.82 N (21.60 kg) by the MFR measured in (2) above according to the method specified in JIS K7210-1995. The value.

(3)密度(単位:kg/m3
JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に規定された方法に従い、A法により測定した。
(3) Density (Unit: kg / m 3 )
After performing the annealing described in JIS K6760-1980, the measurement was carried out by the method A according to the method specified in JIS K7112-1980.

(4)Mw、Mn、Mz、Mw/Mn、Mz/Mw
ゲルパーミエーションクロマトグラフィー(GPC)測定により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)およびZ平均分子量(Mz)を求めた。
MwをMnで除して、分子量分布(Mw/Mn)を求めた。MzをMwで除してMz/Mwを求めた。
装置 :Waters製Waters150C
分離カラム:TOSOH TSKgelGMH−HT
測定温度 :140℃
キャリア :オルトジクロロベンゼン
流量 :1.0mL/分
注入量 :500μL
検出器:示差屈折
分子量標準物質:標準ポリスチレン
(4) Mw, Mn, Mz, Mw / Mn, Mz / Mw
By gel permeation chromatography (GPC) measurement, polystyrene-equivalent weight average molecular weight (Mw), number average molecular weight (Mn), and Z average molecular weight (Mz) were determined.
The molecular weight distribution (Mw / Mn) was determined by dividing Mw by Mn. Mz / Mw was obtained by dividing Mz by Mw.
Equipment: Waters 150C made by Waters
Separation column: TOSOH TSKgelGMH 6- HT
Measurement temperature: 140 ° C
Carrier: Ortodichlorobenzene Flow rate: 1.0 mL / min Injection volume: 500 μL
Detector: Differential refractometer
Molecular weight standard substance: Standard polystyrene

(5)η*0.1/η*100
歪制御型の回転式粘度計(レオメーター)を用いて、下記の条件で角周波数0.1rad/秒から100rad/秒までの動的複素粘度を測定した。次に、角周波数0.1rad/秒における動的複素粘度(η*0.1)を角周波数100rad/秒における動的複素粘度(η*100)で除して、η*0.1/η*100を求めた。
温度 :170℃
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(5) η * 0.1 / η * 100
Using a strain-controlled rotary viscometer (rheometer), the dynamic complex viscosity from an angular frequency of 0.1 rad / sec to 100 rad / sec was measured under the following conditions. Next, the dynamic complex viscosity (η * 0.1) at an angular frequency of 0.1 rad / sec is divided by the dynamic complex viscosity (η * 100) at an angular frequency of 100 rad / sec to obtain η * 0.1 / η * 100. rice field.
Temperature: 170 ℃
Geometry: Parallel plate Plate diameter: 25 mm
Plate spacing: 1.5-2 mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Nitrogen

(6)流動の活性化エネルギー(Ea、単位:kJ/mol)
流動の活性化エネルギーEaは、歪制御型の回転式粘度計(レオメーター)により、下記の条件(a)〜(d)で、各温度T(単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を測定した。次に、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求めた。次に、各温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小二乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出した。次に、該一次式の傾きmと下記式(II)とからEaを求めた。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
計算ソフトウェアには、Reometrics社 Rhios V.4.4.4を使用した。各温度(T)の値から(I)式を最小二乗法で算出したときの相関係数r2が、0.99以上の場合のEa値を採用した。溶融複素粘度−角周波数曲線の測定は窒素雰囲気下で実施した。
(a)ジオメトリー:パラレルプレート、プレート直径25mm、プレート間隔:1.5〜2mm
(b)ストレイン:5%
(c)剪断速度:0.1〜100rad/秒
(d)温度:130℃、150℃、170℃、190℃
(6) Flow activation energy (Ea, unit: kJ / mol)
The flow activation energy Ea is measured by a strain-controlled rotary viscometer (leometer) under the following conditions (a) to (d) under the common weight of ethylene-α-olefin at each temperature T (unit: ° C.). The molten complex viscosity-angular frequency curve of the coalescence (the unit of the molten complex viscosity is Pa · sec, and the unit of the angular frequency is rad / sec) was measured. Next, based on the temperature-time superposition principle, the molten complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at 190 ° C. for each molten complex viscosity-angular frequency curve at each temperature (T). The shift factor (a T ) at each temperature (T) obtained when superposed on the above was determined. Next, the primary of each temperature (T), because the shift factor (a T) at each temperature (T), by the least squares method [ln (a T)] and [1 / (T + 273.16) ] An approximate formula (formula (I) below) was calculated. Next, Ea was obtained from the slope m of the linear equation and the following equation (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor
Ea: Flow activation energy (unit: kJ / mol)
T: Temperature (Unit: ° C)
For the calculation software, Ryos V. 4.4.4 was used. The Ea value when the correlation coefficient r2 when the equation (I) was calculated by the least squares method from the value of each temperature (T) was 0.99 or more was adopted. The melt complex viscosity-angular frequency curve was measured in a nitrogen atmosphere.
(A) Geometry: Parallel plate, plate diameter 25 mm, plate spacing: 1.5 to 2 mm
(B) Strain: 5%
(C) Shear rate: 0.1 to 100 rad / sec (d) Temperature: 130 ° C, 150 ° C, 170 ° C, 190 ° C

(7)引張衝撃強度(単位:kJ/m2
成形温度190℃、予熱時間10分、圧縮時間5分、圧縮圧力5MPaの条件で圧縮成形された厚み2mmのシートの引張衝撃強度を、ASTM D1822−68に従って測定した。
(7) Tensile impact strength (unit: kJ / m 2 )
The tensile impact strength of a sheet having a thickness of 2 mm, which was compression-molded under the conditions of a molding temperature of 190 ° C., a preheating time of 10 minutes, a compression time of 5 minutes, and a compression pressure of 5 MPa, was measured according to ASTM D1822-68.

