JPWO2020046687A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020046687A5
JPWO2020046687A5 JP2021510722A JP2021510722A JPWO2020046687A5 JP WO2020046687 A5 JPWO2020046687 A5 JP WO2020046687A5 JP 2021510722 A JP2021510722 A JP 2021510722A JP 2021510722 A JP2021510722 A JP 2021510722A JP WO2020046687 A5 JPWO2020046687 A5 JP WO2020046687A5
Authority
JP
Japan
Prior art keywords
article
oxide ceramic
ceramic particles
weight percent
photopolymerizable slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021510722A
Other languages
Japanese (ja)
Other versions
JP2021536381A (en
JP7555331B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/047604 external-priority patent/WO2020046687A1/en
Publication of JP2021536381A publication Critical patent/JP2021536381A/en
Publication of JPWO2020046687A5 publication Critical patent/JPWO2020046687A5/ja
Application granted granted Critical
Publication of JP7555331B2 publication Critical patent/JP7555331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (14)

非酸化物セラミック部品の製造方法であって、
a)光重合性スラリーを得ることであって、前記光重合性スラリーが、複数の非酸化物セラミック粒子と、少なくとも1種の放射線硬化性モノマーと、溶媒と、光開始剤と、阻害剤と、少なくとも1種の焼結助剤と、任意成分である分散剤と、を含む、得ることと、
b)前記光重合性スラリーを選択的に硬化させてゲル化物品を得ることと、
c)前記ゲル化物品を乾燥させてエアロゲル物品又はキセロゲル物品を形成することと、
d)前記エアロゲル物品又は前記キセロゲル物品を熱処理して多孔質セラミック物品を形成することと、
e)前記多孔質セラミック物品を焼結して焼結セラミック物品を得ることと、
を含む、製造方法。
A method for manufacturing a non-oxide ceramic component, comprising:
a) obtaining a photopolymerizable slurry, said photopolymerizable slurry comprising a plurality of non-oxide ceramic particles, at least one radiation curable monomer, a solvent, a photoinitiator and an inhibitor; , at least one sintering aid and an optional dispersant ;
b) selectively curing the photopolymerizable slurry to obtain a gelled article;
c) drying the gelled article to form an airgel or xerogel article;
d) heat treating said airgel article or said xerogel article to form a porous ceramic article;
e) sintering said porous ceramic article to obtain a sintered ceramic article;
A manufacturing method, including:
前記乾燥が超臨界流体乾燥工程を適用することにより行われる、請求項1に記載の方法。 2. The method of claim 1, wherein said drying is performed by applying a supercritical fluid drying process. 前記光重合性スラリーが、前記光重合性スラリーの総重量に基づいて30重量パーセント未満の前記非酸化物セラミック粒子を含好ましくは前記光重合性スラリーの総重量に基づいて20重量パーセント~30重量パーセント未満の非酸化物セラミック粒子を含む、請求項1又は2に記載の方法。 wherein said photopolymerizable slurry comprises less than 30 weight percent of said non-oxide ceramic particles based on the total weight of said photopolymerizable slurry, preferably from 20 weight percent to 20 weight percent based on the total weight of said photopolymerizable slurry; 3. The method of claim 1 or 2 , comprising less than 30 weight percent non-oxide ceramic particles . 前記非酸化物セラミック粒子が、炭化ケイ素、窒化ケイ素、炭化ホウ素、二ホウ化チタン、二ホウ化ジルコニウム、窒化ホウ素、炭化チタン、炭化ジルコニウム、窒化アルミニウム、六ホウ化カルシウム、MAX相、及びこれらの組み合わせからなる群から選択される、請求項1~のいずれか一項に記載の方法。 