JPWO2020045439A1 - A soft cross-linked polyester resin / film that exhibits self-adhesiveness, remoldability, and scratch repair properties, and its manufacturing method. - Google Patents

A soft cross-linked polyester resin / film that exhibits self-adhesiveness, remoldability, and scratch repair properties, and its manufacturing method. Download PDF

Info

Publication number
JPWO2020045439A1
JPWO2020045439A1 JP2020539504A JP2020539504A JPWO2020045439A1 JP WO2020045439 A1 JPWO2020045439 A1 JP WO2020045439A1 JP 2020539504 A JP2020539504 A JP 2020539504A JP 2020539504 A JP2020539504 A JP 2020539504A JP WO2020045439 A1 JPWO2020045439 A1 JP WO2020045439A1
Authority
JP
Japan
Prior art keywords
polyester resin
crosslinked
crosslinked polyester
film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020539504A
Other languages
Japanese (ja)
Other versions
JP7405082B2 (en
Inventor
幹大 林
幹大 林
昭則 高須
昭則 高須
稜人 矢野
稜人 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Publication of JPWO2020045439A1 publication Critical patent/JPWO2020045439A1/en
Priority to JP2023210684A priority Critical patent/JP2024037883A/en
Application granted granted Critical
Publication of JP7405082B2 publication Critical patent/JP7405082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Wrappers (AREA)

Abstract

【課題】透明性、接着性、柔軟性(伸長性)、強度(ヤング率)に優れ、さらに再成型性、傷修復性を有する架橋ポリエステル樹脂と、そのフィルム形状のものによる多層架橋ポリエステル樹脂フィルムを提供することである。【解決手段】エステル結合2を多点で含む高分子主鎖1と、エステル結合2とフリーOH基4を含む多点の共有結合架橋部分3を含むポリエステル樹脂5であり、エステル結合2とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤と、エステル交換触媒6を混合し、加熱して架橋することにより得ることができる。PROBLEM TO BE SOLVED: To provide a crosslinked polyester resin having excellent transparency, adhesiveness, flexibility (elongability), strength (Young's modulus), remoldability and scratch repair property, and a multilayer crosslinked polyester resin film having a film shape thereof. Is to provide. SOLUTION: This is a polyester resin 5 containing a polymer main chain 1 containing an ester bond 2 at multiple points and a multipoint covalent crosslinked portion 3 containing an ester bond 2 and a free OH group 4, and the ester bond 2 and a carboxylic acid. It can be obtained by mixing a polyester resin raw material containing a large number of acid groups, a diepoxy cross-linking agent, and an ester exchange catalyst 6 and heating to cross-link.

Description

本発明は、自己接着性、再成型性、傷修復性を示すソフトな架橋ポリエステル樹脂・フィルム、さらにソフトな多層架橋フィルム及びそれらの製造方法に関する。 The present invention relates to a soft crosslinked polyester resin / film exhibiting self-adhesiveness, remoldability, and scratch repair property, a soft multilayer crosslinked film, and a method for producing the same.

結合交換型動的共有結合架橋フィルムは、接着剤を用いることなくフィルム同士を接着することができるため、接着剤に起因する異物や残留溶媒などの溶出を抑制できて安全性に優れたフィルムとなりうる。 Since the bond-exchange type dynamic covalent bond cross-linked film can bond the films to each other without using an adhesive, it is possible to suppress the elution of foreign substances and residual solvents caused by the adhesive, resulting in a film with excellent safety. sell.

従来の共有結合架橋フィルムは、共有結合架橋点の不可逆性から、再加工性や接着性に乏しかった。一方、物理架橋(結晶ドメインやガラス状ドメインによる架橋)を施したフィルムでは、熱による再加工・接着は可能であるが、低耐水性・低耐溶媒性・低透明性などの問題がある。 Conventional covalently bonded crosslinked films have poor reworkability and adhesiveness due to the irreversibility of covalently bonded crosslinked points. On the other hand, a film subjected to physical cross-linking (cross-linking by a crystal domain or a glass-like domain) can be reprocessed and adhered by heat, but has problems such as low water resistance, low solvent resistance, and low transparency.

また、従来の共有結合架橋エラストマーは、共有結合架橋点の不可逆性から、再成型加工性や修復性は無い。一方、物理架橋(結晶ドメインやガラス状ドメインによる架橋)を施したエラストマーでは、熱による再成型加工・表面の傷の修復は可能であるが、低耐水性・低耐溶媒性・低透明性などの問題がある。 Further, the conventional covalently bonded crosslinked elastomer has no remolding processability or repairability due to the irreversibility of the covalently bonded crosslinked point. On the other hand, elastomers that have undergone physical cross-linking (cross-linking with crystalline domains or glassy domains) can be remolded by heat and repaired from scratches on the surface, but have low water resistance, low solvent resistance, and low transparency. There is a problem.

特許文献1には、ポリエステル樹脂フィルムとポリオレフィン樹脂フィルムの加熱による積層体が記載されている。また、特許文献2にはポリエステル系フィルムを少なくても1層有する積層体が記載されている。 Patent Document 1 describes a laminate of a polyester resin film and a polyolefin resin film by heating. Further, Patent Document 2 describes a laminate having at least one layer of polyester-based film.