(8)特性緩和時間(τ)(sec)
粘弾性測定装置(Rheometrics社製 Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定した。次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成した。得られたマスターカーブを下記式(5)で近似することにより、特性緩和時間(τ)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(8) Characteristic relaxation time (τ) (sec)
A melt complex viscosity-angular frequency curve at 130 ° C., 150 ° C., 170 ° C. and 190 ° C. was measured using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics) under the following measurement conditions. Next, from the obtained molten complex viscosity-angular frequency curve, the calculation software Rhios V. Using 4.4.4, a master curve of the molten complex viscosity-angular frequency curve at 190 ° C. was created. The characteristic relaxation time (τ) was obtained by approximating the obtained master curve with the following equation (5).
<Measurement conditions>
Geometry: Parallel plate Plate diameter: 25 mm
Plate spacing: 1.5-2 mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Nitrogen

(9)融点(Tm、単位:℃)、結晶化温度(Tc、単位:℃)
熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法により測定した。 融点は、段階3)中に観測されるヒートフロー曲線の吸熱ピークとして、結晶化温度は段階2)中に観測されるヒートフロー曲線の発熱ピークとして、それぞれ求めた
1)サンプル約10mgを窒素雰囲気下、150℃ 5分間保持
2)冷却 150℃〜20℃(5℃/分)2分間保持
3)昇温 20℃〜150℃(5℃/分)
(9) Melting point (Tm, unit: ° C), crystallization temperature (Tc, unit: ° C)
Thermal analyzer Measured by the following method using a differential scanning calorimeter (manufactured by Diamond DSC Perkin Elmer). The melting point was determined as the endothermic peak of the heat flow curve observed during step 3), and the crystallization temperature was determined as the exothermic peak of the heat flow curve observed during step 2). Lower, hold at 150 ° C for 5 minutes
2) Cooling 150 ° C to 20 ° C (5 ° C / min) for 2 minutes
3) Temperature rise 20 ° C to 150 ° C (5 ° C / min)

(10) 極限粘度([η]、単位:dl/g)
テトラリン溶媒に重合体を溶解し、ウベローデ型粘度計を用いて135℃にて測定した。
(10) Extreme viscosity ([η], unit: dl / g)
The polymer was dissolved in a tetralin solvent and measured at 135 ° C. using an Ubbelohde viscometer.

(11)ビカット軟化点(℃)
ビカット軟化点は、JIS K7206−1979に規定された方法に従って測定した。
(11) Vicat softening point (° C)
The Vicat softening point was measured according to the method specified in JIS K7206-1979.

[フィルムの物性] [Physical characteristics of film]