The non-oxide ceramic particles are silicon carbide, silicon nitride, boron carbide, titanium diboride, zirconium diboride, boron nitride, titanium carbide, zirconium carbide, aluminum nitride, calcium hexaboride, MAX phase, and A method according to any one of claims 1 to 3 , selected from the group consisting of combinations. 前記非酸化物セラミック粒子が、250ナノメートル~1マイクロメートル、500ナノメートル~1.5マイクロメートル、又は1マイクロメートル~10マイクロメートルの平均粒径を有する、請求項1~のいずれか一項に記載の方法。 5. The non-oxide ceramic particles of any one of claims 1-4 , wherein the non-oxide ceramic particles have an average particle size of 250 nanometers to 1 micrometer, 500 nanometers to 1.5 micrometers, or 1 micrometer to 10 micrometers. The method described in section. 前記光開始剤が、ヨードニウム塩、可視光増感剤、及び電子供与体化合物、を含む系を含む、請求項1~のいずれか一項に記載の方法。 The method of any one of claims 1-5 , wherein the photoinitiator comprises a system comprising an iodonium salt, a visible light sensitizer, and an electron donor compound. 前記光重合性スラリーを前記選択的に硬化させることが、3マイクロメートル~50マイクロメートルの厚さを有する前記光重合性スラリーの一部を硬化させることを含む、請求項1~のいずれか一項に記載の方法。 7. Any of claims 1-6 , wherein said selectively curing said photopolymerizable slurry comprises curing a portion of said photopolymerizable slurry having a thickness of between 3 micrometers and 50 micrometers. The method according to item 1. 前記焼結セラミック物品が、前記非酸化物セラミック粒子の理論密度に対して95%以上の密度を示す、請求項1~のいずれか一項に記載の方法。 A method according to any preceding claim, wherein the sintered ceramic article exhibits a density of 95% or greater relative to the theoretical density of the non-oxide ceramic particles. エアロゲルであって、
a)有機材料と、
b)前記エアロゲルの総重量パーセントに基づいて29~75重量パーセントの範囲の非酸化物セラミック粒子と、
c)少なくとも1種の焼結助剤と、
を含む、エアロゲル。
is an airgel,
a) an organic material;
b) non-oxide ceramic particles in the range of 29 to 75 weight percent based on the total weight percent of the airgel;
c) at least one sintering aid;
airgel, including
キセロゲルであって、
a)有機材料と、
b)前記キセロゲルの総重量パーセントに基づいて29~75重量パーセントの範囲の非酸化物セラミック粒子と、
c)少なくとも1種の焼結助剤と、
を含む、キセロゲル。
is a xerogel,
a) an organic material;
b) non-oxide ceramic particles in the range of 29 to 75 weight percent based on the total weight percent of said xerogel;
c) at least one sintering aid;
A xerogel, comprising:
多孔質セラミック物品であって、
a)前記多孔質セラミック物品の総重量に基づいて90~99重量パーセントの範囲の非酸化物セラミック粒子と、
b)少なくとも1種の焼結助剤と、
を含み、
前記非酸化物セラミック粒子が、前記多孔質セラミック物品中に、1つ以上の蛇行状若しくは弓状チャネル、1つ以上の内部建築ボイド(internal architectural voids)、1つ以上のアンダーカット、1つ以上の穿孔、又はこれらの組み合わせを画定し、前記多孔質セラミック物品が、長さ0.5mm以下の大きさを有する前記多孔質セラミック物品に必須の少なくとも1つの特徴を有する、
多孔質セラミック物品。
A porous ceramic article comprising:
a) non-oxide ceramic particles in the range of 90 to 99 weight percent based on the total weight of the porous ceramic article;
b) at least one sintering aid;
including
The non-oxide ceramic particles form one or more serpentine or arcuate channels, one or more internal architectural voids, one or more undercuts, one or more or a combination thereof, wherein the porous ceramic article has at least one feature essential to the porous ceramic article having a dimension of 0.5 mm or less in length;