特許文献1の積層体の加熱は主に電子線照射によるものであって、ポリオレフィン樹脂フィルムを含むため、ポリエステル樹脂フィルム同士による積層体と比較して透明性に劣る。一方、特許文献2に記載されたポリエステル系フィルムは、全モノマー成分中、非晶質成分となり得る1種以上のモノマー成分の合計が、12モル%以上30モル%以下であることにより、室温での柔軟性や靭性に劣る。また、非特許文献1には結合交換反応を導入した架橋材料の調製法が記載されているが、フィルム状試料の接着特性に関する記述はない。 The heating of the laminate of Patent Document 1 is mainly by electron beam irradiation and contains a polyolefin resin film, so that the transparency is inferior to that of the laminate made of polyester resin films. On the other hand, in the polyester film described in Patent Document 2, the total of one or more monomer components that can be amorphous components among all the monomer components is 12 mol% or more and 30 mol% or less, so that the polyester film is at room temperature. Inferior in flexibility and toughness. Further, although Non-Patent Document 1 describes a method for preparing a crosslinked material into which a bond exchange reaction has been introduced, there is no description regarding the adhesive properties of a film-like sample.

特許文献3には、ポリエステル樹脂と、有機チタン化合物と、1 , 4 − ブチレングリコール、ビス( 2 − ヒドロキシエチル) テレフタレート、またはフタル酸ジメチルを含む自己修復性樹脂組成物について、高分子鎖を再結合させて自己修復を行い、劣化を防止することができる旨が記載されている。しかし、その自己修復は組成物の平均分子量による評価によるもので、その組成物が受けた傷に関する記載はない。 Patent Document 3 describes a polymer chain of a self-healing resin composition containing a polyester resin, an organic titanium compound, 1,4-butylene glycol, bis (2-hydroxyethyl) terephthalate, or dimethyl phthalate. It is stated that it can be combined to perform self-repair and prevent deterioration. However, the self-repair is based on the evaluation based on the average molecular weight of the composition, and there is no description about the scratches on the composition.

また、特許文献4には、ダングリング鎖を有し、且つ架橋構造を有する非晶性ポリマーXと、動的粘弾性測定によるガラス転移温度が室温以上である非晶性ポリマーYと、を含むことを特徴とする自己修復性樹脂体が開示されている。しかし、自己修復性樹脂体につけられた傷の評価が明瞭ではく、その自己修復性樹脂体の再成型加工性についての記載はない。 Further, Patent Document 4 includes an amorphous polymer X having a dungling chain and a crosslinked structure, and an amorphous polymer Y having a glass transition temperature of room temperature or higher as measured by dynamic viscoelasticity. A self-healing resin body characterized by this is disclosed. However, the evaluation of scratches on the self-healing resin body is not clear, and there is no description about the remolding processability of the self-healing resin body.

一方、非特許文献1には、室温で柔軟性を示す結合交換型動的共有結合架橋フィルムの製造に関する記述がない。また、自己接着性や表面傷の修復性に関する記述は皆無である。
また、非特許文献2には、再成型性についての記述はあるものの、5%程度の伸長率しか示しておらず、柔軟樹脂としての性質は示されていない。また、表面傷の修復や自己接着性に関する記述は皆無である。非特許文献3には、架橋成型時に触媒を含ませる結合交換型動的共有結合架橋フィルムの製造は記述されているものの、非触媒含有試料に対して、触媒含有溶液への浸漬による結合交換型動的共有結合架橋フィルムの製造に関する記述は皆無である。
On the other hand, Non-Patent Document 1 does not describe the production of a bond-exchange type dynamically covalently bonded crosslinked film that exhibits flexibility at room temperature. In addition, there is no description regarding self-adhesiveness and repairability of surface scratches.
Further, although Non-Patent Document 2 describes the remoldability, it shows only an elongation rate of about 5%, and does not show the property as a flexible resin. In addition, there is no description about repairing surface scratches or self-adhesiveness. Although Non-Patent Document 3 describes the production of a bond-exchange type dynamic covalent bond-crosslinked film in which a catalyst is contained during cross-linking, a bond-exchange type by immersing a non-catalyst-containing sample in a catalyst-containing solution. There is no description regarding the production of dynamic covalent crosslinked films.

特開2012−254593号公報Japanese Unexamined Patent Publication No. 2012-254593 再表2014−175313号公報Re-table 2014-175313 特開2005−023166号公報Japanese Unexamined Patent Publication No. 2005-023166 特開2010−260979号公報Japanese Unexamined Patent Publication No. 2010-260979

Damien Montarnal, M. Capelot, F. Tournilhac, Ludwik Leibler, Science, 2011, Vol.334, Issue 6058, 965-968.Damien Montarnal, M. Capelot, F. Tournilhac, Ludwik Leibler, Science, 2011, Vol.334, Issue 6058, 965-968. Jacob P. Brutman, Paula A. Delgado, and Marc A. Hillmyer, ACS Macro Letters, 2014, Vol. 3, Issue 7, 607?610.Jacob P. Brutman, Paula A. Delgado, and Marc A. Hillmyer, ACS Macro Letters, 2014, Vol. 3, Issue 7, 607? 610. Mikihiro Hayashi, et al., Polymer Chemistry. 10 (16) 2047 - 2056, 2019.Mikihiro Hayashi, et al., Polymer Chemistry. 10 (16) 2047 --2056, 2019.

本発明の課題は、上記のような問題を解決した透明性、架橋、柔軟性(伸長性)、強度(ヤング率)に優れ、さらに再成型性、傷修復性を有するソフトな架橋ポリエステル樹脂・フィルムすなわちソフト架橋ポリエステル樹脂・フィルムを提供することである。さらには、フィルム形状のものによるソフトな多層架橋ポリエステル樹脂フィルムすなわちソフト多層架橋ポリエステルフィルムを提供することである。 The subject of the present invention is a soft crosslinked polyester resin having excellent transparency, crosslinking, flexibility (elongability), strength (Young rate), remoldability, and scratch repairability, which solves the above problems. It is to provide a film, that is, a soft crosslinked polyester resin / film. Furthermore, it is an object of the present invention to provide a soft multilayer crosslinked polyester resin film having a film shape, that is, a soft multilayer crosslinked polyester film.