(12)S1
0)試験片の作製
製膜したフィルムを、引き取り方向(MD方向)が長手方向となるように、試験片形状ASTM D1822 Type S規格に準拠したダンベルカッターで打ち抜き、試験片を作製した。試験片にペン先が極細の油性マジックで小さなドットをランダムに記載し、ランダムな模様を作成した。さらに、撮影時の照明の反射防止のため、CONDOR FOTO社製のダーリングスプレーであるECO ANTISPOTを試験片表面に噴霧した。
1)高速引張試験
試験片を、最大荷重が2kNのロードセルを備えた高速引張試験機ハイドロショットHITS−T10(株式会社島津製作所製)を用いて1m/sで引張試験を行い、荷重−変位曲線を得た。荷重−変位曲線の原点は、荷重−変位曲線が荷重=0kN、変位=0mmの点に外挿できるように定めた。荷重及び変位のサンプリング時間間隔は20μsとした。
2)ハイスピードカメラによる撮影
1)の高速引張試験時の試験片を、株式会社 ナックイメージテクノロジー製のハイスピードカメラGX-8F(レンズには株式会社ニコン製のレンズAI AF Micro−Nikkor 200mm f/4D IF−EDを使用)により撮影した。撮影条件はフレームレート10000fps, フレームサイズ横176×縦1280ピクセル, シャッタースピード20.1μs, カメラと試験片との距離は1mとした。撮影用の照明には株式会社アイテックシステム製LEDライティングボックスLLBK−LA−W−0001を2台用い、ハイスピードカメラの左右からサンプルに向かって光を照射した。なお、高速引張試験開始時に高速引張試験機から信号が発せられ、その信号が入力された時点からハイスピードカメラの撮影が開始され、高速引張試験機とハイスピードカメラの時刻が同期できるようになっている。
3)デジタル画像相関法による解析
2)で撮影した画像を用いて、3D検査・解析ソフトウェアであるGOM GmbH製GOM Correlate Professional 2017により、各画像撮影時における試験片上の最大主歪み分布および最小主歪み(真歪み分布)を計算した。ファセットサイズは19ピクセル、ポイント距離は16ピクセルとした。ファセットマッチングは直前の画像に対して行い、解析は試験片上の実際の長さで横3.19mm×1.7mm程度の試験片の中央付近の領域について行った。試験片は中央のくびれ部の1点における最大主歪み、最小主歪みを求めた。
4)くびれ部断面積の算出
試験片のくびれ部の断面積を下式により算出した。
(試験片くびれ部の断面積)
=(試験実施前のくびれ部の幅)×(試験実施前のくびれ部の厚み)×{exp(くびれ部における最小主歪み)}
5)真応力の算出
前述の高速引張試験により得られた各時刻における荷重を、各時刻における試験片のくびれ部の断面積で除し、各時刻における真応力を求めた。
6)真応力-最大主歪み曲線の作成
各時刻における真応力を、各時刻における最大主歪みに対してプロットし、真応力-最大主歪み曲線を作成した。
7)S1の算出
7a)または7b)により、S1を求めた。
7a)1)の引張試験において、最大主歪みが2.0の時点で、試験片が破断していなかった場合は、下式(11)によりS1を求めた。
S1=(p−q)/0.3 ・・・(11)
(式(11)中、pは、最大主歪みが2.0における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)である。)
7b)1)の引張試験において、最大主歪みが1.7より大きく2.0未満の範囲内で試験片が破断した場合は、下式(12)によりS1を求めた。
S1=(p’−q)/(r−1.7) ・・・(12)
(式(12)中、p’は、破断点における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)であり、rは、破断点における最大主歪みである。)
p、p’およびqは、それぞれ、スムージング処理として、各データ点前後の5点、計11点の真応力を平均して求めた。
(13)MD方向の伸び100%における公称応力 S2(単位:MPa)
製膜したフィルムから、JIS K6781−1994「6.4 引張切断荷重及び伸び」に記載の方法に従って、長手方向が引取り方向(MD)となる試験片を作製した。得られた試験片を、チャック間80mm、標線間40mm、引張速度500mm/minの条件で引張試験を行い、伸びが100%における公称応力を求めた。伸び100%における公称応力をS2と記載した。
(12) S1
0) Preparation of test piece The film was punched out with a dumbbell cutter compliant with the test piece shape ASTM D1822 Type S standard so that the take-back direction (MD direction) was the longitudinal direction, and a test piece was prepared. Small dots were randomly drawn on the test piece with an oil-based magic pen with a fine nib to create a random pattern. Further, in order to prevent reflection of the illumination during shooting, ECO ANTISPOT, which is a darling spray manufactured by CONDOR FOTO, was sprayed on the surface of the test piece.
1) High-speed tensile test The test piece is subjected to a tensile test at 1 m / s using a high-speed tensile tester Hydroshot HITS-T10 (manufactured by Shimadzu Corporation) equipped with a load cell with a maximum load of 2 kN, and a load-displacement curve. Got The origin of the load-displacement curve is defined so that the load-displacement curve can be extrapolated to a point where the load = 0 kN and the displacement = 0 mm. The load and displacement sampling time intervals were 20 μs.
2) Shooting with a high-speed camera 1) The test piece during the high-speed tensile test is a high-speed camera GX-8F manufactured by Nack Image Technology Co., Ltd. 4D IF-ED was used). The shooting conditions were a frame rate of 10000 fps, a frame size of 176 horizontal × 1280 pixels high, a shutter speed of 20.1 μs, and a distance of 1 m between the camera and the test piece. Two LED lighting boxes LLBK-LA-W-0001 manufactured by Aitec System Co., Ltd. were used as lighting for photography, and light was emitted from the left and right sides of the high-speed camera toward the sample. A signal is emitted from the high-speed tensile tester at the start of the high-speed tensile test, and the high-speed camera starts shooting from the time when the signal is input, so that the times of the high-speed tensile tester and the high-speed camera can be synchronized. ing.
3) Analysis by digital image correlation method Using the images taken in 2), the maximum main strain distribution and the minimum main strain on the test piece at the time of each image capture by the GOM Correlate Professional 2017 manufactured by GOM GmbH, which is 3D inspection / analysis software. (True strain distribution) was calculated. The facet size was 19 pixels and the point distance was 16 pixels. Facet matching was performed on the immediately preceding image, and analysis was performed on a region near the center of the test piece having an actual length of about 3.19 mm × 1.7 mm on the test piece. For the test piece, the maximum main strain and the minimum main strain at one point in the central constriction were determined.
4) Calculation of the cross-sectional area of the constricted part The cross-sectional area of the constricted part of the test piece was calculated by the following formula.
(Cross-sectional area of test piece constriction)
= (Width of constriction before test) × (Thickness of constriction before test) × {exp (Minimum main distortion in constriction)} 2
5) Calculation of true stress The load at each time obtained by the above-mentioned high-speed tensile test was divided by the cross-sectional area of the constricted part of the test piece at each time to obtain the true stress at each time.
6) Creation of true stress-maximum principal strain curve The true stress at each time was plotted against the maximum principal strain at each time, and the true stress-maximum principal strain curve was created.
7) Calculation of S1 S1 was obtained by 7a) or 7b).
7a) In the tensile test of 1), when the maximum principal strain was 2.0 and the test piece was not broken, S1 was calculated by the following formula (11).
S1 = (p−q) /0.3 ・ ・ ・ (11)
(In equation (11), p is the true stress (MPa) when the maximum principal strain is 2.0, and q is the true stress (MPa) when the maximum principal strain is 1.7.)
7b) In the tensile test of 1), when the test piece broke within the range where the maximum principal strain was larger than 1.7 and less than 2.0, S1 was determined by the following formula (12).
S1 = (p'-q) / (r-1.7) ... (12)
(In equation (12), p'is the true stress (MPa) at the breaking point, q is the true stress (MPa) at the maximum principal strain of 1.7, and r is the maximum principal strain at the breaking point. Is.)
As smoothing treatment, p, p'and q were obtained by averaging the true stresses of 5 points before and after each data point, for a total of 11 points.
(13) Nominal stress S2 (unit: MPa) at 100% elongation in the MD direction
From the film-formed film, a test piece having a longitudinal direction in the take-up direction (MD) was prepared according to the method described in JIS K6781-1994 "6.4 Tensile cutting load and elongation". The obtained test piece was subjected to a tensile test under the conditions of a chuck distance of 80 mm, a marked line distance of 40 mm, and a tensile speed of 500 mm / min, and a nominal stress at 100% elongation was determined. The nominal stress at 100% elongation is described as S2.