A porous ceramic article.
非酸化物セラミック物品であって、
前記非酸化物セラミック物品中に、1つ以上の蛇行状若しくは弓状チャネル、1つ以上の内部建築ボイド(internal architectural voids)、1つ以上のアンダーカット、1つ以上の穿孔、又はこれらの組み合わせを画定する非酸化物セラミック材料を含み、前記非酸化物セラミック物品が、前記非酸化物セラミック材料の理論密度に対して95%以上の密度を示し、前記非酸化物セラミック物品が、長さ0.5mm以下の大きさを有する前記非酸化物セラミック物品に必須の少なくとも1つの特徴を有する、
非酸化物セラミック物品。
A non-oxide ceramic article,
one or more serpentine or arcuate channels, one or more internal architectural voids, one or more undercuts, one or more perforations, or combinations thereof in the non-oxide ceramic article. wherein the non-oxide ceramic article exhibits a density of 95% or greater relative to the theoretical density of the non-oxide ceramic material, the non-oxide ceramic article having a length of 0 having at least one feature essential to said non-oxide ceramic article having a size of 0.5 mm or less;
Non-oxide ceramic articles.
方法であって、
a)1つ以上のプロセッサを有する製造デバイスによって、物品の複数の層を規定するデータを含むデジタルオブジェクトを受信することと、
b)積層造形プロセスによる前記製造デバイスを用いて前記デジタルオブジェクトに基づく前記物品を生成することであって、前記物品が、光重合性スラリーを選択的に硬化させることにより得られるゲル化物品を含み、前記光重合性スラリーが、
1)複数の非酸化物セラミック粒子と、
2)少なくとも1種の放射線硬化性モノマーと、
3)溶媒と、
4)光開始剤と、
5)阻害剤と、
6)少なくとも1種の焼結助剤と、を含む、生成することと、
を含む、方法。
a method,
a) receiving, by a manufacturing device having one or more processors, a digital object containing data defining multiple layers of an article;
b) producing said article based on said digital object using said manufacturing device by an additive manufacturing process, said article comprising a gelled article obtained by selectively curing a photopolymerizable slurry; , the photopolymerizable slurry is
1) a plurality of non-oxide ceramic particles;
2) at least one radiation-curable monomer;
3) a solvent;
4) a photoinitiator;
5) an inhibitor;
6) producing, including at least one sintering aid;
A method, including
物品の3次元モデルを表すデータを含む非一時的機械可読媒体であって、3Dプリンタとインタフェースする1つ以上のプロセッサによってアクセスされた際、前記3Dプリンタに、複数の非酸化物セラミック粒子と、少なくとも1種の放射線硬化性モノマーと、溶媒と、光開始剤と、阻害剤と、少なくとも1種の焼結助剤と、を含む、光重合性スラリーの反応生成物を含む物品を作製させる、非一時的機械可読媒体。 a non-transitory machine-readable medium containing data representing a three-dimensional model of an article, which when accessed by one or more processors interfacing with a 3D printer to the 3D printer, a plurality of non-oxide ceramic particles; forming an article comprising the reaction product of a photopolymerizable slurry comprising at least one radiation curable monomer, a solvent, a photoinitiator, an inhibitor, and at least one sintering aid; A non-transitory machine-readable medium.
JP2021510722A 2018-08-31 2019-08-22 Additive manufacturing methods for producing non-oxide ceramic articles, and aerogels, xerogels, and porous ceramic articles Active JP7555331B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862725793P 2018-08-31 2018-08-31
US62/725,793 2018-08-31
PCT/US2019/047604 WO2020046687A1 (en) 2018-08-31 2019-08-22 Additive manufacturing method for making non-oxide ceramic articles, and aerogels, xerogels, and porous ceramic articles