(1)エステル結合を多点で含む高分子主鎖と、エステル結合とフリーOH基を含む多点の共有結合架橋部分を含むポリエステル樹脂(すなわち、フリーOH基を網目構造中に多点で含む架橋ポリエステル樹脂)、及びエステル交換触媒を含む架橋ポリエステル樹脂である。
(2)エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤と、前記エステル交換触媒を混合し、加熱して架橋することにより得られる(1)に記載の架橋ポリエステル樹脂である。
(3)前記ポリエステル樹脂原料の平均分子量は8000以上、前記ポリエステル樹脂原料が有するポリエステル結合の数は100個以上である(2)に記載の架橋ポリエステル樹脂である。
なお、平均分子量は数平均分子量である。
(4)前記ポリエステル樹脂原料のカルボン酸基の割合は、前記ポリエステル樹脂原料のエステル基に対して、10mol%〜50mol%であって、架橋反応における前記ポリエステル樹脂原料が有するカルボン酸基と前記ジエポキシ架橋剤が有するエポキシ基の割合(カルボン酸基:エポキシ基)は、1:0.5〜1:1.5である(2)又は(3)に記載の架橋ポリエステル樹脂である。
(5)架橋後の網目構造におけるフリーOH基に対するエステル交換触媒のモル比(フリーOH基:エステル交換触媒エポキシ基)は、1:0.1〜1:0.4である(2)〜(4)に記載の架橋ポリエステル樹脂である。
(6)エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤と、エステル交換触媒を混合し、加熱して架橋することにより得られる架橋ポリエステル樹脂の製造方法である。
(7)架橋ポリエステル樹脂はフィルム形状である(1)〜(5)の何れか1つに記載の架橋ポリエステル樹脂である。
(8)(7)に記載のフィルム形状の架橋ポリエステル樹脂が接着して積層した部分を含む、多層架橋ポリエステル樹脂フィルムである。
(9)(8)に記載の多層架橋ポリエステル架橋樹脂フィルムを少なくても一部に用いたことを特徴とする包装体である。
(10)(7)に記載のフィルム形状の架橋ポリエステル樹脂の少なくても一部分を、高温下で押圧する多層架橋ポリエステル架橋樹脂フィルムの製造方法である。
(11)(7)に記載の架橋ポリエステル樹脂が、その形状について変形を受ける変形工程と、その後熱によって処理される熱処理工程含む、再成型された架橋ポリエステル樹脂の製造方法である。
(12)(7)に記載の架橋ポリエステル樹脂が、その表面に傷を受ける工程、その後熱によって処理される熱処理工程を含む、前記傷が修復された架橋ポリエステル樹脂の製造方法である。
(13) エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤を混合し、加熱して架橋することにより得られるエステル交換触媒を含まない架橋ポリエステル樹脂を、前記エステル交換触媒を含む溶液に浸漬することにより得られる架橋ポリエステル樹脂の製造方法である。
(1) A polyester resin containing a polymer main chain containing multiple ester bonds and a multi-point covalently bonded crosslinked portion containing an ester bond and a free OH group (that is, a free OH group is contained at multiple points in the network structure). Cross-linked polyester resin) and a cross-linked polyester resin containing an ester exchange catalyst.
(2) The crosslinked polyester resin according to (1), which is obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at multiple points, a diepoxy crosslinking agent, and the transesterification catalyst, and heating and crosslinking the mixture. Is.
(3) The crosslinked polyester resin according to (2), wherein the polyester resin raw material has an average molecular weight of 8000 or more, and the polyester resin raw material has 100 or more polyester bonds.
The average molecular weight is a number average molecular weight.
(4) The ratio of the carboxylic acid group of the polyester resin raw material is 10 mol% to 50 mol% with respect to the ester group of the polyester resin raw material, and the carboxylic acid group of the polyester resin raw material and the diepoxy in the cross-linking reaction. The crosslinked polyester resin according to (2) or (3), wherein the ratio of the crosslinked epoxy group (carboxylic acid group: epoxy group) is 1: 0.5 to 1: 1.5.
(5) The molar ratio of the transesterification catalyst to the free OH group in the network structure after cross-linking (free OH group: transesterification catalyst epoxy group) is 1: 0.1 to 1: 0.4 (2) to (1) to (1). The crosslinked polyester resin according to 4).
(6) This is a method for producing a crosslinked polyester resin obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at a large number of points, a diepoxy crosslinking agent, and a transesterification catalyst, and heating and crosslinking the mixture.
(7) The crosslinked polyester resin is the crosslinked polyester resin according to any one of (1) to (5), which has a film shape.
(8) A multilayer crosslinked polyester resin film including a portion in which the film-shaped crosslinked polyester resin according to (7) is adhered and laminated.
(9) The package is characterized in that the multilayer crosslinked polyester crosslinked resin film according to (8) is used at least partially.
(10) A method for producing a multilayer crosslinked polyester crosslinked resin film in which at least a part of the film-shaped crosslinked polyester resin according to (7) is pressed at a high temperature.
(11) A method for producing a remolded crosslinked polyester resin, which comprises a deformation step in which the crosslinked polyester resin according to (7) is deformed in its shape and a heat treatment step in which the crosslinked polyester resin is subsequently treated by heat.
(12) A method for producing a crosslinked polyester resin in which the scratches have been repaired, which comprises a step of damaging the surface of the crosslinked polyester resin according to (7) and then a heat treatment step of treating the crosslinked polyester resin with heat.
(13) The ester exchange catalyst is a crosslinked polyester resin that does not contain an ester exchange catalyst and is obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at multiple points with a diepoxy crosslinking agent and heating and crosslinking. It is a method for producing a crosslinked polyester resin obtained by immersing it in a solution containing.