(14)引張破断強度(単位:MPa)、引張破断伸び(単位:%)
製膜したフィルムから、JIS K6781−1994「6.4 引張切断荷重及び伸び」に記載の方法に従って、長手方向が、それぞれ、引取り方向(MD方向)およびTD方向となる試験片を作製した。得られた試験片を、チャック間80mm、標線間40mm、引張速度500mm/minの条件で引張試験を行い、引張破断強度及び引張破断伸びを求めた。
(14) Tensile breaking strength (unit: MPa), tensile breaking elongation (unit:%)
From the film-formed film, test pieces were prepared in which the longitudinal directions were the take-up direction (MD direction) and the TD direction, respectively, according to the method described in JIS K6781-1994 "6.4 Tensile cutting load and elongation". The obtained test piece was subjected to a tensile test under the conditions of a chuck distance of 80 mm, a marked line distance of 40 mm, and a tensile speed of 500 mm / min to determine tensile breaking strength and tensile breaking elongation.

(15)落袋強度
1)落袋強度評価用サンプルの作製
後述の多層フィルムから、MD方向の長さが60mmであり、TD方向の長さが70mmである長方形のフィルムを20枚切り出した。多層フィルムのMD方向が一致し、かつ、インフレーションフィルム面が向き合うように2枚の多層フィルムを重ね、テスター産業社製ヒートシーラーに設置し、シール幅10mm、シールバー温度180℃、シール圧力0.03MPa、シール温度2秒で、2つの長辺と1つの短辺をそれぞれヒートシールし、袋を得た。得られた袋に10mlの純水を充填した後、開口部である短辺をインパルスシーラーで空気が入らないようにヒートシールし、評価用サンプルを得た。得られた評価用サンプルのヒートシール部の内側のサイズは40mm(MD方向)、50mm(TD方向)であった。
2)落袋強度の測定
評価用サンプルを5℃で24時間状態保持した。次いで、評価用サンプルをデュポン式インパクトテスターに設置し、175mmの高さから2kgの錘を評価用サンプルに20回繰返し落下させた。生存確率を下式により求めた。
生存確率(%)=100{(評価用サンプルが破れた時の錘の落下回数)−1}/20
錘を20回落下させても破れなかった場合は、生存確率を100%とした。各実施例において、10袋の評価用サンプルで試験を行い、生存確率の平均値を「落袋強度」とした。
(15) Bag drop strength 1) Preparation of sample for bag drop strength evaluation Twenty rectangular films having a length of 60 mm in the MD direction and a length of 70 mm in the TD direction were cut out from the multilayer film described later. Two multilayer films were stacked so that the MD directions of the multilayer films were the same and the inflation film surfaces were facing each other, and the films were installed in a heat sealer manufactured by Tester Sangyo Co., Ltd., and the seal width was 10 mm, the seal bar temperature was 180 ° C, and the seal pressure was 0. Two long sides and one short side were heat-sealed at 03 MPa and a sealing temperature of 2 seconds to obtain a bag. After filling the obtained bag with 10 ml of pure water, the short side of the opening was heat-sealed with an impulse sealer so as not to allow air to enter, and an evaluation sample was obtained. The sizes of the inside of the heat-sealed portion of the obtained evaluation sample were 40 mm (MD direction) and 50 mm (TD direction).
2) Measurement of bag drop strength The evaluation sample was held at 5 ° C. for 24 hours. Next, the evaluation sample was placed on a DuPont impact tester, and a weight of 2 kg was repeatedly dropped onto the evaluation sample from a height of 175 mm 20 times. The survival probability was calculated by the following formula.
Survival probability (%) = 100 {(number of times the weight falls when the evaluation sample is torn) -1} / 20
If the weight was not torn even after being dropped 20 times, the survival probability was set to 100%. In each example, a test was conducted with 10 bags of evaluation samples, and the average value of survival probabilities was defined as "bag drop strength".

