JP5205899B2 - Ethylene-α-olefin copolymer and food packaging material - Google Patents

Ethylene-α-olefin copolymer and food packaging material Download PDF

Info

Publication number
JP5205899B2
JP5205899B2 JP2007251063A JP2007251063A JP5205899B2 JP 5205899 B2 JP5205899 B2 JP 5205899B2 JP 2007251063 A JP2007251063 A JP 2007251063A JP 2007251063 A JP2007251063 A JP 2007251063A JP 5205899 B2 JP5205899 B2 JP 5205899B2
Authority
JP
Japan
Prior art keywords
group
ethylene
titanium dichloride
dimethylsilylene
phenoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007251063A
Other languages
Japanese (ja)
Other versions
JP2008106264A (en
Inventor
康豊 川島
勝大 山田
佳伸 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007251063A priority Critical patent/JP5205899B2/en
Publication of JP2008106264A publication Critical patent/JP2008106264A/en
Application granted granted Critical
Publication of JP5205899B2 publication Critical patent/JP5205899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、エチレン−α−オレフィン共重合体、および、該共重合体を含有する食品包装材に関するものである。   The present invention relates to an ethylene-α-olefin copolymer and a food packaging material containing the copolymer.

食品、医薬品、日用雑貨などの包装に用いられるフィルム、シート、容器などには、エチレン−α−オレフィン共重合体を押出成形してなる成形体が多く用いられている。このような成形体に用いられるエチレン−α−オレフィン共重合体には、押出負荷が低い、加工安定性が良いなど、成形加工性に優れることが求められており、例えば、トリイソブチルアルミニウムとラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシドとを接触処理した後、ジエチル亜鉛、ペンタフルオロフェノール、水、シリカおよびトリメチルジシラザンを反応させた助触媒担体を接触処理してなる触媒を用いてエチレンとα−オレフィンとを共重合してなる重合体(例えば、特許文献1参照。)が提案されている。   For films, sheets, containers and the like used for packaging foods, pharmaceuticals, daily necessities, etc., many molded products obtained by extrusion-molding an ethylene-α-olefin copolymer are used. The ethylene-α-olefin copolymer used in such a molded body is required to have excellent molding processability such as low extrusion load and good processing stability. For example, triisobutylaluminum and racemic -Ethylene bis (1-indenyl) zirconium diphenoxide is contact-treated, and then ethylene is produced using a catalyst obtained by contact-treating a promoter support obtained by reacting diethylzinc, pentafluorophenol, water, silica and trimethyldisilazane. A polymer (for example, see Patent Document 1) obtained by copolymerizing a olefin and an α-olefin has been proposed.

特開2005―97481号公報JP 2005-97481 A

しかしながら、上記のエチレン−α−オレフィン共重合体は、成形加工性に優れるものの、溶融加工時に発煙することがあり、十分に満足のいくものではなかった。
かかる状況のもと、本発明が解決しようとする課題は、成形加工性、および、溶融加工時の低発煙性に優れたエチレン−α−オレフィン共重合体、および、該共重合体を含有する食品包装材を提供することにある。
However, although the above ethylene-α-olefin copolymer is excellent in molding processability, it may emit smoke during melt processing, and is not sufficiently satisfactory.
Under such circumstances, the problem to be solved by the present invention includes an ethylene-α-olefin copolymer excellent in molding processability and low smoke generation during melt processing, and the copolymer. It is to provide food packaging materials.

すなわち、本発明は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有し、メルトフローレート(MFR;単位はg/10分である。)が0.01〜100g/10分であり、密度(d;単位はkg/m3である。)が890〜970kg/m3であり、流動の活性化エネルギー(Ea)が50kJ/mol以上であり、ゲル・パーミエイション・クロマトグラフ測定により測定される分子量分布(Mw/Mn)が3以上であり、ヘキサン抽出量(C;単位は重量%である。)が2.8%以下であることを満たすエチレン−α−オレフィン共重合体にかかるものである。 That is, the present invention has a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and has a melt flow rate (MFR; the unit is g / 10 minutes). Is 0.01 to 100 g / 10 min, the density (d; the unit is kg / m 3 ) is 890 to 970 kg / m 3 , and the flow activation energy (Ea) is 50 kJ / mol or more. Yes, the molecular weight distribution (Mw / Mn) measured by gel permeation chromatography is 3 or more, and the hexane extract amount (C; unit is% by weight) is 2.8% or less. The present invention relates to an ethylene-α-olefin copolymer that satisfies the above requirements.

また本発明は、上記エチレン−α−オレフィン共重合体を含有する食品包装材にかかるものである。   The present invention also relates to a food packaging material containing the ethylene-α-olefin copolymer.

本発明により、成形加工性、および、溶融加工時の低発煙性に優れたエチレン−α−オレフィン共重合体、および、該共重合体を含有する食品包装材を提供することができる。   According to the present invention, it is possible to provide an ethylene-α-olefin copolymer excellent in moldability and low smoke generation during melt processing, and a food packaging material containing the copolymer.

本発明のエチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを含むエチレン−α−オレフィン共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは1−ヘキセン、4−メチル−1−ペンテン、1−オクテンであり、より好ましくは1−ヘキセン、1−オクテンである。   The ethylene-α-olefin copolymer of the present invention is an ethylene-α-olefin copolymer containing a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms. . Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention | raise | lifted and these may be used independently and 2 or more types may be used together. The α-olefin is preferably 1-hexene, 4-methyl-1-pentene, and 1-octene, and more preferably 1-hexene and 1-octene.

本発明のエチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50〜99.5重量%である。またα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常0.5〜50重量%である。   The content of the monomer unit based on ethylene in the ethylene-α-olefin copolymer of the present invention is usually from 50 to 99.75 based on the total weight (100% by weight) of the ethylene-α-olefin copolymer. 5% by weight. The content of the monomer unit based on the α-olefin is usually 0.5 to 50% by weight with respect to the total weight (100% by weight) of the ethylene-α-olefin copolymer.

本発明のエチレン−α−オレフィン共重合体は、上記のエチレンに基づく単量体単位および炭素原子数3〜20のα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等があげられる。   The ethylene-α-olefin copolymer of the present invention is a range that does not impair the effects of the present invention in addition to the above-mentioned monomer units based on ethylene and monomer units based on α-olefins having 3 to 20 carbon atoms. In, you may have a monomer unit based on another monomer. Examples of other monomers include conjugated dienes (for example, butadiene and isoprene), non-conjugated dienes (for example, 1,4-pentadiene), acrylic acid, acrylic acid esters (for example, methyl acrylate and ethyl acrylate), and methacrylic acid. Methacrylic acid esters (for example, methyl methacrylate and ethyl methacrylate), vinyl acetate and the like.

本発明のエチレン−α−オレフィン共重合体として、好ましくは、エチレンに基づく単量体単位および炭素原子数4〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、より好ましくは、エチレンに基づく単量体単位および炭素原子数5〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、さらに好ましくは、エチレンに基づく単量体単位および炭素原子数6〜20のα−オレフィンに基づく単量体単位を有する共重合体である。   The ethylene-α-olefin copolymer of the present invention is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 4 to 20 carbon atoms, more preferably. Is a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 5 to 20 carbon atoms, more preferably a monomer unit based on ethylene and 6 carbon atoms. It is a copolymer having monomer units based on 20 α-olefins.

本発明のエチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体、エチレン−1−ブテン−1−オクテン共重合体であり、より好ましくはエチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体である。   Examples of the ethylene-α-olefin copolymer of the present invention include an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, an ethylene-1-octene copolymer, and ethylene-1. -Butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-octene copolymer and the like, preferably ethylene-1- Hexene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, ethylene- 1-octene copolymer, ethylene-1-hexene-1-octene copolymer, and ethylene-1-butene-1-octene copolymer, more preferably ethylene-1-he Sen copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, an ethylene-1-butene-1-octene copolymer.

本発明のエチレン−α−オレフィン共重合体のメルトフローレート(MFR;単位はg/10分である。)は、通常0.01〜100g/10分である。該メルトフローレートは、成形加工性を高める観点、特に押出負荷を低減する観点から、好ましくは0.05g/10分以上であり、より好ましくは0.1g/10分以上である。また、溶融張力、得られる成形体の機械的強度を高める観点から、好ましくは20g/10分以下であり、より好ましくは10g/10分以下であり、さらに好ましくは6g/10分以下である。該メルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。なお、該メルトフローレートの測定では、通常、エチレン−α−オレフィン共重合体に予め酸化防止剤を1000ppm程度配合したものを用いる。   The melt flow rate (MFR; unit is g / 10 minutes) of the ethylene-α-olefin copolymer of the present invention is usually 0.01 to 100 g / 10 minutes. The melt flow rate is preferably 0.05 g / 10 min or more, and more preferably 0.1 g / 10 min or more from the viewpoint of improving the moldability, particularly from the viewpoint of reducing the extrusion load. Further, from the viewpoint of increasing the melt tension and the mechanical strength of the resulting molded article, it is preferably 20 g / 10 minutes or less, more preferably 10 g / 10 minutes or less, and even more preferably 6 g / 10 minutes or less. The melt flow rate is a value measured by Method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995. In the measurement of the melt flow rate, usually, an ethylene-α-olefin copolymer previously blended with about 1000 ppm of an antioxidant is used.

本発明のエチレン−α−オレフィン共重合体の密度(d;単位はkg/m3である。)は、通常、890〜970kg/m3であり、溶融加工時の発煙を低減する観点から、好ましくは900kg/m3以上であり、より好ましくは905kg/m3以上であり、更に好ましくは910kg/m3以上である。得られる成形体の耐衝撃強度を高める観点から、好ましくは940kg/m3以下であり、より好ましくは930kg/m3以下であり、特に好ましくは925kg/m3以下である。なお、該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。 The density of the ethylene -α- olefin copolymer of the present invention (d;. Unit is kg / m 3) is usually 890~970kg / m 3, from the viewpoint of reducing the smoke during melt processing, preferably at 900 kg / m 3 or more, more preferably 905 kg / m 3 or more, still more preferably 910 kg / m 3 or more. From the viewpoint of increasing the impact strength of the obtained molded article, it is preferably 940 kg / m 3 or less, more preferably 930 kg / m 3 or less, and particularly preferably 925 kg / m 3 or less. The density is measured according to the method defined in Method A of JIS K7112-1980 after annealing described in JIS K6760-1995.

本発明のエチレン−α−オレフィン共重合体は、長鎖分岐を有する成形加工性に優れたエチレン−α−オレフィン共重合体であり、このようなエチレン−α−オレフィン共重合体は従来知られた通常の直鎖状のエチレン−α−オレフィン共重合体に比して、流動の活性化エネルギー(Ea;単位はkJ/molである。)が高い。従来から知られている通常の直鎖状のエチレン−α−オレフィン共重合体のEaは50kJ/molよりも低く、十分満足のいく成形加工性が得られないこと、特に押出負荷において十分満足が得られないことがあった。   The ethylene-α-olefin copolymer of the present invention is an ethylene-α-olefin copolymer having a long chain branch and excellent in processability, and such an ethylene-α-olefin copolymer is conventionally known. The flow activation energy (Ea; unit is kJ / mol) is higher than that of a normal linear ethylene-α-olefin copolymer. Conventionally known normal linear ethylene-α-olefin copolymers have an Ea lower than 50 kJ / mol, and a sufficiently satisfactory moldability cannot be obtained. Sometimes it was not possible.

本発明のエチレン−α−オレフィン共重合体のEaは、成形加工性を高める観点、特に溶融張力を過度に低下させずに押出負荷を低減する観点から、好ましくは55kJ/mol以上であり、より好ましくは60kJ/mol以上である。また、得られる成形体の光沢を高める観点から、Eaは、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。   Ea of the ethylene-α-olefin copolymer of the present invention is preferably 55 kJ / mol or more from the viewpoint of improving the molding processability, particularly from the viewpoint of reducing the extrusion load without excessively reducing the melt tension. Preferably it is 60 kJ / mol or more. Further, from the viewpoint of increasing the gloss of the obtained molded product, Ea is preferably 100 kJ / mol or less, more preferably 90 kJ / mol or less.

流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
The activation energy (Ea) of the flow is dependent on the angular frequency (unit: rad / sec) dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. based on the temperature-time superposition principle. It is a numerical value calculated by the Arrhenius type equation from the shift factor (a T ) when creating the master curve shown, and is a value obtained by the method shown below. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), The shift factor (a T ) at each temperature (T) obtained when superposed on the melt complex viscosity-angular frequency curve of the coalescence is obtained, and each temperature (T) and the shift factor at each temperature ( T ) are obtained. From (a T ), a first-order approximate expression (formula (I) below) of [ln (a T )] and [1 / (T + 273.16)] is calculated by the method of least squares. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor Ea: Activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (however, the Y axis Is the complex viscosity of the melt, and the X axis is the angular frequency.), And the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., in the superposition, melting at each temperature (T) The logarithmic curve of complex viscosity-angular frequency shifts the angular frequency by a T times and the melt complex viscosity by 1 / a T times for each curve. Moreover, the correlation coefficient when calculating | requiring (I) Formula by the least squares method from the value of four points | pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。   The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.

本発明のエチレン−α−オレフィン共重合体の分子量分布(Mw/Mn)は、成形加工性を高める観点、特に押出負荷を低減する観点から、好ましくは3以上であり、より好ましくは5以上であり、更に好ましくは6以上である。また、得られる成形体の機械強度を高める観点から、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。該分子量分布(Mw/Mn)は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、MwをMnで除した値(Mw/Mn)である。また、GPC法での測定条件としては、例えば、次の条件をあげることができる。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
The molecular weight distribution (Mw / Mn) of the ethylene-α-olefin copolymer of the present invention is preferably 3 or more, more preferably 5 or more, from the viewpoint of improving the moldability, particularly from the viewpoint of reducing the extrusion load. Yes, more preferably 6 or more. Moreover, from a viewpoint of raising the mechanical strength of the molded object obtained, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 15 or less. The molecular weight distribution (Mw / Mn) is a value obtained by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) by gel permeation chromatography (GPC), and dividing Mw by Mn (Mw / Mn). Moreover, as measurement conditions by GPC method, the following conditions can be mention | raise | lifted, for example.
(1) Equipment: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: Differential refraction
(8) Molecular weight reference material: Standard polystyrene

本発明のエチレン−α−オレフィン共重合体のヘキサン抽出量C(単位は重量%である。)は、通常2.8%以下であり、溶融加工時の発煙を低減する観点から、好ましくは2.7%以下であり、より好ましくは2.6%以下である。本発明のエチレン−α−オレフィン共重合体のヘキサン抽出量Cは、成形加工性を高める観点から、好ましくは0.5%以上であり、より好ましくは0.8%以上であり、さらに好ましくは1.0%以上である。   The hexane extract amount C (unit is% by weight) of the ethylene-α-olefin copolymer of the present invention is usually 2.8% or less, and preferably 2 from the viewpoint of reducing fuming during melt processing. 0.7% or less, and more preferably 2.6% or less. The hexane extraction amount C of the ethylene-α-olefin copolymer of the present invention is preferably 0.5% or more, more preferably 0.8% or more, and still more preferably, from the viewpoint of improving molding processability. 1.0% or more.