本発明による架橋ポリエステル樹脂は、高い透明性を有し、導入した高温で結合交換が可能な“動的”共有結合架橋により、室温では高強度柔軟性があり、結合交換活性化温度以上もしくはそれ付近では、再加工・フィルム間の接着が可能である。また、本発明に用いる結合交換用触媒も安価であり、多種の触媒が利用可能であり、架橋反応自体も短く、工業化にも都合が良い。
さらに、その架橋ポリエステル樹脂が有する再成型加工性によって、架橋反応後での自在な形調節や薄膜化が可能という効果を奏し、傷修復性によって、半永久的な使用が可能という効果を奏する。
The cross-linked polyester resin according to the present invention has high transparency and high strength flexibility at room temperature due to the introduced "dynamic" covalent bond cross-linking that allows bond exchange at high temperatures, above or above the bond exchange activation temperature. In the vicinity, reworking and adhesion between films are possible. Further, the bond exchange catalyst used in the present invention is also inexpensive, various catalysts can be used, the cross-linking reaction itself is short, and it is convenient for industrialization.
Further, the remolding processability of the crosslinked polyester resin has the effect of allowing free shape adjustment and thinning after the crosslinking reaction, and the scratch repairing property has the effect of enabling semi-permanent use.

本発明の一つの実施態様である架橋ポリエステル樹脂を模式的に示した図である。It is a figure which showed typically the crosslinked polyester resin which is one Embodiment of this invention. 正方形の架橋ポリエステル樹脂の成型品(4cm×4cm、厚み0.1cm)を示した図である。It is a figure which showed the molded product (4 cm × 4 cm, thickness 0.1 cm) of a square crosslinked polyester resin. 架橋ポリエステル樹脂の製造原料の組み合わせの一例を示す図であって、(A)カルボン酸基を多点で含むポリエステル樹脂原料、(B)ジエポキシ架橋剤、(C)エステル交換触媒を、それぞれ示した図である。It is a figure which shows an example of the combination of the manufacturing raw material of a crosslinked polyester resin, and has shown (A) a polyester resin raw material containing a carboxylic acid group at a plurality of points, (B) a diepoxy crosslinking agent, and (C) a transesterification catalyst, respectively. It is a figure. (A)2枚の架橋ポリエステル樹脂フィルムを積層して、(B)2層架橋ポリエステル樹脂フィルムとする態様を、それぞれ模式的に示した図である。It is a figure which shows typically the mode in which (A) two crosslinked polyester resin films are laminated to form (B) a two-layer crosslinked polyester resin film. 架橋ポリエステル樹脂同士間におけるポリエステル交換反応について(A)反応前、(B)反応後を、それぞれ模式的に示した図である。It is a figure which shows typically (A) before reaction and (B) after reaction about the transesterification reaction between crosslinked polyester resins. アジピン酸、チオリンゴ酸及びペンタンジオールを溶融縮重合したポリエステル樹脂原料の構造式を示した図である。It is a figure which showed the structural formula of the polyester resin raw material which melt-condensated adipic acid, thioannic acid and pentanediol. 実施例3を用いた最大応力、破断伸びの定義についてのチャート例を示した図である。It is a figure which showed the chart example about the definition of the maximum stress and the elongation at break using Example 3. FIG. (A)2枚の架橋ポリエステル樹脂フィルムのそれぞれ一部分を重ねた状態、(B)1枚の架橋ポリエステル樹脂フィルムを曲げた状態、をそれぞれ示した図である。It is a figure which showed (A) the state which overlapped a part of each of two crosslinked polyester resin films, and (B) the state where one crosslinked polyester resin film was bent. (A)高温下で押圧して接着した2層架橋ポリエステル樹脂フィルム、(B)一部が破断した2層架橋ポリエステル樹脂フィルムを、それぞれ示した図である。It is the figure which showed (A) the two-layer crosslinked polyester resin film which was pressed and adhered at a high temperature, and (B) the two-layer crosslinked polyester resin film which was partially broken. 架橋ポリエステル樹脂フィルム(実施例4〜6)の軟化温度の求め方を示した図である。It is a figure which showed the method of obtaining the softening temperature of a crosslinked polyester resin film (Examples 4 to 6). 架橋ポリエステル樹脂フィルムを示した図である。It is a figure which showed the crosslinked polyester resin film. 架橋ポリエステル樹脂フィルムをスパーテルに巻き付け、その両端をスパーテルに固定したもの、(B)(A)により再成型された架橋ポリエステル樹脂フィルムを、それぞれ示した図である。It is a figure which showed the cross-linked polyester resin film wound around the spartel and fixed both ends to the spartel, and the cross-linked polyester resin film remolded by (B) (A), respectively. (A)傷を含む架橋ポリエステル樹脂フィルムの表面(拡大図)、(B)(A)に熱処理工程を施して傷が消失した架橋ポリエステル樹脂フィルムの表面(拡大図)を、それぞれ示した図である。(A) The surface of the crosslinked polyester resin film containing scratches (enlarged view), and (B) (A) the surface of the crosslinked polyester resin film (enlarged view) in which the scratches disappeared by subjecting the heat treatment step, respectively. be. エステル交換触媒を含まない架橋ポリエステル樹脂(成型品)を、エステル交換触媒を含む溶液に浸漬することにより得られる架橋ポリエステル樹脂の製造方法の概略図である。It is a schematic diagram of the manufacturing method of the crosslinked polyester resin obtained by immersing a crosslinked polyester resin (molded product) which does not contain a transesterification catalyst in a solution containing a transesterification catalyst. エステル交換触媒(酢酸亜鉛)を0(触媒なし)、2.5mg/mL、5mg/mL、10mg/mL含む溶液に浸漬したエステル交換触媒を含まない架橋ポリエステル樹脂(フィルム)について、線膨張率測定結果を示した図である。Linear expansion rate measurement for a crosslinked polyester resin (film) containing no transesterification catalyst (zinc acetate) immersed in a solution containing 0 (no catalyst), 2.5 mg / mL, 5 mg / mL, 10 mg / mL. It is a figure which showed the result. エステル交換触媒(酢酸亜鉛)を2.5mg/mL、5mg/mL、10mg/mL含む溶液に浸漬したエステル交換触媒を含まない架橋ポリエステル樹脂(フィルム)について、軟化温度を示した図である。It is a figure which showed the softening temperature about the crosslinked polyester resin (film) which did not contain a transesterification catalyst which was immersed in the solution which contained the transesterification catalyst (zinc acetate) 2.5mg / mL, 5mg / mL, 10mg / mL.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.