Publications (3)

Publication Number Publication Date
JP2021536381A JP2021536381A (en) 2021-12-27
JPWO2020046687A5 true JPWO2020046687A5 (en) 2022-09-02
JP7555331B2 JP7555331B2 (en) 2024-09-24

Family

ID=69643084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510722A Active JP7555331B2 (en) 2018-08-31 2019-08-22 Additive manufacturing methods for producing non-oxide ceramic articles, and aerogels, xerogels, and porous ceramic articles

Country Status (5)

Country Link
US (1) US20210292243A1 (en)
EP (1) EP3843963A4 (en)
JP (1) JP7555331B2 (en)
CN (1) CN112638606A (en)
WO (1) WO2020046687A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097257A1 (en) * 2019-01-30 2022-03-31 Kaohsiung Medical University Slurry for light-curable 3d printing, preparation method therefor, and method of use thereof
CN114174242A (en) * 2019-08-06 2022-03-11 3M创新有限公司 Continuous laminated manufacturing method for preparing ceramic products and ceramic products
WO2021220095A1 (en) * 2020-04-28 2021-11-04 3M Innovative Properties Company Methods of making additive manufactured articles using multilayer articles, objects prepared by the methods, and multilayer articles
CN113754446A (en) * 2020-06-02 2021-12-07 中国科学院化学研究所 3D printing silicon nitride fiber aerogel and preparation method and application thereof
WO2022011334A1 (en) * 2020-07-10 2022-01-13 University Of Florida Research Foundation, Incorporated Laser assisted solid freeform fabrication of ceramic materials via temperature sensitive slurries
DE102020118845A1 (en) 2020-07-16 2022-01-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Photopolymerizable composition for additive manufacturing
CN111848183B (en) * 2020-08-07 2021-05-18 北京理工大学 Preparation method of ceramic material component with adjustable thermal expansion and product thereof
EP4000928A1 (en) 2020-11-18 2022-05-25 3M Innovative Properties Company Ink composition for 3d printing, process for making a ceramic green body by 3d printing, and process for making a sintered ceramic component part
CN112358299B (en) * 2020-11-25 2022-08-16 苏州泛博增材技术有限公司 Ceramic substrate and 3D printing method thereof
CN112707738A (en) * 2020-12-30 2021-04-27 松山湖材料实验室 Wholly ordered-partially disordered porous ceramic and preparation method thereof
TWI752890B (en) * 2021-06-25 2022-01-11 陳建家 Composition of multi-element and high-efficiency far-infrared mineral base material and its production method
CN115594504A (en) * 2021-07-07 2023-01-13 北京科技大学(Cn) Ceramic material and pipe fitting for MAX phase fuel cladding element and preparation method thereof
EP4122903A1 (en) 2021-07-20 2023-01-25 ETH Zurich Method for the additive manufacturing of casting molds
CN114213142B (en) * 2022-01-07 2022-08-02 中国人民解放军国防科技大学 Preparation method of extruded 3D printed silicon-aluminum oxide ceramic aerogel
CN115473007B (en) * 2022-09-28 2024-01-02 上海意定新材料科技有限公司 Ceramic-based diaphragm for lithium battery of new energy automobile and preparation method thereof
CN115504782A (en) * 2022-10-30 2022-12-23 中钢集团洛阳耐火材料研究院有限公司 High-solid-content and low-viscosity zirconia ceramic slurry for photocuring 3D printing
CN115872753A (en) * 2022-12-16 2023-03-31 西安国宏天易智能科技有限公司 Ceramic slurry for additive manufacturing of aluminum nitride ceramic substrate and preparation method and application thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808006A (en) 1971-12-06 1974-04-30 Minnesota Mining & Mfg Photosensitive material containing a diaryliodium compound, a sensitizer and a color former
US3729313A (en) 1971-12-06 1973-04-24 Minnesota Mining & Mfg Novel photosensitive systems comprising diaryliodonium compounds and their use
US3741769A (en) 1972-10-24 1973-06-26 Minnesota Mining & Mfg Novel photosensitive polymerizable systems and their use
AU497960B2 (en) 1974-04-11 1979-01-25 Minnesota Mining And Manufacturing Company Photopolymerizable compositions
US4250053A (en) 1979-05-21 1981-02-10 Minnesota Mining And Manufacturing Company Sensitized aromatic iodonium or aromatic sulfonium salt photoinitiator systems
US5998495A (en) 1997-04-11 1999-12-07 3M Innovative Properties Company Ternary photoinitiator system for curing of epoxy/polyol resin compositions
US6283997B1 (en) * 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
SG98433A1 (en) * 1999-12-21 2003-09-19 Ciba Sc Holding Ag Iodonium salts as latent acid donors
US20070031791A1 (en) 2005-08-03 2007-02-08 3M Innovative Properties Company Scanning models for digital orthodontics
WO2009085926A2 (en) 2007-12-28 2009-07-09 3M Innovative Properties Company Method of making zirconia-containing nanoparticles
CN102807391B (en) * 2012-08-29 2013-09-25 哈尔滨工业大学 Method for preparing porous silicon carbide ceramic
EP2956822B1 (en) 2013-02-12 2016-06-29 CARBON3D, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
WO2014151179A1 (en) 2013-03-15 2014-09-25 3M Innovative Properties Company Method for preparing (meth)acrylates of biobased alcohols and polymers thereof
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
WO2016191162A1 (en) * 2015-05-28 2016-12-01 3M Innovative Properties Company Additive manufacturing process for producing ceramic articles using a sol containing nano-sized particles
EP3892449A1 (en) * 2015-10-15 2021-10-13 Saint-Gobain Ceramics and Plastics, Inc. Method for forming a three dimensional body from a mixture with a high content of solid particles
EP3405504B1 (en) 2016-01-21 2021-07-21 3M Innovative Properties Company Additive processing of fluoroelastomers
CN105837219B (en) * 2016-03-22 2018-11-23 西安铂力特增材技术股份有限公司 A kind of preparation method of silicon carbide ceramic part
CN107158474A (en) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 Photocuring 3D printing dentistry implant slurry and its preparation method and application
CN107686351A (en) * 2017-07-18 2018-02-13 中国科学院上海硅酸盐研究所 A kind of zirconium carbide ceramics fiber and preparation method thereof
CN107586136B (en) * 2017-10-17 2020-10-23 广东工业大学 3D printing method of silicon nitride ceramic
CN108002843B (en) 2017-11-17 2020-07-10 华中科技大学 Preparation method of high-precision porous silicon nitride complex-shaped part based on paste