ヘキサン抽出量Cは、下記の方法に従って測定される。
(1)エチレン−α−オレフィン共重合体を、150℃の熱プレス機により厚み100μmのフィルムに成形し、該シートから約1gの試料を切り出し、フラスコにとる。
(2)フラスコ中の試料にn−ヘキサン400mlを加え、50℃で2時間加熱撹拌を行う。
(3)加熱攪拌後、n−ヘキサンに不溶な試料を濾過によって取り除く。
(4)濾別回収した濾液部から、n−ヘキサンを除去し、さらに2時間真空乾燥を行い乾固物を得る。
(5)フラスコにとる試料の重量、および、濾液部から得られる乾固物の重量を用い、下記式から、ヘキサン抽出量Cを算出する。
C=100×{乾固物の重量(g)/試料の重量(g)}
The hexane extract amount C is measured according to the following method.
(1) The ethylene-α-olefin copolymer is formed into a film having a thickness of 100 μm with a hot press at 150 ° C., and a sample of about 1 g is cut out from the sheet and placed in a flask.
(2) Add 400 ml of n-hexane to the sample in the flask, and heat and stir at 50 ° C. for 2 hours.
(3) After heating and stirring, a sample insoluble in n-hexane is removed by filtration.
(4) Remove n-hexane from the filtrate part collected by filtration, and further vacuum dry for 2 hours to obtain a dried product.
(5) Using the weight of the sample taken in the flask and the weight of the dried product obtained from the filtrate, calculate the hexane extraction amount C from the following formula.
C = 100 × {weight of dried product (g) / weight of sample (g)}

本発明のエチレン−α−オレフィン共重合体のメルトフローレート比(MFRR)は、成形加工性を高める観点、特に押出負荷を低減する観点から、60以上が好ましい。該MFRRは、JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(MFR−H、単位:g/10分)を、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)で除した値である。なお、上記のメルトフローレート測定には、通常、予め酸化防止剤を1000ppm程度配合した重合体を用いる。   The melt flow rate ratio (MFRR) of the ethylene-α-olefin copolymer of the present invention is preferably 60 or more from the viewpoint of improving the molding processability, particularly reducing the extrusion load. The MFRR is obtained by measuring the melt flow rate (MFR-H, unit: g / 10 minutes) measured under the conditions of a test load of 211.82 N and a measurement temperature of 190 ° C. according to JIS K7210-1995, in accordance with JIS K7210. -In the method specified in 1995, this is a value divided by the melt flow rate (MFR) measured under the conditions of a load of 21.18 N and a temperature of 190 ° C. In the above melt flow rate measurement, a polymer in which about 1000 ppm of an antioxidant is blended in advance is usually used.

高速加工性を高める観点から、本発明のエチレン−α−オレフィン共重合体は、以下の条件で測定される最大引取り速度(MTV)(単位:m/分)が大きいことが好ましい。
[最大引取り速度(MTV)の測定方法](単位:m/分)
東洋精機製作所製 メルトテンションテスターを用いて、所定の温度で、9.5mmφのバレルに充填した溶融樹脂を、ピストン降下速度5.5mm/分(剪断速度7.4sec-1)で、径が2.09mmφ、長さ8mmのオリフィスから押出し、該押し出された溶融樹脂を、径が50mmφの巻き取りロールを用い、40rpm/分の巻き取り上昇速度で巻き取り、溶融樹脂が破断する直前における引取り速度を、その温度での最大引取り速度とする。150℃での最大引取り速度をMTV150、190℃での最大引取り速度をMTV190とする。
MTV150は、15以上であることが好ましく、20以上であることがより好ましい。MTV190は5以上であることが好ましく、8以上であることがより好ましい。
エチレンとα−オレフィンとを重合する際の水素の添加量を調整することにより、得られるエチレン−α−オレフィン共重合体のMTVも調節することができる。水素の添加量を減少させると、得られるエチレン−α−オレフィン共重合体のMTVは小さくなる傾向があり、添加量を増加させると、得られるエチレン−α−オレフィン共重合体のMTVは大きくなる傾向がある。
From the viewpoint of enhancing high-speed processability, the ethylene-α-olefin copolymer of the present invention preferably has a high maximum take-up rate (MTV) (unit: m / min) measured under the following conditions.
[Measurement method of maximum take-off speed (MTV)] (Unit: m / min)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, a molten resin filled in a barrel of 9.5 mmφ at a predetermined temperature has a piston descending speed of 5.5 mm / min (shear speed of 7.4 sec −1 ) and a diameter of 2 0.09mmφ, 8mm long extruded from the orifice, the extruded molten resin is taken up at a take-up speed of 40rpm / min using a take-up roll having a diameter of 50mmφ, and taken up immediately before the molten resin breaks The speed is the maximum take-off speed at that temperature. The maximum take-up speed at 150 ° C. is MTV 150 and the maximum take-up speed at 190 ° C. is MTV 190 .
The MTV 150 is preferably 15 or more, and more preferably 20 or more. MTV 190 is preferably 5 or more, and more preferably 8 or more.
The MTV of the resulting ethylene-α-olefin copolymer can also be adjusted by adjusting the amount of hydrogen added when polymerizing ethylene and the α-olefin. When the amount of hydrogen added is decreased, the MTV of the obtained ethylene-α-olefin copolymer tends to decrease, and when the amount of addition is increased, the MTV of the obtained ethylene-α-olefin copolymer increases. Tend.

成形加工性を高める観点から、本発明のエチレン−α−オレフィン共重合体は、以下の条件で測定される溶融張力(MT)(単位:cN)が高いことが好ましい。
[溶融張力(MT)の測定方法](単位:cN)
東洋精機製作所製 メルトテンションテスターを用いて、所定の温度で、9.5mmφのバレルに充填した溶融樹脂を、ピストン降下速度5.5mm/分(剪断速度7.4sec-1)で、径が2.09mmφ、長さ8mmのオリフィスから押出し、該押し出された溶融樹脂を、径が50mmφの巻き取りロールを用い、40rpm/分の巻き取り上昇速度で巻き取り、溶融樹脂が破断する直前の張力値を、その温度での溶融張力とする。150℃での溶融張力をMT150、190℃での溶融張力をMT190とする。
MT150は、5以上であることが好ましく、7以上であることがより好ましく、8以上であることがさらに好ましく、9以上であることが特に好ましい。MT190は、3.5以上であることが好ましく、4以上であることがさらに好ましく、5以上であることがより好ましく、6以上であることが特に好ましい。
エチレンとα−オレフィンとを重合する際の水素の添加量を調整することにより、得られるエチレン−α−オレフィン共重合体のMTも調節することができる。水素の添加量を減少させると、得られるエチレン−α−オレフィン共重合体のMTは大きくなる傾向があり、添加量を増加させると、得られるエチレン−α−オレフィン共重合体のMTは小さくなる傾向がある。
From the viewpoint of improving the moldability, the ethylene-α-olefin copolymer of the present invention preferably has a high melt tension (MT) (unit: cN) measured under the following conditions.
[Measuring method of melt tension (MT)] (unit: cN)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, a molten resin filled in a barrel of 9.5 mmφ at a predetermined temperature has a piston descending speed of 5.5 mm / min (shear speed of 7.4 sec −1 ) and a diameter of 2 0.09mmφ, 8mm in length, extruded from an orifice, and the extruded molten resin was wound at a winding speed of 40rpm / min using a winding roll having a diameter of 50mmφ, and the tension value immediately before the molten resin broke Is the melt tension at that temperature. The melt tension at 150 ° C. is MT 150 and the melt tension at 190 ° C. is MT 190 .
MT 150 is preferably 5 or more, more preferably 7 or more, still more preferably 8 or more, and particularly preferably 9 or more. MT 190 is preferably 3.5 or more, more preferably 4 or more, more preferably 5 or more, and particularly preferably 6 or more.
By adjusting the amount of hydrogen added when polymerizing ethylene and α-olefin, the MT of the resulting ethylene-α-olefin copolymer can also be adjusted. When the amount of hydrogen added is decreased, the MT of the resulting ethylene-α-olefin copolymer tends to increase, and when the amount added is increased, the MT of the obtained ethylene-α-olefin copolymer decreases. Tend.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、メタロセン系錯体と活性化助触媒成分(以下、助触媒成分(I)と称する。)が微粒子状担体に担持されてなる固体助触媒成分とを接触処理してなるメタロセン系オレフィン重合触媒を用いて、エチレンとα−オレフィンとを共重合する方法が挙げられる。助触媒成分(I)としては、亜鉛化合物をあげることができる。   As a method for producing the ethylene-α-olefin copolymer of the present invention, a solid promoter comprising a metallocene complex and an activation promoter component (hereinafter referred to as promoter component (I)) supported on a particulate carrier. Examples thereof include a method of copolymerizing ethylene and α-olefin using a metallocene olefin polymerization catalyst formed by contact treatment with a catalyst component. An example of the promoter component (I) is a zinc compound.

助触媒成分(I)の亜鉛化合物としては、ジエチル亜鉛とフッ素化フェノールと水とを接触処理してなる接触処理物等があげられる。   Examples of the zinc compound of the promoter component (I) include a contact-treated product obtained by contact-treating diethylzinc, fluorinated phenol and water.

微粒子状担体としては、多孔性の物質が好ましく、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。該微粒子状担体の50%体積平均粒子径は、通常、10〜500μmであり、該50%体積平均粒子径は、光散乱式レーザー回折法などで測定される。また、該微粒子状担体の細孔容量は、通常0.3〜10ml/gであり、該微粒子状担体の比表面積は、通常、10〜1000m2/gである。該細孔容量と該比表面積は、ガス吸着法により測定され、細孔容量はガス脱着量をBJH法で、比表面積はガス吸着量をBET法で解析することにより求められる。 As the fine particle carrier, a porous material is preferable, and inorganic oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; smectite, Clay and clay minerals such as montmorillonite, hectorite, laponite and saponite; organic polymers such as polyethylene, polypropylene and styrene-divinylbenzene copolymer are used. The 50% volume average particle diameter of the fine particle carrier is usually 10 to 500 μm, and the 50% volume average particle diameter is measured by a light scattering laser diffraction method or the like. Moreover, the pore volume of the particulate carrier is usually 0.3 to 10 ml / g, and the specific surface area of the particulate carrier is usually 10 to 1000 m 2 / g. The pore volume and the specific surface area are measured by a gas adsorption method. The pore volume is obtained by analyzing the gas desorption amount by the BJH method, and the specific surface area by analyzing the gas adsorption amount by the BET method.

また、上述のメタロセン系錯体としては、下記一般式[1]で表される遷移金属化合物またはそのμ−オキソタイプの遷移金属化合物二量体が好ましい。
2 a21 b [1]
(式中、M2は周期律表第3〜11族もしくはランタノイド系列の遷移金属原子である。L2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。aは0<a≦8を満足する数を、bは0<b≦8を満足する数を表す。)
The metallocene complex is preferably a transition metal compound represented by the following general formula [1] or a μ-oxo type transition metal compound dimer thereof.
L 2 a M 2 X 1 b [1]
(In the formula, M 2 is a transition metal atom of Groups 3 to 11 of the periodic table or a lanthanoid series. L 2 is a group having a cyclopentadiene-type anion skeleton, and are a plurality of L 2 linked directly to each other? Or may be linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom, and X 1 is a halogen atom, a hydrocarbon group (provided that the cyclopentadiene form (Excluding a group having an anion skeleton), or a hydrocarbon oxy group, a represents a number satisfying 0 <a ≦ 8, and b represents a number satisfying 0 <b ≦ 8.

一般式[1]において、M2は周期律表(IUPAC1989年)第3〜11族もしくはランタノイド系列の遷移金属原子である。その具体例としては、スカンジウム原子、イットリウム原子、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、鉄原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、サマリウム原子、イッテルビウム原子等が挙げられる。一般式[1]におけるM2として好ましくは、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、クロム原子、鉄原子、コバルト原子またはニッケル原子であり、特に好ましくはチタン原子、ジルコニウム原子またはハフニウム原子であり、最も好ましくはジルコニウム原子である。 In the general formula [1], M 2 is a transition metal atom of Group 3 to 11 of the periodic table (IUPAC 1989) or a lanthanoid series. Specific examples include scandium atoms, yttrium atoms, titanium atoms, zirconium atoms, hafnium atoms, vanadium atoms, niobium atoms, tantalum atoms, chromium atoms, iron atoms, ruthenium atoms, cobalt atoms, rhodium atoms, nickel atoms, palladium atoms. , Samarium atoms, ytterbium atoms, and the like. M 2 in the general formula [1] is preferably a titanium atom, a zirconium atom, a hafnium atom, a vanadium atom, a chromium atom, an iron atom, a cobalt atom or a nickel atom, particularly preferably a titanium atom, a zirconium atom or a hafnium atom. And most preferably a zirconium atom.

一般式[1]において、L2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は同じであっても異なっていてもよい。また複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。 In the general formula [1], L 2 is a group having a cyclopentadiene type anion skeleton, and a plurality of L 2 may be the same or different. The plurality of L 2 may be directly connected to each other, or may be connected via a bridging group containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom.