図1に示すように、本発明の架橋ポリエステル樹脂(7)は、エステル結合(2)を多点で含む高分子主鎖(1)と、エステル結合(2)とフリーOH基(4)を含む多点の共有結合架橋部分(3)を含むポリエステル樹脂(5)、及びエステル交換触媒(6)を含む。フリーOH基(フリーの水酸基)(4)とは、高分子主鎖(1)のエステル結合(2)に含まれておらず、且ついかなる官能基とも反応していない水酸基のことである。フリーOH基を網目構造中に多点で含む架橋ポリエステル樹脂とは、高分子主鎖(1)がエステル結合を多点で含み、共有結合架橋部分(3)がフリーOH基(4)を多点で含むということであって、すなわちフリーOH基(4)は、高分子架橋網目中に部分的に含まれることになる。
後述するように、フリーOH基(4)が、その付近に存在するエステル交換触媒(6)の作用により、付近に存在する多数のエステル結合のうちの一つのエステル結合のC−0結合をアタックすることによって、エステル交換反応が起こるのである。そして、そのエステル交換反応が、高温・押圧下において、重なる二枚のフィルムの対表面間で進行すると、生成した新たな結合による接着が起こるのである。
As shown in FIG. 1, the crosslinked polyester resin (7) of the present invention has a polymer main chain (1) containing an ester bond (2) at multiple points, an ester bond (2), and a free OH group (4). Includes a polyester resin (5) containing a multipoint covalent crosslinked moiety (3), and an ester exchange catalyst (6). The free OH group (free hydroxyl group) (4) is a hydroxyl group that is not contained in the ester bond (2) of the polymer main chain (1) and has not reacted with any functional group. In the crosslinked polyester resin containing many free OH groups in the network structure, the polymer main chain (1) contains many ester bonds and the covalently bonded crosslinked portion (3) contains many free OH groups (4). That is, the free OH group (4) is partially contained in the polymer crosslinked network.
As will be described later, the free OH group (4) attacks the C-0 bond of one of the many ester bonds existing in the vicinity by the action of the transesterification catalyst (6) existing in the vicinity thereof. By doing so, a transesterification reaction occurs. Then, when the transesterification reaction proceeds between the surfaces of the two overlapping films under high temperature and pressing, adhesion occurs due to the newly formed bond.

ポリエステル樹脂原料の平均分子量は、樹脂の強度や熱耐性の観点から、8000(g/mol)以上が好ましく、15000(g/mol)以上がより好ましい。また、エステル結合の数は、上記分子量を達成するために、100個以上が好ましく、200個以上がより好ましい。 The average molecular weight of the polyester resin raw material is preferably 8000 (g / mol) or more, more preferably 15000 (g / mol) or more, from the viewpoint of resin strength and heat resistance. The number of ester bonds is preferably 100 or more, more preferably 200 or more, in order to achieve the above molecular weight.

フリーOH基の割合は、高分子試料合成の簡便性の観点や室温での柔軟性の観点から、ポリエステル樹脂原料(ポリマー)中のエステル基に対して10mol%〜50mol%が好ましく、15mol%〜40mol%がより好ましい。また、エステル交換触媒の割合は、樹脂の力学強度や試料の均一性の観点から、フリーの水酸基に関して10mol%〜40mol%が好ましく、15mol%〜30mol%がより好ましい。 The proportion of free OH groups is preferably 10 mol% to 50 mol%, preferably 15 mol% to 15 mol% with respect to the ester groups in the polyester resin raw material (polymer) from the viewpoint of ease of polymer sample synthesis and flexibility at room temperature. 40 mol% is more preferable. The proportion of the transesterification catalyst is preferably 10 mol% to 40 mol%, more preferably 15 mol% to 30 mol% with respect to the free hydroxyl group from the viewpoint of the mechanical strength of the resin and the uniformity of the sample.