[成分(A)の製造例]
[実施例1]
(1)成分(H)の製造
特開2009−79180号公報に記載された実施例1(1)および(2)の成分(A)の調製と同様の方法で、成分(H)を製造した。元素分析の結果、Zn=11重量%、F=6.4重量%であった。
(2)予備重合触媒成分の製造
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン41リットルを添加した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド60.9mmolを添加し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次に、オートクレーブに上記(1)で得られた成分(H)0.60kgを添加した。
その後、オートクレーブを31℃まで降温し、系内が安定した後、オートクレーブにエチレン0.1kg、水素(常温常圧)0.1リットル添加し、続いてトリイソブチルアルミニウム240mmolを添加して予備重合を開始した。エチレンと水素(常温常圧)をそれぞれ0.5kg/hrと1.1リットル/hrで、30分間オートクレーブに供給し、その後、50℃へ昇温するとともに、エチレンと水素(常温常圧)をそれぞれ2.7kg/hrと8.2リットル/hrでオートクレーブに供給した。合計10.0時間の予備重合を実施した。予備重合終了後、エチレン、ブタンおよび水素などをパージし、残った固体を室温にて真空乾燥し、成分(H)1g当り39.6gのポリエチレンを含有する予備重合触媒成分を得た。該ポリエチレンの[η]は1.17dl/gであった。
(3)成分(A)(LLDPE1−10)の製造
(2)で得た予備重合触媒成分の存在下、連続式流動床気相重合装置でエチレンと1−ヘキセンとの共重合を実施し、エチレン−1−ヘキセン共重合体(以下、LLDPE1−10と称する)のパウダーを得た。重合条件としては、重合温度を96℃、重合圧力を2MPa、エチレン100mol%に対する、水素量の平均を0.56%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンのモル比を1.09%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウム、トリエチルアミン(トリイソブチルアルミニウムに対するモル比30%)、酸素(トリイソブチルアルミニウムに対するモル比12%)を連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間3.4hrであった。得られたLLDPE1−10のパウダーを、押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒してLLDPE1−10のペレットを得た。得られた該LLDPE1−10のペレットの物性を評価し、結果を表1に示した。
[Production example of component (A)]
[Example 1]
(1) Production of component (H) Component (H) was produced in the same manner as in the preparation of component (A) of Examples 1 (1) and (2) described in JP-A-2009-79180. .. As a result of elemental analysis, Zn = 11% by weight and F = 6.4% by weight.
(2) Production of prepolymerization catalyst component After adding 41 liters of butane to an autoclave with an internal volume of 210 liters that had been replaced with nitrogen in advance, 60.9 mmol of racem-ethylenebis (1-indenyl) zirconium diphenoxide was added. The temperature of the autoclave was raised to 50 ° C., and stirring was performed for 2 hours. Next, 0.60 kg of the component (H) obtained in the above (1) was added to the autoclave.
Then, the temperature of the autoclave was lowered to 31 ° C., and after the inside of the system was stabilized, 0.1 kg of ethylene and 0.1 liter of hydrogen (normal temperature and pressure) were added to the autoclave, and then 240 mmol of triisobutylaluminum was added for prepolymerization. It started. Ethylene and hydrogen (normal temperature and normal pressure) were supplied to the autoclave at 0.5 kg / hr and 1.1 liter / hr, respectively, for 30 minutes, and then the temperature was raised to 50 ° C., and ethylene and hydrogen (normal temperature and normal pressure) were added. They were supplied to the autoclave at 2.7 kg / hr and 8.2 liters / hr, respectively. Prepolymerization was carried out for a total of 10.0 hours. After completion of the prepolymerization, ethylene, butane, hydrogen and the like were purged, and the remaining solid was vacuum dried at room temperature to obtain a prepolymerization catalyst component containing 39.6 g of polyethylene per 1 g of the component (H). The [η] of the polyethylene was 1.17 dl / g.
(3) Production of component (A) and (LLDPE1-10) In the presence of the prepolymerization catalyst component obtained in (2), copolymerization of ethylene and 1-hexene was carried out in a continuous flow bed gas phase polymerization apparatus. A powder of an ethylene-1-hexene copolymer (hereinafter referred to as LLDPE1-10) was obtained. As the polymerization conditions, the polymerization temperature was 96 ° C., the polymerization pressure was 2 MPa, the average amount of hydrogen was 0.56% with respect to 100 mol% of ethylene, and the molar ratio of 1-hexene to the total of ethylene and 1-hexene was 1.09. %. Ethylene, 1-hexene, and hydrogen were continuously supplied to maintain the gas composition constant during the polymerization. Further, the prepolymerization catalyst component, triisobutylaluminum, triethylamine (molar ratio to triisobutylaluminum 30%), and oxygen (molar ratio to triisobutylaluminum 12%) were continuously supplied to reduce the total powder weight of the fluidized bed to 80 kg. It was kept constant. The average polymerization time was 3.4 hr. Using an extruder (LCM50 manufactured by Kobe Steel, Ltd.), the obtained LLDPE1-10 powder is fed at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200. Granulation was performed under the condition of ~ 230 ° C. to obtain pellets of LLDPE1-10. The physical characteristics of the obtained pellets of LLDPE1-10 were evaluated, and the results are shown in Table 1.