2におけるシクロペンタジエン形アニオン骨格を有する基としてはη5−(置換)シクロペンタジエニル基、η5−(置換)インデニル基、η5−(置換)フルオレニル基などが挙げられる。具体的に例示すれば、η5−シクロペンタジエニル基、η5−メチルシクロペンタジエニル基、η5−エチルシクロペンタジエニル基、η5−n−ブチルシクロペンタジエニル基、η5−tert−ブチルシクロペンタジエニル基、η5−1,2−ジメチルシクロペンタジエニル基、η5−1,3−ジメチルシクロペンタジエニル基、η5−1−メチル−2−エチルシクロペンタジエニル基、η5−1−メチル−3−エチルシクロペンタジエニル基、η5−1−tert−ブチル−2−メチルシクロペンタジエニル基、η5−1−tert−ブチル−3−メチルシクロペンタジエニル基、η5−1−メチル−2−イソプロピルシクロペンタジエニル基、η5−1−メチル−3−イソプロピルシクロペンタジエニル基、η5−1−メチル−2−n−ブチルシクロペンタジエニル基、η5−1−メチル−3−n−ブチルシクロペンタジエニル基、η5−1,2,3−トリメチルシクロペンタジエニル基、η5−1,2,4−トリメチルシクロペンタジエニル基、η5−テトラメチルシクロペンタジエニル基、η5−ペンタメチルシクロペンタジエニル基、η5−インデニル基、η5−4,5,6,7−テトラヒドロインデニル基、η5−2−メチルインデニル基、η5−3−メチルインデニル基、η5−4−メチルインデニル基、η5−5−メチルインデニル基、η5−6−メチルインデニル基、η5−7−メチルインデニル基、η5−2−tert−ブチルインデニル基、η5−3−tert−ブチルインデニル基、η5−4−tert−ブチルインデニル基、η5−5−tert−ブチルインデニル基、η5−6−tert−ブチルインデニル基、η5−7−tert−ブチルインデニル基、η5−2,3−ジメチルインデニル基、η5−4,7−ジメチルインデニル基、η5−2,4,7−トリメチルインデニル基、η5−2−メチル−4−イソプロピルインデニル基、η5−4,5−ベンズインデニル基、η5−2−メチル−4,5−ベンズインデニル基、η5−4−フェニルインデニル基、η5−2−メチル−5−フェニルインデニル基、η5−2−メチル−4−フェニルインデニル基、η5−2−メチル−4−ナフチルインデニル基、η5−フルオレニル基、η5−2,7−ジメチルフルオレニル基、η5−2,7−ジ−tert−ブチルフルオレニル基、およびこれらの置換体等が挙げられる。なお、本明細書においては、遷移金属化合物の名称については「η5−」を省略することがある。 Examples of the group having a cyclopentadiene-type anion skeleton in L 2 include η 5- (substituted) cyclopentadienyl group, η 5- (substituted) indenyl group, η 5- (substituted) fluorenyl group and the like. Specifically, η 5 -cyclopentadienyl group, η 5 -methylcyclopentadienyl group, η 5 -ethylcyclopentadienyl group, η 5 -n-butylcyclopentadienyl group, η 5 -Tert-butylcyclopentadienyl group, η 5 -1,2-dimethylcyclopentadienyl group, η 5 -1,3-dimethylcyclopentadienyl group, η 5 -1-methyl-2-ethylcyclopenta Dienyl group, η 5 -1-methyl-3-ethylcyclopentadienyl group, η 5 -1-tert-butyl-2-methylcyclopentadienyl group, η 5 -1-tert-butyl-3-methyl Cyclopentadienyl group, η 5 -1-methyl-2-isopropylcyclopentadienyl group, η 5 -1-methyl-3-isopropylcyclopentadienyl group, η 5 -1-methyl-2-n-butyl Cyclopentadienyl group, η 5 -1-methyl-3-n-butylcyclopentadienyl group, η 5 -1,2,3-trimethylcyclopentadienyl group, η 5 -1,2,4-trimethyl cyclopentadienyl group, eta 5 - tetramethylcyclopentadienyl group, eta 5 - pentamethylcyclopentadienyl group, eta 5 - indenyl group, eta 5-4,5,6,7-tetrahydroindenyl group, η 5 -2-methylindenyl group, η 5 -3-methylindenyl group, η 5 -4-methylindenyl group, η 5 -5-methylindenyl group, η 5 -6-methylindenyl group, eta 5-7-methylindenyl group, η 5 -2-tert- butyl indenyl group, η 5 -3-tert- butyl indenyl group, η 5 -4-tert- butylindenyl group, eta 5 -5 -Tert-butylindenyl group, η 5-6 -tert-butylindenyl group, η 5 -7-tert-butylindenyl group, η 5 -2,3-dimethylindenyl group, η 5 -4,7-dimethylindenyl group, η 5- 2,4,7-trimethylindenyl group, η 5 -2-methyl-4-isopropylindenyl group, η 5 -4,5-benzindenyl group, η 5 -2-methyl-4,5-benzindenyl group, η 5-4-phenyl indenyl group, eta 5-2-methyl-5-phenyl indenyl group, eta 5-2-methyl-4-phenyl indenyl group, eta 5-2-methyl-4-naphthyl indenyl group , Η 5 -fluorenyl group, η 5 -2,7-dimethylfluorenyl group, η 5 -2,7-di-tert-butylfluorenyl group, and substituted products thereof. In the present specification, “η 5 −” may be omitted for the names of transition metal compounds.

シクロペンタジエン形アニオン骨格を有する基同士は、それぞれ、直接連結されていてもよく、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。かかる架橋基としては、エチレン基、プロピレン基等のアルキレン基;ジメチルメチレン基、ジフェニルメチレン基などの置換アルキレン基;またはシリレン基、ジメチルシリレン基、ジフェニルシリレン基、テトラメチルジシリレン基などの置換シリレン基;窒素原子、酸素原子、硫黄原子、リン原子などのヘテロ原子などが挙げられる。   The groups having a cyclopentadiene type anion skeleton may be directly connected to each other, and are connected via a bridging group containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom. Also good. Examples of such cross-linking groups include: alkylene groups such as ethylene groups and propylene groups; substituted alkylene groups such as dimethylmethylene groups and diphenylmethylene groups; or substituted silylenes such as silylene groups, dimethylsilylene groups, diphenylsilylene groups, and tetramethyldisilylene groups. Groups; heteroatoms such as nitrogen atom, oxygen atom, sulfur atom and phosphorus atom.

一般式[1]におけるX1は、ハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。ハロゲン原子の具体例としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ここでいう炭化水素基としてはシクロペンタジエン形アニオン骨格を有する基を含まない。ここでいう炭化水素基としてはアルキル基、アラルキル基、アリール基、アルケニル基等が挙げられ、炭化水素オキシ基としては、アルコキシ基、アラルキルオキシ基やアリールオキシ基等が挙げられる。 X 1 in the general formula [1] is a halogen atom, a hydrocarbon group (excluding a group having a cyclopentadiene type anion skeleton), or a hydrocarbon oxy group. Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The hydrocarbon group here does not include a group having a cyclopentadiene type anion skeleton. Examples of the hydrocarbon group include an alkyl group, an aralkyl group, an aryl group, and an alkenyl group. Examples of the hydrocarbon oxy group include an alkoxy group, an aralkyloxy group, and an aryloxy group.

アルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、アミル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−エイコシル基などが挙げられ、これらのアルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子で置換されていてもよい。ハロゲン原子で置換されたのアルキル基としては、例えばフルオロメチル基、トリフルオロメチル基、クロロメチル基、トリクロロメチル基、フルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パークロロプロピル基、パークロロブチル基、パーブロモプロピル基などが挙げられる。またこれらのアルキル基はいずれも、メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, n-pentyl group, neopentyl group, amyl group, n -Hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, n-eicosyl group and the like, and these alkyl groups are all fluorine atom, chlorine atom, bromine atom, It may be substituted with a halogen atom such as an iodine atom. Examples of the alkyl group substituted with a halogen atom include a fluoromethyl group, a trifluoromethyl group, a chloromethyl group, a trichloromethyl group, a fluoroethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluorobutyl group. Examples thereof include a fluorohexyl group, a perfluorooctyl group, a perchloropropyl group, a perchlorobutyl group, and a perbromopropyl group. Any of these alkyl groups may be partially substituted with an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group.

アラルキル基としては、例えばベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−ドデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基などが挙げられ、これらのアラルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aralkyl group include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2, 4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl Group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) ) Methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) Nyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl Group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexyl) Phenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-dodecylphenyl) methyl group, naphthylmethyl group, anthracenylmethyl group, etc., and these aralkyl groups Are all halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group An alkoxy group such as ethoxy group; a portion at an aralkyl group such as aryloxy or benzyloxy group, such as phenoxy group may be substituted.

アリール基としては、例えばフェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などが挙げられ、これらのアリール基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aryl group include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, and 2,6-xylyl group. Group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,4 6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6- Tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n-pentyl Phenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecylphenyl group, naphthyl group, anthracenyl group, etc. All of the aryl groups are halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; and aralkyloxy groups such as benzyloxy group May be partially substituted.

アルケニル基としては、例えばアリル基、メタリル基、クロチル基、1,3−ジフェニル−2−プロペニル基などが挙げられる。   Examples of the alkenyl group include an allyl group, a methallyl group, a crotyl group, and a 1,3-diphenyl-2-propenyl group.

アルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、これらのアルコキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n -Octoxy group, n-dodesoxy group, n-pentadesoxy group, n-icosoxy group and the like, and these alkoxy groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; methoxy group, An alkoxy group such as an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group may be partially substituted.

アルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、これらのアルコキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n -Octoxy group, n-dodesoxy group, n-pentadesoxy group, n-icosoxy group and the like, and these alkoxy groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; methoxy group, An alkoxy group such as an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group may be partially substituted.

アラルキルオキシ基としては、例えばベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2、3−ジメチルフェニル)メトキシ基、(2、4−ジメチルフェニル)メトキシ基、(2、5−ジメチルフェニル)メトキシ基、(2、6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などが挙げられ、これらのアラルキルオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aralkyloxy group include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4-methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, ( 2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) ) Methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6-trimethylphenyl) methoxy group, (2,4,5- Trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, (3,4,5-trimethylphenyl) methoxy , (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy group, Pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy group, (tert -Butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, naphthylmethoxy group, anthracenylmethoxy group, etc. All of the aralkyloxy groups are halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom. Emissions atoms; an alkoxy group such as methoxy group and ethoxy group; a portion at an aralkyl group such as aryloxy or benzyloxy group, such as phenoxy group may be substituted.

アリールオキシ基としては、例えばフェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2、3−ジメチルフェノキシ基、2、4−ジメチルフェノキシ基、2、5−ジメチルフェノキシ基、2、6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2−tert−ブチル−5−メチルフェノキシ基、2−tert−ブチル−6−メチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−tert−ブチル−3,4−ジメチルフェノキシ基、2−tert−ブチル−3,5−ジメチルフェノキシ基、2−tert−ブチル−3,6−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4,5−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−4−メチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2−tert−ブチル−3,4,5−トリメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2−tert−ブチル−3,4,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,4−ジメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、2−tert−ブチル−3,5,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,5−ジメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などが挙げられ、これらのアリールオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aryloxy group include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,3-dimethylphenoxy group, 2,4-dimethylphenoxy group, and 2,5-dimethylphenoxy group. Group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2-tert-butyl-3-methylphenoxy group, 2-tert-butyl-4-methylphenoxy group, 2-tert-butyl-5-methylphenoxy group, 2-tert-butyl-6-methylphenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6- Trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 2- tert-butyl-3,4-dimethylphenoxy group, 2-tert-butyl-3,5-dimethylphenoxy group, 2-tert-butyl-3,6-dimethylphenoxy group, 2,6-di-tert-butyl- 3-methylphenoxy group, 2-tert-butyl-4,5-dimethylphenoxy group, 2,6-di-tert-butyl-4-methylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3, 4,5-tetramethylphenoxy group, 2-tert-butyl-3,4,5-trimethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2-tert-butyl-3,4,6- Trimethylphenoxy group, 2,6-di-tert-butyl-3,4-dimethylphenoxy group, 2,3,5,6-tetramethylphenoxy group, 2-tert-butyl group -3,5,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,5-dimethylphenoxy group, pentamethylphenoxy group, ethylphenoxy group, n-propylphenoxy group, isopropylphenoxy group, n -Butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, n-hexylphenoxy group, n-octylphenoxy group, n-decylphenoxy group, n-tetradecylphenoxy group, naphthoxy group, anthracenoxy group, etc. These aryloxy groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; and benzyloxy groups. Partially placed with an aralkyloxy group, etc. It may be replaced.

一般式[1]におけるaは0<a≦8を満足する数を、bは0<b≦8を満足する数を表し、M2の価数に応じて適宜選択される。M2がチタン原子、ジルコニウム原子またはハフニウム原子である場合、aは2であることが好ましく、bも2であることが好ましい。 In the general formula [1], a represents a number satisfying 0 <a ≦ 8, b represents a number satisfying 0 <b ≦ 8, and is appropriately selected according to the valence of M 2 . When M 2 is a titanium atom, a zirconium atom or a hafnium atom, a is preferably 2, and b is also preferably 2.

メタロセン系錯体の具体例としては、
ビス(シクロペンタジエニル)チタンジクロライド、ビス(メチルシクロペンタジエニル)チタンジクロライド、ビス(エチルシクロペンタジエニル)チタンジクロライド、ビス(n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(tert−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1,2−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1,3−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−2−メチルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−3−メチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,3−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,4−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(テトラメチルシクロペンタジエニル)チタンジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタンジクロライド、ビス(インデニル)チタンジクロライド、ビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、ビス(フルオレニル)チタンジクロライド、ビス(2−フェニルインデニル)チタンジクロライド、
As a specific example of a metallocene complex,
Bis (cyclopentadienyl) titanium dichloride, bis (methylcyclopentadienyl) titanium dichloride, bis (ethylcyclopentadienyl) titanium dichloride, bis (n-butylcyclopentadienyl) titanium dichloride, bis (tert-butyl) Cyclopentadienyl) titanium dichloride, bis (1,2-dimethylcyclopentadienyl) titanium dichloride, bis (1,3-dimethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-ethylcyclopentadi) Enyl) titanium dichloride, bis (1-methyl-3-ethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-n) -Butylcyclopentadi Nyl) titanium dichloride, bis (1-methyl-2-isopropylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-isopropylcyclopentadienyl) titanium dichloride, bis (1-tert-butyl-2-methyl) Cyclopentadienyl) titanium dichloride, bis (1-tert-butyl-3-methylcyclopentadienyl) titanium dichloride, bis (1,2,3-trimethylcyclopentadienyl) titanium dichloride, bis (1,2,2 4-trimethylcyclopentadienyl) titanium dichloride, bis (tetramethylcyclopentadienyl) titanium dichloride, bis (pentamethylcyclopentadienyl) titanium dichloride, bis (indenyl) titanium dichloride, bis (4,5,6, 7-tetra Doroindeniru) titanium dichloride, bis (fluorenyl) titanium dichloride, bis (2-phenyl indenyl) titanium dichloride,

ビス[2−(ビス−3,5−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−tert−ブチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−メチルフェニル)インデニル]チタンジクロライド、ビス[2−(3,5−ジメチルフェニル)インデニル]チタンジクロライド、ビス[2−(ペンタフルオロフェニル)インデニル]チタンジクロライド、シクロペンタジエニル(ペンタメチルシクロペンタジエニル)チタンジクロライド、シクロペンタジエニル(インデニル)チタンジクロライド、シクロペンタジエニル(フルオレニル)チタンジクロライド、インデニル(フルオレニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(インデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(フルオレニル)チタンジクロライド、シクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、 Bis [2- (bis-3,5-trifluoromethylphenyl) indenyl] titanium dichloride, bis [2- (4-tert-butylphenyl) indenyl] titanium dichloride, bis [2- (4-trifluoromethylphenyl) Indenyl] titanium dichloride, bis [2- (4-methylphenyl) indenyl] titanium dichloride, bis [2- (3,5-dimethylphenyl) indenyl] titanium dichloride, bis [2- (pentafluorophenyl) indenyl] titanium dichloride , Cyclopentadienyl (pentamethylcyclopentadienyl) titanium dichloride, cyclopentadienyl (indenyl) titanium dichloride, cyclopentadienyl (fluorenyl) titanium dichloride, indenyl (fluorenyl) titanium dichloride , Pentamethylcyclopentadienyl (indenyl) titanium dichloride, pentamethylcyclopentadienyl (fluorenyl) titanium dichloride, cyclopentadienyl (2-phenylindenyl) titanium dichloride, pentamethylcyclopentadienyl (2-phenylindene) Nil) titanium dichloride,