架橋ポリエステル樹脂による成型品は透明性を有した。図2の成型品(8)は正方形(4cm×4cm、厚み0.1cm)であって、白地の紙に黒字で「NI tech」と書かれたその紙の上に成型品(8)を置いても、「NI tech」の文字は、成型品(8)を置いていない部分と同程度にクリアに見えた。 The molded product made of crosslinked polyester resin had transparency. The molded product (8) in FIG. 2 is a square (4 cm × 4 cm, thickness 0.1 cm), and the molded product (8) is placed on a white paper with “NI tech” written in black. However, the letters "NI tech" looked as clear as the part where the molded product (8) was not placed.

図3に基づいて、架橋ポリエステル樹脂(7)の製造方法の一例の説明を行う。カルボン酸基を多点で含む液状のポリエステル樹脂原料(A)に、ジエポキシ架橋剤(B)を混合し、エステル交換触媒(C)を添加して、エポキシ開環反応を介して架橋反応を行った。 An example of a method for producing the crosslinked polyester resin (7) will be described with reference to FIG. A diepoxy cross-linking agent (B) is mixed with a liquid polyester resin raw material (A) containing a carboxylic acid group at multiple points, a transesterification catalyst (C) is added, and a cross-linking reaction is carried out via an epoxy ring-opening reaction. rice field.

ポリエステル樹脂原料(A)は、カルボン酸基を多点で含むポリエステルが好ましく用いられる。ポリエステル樹脂原料(A)の前駆体となるポリエステルの構成モノマーとしては、ジオール分子として1,5−ペンタンジオールや1,6−ヘキサンジオールが、ジカルボン酸分子としてアジピン酸やグルタル酸が、側鎖に反応性基を含むジカルボン酸分子として、チオリンゴ酸が好ましくは用いられ、その場合、溶融重縮合によりチオール基を側鎖に多点で含むポリエステル前駆体が得られる。その前駆体と、例えばアクリル酸を反応させると、チオール基とアクリル酸の二重結合間でのMichael付加反応により、カルボン酸を多点で側鎖に含むポリエステル樹脂原料(A)が得られる。 As the polyester resin raw material (A), a polyester containing a carboxylic acid group at many points is preferably used. As a constituent monomer of polyester which is a precursor of the polyester resin raw material (A), 1,5-pentanediol and 1,6-hexanediol as diol molecules and adipic acid and glutaric acid as dicarboxylic acid molecules are in the side chain. As the dicarboxylic acid molecule containing a reactive group, thioapple acid is preferably used, in which case a polyester precursor containing a thiol group at multiple points in the side chain can be obtained by melt polycondensation. When the precursor is reacted with, for example, acrylic acid, a polyester resin raw material (A) containing carboxylic acid at multiple points in the side chain can be obtained by a Michael addition reaction between the thiol group and the double bond of acrylic acid.

ジエポキシ架橋剤(B)としては、1,4−ブタンジオールジグリシジルエーテル、1、2、7、8―ジエポキシオクタン、ネオペンチルグリコールジグリシジルエーテル等が好ましく用いられる。一方、エステル交換触媒(C)としては、酢酸亜鉛、トリフェニルホスフィン、1、5、7-トリアザビシクロ[4.4.0]デカ―5−エン等が好ましく用いられる As the diepoxy cross-linking agent (B), 1,4-butanediol diglycidyl ether, 1,2,7,8-diepoxy octane, neopentyl glycol diglycidyl ether and the like are preferably used. On the other hand, as the transesterification catalyst (C), zinc acetate, triphenylphosphine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene and the like are preferably used.

ポリエステル樹脂原料(A)と、ジエポキシ架橋剤(B)の混合の割合は、ポリエステル樹脂原料(A)の側鎖カルボン酸と、ジエポキシ架橋剤(B)のエポキシ基間の官能基モル比を基に決定可能である。架橋反応効率の観点から、カルボン酸基:エポキシ基は、1:0.5〜1:1.5が好ましく、1:0.8〜1:1.2がより好ましい。フリーの水酸基に対するエステル交換触媒(C)の混合の割合は、触媒活性効率の観点から、フリーの水酸基:エステル交換触媒のモル比が、1:0.1〜1:0.4が好ましく、1:0.15〜1:0.3がより好ましい。 The mixing ratio of the polyester resin raw material (A) and the diepoxide cross-linking agent (B) is based on the functional group molar ratio between the side chain carboxylic acid of the polyester resin raw material (A) and the epoxy group of the diepoxide cross-linking agent (B). Can be determined. From the viewpoint of cross-linking reaction efficiency, the carboxylic acid group: epoxy group is preferably 1: 0.5 to 1: 1.5, more preferably 1: 0.8 to 1: 1.2. As for the mixing ratio of the transesterification catalyst (C) to the free hydroxyl group, the molar ratio of the free hydroxyl group: transesterification catalyst is preferably 1: 0.1 to 1: 0.4 from the viewpoint of catalytic activity efficiency. : 0.15 to 1: 0.3 is more preferable.