Similar Documents

Publication Publication Date Title
JPWO2020046687A5 (en)
JP6859441B2 (en) Manufacturing method of C / C-SiC composite material parts and their products
Bai et al. Stereolithography additive manufacturing and sintering approaches of SiC ceramics
EP3000797B1 (en) Method for making ceramic matrix composite articles using gelling
JP6852992B2 (en) Manufacturing method of ceramic matrix composite article
US6593008B2 (en) Modified freeform fabricated part and a method for modifying the properties of a freeform fabricated part
CN100482614C (en) Collidal forming process for preparing high strength light ceramic material
JP2017507227A (en) Method for producing multilayer abrasive particles
US9695089B2 (en) Method for the production of shaped articles from reaction-bonded, silicon-infiltrated silicon carbide and/or boron carbide and thus produced shaped body
JP2004035279A (en) Process for manufacturing silicon/silicon carbide composite part
US20100279007A1 (en) 3-D Printing of near net shape products
CN107586136A (en) A kind of method of 3D printing silicon nitride ceramics
US3854189A (en) Method of making a bonded silicon nitride article having portions of different density
US20210147302A1 (en) Method to achieve a smooth surface with precise tolerance control for a complex (non-flat) geometry
CN107540379A (en) Composite ceramic material and shaping method of ceramics
US20220135489A1 (en) Method for preparing continuous fiber-reinforced ceramic matrix composite by flash sintering technology
EP3825296B1 (en) Heat treatment method of slurry infiltrated fiber preform
US11883978B2 (en) In situ synthesis, densification and shaping of non-oxide ceramics by vacuum additive manufacturing technologies
JP7429220B2 (en) Manufacturing method and parts for manufacturing parts using additive manufacturing method
Chen et al. Fabrication of complicated silicon carbide ceramic components using combined 3D printing with gelcasting
Yu et al. Effect of monomer content on physical properties of silicon nitride ceramic green body prepared by gelcasting
Cai et al. Solid freeform fabrication of alumina ceramic parts through a lost mould method
JP5057193B2 (en) Manufacturing method of cubic boron nitride sintered body with high homogeneity, high density and high hardness
Zhang et al. Spark plasma sintering and characterization of WC-Co-cBN composites
CN116573952A (en) Adhesive jet printing silicon carbide-aluminum composite material and preparation method thereof