ジメチルシリレンビス(シクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,4−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(テトラメチルシクロペンタジエニル)チタンジクロライド、 Dimethylsilylene bis (cyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (3-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-n- Butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3-n-butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,4 -Dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,5-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3,4-dimethylcyclopentadienyl) Titanium dichloride, dimethylsilylene bis (2,3-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,4-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,5-ethylmethylcyclo) Pentadienyl) titanium dichloride, dimethylsilylene bis (3,5-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,3,4-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2, 3,5-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (tetramethylcyclopentadienyl) titanium dichloride,

ジメチルシリレンビス(インデニル)チタンジクロライド、ジメチルシリレンビス(2−メチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−tert−ブチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,4,7−トリメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−イソプロピルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−5−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−ナフチルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、 Dimethylsilylenebis (indenyl) titanium dichloride, dimethylsilylenebis (2-methylindenyl) titanium dichloride, dimethylsilylenebis (2-tert-butylindenyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylindenyl) titanium Dichloride, dimethylsilylene bis (2,4,7-trimethylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-isopropylindenyl) titanium dichloride, dimethylsilylene bis (4,5-benzindenyl) titanium dichloride, dimethyl Silylene bis (2-methyl-4,5-benzindenyl) titanium dichloride, dimethylsilylene bis (2-phenylindenyl) titanium dichloride, dimethylsilylene bis (4-phenyl) Indenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-5-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-naphthyl) Indenyl) titanium dichloride, dimethylsilylenebis (4,5,6,7-tetrahydroindenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(インデニル)(フルオレニル)チタンジクロライド、ジメチルシリレンビス(フルオレニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (tetra Methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadiene) Enyl) (fluorenyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilyl (Indenyl) (fluorenyl) titanium dichloride, dimethylsilylene bis (fluorenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (tetramethylcyclopentadienyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (fluorenyl) ) Titanium dichloride,

シクロペンタジエニルチタントリクロライド、ペンタメチルシクロペンタジエニルチタントリクロライド、シクロペンタジエニル(ジメチルアミド)チタンジクロライド、シクロペンタジエニル(フェノキシ)チタンジクロライド、シクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジ−tert−ブチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−tert−ブチルフェニル)チタンジクロライド、インデニル(2,6−ジイソプロピルフェニル)チタンジクロライド、フルオレニル(2,6−ジイソプロピルフェニル)チタンジクロライド、 Cyclopentadienyl titanium trichloride, pentamethylcyclopentadienyl titanium trichloride, cyclopentadienyl (dimethylamido) titanium dichloride, cyclopentadienyl (phenoxy) titanium dichloride, cyclopentadienyl (2,6-dimethylphenyl) ) Titanium dichloride, cyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, cyclopentadienyl (2,6-di-tert-butylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-dimethyl) Phenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-tert-butylphenyl) thi Njikuroraido, indenyl (2,6-diisopropylphenyl) titanium dichloride, fluorenyl (2,6-diisopropylphenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-dimethyl -2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-phenyl-2) -Phenoxy Titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-trimethylsilyl-2- Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-chloro-) 2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride Id, dimethylsilylene (cyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (methylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) 5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopenta Dienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (methyl) Cyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilyl Down (methylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(n−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (n-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, Dimethylsilylene (n- Tilcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) Titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) ( 3,5-diamil- -Phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium Dichloride,

ジメチルシリレン(tert−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tert-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5) -Methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3 -Tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (tert-butylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene ( tert-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tetramethylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3 -Tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethyl Len (tetramethylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2- Phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadieni) ) (3,5-Diamyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (1- Naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (trimethylsilylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-methoxy) -2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (trimethylsilylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadi) Enyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(インデニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (indenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (indenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl) Rudimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-diamil-2-phenoxy) titanium dichloride Dimethylsilylene (indenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(フルオレニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (fluorenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (fluorenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) ( -Tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl -5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-diamil-2-phenoxy) ) Titanium dichloride, dimethylsilylene (fluorenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (1-naphthoxy-2-yl) titanium dichloride,

(tert−ブチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(メチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(エチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(ベンジルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(フェニルフォスファイド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(tert−ブチルアミド)インデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)フルオレニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)インデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)フルオレニルジメチルシランチタンジクロライド、 (Tert-Butylamide) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (methylamido) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (ethylamido) tetramethylcyclopentadienyl- 1,2-ethanediyltitanium dichloride, (tert-butylamide) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (benzylamido) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (phenylphosphide) tetramethylcyclopentadi Enyldimethylsilane titanium dichloride, (tert-butylamido) indenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) tetrahydroyl Denyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) fluorenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) indenyldimethylsilane titanium dichloride, (tert-butylamido) tetrahydroindenyldimethylsilane titanium Dichloride, (tert-butylamido) fluorenyldimethylsilane titanium dichloride,

(ジメチルアミノメチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノエチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノプロピル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(N−ピロリジニルエチル)テトラメチルシクロペンタジエニルチタンジクロライド、(B−ジメチルアミノボラベンゼン)シクロペンタジエニルチタンジクロライド、シクロペンタジエニル(9−メシチルボラアントラセニル)チタンジクロライド、などや、これらの化合物のチタンをジルコニウムまたはハフニウムに変更した化合物、(2−フェノキシ)を(3−フェニル−2−フェノキシ)、(3−トリメチルシリル−2−フェノキシ)、または(3−tert−ブチルジメチルシリル−2−フェノキシ)に変更した化合物、ジメチルシリレンをメチレン、エチレン、ジメチルメチレン(イソプロピリデン)、ジフェニルメチレン、ジエチルシリレン、ジフェニルシリレン、またはジメトキシシリレンに変更した化合物、ジクロライドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジフェニル、ジベンジル、ジメトキシド、ジエトキシド、ジ(n−プロポキシド)、ジ(イソプロポキシド)、ジフェノキシド、またはジ(ペンタフルオロフェノキシド)に変更した化合物、トリクロライドをトリフルオライド、トリブロマイド、トリアイオダイド、トリメチル、トリエチル、トリイソプロピル、トリフェニル、トリベンジル、トリメトキシド、トリエトキシド、トリ(n−プロポキシド)、トリ(イソプロポキシド)、トリフェノキシド、またはトリ(ペンタフルオロフェノキシド)に変更した化合物などを例示することができる。 (Dimethylaminomethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminoethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminopropyl) tetramethylcyclopentadienyl titanium (III) dichloride (N-pyrrolidinylethyl) tetramethylcyclopentadienyl titanium dichloride, (B-dimethylaminoborabenzene) cyclopentadienyl titanium dichloride, cyclopentadienyl (9-mesitylboraanthracenyl) titanium dichloride, Or compounds in which titanium of these compounds is changed to zirconium or hafnium, (2-phenoxy) is changed to (3-phenyl-2-phenoxy), (3-trimethylsilyl-2-phenoxy), or (3-ter -Butyldimethylsilyl-2-phenoxy), dimethylsilylene changed to methylene, ethylene, dimethylmethylene (isopropylidene), diphenylmethylene, diethylsilylene, diphenylsilylene, or dimethoxysilylene, dichloride changed to difluoride, di Compound, trichloride changed to bromide, diiodide, dimethyl, diethyl, diisopropyl, diphenyl, dibenzyl, dimethoxide, diethoxide, di (n-propoxide), di (isopropoxide), diphenoxide, or di (pentafluorophenoxide) Trifluoride, tribromide, triiodide, trimethyl, triethyl, triisopropyl, triphenyl, tribenzyl, trimethoxide, trieth Sid, tri (n- propoxide), tri (isopropoxide), tri phenoxide or a compound was changed to tri (pentafluorophenyl phenoxide), etc., can be exemplified.

また一般式[1]で表される遷移金属化合物のμ−オキソタイプの遷移金属化合物の具体例としては、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]などが挙げられる。また、これらの化合物のクロライドをフルオライド、ブロマイド、アイオダイド、メチル、エチル、イソプロピル、フェニル、ベンジル、メトキシド、エトキシド、n−プロポキシド、イソプロポキシド、フェノキシド、またはペンタフルオロフェノキシドに変更した化合物などを例示することができる。   Specific examples of the transition metal compound of the transition metal compound represented by the general formula [1] include μ-oxobis [isopropylidene (cyclopentadienyl) (2-phenoxy) titanium chloride], μ -Oxobis [isopropylidene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [isopropylidene (methylcyclopentadienyl) (2-phenoxy) titanium chloride ], Μ-oxobis [isopropylidene (methylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [isopropylidene (tetramethylcyclopentadienyl) (2 -Phenoxy) titanium chloride], μ-oxobis [ Sopropylidene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [dimethylsilylene (cyclopentadienyl) (2-phenoxy) titanium chloride], μ -Oxobis [dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [dimethylsilylene (methylcyclopentadienyl) (2-phenoxy) titanium chloride ], [Mu] -oxobis [dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], [mu] -oxobis [dimethylsilylene (tetramethylcyclopentadienyl) (2 -Phenoxy) chita Chloride], .mu. Okisobisu [dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], and the like. Examples include compounds in which the chloride of these compounds is changed to fluoride, bromide, iodide, methyl, ethyl, isopropyl, phenyl, benzyl, methoxide, ethoxide, n-propoxide, isopropoxide, phenoxide, or pentafluorophenoxide. can do.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、下記の助触媒成分(I)が担持されてなる助触媒担体(A)と、アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)と、有機アルミニウム化合物(C)とを接触させてなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法をあげることができる。   The method for producing the ethylene-α-olefin copolymer of the present invention includes two promoters (A) on which the following promoter component (I) is supported and a crosslinking group such as an alkylene group or a silylene group. In the presence of a polymerization catalyst obtained by contacting a metallocene complex (B) having a ligand having a structure with a cyclopentadienyl-type anion skeleton and an organoaluminum compound (C), ethylene and an α-olefin The method of copolymerizing can be mentioned.

[助触媒担体(A)]
ジエチル亜鉛(以下、成分(a)と称する)、フッ素化フェノール(以下、成分(b)と称する)、水(以下、成分(c)と称する)、無機微粒子状担体(以下、成分(d)と称する)、およびトリメチルジシラザン(((CH33Si)2NH)(以下、成分(e)と称する)を接触させて得られる担体。
[Cocatalyst carrier (A)]
Diethyl zinc (hereinafter referred to as component (a)), fluorinated phenol (hereinafter referred to as component (b)), water (hereinafter referred to as component (c)), inorganic particulate carrier (hereinafter referred to as component (d) And trimethyldisilazane (((CH 3 ) 3 Si) 2 NH) (hereinafter referred to as component (e)).

成分(b)として、3,4,5−トリフルオロフェノール、3,4,5−トリス(トリフルオロメチル)フェノール、3,4,5−トリス(ペンタフルオロフェニル)フェノール、3,5−ジフルオロ−4−ペンタフルオロフェニルフェノール、または4,5,6,7,8−ペンタフルオロ−2−ナフトールを用いることにより、C値の小さいエチレン−α−オレフィン共重合体を得ることができる。   As component (b), 3,4,5-trifluorophenol, 3,4,5-tris (trifluoromethyl) phenol, 3,4,5-tris (pentafluorophenyl) phenol, 3,5-difluoro- By using 4-pentafluorophenylphenol or 4,5,6,7,8-pentafluoro-2-naphthol, an ethylene-α-olefin copolymer having a small C value can be obtained.

成分(b)としてより好ましくは、3,4,5−トリフルオロフェノール、4,5,6,7,8−ペンタフルオロ−2−ナフトールであり、さらに好ましくは3,4,5−トリフルオロフェノールである。   More preferably, component (b) is 3,4,5-trifluorophenol or 4,5,6,7,8-pentafluoro-2-naphthol, more preferably 3,4,5-trifluorophenol. It is.

成分(d)の無機微粒子状担体としては、好ましくはシリカゲルである。   The inorganic particulate carrier of component (d) is preferably silica gel.

本発明では、成分(a)、成分(b)、成分(c)の各成分の使用量が、各成分の使用量のモル比率を成分(a):成分(b):成分(c)=1:y:zとするとき、yおよびzが下記式を満足するように使用する。
|2−y−2z|≦1 (2)
z≧−2.5y+2.48 (3)
y<1 (4)
(上記式(2)〜(4)において、yおよびzは0よりも大きな数を表す。)
成分(a)の使用量に対する成分(b)の使用量のモル比率yおよび成分(a)の使用量に対する成分(c)の使用量のモル比率zは、上記式(2)、(3)および(4)を満たす限り特に制限されない。zの値が式(3)の右辺の値よりも小さい場合、得られるエチレン−α−オレフィン共重合体の流動活性化エネルギー(Ea)が低くなることがあり、yの値が式(4)の右辺の値よりも大きい場合、エチレン−α−オレフィン共重合体の流動活性化エネルギー(Ea)が低くなる場合がある。具体的に、yは通常0.55〜0.99の値をとるが、より好ましくは0.55〜0.95であり、さらに好ましくは0.6〜0.9であり、最も好ましくは0.7〜0.8である。
In the present invention, the use amount of each component of component (a), component (b), and component (c) is the molar ratio of the use amount of each component: component (a): component (b): component (c) = When 1: y: z, y and z are used so as to satisfy the following formula.
| 2-y-2z | ≦ 1 (2)
z ≧ −2.5y + 2.48 (3)
y <1 (4)
(In the above formulas (2) to (4), y and z represent numbers greater than 0.)
The molar ratio y of the usage amount of the component (b) to the usage amount of the component (a) and the molar ratio z of the usage amount of the component (c) to the usage amount of the component (a) are the above formulas (2) and (3). As long as the above and (4) are satisfied, there is no particular limitation. When the value of z is smaller than the value on the right side of Formula (3), the flow activation energy (Ea) of the resulting ethylene-α-olefin copolymer may be low, and the value of y may be Formula (4). When the value is larger than the value on the right side, the flow activation energy (Ea) of the ethylene-α-olefin copolymer may be low. Specifically, y usually takes a value of 0.55 to 0.99, more preferably 0.55 to 0.95, still more preferably 0.6 to 0.9, and most preferably 0. .7 to 0.8.

また、成分(a)に対して使用する成分(d)の量としては、成分(a)と成分(d)との接触により得られる粒子に含まれる成分(a)のジエチル亜鉛に由来する亜鉛原子が、得られる粒子1gに含まれる亜鉛原子のモル数にして、0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。成分(d)の無機微粒子状担体に対して使用する成分(e)の量としては、成分(d)の無機微粒子状担体1gにつき成分(e)のトリメチルジシラザン0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。   The amount of component (d) used relative to component (a) is zinc derived from diethylzinc of component (a) contained in particles obtained by contact between component (a) and component (d). The amount of atoms is preferably 0.1 mmol or more, more preferably 0.5 to 20 mmol, in terms of the number of moles of zinc atoms contained in 1 g of the obtained particles. The amount of the component (e) used for the inorganic fine particle carrier of the component (d) is such that the trimethyldisilazane of the component (e) is 0.1 mmol or more per 1 g of the inorganic fine particle carrier of the component (d). The amount is preferably 0.5 to 20 mmol, and more preferably 0.5 to 20 mmol.

アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)の金属原子としては、周期律表第IV属原子が好ましく、ジルコニウム、ハフニウムがより好ましい。また、配位子としては、インデニル基、メチルインデニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基が好ましく、架橋基としては、エチレン基、ジメチルメチレン基、ジメチルシリレン基が好ましい。更には、金属原子が有する残りの置換基としては、ジフェノキシ基やジアルコキシ基が好ましい。メタロセン系錯体(B)として好ましくは、エチレンビス(1−インデニル)ジルコニウムジフェノキシドをあげることができる。   As a metal atom of the metallocene complex (B) having a ligand having a structure in which two cyclopentadienyl type anion skeletons are bonded by a bridging group such as an alkylene group or a silylene group, a group IV atom of the periodic table is Zirconium and hafnium are preferred. The ligand is preferably an indenyl group, a methylindenyl group, a methylcyclopentadienyl group, or a dimethylcyclopentadienyl group, and the crosslinking group is preferably an ethylene group, a dimethylmethylene group, or a dimethylsilylene group. Furthermore, as a remaining substituent which a metal atom has, a diphenoxy group and a dialkoxy group are preferable. Preferred examples of the metallocene complex (B) include ethylene bis (1-indenyl) zirconium diphenoxide.

有機アルミニウム化合物(C)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。   Examples of the organoaluminum compound (C) include trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and trinormaloctylaluminum, with triisobutylaluminum and trinormaloctylaluminum being preferred.

メタロセン系錯体(B)の使用量は、助触媒担体(A)1gに対し、好ましくは5×10-6〜5×10-4molである。また有機アルミニウム化合物(C)の使用量として、好ましくは、メタロセン系錯体(B)の金属原子モル数に対する有機アルミニウム化合物(C)のアルミニウム原子のモル数の比(Al/M)で表して、1〜2000である。 The amount of the metallocene complex (B) used is preferably 5 × 10 −6 to 5 × 10 −4 mol with respect to 1 g of the promoter support (A). The amount of the organoaluminum compound (C) used is preferably expressed by the ratio (Al / M) of the number of moles of aluminum atoms in the organoaluminum compound (C) to the number of moles of metal atoms in the metallocene complex (B). 1 to 2000.

上記の助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とを接触させてなる重合触媒においては、必要に応じて、助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とに、電子供与性化合物(D)を接触させてなる重合触媒としてもよい。該電子供与性化合物(D)として、好ましくはトリエチルアミン、トリノルマルオクチルアミンをあげることができる。   In the polymerization catalyst obtained by contacting the promoter support (A), the metallocene complex (B) and the organoaluminum compound (C), the promoter support (A) and the metallocene complex (B ) And the organoaluminum compound (C) may be a polymerization catalyst obtained by contacting the electron donating compound (D). Preferred examples of the electron donating compound (D) include triethylamine and trinormaloctylamine.

得られるエチレン−α−オレフィン共重合体の分子量分布を大きくする観点からは、電子供与性化合物(D)を使用することが好ましく、電子供与性化合物(D)の使用量としては、有機アルミニウム化合物(C)のアルミニウム原子のモル数に対して、0.1mol%以上であることがより好ましく、1mol%以上であることが更に好ましい。なお、該使用量は、重合活性を高める観点から、好ましくは10mol%以下であり、より好ましくは5mol%以下である。   From the viewpoint of increasing the molecular weight distribution of the obtained ethylene-α-olefin copolymer, the electron donating compound (D) is preferably used, and the amount of the electron donating compound (D) used is an organoaluminum compound. The amount is more preferably 0.1 mol% or more, still more preferably 1 mol% or more, relative to the number of moles of aluminum atoms in (C). The amount used is preferably 10 mol% or less, more preferably 5 mol% or less, from the viewpoint of increasing the polymerization activity.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、微粒子状担体に助触媒成分(I)が担持されてなる助触媒担体(A)を用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合触媒成分、例えば、前記助触媒担体(A)と、メタロセン系錯体と、有機アルミニウム化合物とを用いて少量のオレフィンを重合して得られた予備重合触媒成分を、触媒成分または触媒として用いて、エチレンとα−オレフィンとを共重合する方法により、得ることができる。   As a method for producing the ethylene-α-olefin copolymer of the present invention, a small amount of olefin is polymerized (hereinafter referred to as “copolymer catalyst carrier (A)”) in which the promoter component (I) is supported on a particulate carrier. This is referred to as prepolymerization.) A prepolymerization catalyst component obtained by polymerization, for example, a prepolymer obtained by polymerizing a small amount of olefin using the promoter support (A), a metallocene complex, and an organoaluminum compound. The polymerization catalyst component can be obtained by a method of copolymerizing ethylene and α-olefin using the catalyst component or catalyst.

有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。   Examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and trinormaloctylaluminum, with triisobutylaluminum and trinormaloctylaluminum being preferred.

本発明のエチレン−α−オレフィン共重合体を製造する際に用いる予備重合触媒成分の製造方法としては、下記工程(1)、(2)および(3)を有する処理工程により、助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを接触処理する方法が挙げられる。
工程(1):メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒を40℃以上で熱処理する工程。
工程(2):工程(1)で熱処理してなる熱処理物と助触媒担体(A)とを接触処理する工程。
工程(3):工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とを接触処理する工程。
As a method for producing a prepolymerized catalyst component used in producing the ethylene-α-olefin copolymer of the present invention, a co-catalyst carrier (by a treatment step having the following steps (1), (2) and (3) is used. Examples thereof include a method in which A), a metallocene complex, and an organoaluminum compound are contact-treated.
Step (1): A step of heat-treating a saturated aliphatic hydrocarbon compound solvent containing a metallocene complex at 40 ° C. or higher.
Step (2): A step of contacting the heat-treated product obtained by heat treatment in step (1) with the cocatalyst support (A).
Step (3): a step of contact-treating the contact-treated product obtained by the contact treatment in Step (2) and the organoaluminum compound.

工程(1)は、メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒を40℃以上で熱処理する工程である。メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒は、飽和脂肪族炭化水素化合物溶媒中にメタロセン系錯体を投入する方法等により調製される。メタロセン系錯体は、通常、粉体、あるいは、飽和脂肪族炭化水素化合物液のスラリーとして、投入される。   Step (1) is a step of heat-treating a saturated aliphatic hydrocarbon compound solvent containing a metallocene complex at 40 ° C. or higher. The saturated aliphatic hydrocarbon compound solvent containing the metallocene complex is prepared by a method of introducing the metallocene complex into the saturated aliphatic hydrocarbon compound solvent. The metallocene complex is usually charged as a powder or a slurry of a saturated aliphatic hydrocarbon compound liquid.

メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒の調製に用いられる飽和脂肪族炭化水素化合物としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和脂肪族炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。   Examples of the saturated aliphatic hydrocarbon compound used for the preparation of the saturated aliphatic hydrocarbon compound solvent containing the metallocene complex include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane and the like. It is done. These may be used alone or in combination of two or more. The saturated aliphatic hydrocarbon compound preferably has a boiling point of 100 ° C. or less at normal pressure, more preferably 90 ° C. or less at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal hexane. More preferred is cyclohexane.

メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒の熱処理は、メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒の温度を、40℃以上の温度に調整すればよい。また、熱処理中は、溶媒を静置してもよく、溶媒を撹拌してもよい。該温度は、成形加工性を高める観点から、好ましくは45℃以上であり、より好ましくは50℃以上である。また、触媒活性を高める観点から、好ましくは100℃以下であり、より好ましくは80℃以下である。熱処理の時間は、通常、0.5〜12時間である。該時間は、成形加工性を高める観点から、好ましくは1時間以上であり、より好ましくは2時間以上である。また、触媒性能の安定性から、好ましくは6時間以下であり、より好ましくは4時間以下である。   The heat treatment of the saturated aliphatic hydrocarbon compound solvent containing the metallocene complex may be performed by adjusting the temperature of the saturated aliphatic hydrocarbon compound solvent containing the metallocene complex to a temperature of 40 ° C. or higher. Further, during the heat treatment, the solvent may be allowed to stand or the solvent may be stirred. The temperature is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of improving molding processability. Moreover, from a viewpoint of improving a catalyst activity, Preferably it is 100 degrees C or less, More preferably, it is 80 degrees C or less. The heat treatment time is usually 0.5 to 12 hours. The time is preferably 1 hour or more, and more preferably 2 hours or more, from the viewpoint of improving molding processability. Moreover, from stability of catalyst performance, Preferably it is 6 hours or less, More preferably, it is 4 hours or less.

工程(2)は、上記工程(1)で熱処理してなる熱処理物(すなわち、メタロセン系錯体を含有する飽和脂肪族炭化水素化合物溶媒)と、助触媒担体(A)とを接触処理する工程である。接触処理では、熱処理物と助触媒担体(A)とが接触すればよく、通常、熱処理物に助触媒担体(A)を投入する方法、飽和脂肪族炭化水素化合物中に、熱処理物と助触媒担体(A)とを投入する方法が用いられる。また、助触媒担体(A)は、通常、粉体、あるいは、飽和脂肪族炭化水素化合物溶媒のスラリーとして、投入される。   Step (2) is a step of contact-treating the heat-treated product (that is, a saturated aliphatic hydrocarbon compound solvent containing a metallocene complex) heat-treated in step (1) above and the promoter support (A). is there. In the contact treatment, the heat-treated product and the cocatalyst support (A) may be brought into contact with each other. Usually, the method of introducing the promoter support (A) into the heat-treated product, the heat-treated product and the cocatalyst in the saturated aliphatic hydrocarbon compound. A method of charging the carrier (A) is used. The cocatalyst carrier (A) is usually charged as a powder or a slurry of a saturated aliphatic hydrocarbon compound solvent.

工程(2)での接触処理の温度は、好ましくは70℃以下であり、より好ましくは60℃以下であり、また好ましくは10℃以上であり、より好ましくは20℃以上である。接触処理の時間は、通常、0.1時間〜2時間である。   The temperature of the contact treatment in the step (2) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower, preferably 10 ° C. or higher, more preferably 20 ° C. or higher. The time for the contact treatment is usually 0.1 to 2 hours.

工程(3)は、上記工程(2)で接触処理してなる接触処理物(すなわち、工程(1)で熱処理してなる熱処理物と助触媒担体(A)との接触処理物)と有機アルミニウム化合物とを接触処理する工程である。接触処理では、工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とが接触すればよく、通常、工程(2)で接触処理してなる接触処理物に有機アルミニウム化合物を投入する方法、飽和脂肪族炭化水素化合物中に、工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とを投入する方法が用いられる。   In step (3), the contact-treated product obtained by contact treatment in step (2) (that is, the contact-treated product of the heat-treated product heat-treated in step (1) and the cocatalyst support (A)) and organoaluminum This is a step of contact treatment with a compound. In the contact treatment, the contact treatment product formed in the step (2) may be brought into contact with the organoaluminum compound. Usually, the organoaluminum compound is introduced into the contact treatment product obtained in the contact treatment in the step (2). A method is used in which a contact-treated product obtained by contact treatment in step (2) and an organoaluminum compound are introduced into a saturated aliphatic hydrocarbon compound.

工程(3)での接触処理の温度は、好ましくは70℃以下であり、より好ましくは60℃以下である。また、予備重合の活性の発現を効率的に行う観点から、好ましくは10℃以上であり、より好ましくは20℃以上である。また、接触処理の時間は、通常、0.01時間〜0.5時間である。   The temperature of the contact treatment in the step (3) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower. Further, from the viewpoint of efficiently expressing the prepolymerization activity, the temperature is preferably 10 ° C or higher, more preferably 20 ° C or higher. The time for the contact treatment is usually 0.01 hours to 0.5 hours.

工程(3)の接触処理は、オレフィンの存在下で行うことが好ましい。該オレフィンとしては、通常、予備重合での原料となるオレフィンが用いられる。オレフィンの量としては、助触媒担体(A)1gあたり、0.05〜1gであることが好ましい。   The contact treatment in the step (3) is preferably performed in the presence of an olefin. As the olefin, an olefin that is a raw material in prepolymerization is usually used. The amount of olefin is preferably 0.05 to 1 g per 1 g of the promoter support (A).

上記の工程(1)〜(3)は、飽和脂肪族炭化水素化合物と助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを、予備重合反応器に、別々に投入することにより、全工程を予備重合反応器内で行ってもよく、工程(2)および(3)を予備重合反応器内で行ってもよく、また、工程(3)を予備重合反応器内で行ってもよい。   The above steps (1) to (3) are carried out by separately introducing the saturated aliphatic hydrocarbon compound, the promoter support (A), the metallocene complex and the organoaluminum compound into the prepolymerization reactor. The step may be performed in the prepolymerization reactor, the steps (2) and (3) may be performed in the prepolymerization reactor, and the step (3) may be performed in the prepolymerization reactor. .

予備重合は、上記工程(1)、(2)および(3)を有する処理工程により、助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを接触処理されてなる接触処理物の存在下、オレフィンを予備重合(少量のオレフィンを重合)するものである。該予備重合は、通常、スラリー重合法で行われ、該予備重合は、回分式、半回分式、連続式のいずれの方式を用いてもよい。更には、該予備重合は、水素等の連鎖移動剤を添加して行ってもよい。   The prepolymerization is carried out in the presence of a contact-treated product obtained by contact-treating the cocatalyst support (A), the metallocene complex and the organoaluminum compound by the treatment step having the steps (1), (2) and (3). The olefin is prepolymerized (a small amount of olefin is polymerized). The prepolymerization is usually performed by a slurry polymerization method, and the prepolymerization may be performed by any of batch, semi-batch, and continuous methods. Furthermore, the prepolymerization may be performed by adding a chain transfer agent such as hydrogen.

予備重合をスラリー重合法で行う場合、溶媒としては、通常、飽和脂肪族炭化水素化合物が用いられ、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和脂肪族炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。   When the prepolymerization is performed by a slurry polymerization method, a saturated aliphatic hydrocarbon compound is usually used as the solvent, and examples thereof include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane and the like. . These may be used alone or in combination of two or more. The saturated aliphatic hydrocarbon compound preferably has a boiling point of 100 ° C. or less at normal pressure, more preferably 90 ° C. or less at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal hexane. More preferred is cyclohexane.

予備重合をスラリー重合法で行う場合、スラリー濃度としては、溶媒1リットル当たりの助触媒担体(A)の量が、通常0.1〜600gであり、好ましくは0.5〜300gである。予備重合温度は、通常−20〜100℃であり、好ましくは0〜80℃である。予備重合中、重合温度は適宜変更してもよいが、予備重合を開始する温度は、45℃以下とすることが好ましく、40℃以下とすることが好ましい。また、予備重合中の気相部でのオレフィン類の分圧は、通常0.001〜2MPaであり、好ましくは0.01〜1MPaである。予備重合時間は、通常2分間〜15時間である。   When the prepolymerization is performed by the slurry polymerization method, the slurry concentration is usually 0.1 to 600 g, preferably 0.5 to 300 g, of the promoter support (A) per liter of the solvent. The prepolymerization temperature is usually -20 to 100 ° C, preferably 0 to 80 ° C. During the prepolymerization, the polymerization temperature may be appropriately changed, but the temperature at which the prepolymerization is started is preferably 45 ° C. or less, and preferably 40 ° C. or less. Moreover, the partial pressure of olefins in the gas phase part during the prepolymerization is usually 0.001 to 2 MPa, preferably 0.01 to 1 MPa. The prepolymerization time is usually 2 minutes to 15 hours.