カルボン酸基含有ポリエステル樹脂の調製で行われる縮重合反応の条件について、構成モノマーの均一混合性の観点や縮重合中でのチオール基間のカップリング反応を抑制するという観点から、70℃〜120℃が好ましく、80℃〜100℃がより好ましい。反応時間は、十分な高分子量体を得るという観点から、10hr以上が好ましく、20hr以上がより好ましい。縮重合とその後のMichael反応により得たカルボン酸基含有ポリエステル樹脂原料、ジエポキシ架橋剤、エステル交換触媒を用いた架橋物の成形方法は、テフロン(登録商標)型やガラス型で行うことができる。架橋反応では、十分な架橋を進行させるという観点と試料の熱分解を防ぐという観点から、120℃〜160℃で、4hr以上が好ましい。 Regarding the conditions of the polycondensation reaction performed in the preparation of the carboxylic acid group-containing polyester resin, from the viewpoint of uniform mixing of the constituent monomers and from the viewpoint of suppressing the coupling reaction between the thiol groups during the polycondensation, 70 ° C. to 120 ° C. ° C is preferable, and 80 ° C to 100 ° C is more preferable. The reaction time is preferably 10 hr or more, more preferably 20 hr or more, from the viewpoint of obtaining a sufficient high molecular weight substance. The method for forming a crosslinked product using a carboxylic acid group-containing polyester resin raw material obtained by polycondensation and a subsequent Michael reaction, a diepoxy crosslinker, and a transesterification catalyst can be carried out using a Teflon (registered trademark) type or a glass type. In the cross-linking reaction, 4 hr or more is preferable at 120 ° C. to 160 ° C. from the viewpoint of promoting sufficient cross-linking and preventing thermal decomposition of the sample.

架橋ポリエステル樹脂による成型品の形状としては、様々な形状が可能であるが、十分な接着面積を保つという観点から、フィルム形状であることが好ましい。フィルム形状としては、例えば厚みについては、樹脂試料の力学強度や表面の平滑性の観点から、0.1mm〜3mmが好ましい。 The shape of the molded product made of the crosslinked polyester resin can be various, but the film shape is preferable from the viewpoint of maintaining a sufficient adhesive area. As for the film shape, for example, the thickness is preferably 0.1 mm to 3 mm from the viewpoint of the mechanical strength of the resin sample and the smoothness of the surface.

図4には、(A)2枚の架橋ポリエステル樹脂フィルム(20、21)を積層して、(B)2層架橋ポリエステル樹脂フィルム(30)とする態様を示した。架橋ポリエステル樹脂フィルム(20、21)に含まれるそれぞれのフリーの水酸基が、それぞれが含まれる架橋ポリエステル樹脂フィルム以外の架橋ポリエステル樹脂フィルムのエステル結合のC−0結合にアタックするエステル交換反応によって、接着層(31)が形成される。エステル交換反応は、フリーの水酸基の付近に存在するエステル交換触媒と、押圧下において、その触媒作用に適した加熱によって起こるのである。 FIG. 4 shows an embodiment in which (A) two crosslinked polyester resin films (20, 21) are laminated to form (B) a two-layer crosslinked polyester resin film (30). Adhesion is performed by an ester exchange reaction in which each free hydroxyl group contained in the crosslinked polyester resin films (20, 21) attacks the C-0 bond of the ester bond of the crosslinked polyester resin film other than the crosslinked polyester resin film containing each. The layer (31) is formed. The transesterification reaction occurs by a transesterification catalyst existing near a free hydroxyl group and heating under pressure suitable for its catalytic action.

図5には、接着層(31A)を形成する、架橋ポリエステル樹脂同士間におけるポリエステル交換反応を模式的に示した。高分子主鎖1A、1B、共有結合架橋部分3Aは同一の架橋ポリエステル樹脂に含まれ、高分子主鎖1Cは、別の同一の架橋ポリエステル樹脂に含まれている。共有結合架橋部分3Aに含まれるフリーOH基が、押圧下において、エステル交換触媒の作用によって、高分子主鎖1Cのポリエステル結合のC−0結合をアタックする。そうすると、フリーの0(酸素原子)を介して、共有結合架橋部分3Aと高分子主鎖1Cは結合して、共有結合架橋部分3Aと高分子主鎖1Cが結合した分岐性高分子主鎖(共有結合架橋部分3Aが高分子主鎖1Cの一部分に結合したもの)を生成して、接着層31Aが形成される。一方、高分子主鎖1Cのポリエステル結合のC−0結合は切断されて末端がフリーOH基である高分子主鎖末端部1Dが生成される。なお、高分子主鎖末端部1Dも接着層31Aに含まれると解釈できる。 FIG. 5 schematically shows a transesterification reaction between crosslinked polyester resins forming an adhesive layer (31A). The polymer main chains 1A and 1B and the covalently bonded crosslinked portion 3A are contained in the same crosslinked polyester resin, and the polymer main chain 1C is contained in another same crosslinked polyester resin. The free OH group contained in the covalently bonded crosslinked portion 3A attacks the C-0 bond of the polyester bond of the polymer main chain 1C by the action of a transesterification catalyst under pressure. Then, the covalent bond cross-linked portion 3A and the polymer main chain 1C are bonded via a free 0 (oxygen atom), and the covalent bond cross-linked portion 3A and the polymer main chain 1C are bonded to the branched polymer main chain ( The covalently bonded crosslinked portion 3A is bonded to a part of the polymer main chain 1C), and the adhesive layer 31A is formed. On the other hand, the C-0 bond of the polyester bond of the polymer main chain 1C is cleaved to generate the polymer main chain terminal portion 1D having a free OH group at the end. It can be interpreted that the polymer main chain terminal 1D is also included in the adhesive layer 31A.