[インフレーションフィルム成形]
実施例に記載した成分(B)、成分(D)および成分(E)は下記のものを使用した。
[Inflation film molding]
The following components (B), component (D) and component (E) described in the examples were used.

成分(B)
エチレン−1−ヘキセン共重合体2−1(LLDPE2−1):メタロセン触媒直鎖状低密度ポリエチレン スミカセンE FV203(住友化学株式会社製、エチレン−1−ヘキセン共重合体)。物性を表1に示す。
Ingredient (B)
Ethylene-1-hexene copolymer 2-1 (LLDPE2-1): Metallocene-catalyzed linear low-density polyethylene Sumikasen E FV203 (manufactured by Sumitomo Chemical Co., Ltd., ethylene-1-hexene copolymer). The physical characteristics are shown in Table 1.

成分(D)
高圧法低密度ポリエチレン1(LDPE1):高圧法低密度ポリエチレン スミカセン F200(住友化学株式会社製、高圧法低密度ポリエチレン)。物性を表1に示す。
Ingredient (D)
High-pressure method low-density polyethylene 1 (LDPE1): High-pressure method low-density polyethylene Sumikasen F200 (manufactured by Sumitomo Chemical Co., Ltd., high-pressure method low-density polyethylene). The physical characteristics are shown in Table 1.

成分(E)
エチレン−1-ブテン−1−ヘキセン共重合体2−2(LLDPE2−2):メタロセン触媒直鎖状低密度ポリエチレン スミカセンEP CU5003(住友化学株式会社製、エチレン−1-ブテン−1−ヘキセン共重合体)。物性を表1に示す。
Ingredient (E)
Ethylene-1-butene-1-hexene copolymer 2-2 (LLDPE2-2): Metallocene-catalyzed linear low-density polyethylene Sumikasen EP CU5003 (manufactured by Sumitomo Chemical Co., Ltd., ethylene-1-butene-1-hexene copolymer weight) Combined). The physical characteristics are shown in Table 1.

実施例に記載したマスターバッチは下記のものを使用した。
マスターバッチ1(MB1): スミカセンE MB CMB−735(住友化学株式会社製、酸化防止剤マスターバッチ)
マスターバッチ2(MB2): スミカセンE MB EMB−21(住友化学株式会社製、アンチブロッキング剤マスターバッチ)
マスターバッチ3(MB3): スミカセン MB A−26(住友化学株式会社製、アンチブロッキング剤・滑剤マスターバッチ)
The following master batches were used as the master batches described in the examples.
Masterbatch 1 (MB1): Sumikasen E MB CMB-735 (manufactured by Sumitomo Chemical Co., Ltd., antioxidant masterbatch)
Masterbatch 2 (MB2): Sumikasen E MB EMB-21 (Sumitomo Chemical Co., Ltd., anti-blocking agent masterbatch)
Masterbatch 3 (MB3): Sumikasen MB A-26 (Sumitomo Chemical Co., Ltd., anti-blocking agent / lubricant masterbatch)

[実施例1]
(1)フィルム加工
表2に示す配合組成にて各樹脂をタンブルミキサーで混合した。次に、得られた混合物をプラコー社製インフレーションフィルム成形機(フルフライトタイプスクリューの単軸押出機(径50mm、L/D=28)、ダイス(ダイ径125mm、リップギャップ2.0mm))を用い、加工温度190℃、押出量25kg/hr、フロストラインディスタンス(FLD)200mm、ブロー比2.0の加工条件で、厚み100μmのインフレーションフィルムを成形した。得られたインフレーションフィルムの物性を表2に示す。
(2)多層フィルムの製造
テストコーター(康井精機株式会社製)を用いたドライラミネート加工により、インフレーションフィルムと二軸延伸ナイロンフィルム(厚み15μm)とを、二液硬化型ポリウレタン系接着剤(武田薬品工業株式会社製タケラックA310/タケネートA−3)を介して貼合した後、40℃で48時間エージングして多層フィルムを得た。多層フィルムの層構成はインフレーションフィルム/接着層/二軸延伸ナイロンフィルムであった。落袋強度の結果を表2に示す。
[Example 1]
(1) Film processing Each resin was mixed with a tumble mixer according to the composition shown in Table 2. Next, the obtained mixture was used as an inflation film forming machine manufactured by PLACO Co., Ltd. (full-flight type screw single-screw extruder (diameter 50 mm, L / D = 28), die (die diameter 125 mm, lip gap 2.0 mm)). An inflation film having a thickness of 100 μm was formed under the processing conditions of a processing temperature of 190 ° C., an extrusion rate of 25 kg / hr, a frost line distance (FLD) of 200 mm, and a blow ratio of 2.0. Table 2 shows the physical characteristics of the obtained inflation film.
(2) Manufacture of multilayer film By dry laminating using a test coater (manufactured by Yasui Seiki Co., Ltd.), an inflation film and a biaxially stretched nylon film (thickness 15 μm) are combined with a two-component curable polyurethane adhesive (Takeda). After laminating via Takelac A310 / Takenate A-3) manufactured by Yakuhin Kogyo Co., Ltd., it was aged at 40 ° C. for 48 hours to obtain a multilayer film. The layer structure of the multilayer film was an inflation film / adhesive layer / biaxially stretched nylon film. Table 2 shows the results of bag drop strength.