予備重合に用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができ、好ましくは、エチレンのみ、あるいはエチレンとα−オレフィンとを併用して、更に好ましくは、エチレンのみ、あるいは1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のα−オレフィンとエチレンとを併用して用いられる。   Examples of the olefin used for the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene, cyclohexene and the like. These may be used alone or in combination of two or more, preferably ethylene alone, or ethylene and α-olefin in combination, more preferably ethylene alone, or 1-butene, 1-hexene and 1 -It is used in combination with at least one α-olefin selected from octene and ethylene.

予備重合触媒成分中の予備重合された重合体の含有量は、助触媒担体(A)1g当たり、通常0.01〜1000gであり、好ましくは0.05〜500gであり、より好ましくは0.1〜200gである。   The content of the prepolymerized polymer in the prepolymerized catalyst component is usually 0.01 to 1000 g, preferably 0.05 to 500 g, more preferably 0.00, per 1 g of the promoter support (A). 1 to 200 g.

エチレン−α−オレフィン共重合体の製造方法としては、気相重合法が好ましく、連続気相重合法がより好ましい。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に撹拌翼が設置されていてもよい。   As a manufacturing method of an ethylene-α-olefin copolymer, a gas phase polymerization method is preferable, and a continuous gas phase polymerization method is more preferable. The gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.

予備重合された予備重合触媒成分をエチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。   As a method for supplying the prepolymerized prepolymerized catalyst component to the continuous polymerization reaction tank accompanied by the formation of ethylene-α-olefin copolymer particles, an inert gas such as nitrogen and argon, hydrogen, ethylene, etc. are usually used. And a method in which the components are supplied without moisture, and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state.

エチレン−α−オレフィン共重合体の気相重合の重合温度としては、通常、エチレン−α−オレフィン共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。さらに好ましくは90℃よりも低温の具体的には70℃〜87℃の範囲である。また、エチレン−α−オレフィン共重合体の溶融流動性を調節する目的で、水素を分子量調節剤として添加してもよい。そして、混合ガス中に不活性ガスを共存させてもよい。なお、予備重合触媒成分を用いる場合、適宜、有機アルミニウム化合物等の助触媒成分を用いてもよい。   The polymerization temperature for the gas phase polymerization of the ethylene-α-olefin copolymer is usually lower than the temperature at which the ethylene-α-olefin copolymer melts, preferably 0 to 150 ° C, more preferably 30 to 30 ° C. 100 ° C. More preferably, the temperature is lower than 90 ° C, specifically in the range of 70 ° C to 87 ° C. Further, hydrogen may be added as a molecular weight modifier for the purpose of adjusting the melt fluidity of the ethylene-α-olefin copolymer. An inert gas may coexist in the mixed gas. In addition, when using a prepolymerization catalyst component, you may use promoter components, such as an organoaluminum compound, suitably.

水素の添加量を調整することにより、得られるエチレン−α−オレフィン共重合体のC値も調節することができる。水素の添加量を減少させると、得られるエチレン−α−オレフィン共重合体のC値は小さくなる傾向があり、添加量を増加させると、得られるエチレン−α−オレフィン共重合体のC値は大きくなる傾向がある。水素の添加量は、エチレンに対するモル比で、通常0.0001〜50%であり、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは10%以下である。   By adjusting the amount of hydrogen added, the C value of the resulting ethylene-α-olefin copolymer can also be adjusted. When the addition amount of hydrogen is decreased, the C value of the obtained ethylene-α-olefin copolymer tends to be small, and when the addition amount is increased, the C value of the obtained ethylene-α-olefin copolymer is There is a tendency to grow. The amount of hydrogen added is usually 0.0001 to 50%, preferably 30% or less, more preferably 20% or less, and even more preferably 10% or less, as a molar ratio to ethylene.

本発明のエチレン−α−オレフィン共重合体は、必要に応じて、公知の添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラー等があげられる。   The ethylene-α-olefin copolymer of the present invention may contain known additives as necessary. Examples of the additive include antioxidants, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, dripping agents, pigments, fillers and the like.

本発明のエチレン−α−オレフィン共重合体は、公知の成形加工方法、例えば、インフレーションフィルム成形加工法やTダイフィルム成形加工法などの押出成形法、射出成形法、圧縮成形法などが用いられ、押出成形法が好適に用いられる。   For the ethylene-α-olefin copolymer of the present invention, a known molding method such as an extrusion molding method such as an inflation film molding method or a T-die film molding method, an injection molding method, a compression molding method, or the like is used. An extrusion method is preferably used.

本発明のエチレン−α−オレフィン共重合体は、種々の形体に成形して用いられる。成形品の形体は特に限定されないが、フィルム、シート、容器(トレイ、ボトルなど)などに用いられる。該成形品は、該共重合体からなる単層または該共重合体を含む多層の形態で用いられる。また、該成形品は乳(生乳、牛乳など)、乳製品(バター、はつ酵乳など)、乾燥した食品類などの包装に用いる食品包装材;医薬品包装材;半導体製品などの包装に用いる電子部品包装材;表面保護材などの用途に好適に用いられる。   The ethylene-α-olefin copolymer of the present invention is molded into various forms and used. The shape of the molded product is not particularly limited, but it can be used for films, sheets, containers (tray, bottle, etc.) and the like. The molded article is used in the form of a single layer composed of the copolymer or a multilayer including the copolymer. In addition, the molded product is a food packaging material used for packaging milk (raw milk, milk, etc.), dairy products (butter, fermented milk, etc.), dried foods, etc .; pharmaceutical packaging materials; electronic products used for packaging semiconductor products, etc. Component packaging material; suitably used for applications such as surface protection materials.

以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性は、次の方法に従って測定した。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
The physical properties in Examples and Comparative Examples were measured according to the following methods.

(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
(1) Melt flow rate (MFR, unit: g / 10 minutes)
In the method defined in JIS K7210-1995, measurement was performed by the A method under the conditions of a load of 21.18 N and a temperature of 190 ° C.

(2)メルトフローレート比(MFRR)
JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(MFR−H、単位:g/10分)を、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)で除した値を、MFRRとした。
(2) Melt flow rate ratio (MFRR)
In the method specified in JIS K7210-1995, the melt flow rate (MFR-H, unit: g / 10 minutes) measured under conditions of a test load of 211.82 N and a measurement temperature of 190 ° C. is specified in JIS K7210-1995. In this method, the value divided by the melt flow rate (MFR) measured under the conditions of a load of 21.18 N and a temperature of 190 ° C. was defined as MFRR.

(3)密度(d、単位:Kg/m3
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
(3) Density (d, unit: Kg / m 3 )
It measured according to the method prescribed | regulated to A method among JISK7112-1980. The sample was annealed according to JIS K6760-1995.

(4)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(4) Flow activation energy (Ea, unit: kJ / mol)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), a melt complex viscosity-angular frequency curve at 130 ° C., 150 ° C., 170 ° C. and 190 ° C. was measured under the following measurement conditions. From the obtained melt complex viscosity-angular frequency curve, calculation software Rhios V. Using 4.4.4, a master curve of a melt complex viscosity-angular frequency curve at 190 ° C. was created, and activation energy (Ea) was determined.
<Measurement conditions>
Geometry: Parallel plate Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Nitrogen

(5)最大引取り速度(MTV、単位:m/分)
東洋精機製作所製 メルトテンションテスターを用いて、所定の温度で、9.5mmφのバレルに充填した溶融樹脂を、ピストン降下速度5.5mm/分(剪断速度7.4sec-1)で、径が2.09mmφ、長さ8mmのオリフィスから押出し、該押し出された溶融樹脂を、径が50mmφの巻き取りロールを用い、40rpm/分の巻き取り上昇速度で巻き取り、溶融樹脂が破断する直前における引取り速度を、その温度での最大引取り速度とする。150℃での最大引取り速度をMTV150、190℃での最大引取り速度をMTV190とする。これらの値が大きいほど、高速加工性に優れることを示す。
(5) Maximum take-up speed (MTV, unit: m / min)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, a molten resin filled in a barrel of 9.5 mmφ at a predetermined temperature has a piston descending speed of 5.5 mm / min (shear speed of 7.4 sec −1 ) and a diameter of 2 0.09mmφ, 8mm long extruded from the orifice, the extruded molten resin is taken up at a take-up speed of 40rpm / min using a take-up roll having a diameter of 50mmφ, and taken up immediately before the molten resin breaks The speed is the maximum take-off speed at that temperature. The maximum take-up speed at 150 ° C. is MTV 150 and the maximum take-up speed at 190 ° C. is MTV 190 . It shows that it is excellent in high-speed workability, so that these values are large.

(6)溶融張力(MT、単位:cN)
東洋精機製作所製 メルトテンションテスターを用いて、所定の温度で、9.5mmφのバレルに充填した溶融樹脂を、ピストン降下速度5.5mm/分(剪断速度7.4sec-1)で、径が2.09mmφ、長さ8mmのオリフィスから押出し、該押し出された溶融樹脂を、径が50mmφの巻き取りロールを用い、40rpm/分の巻き取り上昇速度で巻き取り、溶融樹脂が破断する直前の張力値を、その温度での溶融張力とする。150℃での溶融張力をMT150、190℃での溶融張力をMT190とする。これらの値が大きいほど、加工性に優れることを示す。
(6) Melt tension (MT, unit: cN)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, a molten resin filled in a barrel of 9.5 mmφ at a predetermined temperature has a piston descending speed of 5.5 mm / min (shear speed of 7.4 sec −1 ) and a diameter of 2 0.09mmφ, 8mm in length, extruded from an orifice, and the extruded molten resin was wound at a winding speed of 40rpm / min using a winding roll having a diameter of 50mmφ, and the tension value immediately before the molten resin broke Is the melt tension at that temperature. The melt tension at 150 ° C. is MT 150 and the melt tension at 190 ° C. is MT 190 . It shows that it is excellent in workability, so that these values are large.

(7)分子量分布(Mw/Mn)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
(7) Molecular weight distribution (Mw / Mn)
Using a gel permeation chromatograph (GPC) method, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured under the following conditions (1) to (8), and the molecular weight distribution (Mw / Mn) was determined. The baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
(1) Equipment: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: Differential refraction
(8) Molecular weight reference material: Standard polystyrene

(8)混練トルク値(単位:N・m)
ブラベンダー社製ブラベンダープラスチコーダーPLV−151を用いて、ミキシング部容積60cc、樹脂量40g、温度160℃、回転数60rpmにて混練し、30分後のトルクを測定した。この数値が低いほど成形加工性に優れることを示す。
(8) Kneading torque value (unit: N · m)
Using a Brabender Plasticcoder PLV-151 manufactured by Brabender, the mixing part volume was 60 cc, the resin amount was 40 g, the temperature was 160 ° C., and the rotation speed was 60 rpm, and the torque after 30 minutes was measured. It shows that it is excellent in molding processability, so that this figure is low.

(9)ヘキサン抽出量(C、単位:重量%)
エチレン−α−オレフィン共重合体を、150℃の熱プレス機により厚み100μのフィルムに成形し、該シートから約1gの試料を切り出し、フラスコにとった。フラスコ中の試料にn−ヘキサン400mlを加え、あらかじめ50℃±0.2℃に調整したウォーターバスにフラスコを入れて加熱を行った。フラスコ中のn―ヘキサンの温度が50℃に達した後、マグネット式スターラーを使用して2時間撹拌を行った。攪拌後、n−ヘキサンに不溶な試料を濾過によって取り除いた。濾別回収した濾液部は、n−ヘキサンを除去し、さらに真空乾燥機で2時間乾燥して乾固物を得た。フラスコにとった試料の重量、および、濾液部から得られた乾固物の重量を用い、下記式で算出した値をヘキサン抽出量とした。
C=100×{乾固物の重量(g)/試料の重量(g)}
(9) Amount of hexane extracted (C, unit: wt%)
The ethylene-α-olefin copolymer was formed into a film having a thickness of 100 μm by a heat press at 150 ° C., and a sample of about 1 g was cut out from the sheet and taken into a flask. 400 ml of n-hexane was added to the sample in the flask, and the flask was placed in a water bath adjusted to 50 ° C. ± 0.2 ° C. and heated. After the temperature of n-hexane in the flask reached 50 ° C., stirring was performed for 2 hours using a magnetic stirrer. After stirring, a sample insoluble in n-hexane was removed by filtration. The filtrate part collected by filtration removed n-hexane and further dried for 2 hours in a vacuum dryer to obtain a dried product. Using the weight of the sample taken in the flask and the weight of the dried product obtained from the filtrate part, the value calculated by the following formula was used as the hexane extraction amount.
C = 100 × {weight of dried product (g) / weight of sample (g)}

(10)溶融加工時の発煙量(単位:CPM)
ユニオン社製φ30mm押出機にTダイス(ダイス幅200mm、ダイリップ0.4mm)を装着し、ダイスの温度を290℃に設定した。本押出機より4kg/hで各エチレン−α−オレフィン共重合体を押出し、1分間に発生する煙を捕集し、日本カノマックス社製デジタル粉塵計MODEL3411を用いて発煙量を測定した。発煙量は、5回の測定値を平均した値を用いた。また、1CPMは、0.3μmのステアリン酸粒子0.01mg/m3での発煙量を示す。
(10) Smoke generation during melt processing (unit: CPM)
A T-die (die width 200 mm, die lip 0.4 mm) was attached to a Union φ30 mm extruder, and the die temperature was set to 290 ° C. Each ethylene-α-olefin copolymer was extruded at 4 kg / h from this extruder, smoke generated in one minute was collected, and the amount of smoke was measured using a digital dust meter MODEL 3411 manufactured by Nippon Kanomax. As the amount of smoke generated, a value obtained by averaging five measurement values was used. Further, 1 CPM represents the amount of smoke generated at 0.01 mg / m 3 of stearic acid particles of 0.3 μm.

参考例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。

Reference example 1
(1) Preparation of co-catalyst support Silica (Sypolol 948 manufactured by Devison Corp .; 50% volume average particle size = 55 μm; pore capacity = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.9 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.4 kg of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to form a slurry, which was allowed to stand overnight.

上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)3.46kgとヘキサン2.05kgとを投入し、撹拌した。その後、5℃に冷却した後、3,4,5−トリフルオロフェノール1.55kgとトルエン2.88kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.221kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体成分(以下、助触媒担体(a1)と称する。)を得た。 To the slurry obtained above, 3.46 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 2.05 kg of hexane were added and stirred. Then, after cooling to 5 ° C., a mixed solution of 1.54 kg of 3,4,5-trifluorophenol and 2.88 kg of toluene was added dropwise over 60 minutes while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cooled to 5 ° C., was added dropwise for 1.5 hours while maintaining the H 2 O0.221kg the temperature of the reactor to 5 ° C.. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. After stirring, at room temperature, the supernatant was withdrawn to a residual amount of 16 L, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Thereafter, drying was performed to obtain a solid component (hereinafter referred to as promoter support (a1)).

(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド144mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次に上記助触媒担体(a1)0.5kgを投入し、オートクレーブを31℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、続いてトリイソブチルアルミニウム207mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.6kg/Hrと0.5リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.6kg/Hrと10.9リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a1)1g当り37gのポリエチレンを含有する予備重合触媒成分を得た。該ポリエチレンの[η]は1.51dl/gであった。
(2) Preparation of pre-polymerization catalyst component After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters previously purged with nitrogen, 144 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added and the autoclave The mixture was heated to 50 ° C. and stirred for 2 hours. Next, 0.5 kg of the cocatalyst carrier (a1) is charged, the autoclave is cooled to 31 ° C., and the system is stabilized. Then, 0.1 kg of ethylene and 0.1 liter of hydrogen (room temperature and normal pressure volume) are charged. Subsequently, 207 mmol of triisobutylaluminum was added to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.6 kg / Hr and 0.5 liter (room temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C., and ethylene and hydrogen were each 3.6 kg / Hr. And 10.9 liters (normal temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 6 hours. After the polymerization was completed, ethylene, butane, hydrogen and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 37 g of polyethylene per 1 g of the promoter support (a1). The [η] of the polyethylene was 1.51 dl / g.

(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を85℃、重合圧力を2MPa、エチレンに対する水素モル比を1.5%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.0%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウム、およびトリエチルアミン(トリイソブチルアルミニウムに対するモル比3%)を連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間3.8hrであった。得られた重合体パウダーに酸化防止剤(住友化学社製 スミライザーGP)750ppmをブレンドし、押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
(3) Production of ethylene-α-olefin copolymer Using the prepolymerization catalyst component obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. It was. As polymerization conditions, the polymerization temperature was 85 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 1.5%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 1.0%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. Further, the prepolymerization catalyst component, triisobutylaluminum, and triethylamine (a molar ratio of 3% with respect to triisobutylaluminum) were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 3.8 hr. The obtained polymer powder was blended with 750 ppm of an antioxidant (Sumitomo Chemical Co., Ltd., Sumitizer GP), and using an extruder (LCM50, manufactured by Kobe Steel), the feed speed was 50 kg / hr, the screw rotation speed was 450 rpm, and the gate was opened. An ethylene-1-hexene copolymer was obtained by granulation under conditions of a degree of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

実施例
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド146mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを31℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、参考例1の(1)助触媒担体の調製で得た助触媒担体(a1)0.7kgを投入し、続いてトリイソブチルアルミニウム280mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.6kg/Hrと0.7リットル(常温常圧体積)で連続供給しながら30分経過した後、51℃へ昇温するとともに、エチレンと水素をそれぞれ4.5kg/Hrと13.4リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(a1)1g当り33.5gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.45dl/gであった。

Example 1
(1) Preparation of pre-polymerization catalyst component Into an autoclave with a stirrer having an internal volume of 210 liters that had been previously purged with nitrogen, 80 liters of butane was added, and then 146 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added to the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 31 ° C. and the system was stabilized, 0.1 kg of ethylene and 0.1 liter of hydrogen (room temperature and normal pressure volume) were charged to prepare (1) promoter support in Reference Example 1. 0.7 kg of the obtained cocatalyst carrier (a1) was charged, and then 280 mmol of triisobutylaluminum was charged to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.6 kg / Hr and 0.7 liter (normal temperature and normal pressure volume), respectively, the temperature was raised to 51 ° C., and ethylene and hydrogen were respectively 4.5 kg / Hr. And 13.4 liters (room temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 6 hours. After completion of the polymerization, ethylene, butane, hydrogen gas and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 33.5 g of polyethylene per 1 g of the promoter support (a1). [Η] of polyethylene was 1.45 dl / g.

(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ブテンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を87℃、重合圧力を2MPa、エチレンに対する水素モル比を1.3%、エチレンと1−ブテンと1−ヘキセンとの合計に対する1−ブテンと1−ヘキセンモル比をそれぞれ2.1%と0.7%とした。重合中はガス組成を一定に維持するためにエチレン、1−ブテン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウム、およびトリエチルアミン(トリイソブチルアルミニウムに対するモル比3%)を連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4.4hrであった。得られた重合体パウダーに酸化防止剤(住友化学社製 スミライザーGP)750ppmをブレンドし、押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒することによりエチレン−1−ブテン−1−ヘキセン共重合体を得た。得られたエチレン−1−ブテン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
(2) Production of ethylene-α-olefin copolymer Using the prepolymerization catalyst component obtained above, ethylene, 1-butene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus. A coalesced powder was obtained. As polymerization conditions, the polymerization temperature was 87 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 1.3%, and the 1-butene and 1-hexene molar ratios to the total of ethylene, 1-butene and 1-hexene were respectively 2.1% and 0.7%. During the polymerization, ethylene, 1-butene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. Further, the prepolymerization catalyst component, triisobutylaluminum, and triethylamine (a molar ratio of 3% with respect to triisobutylaluminum) were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4.4 hr. The obtained polymer powder was blended with 750 ppm of an antioxidant (Sumitomo Chemical Co., Ltd., Sumitizer GP), and using an extruder (LCM50, manufactured by Kobe Steel), the feed speed was 50 kg / hr, the screw rotation speed was 450 rpm, and the gate was opened. An ethylene-1-butene-1-hexene copolymer was obtained by granulation under the conditions of a degree of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-butene-1-hexene copolymer.

参考例2
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。

Reference example 2
(1) Preparation of co-catalyst support Silica (Sypolol 948 manufactured by Devison Corp .; 50% volume average particle size = 55 μm; pore capacity = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.9 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.4 kg of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to form a slurry, which was allowed to stand overnight.

上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)1.73kgとヘキサン1.02kgとを投入し、撹拌した。その後、5℃に冷却した後、3,4,5−トリフルオロフェノール0.78kgとトルエン1.44kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、22℃に冷却し、H2O0.11kgを反応器の温度を22℃に保ちながら1.5時間で滴下した。滴下終了後、22℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、助触媒担体(a2)を得た。 To the slurry obtained above, 1.73 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 1.02 kg of hexane were added and stirred. Then, after cooling to 5 ° C., a mixed solution of 0.78 kg of 3,4,5-trifluorophenol and 1.44 kg of toluene was added dropwise over 60 minutes while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cooled to 22 ° C., was added dropwise for 1.5 hours while maintaining the H 2 O0.11kg the temperature of the reactor 22 ° C.. After completion of dropping, the mixture was stirred at 22 ° C. for 1.5 hours, then heated to 40 ° C., stirred at 40 ° C. for 2 hours, further heated to 80 ° C., and stirred at 80 ° C. for 2 hours. After stirring, at room temperature, the supernatant was withdrawn to a residual amount of 16 L, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Thereafter, the promoter support (a2) was obtained by drying.

(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド91mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、参考例2の(1)助触媒担体の調製で得た助触媒担体(a2)0.7kgを投入し、続いてトリイソブチルアルミニウム263mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.9kg/Hrと0.7リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ4.5kg/Hrと13.4リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(a2)1g当り33.8gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.21dl/gであった。
(2) Preparation of pre-polymerization catalyst component 80 liters of butane was charged into an autoclave with a stirrer having an internal volume of 210 liters previously purged with nitrogen, and then 91 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was charged into the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, 0.1 kg of ethylene and 0.1 liter of hydrogen (room temperature and normal pressure volume) were charged to prepare (1) promoter support in Reference Example 2. 0.7 kg of the obtained promoter support (a2) was charged, and then 263 mmol of triisobutylaluminum was charged to initiate polymerization. After 30 minutes passed while continuously supplying ethylene and hydrogen at 0.9 kg / Hr and 0.7 liter (normal temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C. and ethylene and hydrogen were respectively 4.5 kg / Hr. And 13.4 liters (room temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 6 hours. After completion of the polymerization, ethylene, butane, hydrogen gas and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 33.8 g of polyethylene per 1 g of the promoter support (a2). [Η] of polyethylene was 1.21 dl / g.

(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度を84℃、エチレンに対する水素モル比を1.2%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.4%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
(3) Production of ethylene-α-olefin copolymer Using the prepolymerization catalyst component obtained above, the polymerization temperature was 84 ° C., the hydrogen molar ratio to ethylene was 1.2%, and the total of ethylene and 1-hexene was except for changing 1-Hekisenmoru ratio to 1.4% in the same manner as in reference example 1, was carried out copolymerization of ethylene and 1-hexene in a continuous type fluidized bed gas phase polymerization apparatus, in the same manner as in reference example 1 Granulation gave an ethylene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

実施例
(1)エチレン−α−オレフィン共重合体の製造
参考例2の(3)で得た予備重合触媒成分を用い、重合温度を84℃、エチレンに対する水素モル比を0.8%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.5%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。

Example 2
(1) Production of ethylene-α-olefin copolymer
Using the prepolymerization catalyst component obtained in (3) of Reference Example 2 , the polymerization temperature was 84 ° C., the hydrogen molar ratio to ethylene was 0.8%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 1. was changed to 5% in the same manner as in reference example 1, continuous fluidized bed gas phase polymerization apparatus to implement the copolymerization of ethylene and 1-hexene, ethylene -1 granulated in the same manner as in reference example 1 -A hexene copolymer was obtained. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

参考例3
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド106mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを31℃まで降温して系内が安定した後、エチレンを0.2kg、水素を2リットル(常温常圧体積)仕込み、参考例1の(1)助触媒担体の調製で得た助触媒担体(a1)0.7kgを投入し、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.7kg/Hrと4.2リットル(常温常圧体積)で連続供給しながら30分経過した後、51℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと21リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(a1)1g当り16.2gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.04dl/gであった。

Reference example 3
(1) Preparation of prepolymerization catalyst component 80 liters of butane was charged into an autoclave with a stirrer having an internal volume of 210 liters that had been previously purged with nitrogen, and then 106 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was charged into the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 31 ° C. and the inside of the system was stabilized, 0.2 kg of ethylene and 2 liters of hydrogen (room temperature and normal pressure volume) were charged, and obtained by (1) Preparation of a promoter support in Reference Example 1. Copolymer support (a1) 0.7 kg was charged, and then 158 mmol of triisobutylaluminum was charged to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.7 kg / Hr and 4.2 liters (room temperature and normal pressure volume), respectively, the temperature was raised to 51 ° C. and ethylene and hydrogen were respectively supplied at 3.5 kg / Hr. And 21 liters (room temperature and normal pressure volume) / Hr were continuously fed for a prepolymerization for a total of 4 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum-dried at room temperature to obtain a prepolymerized catalyst component containing 16.2 g of polyethylene per 1 g of the promoter support (a1). [Η] of polyethylene was 1.04 dl / g.

(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度を85℃、エチレンに対する水素モル比を1.4%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.4%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。

(2) Production of ethylene-α-olefin copolymer Using the prepolymerized catalyst component obtained above, the polymerization temperature is 85 ° C., the hydrogen molar ratio to ethylene is 1.4%, and the total of ethylene and 1-hexene. except for changing 1-Hekisenmoru ratio to 1.4% in the same manner as in reference example 1, was carried out copolymerization of ethylene and 1-hexene in a continuous type fluidized bed gas phase polymerization apparatus, in the same manner as in reference example 1 Granulation gave an ethylene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

参考例4
(1)エチレン−α−オレフィン共重合体の製造
参考例3の(1)で得た予備重合触媒成分を用い、重合温度を85℃、エチレンに対する水素モル比を1.8%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.3%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
Reference example 4
(1) Production of ethylene-α-olefin copolymer
Using the prepolymerization catalyst component obtained in (1) of Reference Example 3 , the polymerization temperature was 85 ° C., the hydrogen molar ratio to ethylene was 1.8%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 1. was changed to 3% in the same manner as in reference example 1, continuous fluidized bed gas phase polymerization apparatus to implement the copolymerization of ethylene and 1-hexene, ethylene -1 granulated in the same manner as in reference example 1 -A hexene copolymer was obtained. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

実施例
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド87mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを31℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、参考例2の(1)助触媒担体の調製で得た助触媒担体(a2)0.7kgを投入し、続いてトリイソブチルアルミニウム263mmolを投入して重合を開始した。エチレンと水素をそれぞれ1.0kg/Hrと1.9リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.1kg/Hrと9.4リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(a2)1g当り21.1gのポリエチレンを含有する予備重合触媒成分を得た。

Example 3
(1) Preparation of pre-polymerization catalyst component 80 liters of butane was charged into an autoclave with a stirrer having an internal volume of 210 liters previously purged with nitrogen, and then 87 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was charged into the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 31 ° C. and the system was stabilized, 0.1 kg of ethylene and 0.1 liter of hydrogen (room temperature and normal pressure volume) were charged to prepare (1) promoter support in Reference Example 2. 0.7 kg of the obtained promoter support (a2) was charged, and then 263 mmol of triisobutylaluminum was charged to initiate polymerization. After 30 minutes have elapsed while continuously supplying ethylene and hydrogen at 1.0 kg / Hr and 1.9 liters (room temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C. and ethylene and hydrogen were each 3.1 kg / Hr. And 9.4 liters (room temperature and normal pressure volume) / Hr were continuously fed for a total of 6 hours of prepolymerization. After the completion of the polymerization, ethylene, butane, hydrogen gas and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 21.1 g of polyethylene per 1 g of the promoter support (a2).

(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度を85℃、エチレンに対する水素モル比を1.4%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.3%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。

(2) Production of ethylene-α-olefin copolymer Using the prepolymerized catalyst component obtained above, the polymerization temperature is 85 ° C., the hydrogen molar ratio to ethylene is 1.4%, and the total of ethylene and 1-hexene. except for changing 1-Hekisenmoru ratio to 1.3% in the same manner as in reference example 1, was carried out copolymerization of ethylene and 1-hexene in a continuous type fluidized bed gas phase polymerization apparatus, in the same manner as in reference example 1 Granulation gave an ethylene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.

実施例
(1)エチレン−α−オレフィン共重合体の製造
実施例7(1)と同様に調製した予備重合触媒成分を用い、重合温度を82℃、エチレンに対する水素モル比を1.2%、エチレンと1−オクテンとの合計に対する1−オクテンモル比を0.39%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−オクテンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−オクテン共重合体を得た。得られたエチレン−1−オクテン共重合体の物性評価の結果を表1に示した。

Example 4
(1) Production of ethylene-α-olefin copolymer Using a prepolymerized catalyst component prepared in the same manner as in Example 7 (1), the polymerization temperature was 82 ° C, the molar ratio of hydrogen to ethylene was 1.2%, In the same manner as in Reference Example 1 except that the molar ratio of 1-octene to the total of 1-octene was changed to 0.39%, ethylene and 1-octene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus, Granulation was performed in the same manner as in Reference Example 1 to obtain an ethylene-1-octene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-octene copolymer.