[実施例2、実施例3]
配合組成を表2の通りに変更したこと以外は、実施例1と同様にしてインフレーションフィルム及び多層フィルムを得た。結果を表2に示す。
[Example 2, Example 3]
An inflation film and a multilayer film were obtained in the same manner as in Example 1 except that the compounding composition was changed as shown in Table 2. The results are shown in Table 2.

[比較例1〜4]
配合組成を表3の通りに変更したこと以外は、実施例1と同様にしてインフレーションフィルム及び多層フィルムを得た。結果を表3に示す。
[Comparative Examples 1 to 4]
An inflation film and a multilayer film were obtained in the same manner as in Example 1 except that the compounding composition was changed as shown in Table 3. The results are shown in Table 3.

Figure 2020050245
Figure 2020050245

Figure 2020050245
Figure 2020050245

Figure 2020050245
Figure 2020050245

本発明によれば、落袋強度に優れる包装容器を提供することができる。 According to the present invention, it is possible to provide a packaging container having excellent bag-dropping strength.

Claims (3)

下記の0)〜7)により求められるS1が220MPa以上2000MPa以下であり、引張速度500mm/分の条件で引張試験したときのMD方向の伸び100%における公称応力が11.0MPa以上30.0MPa以下であるフィルム。

0)フィルムから、ASTM D1822 Type S規格に準拠したダンベルカッターでMD方向が長辺となるように試験片を打ち抜く。
1)試験片を高速引張試験機にて1m/sの速度で引張試験を行う。
2)1)の引張試験中の試験片を、ハイスピードカメラにより撮影する。
3)撮影した画像について、3D検査・解析ソフトウェアにより解析を行い、試験片のくびれ部における最大主歪み(ε)、及び最小主歪み(ε)を求める。
4)試験片のくびれ部の断面積を、下式により求める。
(試験片くびれ部の断面積)
=(試験実施前のくびれ部の幅)×(試験実施前のくびれ部の厚み)×{exp (ε)}2
5)引張試験により得られる各時刻における荷重を、各時刻における試験片のくびれ部の断面積で除し、各時刻における真応力を求める。
6)5)で得られた各時刻における真応力を、各時刻における最大主歪み(ε)に対してプロットし、真応力-最大主歪み曲線を求める。
7)7a)または7b)により、S1を求める。
7a)1)の引張試験において、最大主歪みが2.0の時点で、試験片が破断していない場合は、下式(11)によりS1を求める。
S1=(p−q)/0.3 ・・・(11)
(式(11)中、pは、最大主歪みが2.0における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)である。)
7b)1)の引張試験において、最大主歪みが1.7より大きく2.0未満の範囲内で試験片が破断した場合は、下式(12)によりS1を求める。
S1=(p’−q)/(r−1.7) ・・・(12)
(式(12)中、p’は、破断点における真応力(MPa)であり、qは、最大主歪みが1.7における真応力(MPa)であり、rは、破断点における最大主歪みである。)
S1 determined by 0) to 7) below is 220 MPa or more and 2000 MPa or less, and the nominal stress at 100% elongation in the MD direction when a tensile test is performed under the condition of a tensile speed of 500 mm / min is 11.0 MPa or more and 30.0 MPa or less. The film that is.