参考例5
(1)エチレン−α−オレフィン共重合体の製造
実施例(1)と同様に調製した予備重合触媒成分を用い、重合温度を84℃、エチレンに対する水素モル比を1.4%、エチレンと1−ブテンと1−オクテンとの合計に対する1−ブテンと1−オクテンのモル比を、それぞれ1.1%と0.34%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ブテンと1−オクテンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ブテン−1−オクテン共重合体を得た。得られたエチレン−1−ブテン−1−オクテン共重合体の物性評価の結果を表1に示した。


Reference Example 5
(1) Production Example 3 of Ethylene-α-Olefin Copolymer Using a prepolymerization catalyst component prepared in the same manner as in (1), the polymerization temperature was 84 ° C., the molar ratio of hydrogen to ethylene was 1.4%, and ethylene Continuous fluidized bed as in Reference Example 1 except that the molar ratio of 1-butene and 1-octene to the sum of 1-butene and 1-octene was changed to 1.1% and 0.34%, respectively. Ethylene, 1-butene and 1-octene were copolymerized in a gas phase polymerization apparatus and granulated in the same manner as in Reference Example 1 to obtain an ethylene-1-butene-1-octene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-butene-1-octene copolymer.


比較例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.91kgとトルエン1.43kgとの混合溶液を反応器の温度を5℃に保ちながら33分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン21kgで6回、洗浄を行った。その後、トルエン6.9kgを加えスラリーとし、一晩静置した。
Comparative Example 1
(1) Preparation of co-catalyst support Silica (Sypolol 948 manufactured by Devison Corp .; 50% volume average particle size = 55 μm; pore capacity = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. Then, after cooling to 5 ° C., a mixed solution of 0.91, 1 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.43 kg of toluene was kept for 33 minutes while maintaining the reactor temperature at 5 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 21 kg of toluene. Thereafter, 6.9 kg of toluene was added to form a slurry, which was allowed to stand overnight.

上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)2.05kgとヘキサン1.3kgとを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.77kgとトルエン1.17kgとの混合溶液を、反応器の温度を5℃に保ちながら61分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.11kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間撹拌した。その後、室温にてジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)1.4kgとヘキサン0.8kgとを投入した。5℃に冷却した後、3,4,5−トリフルオロフェノール0.42kgとトルエン0.77kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.077kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体成分(以下、助触媒担体(b)と称する。)を得た。 To the slurry obtained above, 2.05 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 1.3 kg of hexane were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.77 kg of pentafluorophenol and 1.17 kg of toluene was added dropwise over 61 minutes while keeping the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Thereafter, the mixture was cooled to 5 ° C., and 0.11 kg of H 2 O was added dropwise over 1.5 hours while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1.5 hours, then heated to 55 ° C. and stirred at 55 ° C. for 2 hours. Thereafter, 1.4 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 0.8 kg of hexane were added at room temperature. After cooling to 5 ° C., a mixed solution of 0.44 kg of 3,4,5-trifluorophenol and 0.77 kg of toluene was added dropwise over 60 minutes while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cooled to 5 ° C., was added dropwise for 1.5 hours while maintaining the H 2 O0.077kg the temperature of the reactor to 5 ° C.. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. After stirring, at room temperature, the supernatant was withdrawn to a residual amount of 16 L, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Then, the solid component (henceforth a promoter support (b)) was obtained by drying.

(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド109mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンを0.05kg、水素を0.05リットル(常温常圧体積)仕込み、上記助触媒担体(b)0.7kgを投入し、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.7kg/Hrと0.7リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと10.2リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(b)1g当り15.9gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.45dl/gであった。
(2) Preparation of prepolymerization catalyst component 80 liters of butane was charged into an autoclave with a stirrer having an internal volume of 210 liters that had been previously purged with nitrogen, and then 109 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was charged into the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, 0.05 kg of ethylene and 0.05 liter of hydrogen (room temperature and normal pressure volume) were charged, and 0.7 kg of the promoter support (b) was charged. Subsequently, 158 mmol of triisobutylaluminum was added to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.7 kg / Hr and 0.7 liter (room temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C. and ethylene and hydrogen were respectively supplied at 3.5 kg / Hr. And 10.2 liters (room temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 4 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 15.9 g of polyethylene per 1 g of the promoter support (b). [Η] of polyethylene was 1.45 dl / g.

(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度が90℃、エチレンに対する水素モル比を1.8%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.1%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。


(3) Production of ethylene-α-olefin copolymer Using the prepolymerized catalyst component obtained above, the polymerization temperature is 90 ° C., the hydrogen molar ratio to ethylene is 1.8%, and the total of ethylene and 1-hexene. except for changing 1-Hekisenmoru ratio to 1.1% in the same manner as in reference example 1, was carried out copolymerization of ethylene and 1-hexene in a continuous type fluidized bed gas phase polymerization apparatus, in the same manner as in reference example 1 Granulation gave an ethylene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.


比較例2
(1)エチレン−α−オレフィン共重合体の製造
比較例1の(2)で得た予備重合触媒成分を用い、重合温度が85℃、エチレンに対する水素モル比を1.5%、エチレンと1−ブテンと1−ヘキセンとの合計に対する1−ブテンと1−ヘキセンのモル比を2.1%と0.6%に変更した以外は実施例と同様にして、連続式流動床気相重合装置でエチレンと1−ブテンと1−ヘキセンの共重合を実施し、実施例と同様にして造粒してエチレン−1−ブテン−1−ヘキセン共重合体を得た。得られたエチレン−1−ブテン−1−ヘキセン共重合体の物性評価の結果を表1に示した。

Comparative Example 2
(1) Production of ethylene-α-olefin copolymer Using the prepolymerization catalyst component obtained in (2) of Comparative Example 1, the polymerization temperature was 85 ° C., the molar ratio of hydrogen to ethylene was 1.5%, and ethylene and 1 -Continuous fluidized bed gas phase polymerization in the same manner as in Example 1 except that the molar ratio of 1-butene and 1-hexene to the sum of butene and 1-hexene was changed to 2.1% and 0.6%. Copolymerization of ethylene, 1-butene and 1-hexene was carried out using an apparatus, and granulation was carried out in the same manner as in Example 1 to obtain an ethylene-1-butene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-butene-1-hexene copolymer.

比較例3
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド74mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを33℃まで降温して系内が安定した後、エチレンを0.2kg、水素を2.0リットル(常温常圧体積)仕込み、上記助触媒担体(b)0.7kgを投入し、続いてトリイソブチルアルミニウム210mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.7kg/Hrと4.2リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと21.0リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(b)1g当り17.2gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は0.56dl/gであった。
Comparative Example 3
(1) Preparation of prepolymerization catalyst component Into an autoclave with a stirrer having an internal volume of 210 liters which had been previously purged with nitrogen, 80 liters of butane was added, and then 74 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added to the autoclave. The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 33 ° C. and the system was stabilized, 0.2 kg of ethylene and 2.0 liters of hydrogen (room temperature and normal pressure volume) were charged, and 0.7 kg of the promoter support (b) was charged. Subsequently, 210 mmol of triisobutylaluminum was added to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.7 kg / Hr and 4.2 liters (room temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C. and ethylene and hydrogen were respectively supplied at 3.5 kg / Hr. And 21.0 liters (normal temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 4 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 17.2 g of polyethylene per 1 g of the promoter support (b). [Η] of polyethylene was 0.56 dl / g.

(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度が86℃、エチレンに対する水素モル比を1.6%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.2%に変更した以外は参考例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、参考例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。


(2) Production of ethylene-α-olefin copolymer Using the pre-polymerization catalyst component obtained above, the polymerization temperature is 86 ° C., the hydrogen molar ratio to ethylene is 1.6%, and the total of ethylene and 1-hexene is except for changing 1-Hekisenmoru ratio to 1.2% in the same manner as in reference example 1, was carried out copolymerization of ethylene and 1-hexene in a continuous type fluidized bed gas phase polymerization apparatus, in the same manner as in reference example 1 Granulation gave an ethylene-1-hexene copolymer. Table 1 shows the results of physical properties evaluation of the obtained ethylene-1-hexene copolymer.


Figure 0005205899
Figure 0005205899

Claims (7)

エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位を有し、メルトフローレート(MFR;単位はg/10分である。)が0.01〜100g/10分であり、密度(d;単位はkg/mである。)が890〜970kg/mであり、流動の活性化エネルギー(Ea)が50kJ/mol以上であり、ゲル・パーミエイション・クロマトグラフ測定により測定される分子量分布(Mw/Mn)が3以上であり、ヘキサン抽出量(C;単位は重量%である。)が2.8%以下であり、190℃での溶融張力MT 190 が6.0以上であることを満たすエチレン−α−オレフィン共重合体。 It has a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and has a melt flow rate (MFR; the unit is g / 10 minutes) of 0.01 to 100 g. / 10 min, a density (d;. unit is kg / m 3) is 890~970kg / m 3, the flow activation energy (Ea) is at 50 kJ / mol or more, gel Pamiei molecular weight distribution measured by Deployment chromatography measurement (Mw / Mn) of 3 or more, hexane extraction (C;. units are% by weight) of Ri der less 2.8%, at 190 ° C. An ethylene-α-olefin copolymer satisfying a melt tension MT 190 of 6.0 or more . メタロセン系オレフィン重合触媒の存在下、気相重合法により得られる請求項1に記載のエチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer according to claim 1, which is obtained by a gas phase polymerization method in the presence of a metallocene olefin polymerization catalyst. エチレン−1−ヘキセン共重合体である請求項1または2に記載のエチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer according to claim 1 or 2, which is an ethylene-1-hexene copolymer. エチレン−1−オクテン共重合体である請求項1または2に記載のエチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer according to claim 1 or 2, which is an ethylene-1-octene copolymer. エチレン−1−ブテン−1−ヘキセン共重合体である請求項1または2に記載のエチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer according to claim 1 or 2, which is an ethylene-1-butene-1-hexene copolymer. エチレン−1−ブテン−1−オクテン共重合体である請求項1または2に記載のエチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer according to claim 1 or 2, which is an ethylene-1-butene-1-octene copolymer. 請求項1〜5いずれかに記載のエチレン−α−オレフィン共重合体を含有する食品包装材。   The food packaging material containing the ethylene-alpha-olefin copolymer in any one of Claims 1-5.
JP2007251063A 2006-09-29 2007-09-27 Ethylene-α-olefin copolymer and food packaging material Active JP5205899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251063A JP5205899B2 (en) 2006-09-29 2007-09-27 Ethylene-α-olefin copolymer and food packaging material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006267181 2006-09-29
JP2006267181 2006-09-29
JP2007251063A JP5205899B2 (en) 2006-09-29 2007-09-27 Ethylene-α-olefin copolymer and food packaging material

Publications (2)

Publication Number Publication Date
JP2008106264A JP2008106264A (en) 2008-05-08
JP5205899B2 true JP5205899B2 (en) 2013-06-05

Family

ID=39439888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251063A Active JP5205899B2 (en) 2006-09-29 2007-09-27 Ethylene-α-olefin copolymer and food packaging material

Country Status (1)

Country Link
JP (1) JP5205899B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159398A (en) * 2008-12-10 2010-07-22 Sumitomo Chemical Co Ltd Packaging material for radiation exposure, method for insect killing and sterilization of packaged food, method for controlling germination of packaged agricultural crop, packaged food and packaged agricultural crop
JP2012051119A (en) * 2010-08-31 2012-03-15 Sumitomo Chemical Co Ltd Heat shrinkable film
WO2018164169A1 (en) 2017-03-10 2018-09-13 住友化学株式会社 Film
EP3816198A1 (en) 2019-10-28 2021-05-05 Sumitomo Chemical Company Limited Ethylene-alpha-olefin copolymer, method of producing ethylene-alpha-olefin copolymer, ethylene-based resin composition, and film
EP4403583A3 (en) 2022-12-27 2024-09-25 Sumitomo Chemical Company Limited Ethylene-alpha-olefin copolymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013541B2 (en) * 2000-12-26 2007-11-28 住友化学株式会社 Modified particle and method for producing the same, carrier, catalyst component for addition polymerization, catalyst for addition polymerization, and method for producing addition polymer
JP2002275322A (en) * 2001-03-19 2002-09-25 Ube Ind Ltd Polyethylene composition for injection molding and injection molded item thereof
JP4218265B2 (en) * 2001-06-27 2009-02-04 住友化学株式会社 Addition polymerization catalyst, prepolymerized addition polymerization catalyst component, and method for producing addition polymer
JP4251051B2 (en) * 2003-09-26 2009-04-08 住友化学株式会社 Manufacturing method of T-die cast film
JP2006307139A (en) * 2004-10-26 2006-11-09 Sumitomo Chemical Co Ltd ETHYLENE-alpha-OLEFIN COPOLYMER

Also Published As

Publication number Publication date
JP2008106264A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
US7595371B2 (en) Ethylene-α-olefin copolymer and food packaging material
JP5205899B2 (en) Ethylene-α-olefin copolymer and food packaging material
JP5092543B2 (en) Process for producing prepolymerized catalyst for olefin polymerization and process for producing olefin polymer
JP5151838B2 (en) Agricultural film
JP5135731B2 (en) Prepolymerization catalyst component production method, prepolymerization catalyst component and olefin polymer production method
JP5369368B2 (en) Ethylene-α-olefin copolymer, molded product, and method for producing ethylene-α-olefin copolymer
US7485687B2 (en) Ethylene-α-olefin copolymer, molding thereof and process for producing the copolymer
US8410231B2 (en) Production process of olefin polymer
US20070105711A1 (en) Process for producing prepolymerization catalyst component, prepolymerization catalyst component and process for producing olefin polymer using the same
WO2008105546A1 (en) Production process of olefin polymer
JP4807026B2 (en) Prepolymerization catalyst component and method for producing olefin polymer
JP2010168460A (en) Film
JP4539346B2 (en) Method for producing prepolymerized catalyst component and method for producing olefin polymer
US20110021726A1 (en) Prepolymerization catalyst component and process for producing the same
JP4967301B2 (en) Process for producing olefin polymer
JP4483603B2 (en) Method for producing prepolymerized catalyst component and method for producing olefin polymer
JP2009079182A (en) Manufacturing method for olefinic polymer
JP2009138176A (en) Rubber-packaging film and packaged rubber body
JP4433978B2 (en) Process for producing olefin polymer
JP2010168459A (en) Film and method for producing film
JP5714957B2 (en) Process for producing olefin polymer
JP2013159713A (en) Manufacturing method for prepolymerized catalyst component
JP2010159398A (en) Packaging material for radiation exposure, method for insect killing and sterilization of packaged food, method for controlling germination of packaged agricultural crop, packaged food and packaged agricultural crop
JP2011016994A (en) Method for producing olefin polymer
JP2010120999A (en) Prepolymerized catalyst for olefin polymerization, and method for producing olefin polymer

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080204

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5205899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350