0) Punch a test piece from the film with a dumbbell cutter conforming to the ASTM D1822 Type S standard so that the MD direction is the long side.
1) Perform a tensile test on the test piece with a high-speed tensile tester at a speed of 1 m / s.
2) Take a picture of the test piece under the tensile test of 1) with a high-speed camera.
3) The captured image is analyzed by 3D inspection / analysis software to obtain the maximum principal strain (ε 1 ) and the minimum principal strain (ε 3) at the constricted part of the test piece.
4) The cross-sectional area of the constricted part of the test piece is calculated by the following formula.
(Cross-sectional area of test piece constriction)
= (Width of constriction before test) × (Thickness of constriction before test) × {exp (ε 3 )} 2
5) Divide the load obtained by the tensile test at each time by the cross-sectional area of the constricted part of the test piece at each time to obtain the true stress at each time.
6) The true stress at each time obtained in 5) is plotted against the maximum principal strain (ε 1 ) at each time, and the true stress-maximum principal strain curve is obtained.
7) S1 is determined by 7a) or 7b).
7a) In the tensile test of 1), if the test piece is not broken at the time when the maximum principal strain is 2.0, S1 is obtained by the following formula (11).
S1 = (p−q) /0.3 ・ ・ ・ (11)
(In equation (11), p is the true stress (MPa) when the maximum principal strain is 2.0, and q is the true stress (MPa) when the maximum principal strain is 1.7.)
7b) In the tensile test of 1), if the test piece breaks within the range where the maximum principal strain is larger than 1.7 and less than 2.0, S1 is calculated by the following formula (12).
S1 = (p'-q) / (r-1.7) ... (12)
(In equation (12), p'is the true stress (MPa) at the breaking point, q is the true stress (MPa) at the maximum principal strain of 1.7, and r is the maximum principal strain at the breaking point. Is.)
請求項1に記載のフィルムからなる層αを含む多層フィルムであって、
該多層フィルムが有する2つの表面層のうち、少なくとも一方の表面層が、層αである多層フィルム。
A multilayer film containing the layer α composed of the film according to claim 1.
A multilayer film in which at least one of the two surface layers of the multilayer film is layer α.
請求項1に記載のフィルムを含む包装容器。 A packaging container containing the film according to claim 1.
JP2020541224A 2018-09-07 2019-09-03 Films and packaging containers Active JP7200998B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018167625 2018-09-07
JP2018167625 2018-09-07
PCT/JP2019/034556 WO2020050245A1 (en) 2018-09-07 2019-09-03 Film and packaging container

Publications (2)

Publication Number Publication Date
JPWO2020050245A1 true JPWO2020050245A1 (en) 2021-09-24
JP7200998B2 JP7200998B2 (en) 2023-01-10

Family

ID=69722366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541224A Active JP7200998B2 (en) 2018-09-07 2019-09-03 Films and packaging containers

Country Status (3)

Country Link
JP (1) JP7200998B2 (en)
CN (1) CN112638997B (en)
WO (1) WO2020050245A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433995B2 (en) 2020-03-12 2024-02-20 住友化学株式会社 Film, film manufacturing method, and bag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225140A (en) * 1985-07-26 1987-02-03 Mitsui Petrochem Ind Ltd Olefin resin composition having excellent impurity-sealing property
JPH04224844A (en) * 1990-12-27 1992-08-14 Mitsui Petrochem Ind Ltd Resin composition for film
JPH07228731A (en) * 1994-02-16 1995-08-29 Mitsubishi Chem Corp Polyethylene resin composition for film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228731B1 (en) * 2022-07-06 2023-02-24 千葉県 Method for exterminating apple snail and container for exterminating apple snail

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225140A (en) * 1985-07-26 1987-02-03 Mitsui Petrochem Ind Ltd Olefin resin composition having excellent impurity-sealing property
JPH04224844A (en) * 1990-12-27 1992-08-14 Mitsui Petrochem Ind Ltd Resin composition for film
JPH07228731A (en) * 1994-02-16 1995-08-29 Mitsubishi Chem Corp Polyethylene resin composition for film

Also Published As

Publication number Publication date
CN112638997A (en) 2021-04-09
WO2020050245A1 (en) 2020-03-12
JP7200998B2 (en) 2023-01-10
CN112638997B (en) 2023-04-28

Similar Documents

Publication Publication Date Title
JP7006677B2 (en) the film
CN101743277B (en) Ethylene polymer composition and film
US7595371B2 (en) Ethylene-α-olefin copolymer and food packaging material
CN110520297B (en) Novel polyethylene compositions and methods of making and using the same
US11472899B2 (en) Ethylene-α-olefin copolymer, method of producing ethylene-α-olefin copolymer, ethylene-based resin composition, and film
JP2011005759A (en) Laminated film, packaging material and standing pouch
CN101743276B (en) Ethylene polymer composition and film
JP7200998B2 (en) Films and packaging containers
US7473747B2 (en) Ethylene-α-olefin copolymer and molding thereof
JP7437243B2 (en) Ethylene-α-olefin copolymer, method for producing ethylene-α-olefin copolymer, ethylene resin composition, and film
US11643533B2 (en) Film, method of producing film, and bag
JP4650060B2 (en) Hollow molded container
JP5151838B2 (en) Agricultural film
JP5205899B2 (en) Ethylene-α-olefin copolymer and food packaging material
CN113387055B (en) Film, method for producing film, and bag
JP5741130B2 (en) Polyethylene resin composition and container
DE102006045817A1 (en) Ethylene-alpha-olefin copolymers for molding e.g. extrusion, injection or compression molding to film, sheet, bottle or tablets especially extruded food packaging are produced using prepolymerized solid containing catalyst
JP2010168460A (en) Film
JP2023010408A (en) Ethylenic modifier, ethylenic resin composition, film, method for producing ethylenic resin composition, and method for producing film
JP2014070217A (en) ETHYLENE-α-OLEFIN COPOLYMER
JP2010168459A (en) Film and method for producing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R151 Written notification of patent or utility model registration

Ref document number: 7200998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151