多層架橋ポリエステル樹脂フィルムの製造条件について、温度は結合交換活性化温度や樹脂の熱耐性の観点から、140℃〜200℃が好ましい。押圧は、対表面間での結合交換を促進するという観点から、100Pa以上が好ましく、1kPa以上がより好ましい。また、試料の破断を防ぐため、100MPa以下が好ましい。押圧する時間は、良接着強度を得るため、すなわち対表面間をまたいで結合交換した十分な分子鎖本数を得るため、2hrが好ましく、4hrがより好ましい。 Regarding the production conditions of the multilayer crosslinked polyester resin film, the temperature is preferably 140 ° C. to 200 ° C. from the viewpoint of the bond exchange activation temperature and the heat resistance of the resin. The pressing is preferably 100 Pa or more, more preferably 1 kPa or more, from the viewpoint of promoting bond exchange between the surfaces. Further, in order to prevent the sample from breaking, 100 MPa or less is preferable. The pressing time is preferably 2 hr, more preferably 4 hr, in order to obtain good adhesive strength, that is, to obtain a sufficient number of molecular chains that have been bonded and exchanged across the surfaces.

(ポリエステル樹脂原料の調製)
まず、アジピン酸、チオリンゴ酸及び1,5−ペンタンジオールを溶融縮重合したポリエステルを合成した。その後、チオリンゴ酸のチオール基とアクリル酸の二重結合部間のMichael付加によって、カルボン酸基を側鎖に多点で含むポリエステル樹脂原料を調製した。表1に、調製したポリエステル樹脂原料を示した。
表1において、Code:PE−X/Y/Zは、カルボン酸付加チオリンゴ酸(X)/アジピン酸(Y)/1,5−ペンタンジオール(Z)であり、NCOOHは高分子鎖当たりのカルボン酸基数、COOH/Ester比は高分子鎖当たりのカルボン酸基/エステル結合の比をした。また、X、Y、Zは1H−NMRより求めた、高分子鎖中における構成モノマーのモル比を表した(単位モル比参照)。
(Preparation of polyester resin raw material)
First, a polyester obtained by melt-condensation polymerizing adipic acid, thiomalic acid and 1,5-pentanediol was synthesized. Then, a polyester resin raw material containing a carboxylic acid group at multiple points in the side chain was prepared by Michael addition between the thiol group of thioannic acid and the double bond portion of acrylic acid. Table 1 shows the prepared polyester resin raw materials.
In Table 1, Code: PE-X / Y / Z is carboxylic acid-added thioannic acid (X) / adipic acid (Y) / 1,5-pentanediol (Z), and NCOOH is per high molecular chain. The number of carboxylic acid groups and the COOH / Ester ratio were the ratio of carboxylic acid groups / ester bonds per polymer chain. Further, X, Y, and Z represent the molar ratios of the constituent monomers in the polymer chain determined by 1H-NMR (see unit molar ratio).

Figure 2020045439
Figure 2020045439

表1において、数平均分子量(Mn)と分子量分布(PDI)は、GPC測定により、Shodex KD803で804 カラム、Tosoh DP8020 ポンプシステム、RI検出器(Tosoh RI−8020)を用い。また、溶離液はLiBr(0.05wt%)を添加したDMFを用いた。 In Table 1, the number average molecular weight (Mn) and the molecular weight distribution (PDI) were measured by GPC using a Shodex KD803 with a 804 column, a Tosoh DP8020 pump system, and an RI detector (Tosoh RI-8020). As the eluent, DMF to which LiBr (0.05 wt%) was added was used.

(架橋ポリエステル樹脂フィルム、実施例1〜6、比較例1)
以下のようにして、図8(A)に示した架橋ポリエステル樹脂フィルム22を作製した。
ポリエステル樹脂原料10と、ジエポキシ架橋剤(1,4−ブタンジオール ジグリシジルエーテル)とエステル交換触媒(酢酸亜鉛)をクロロホルムにそれぞれ溶解させた。
その溶液を、テフロン(登録商標)型内で混合し、その後溶媒をヒーター上40℃で揮発させた。この混合試料を、温度120℃で4hr、真空状下で加熱することで架橋樹脂を得た。得られた架橋樹脂を、カッターを用いてフィルム状に切り取り、幅:4mm、厚さ:0.3mm、長さ:約15mmとした(実施例1)。ポリエステル樹脂原料10の代わりに、ポリエステル樹脂原料11、12を用いた以外は、実施例1と同様にして実施例2、3を得た。実施例1〜3において、カルボン酸:エポキシ基のmol比は1:1であり、エステル交換触媒の割合はフリーの水酸基に対して20mol%であった。
(Crosslinked polyester resin film, Examples 1 to 6, Comparative Example 1)
The crosslinked polyester resin film 22 shown in FIG. 8A was produced as follows.
The polyester resin raw material 10, a diepoxy cross-linking agent (1,4-butanediol diglycidyl ether) and a transesterification catalyst (zinc acetate) were dissolved in chloroform, respectively.
The solution was mixed in a Teflon® mold and then the solvent was volatilized on a heater at 40 ° C. This mixed sample was heated at a temperature of 120 ° C. for 4 hours under a vacuum to obtain a crosslinked resin. The obtained crosslinked resin was cut into a film using a cutter to have a width of 4 mm, a thickness of 0.3 mm, and a length of about 15 mm (Example 1). Examples 2 and 3 were obtained in the same manner as in Example 1 except that the polyester resin raw materials 11 and 12 were used instead of the polyester resin raw material 10. In Examples 1 to 3, the mol ratio of the carboxylic acid: epoxy group was 1: 1 and the ratio of the transesterification catalyst was 20 mol% with respect to the free hydroxyl group.

また、ポリエステル樹脂原料10を用い、実施例1と同様にして得られた架橋樹脂を、カッターを用いてフィルム状に切り取り、幅:4mm、厚さ:0.15mm、長さ:約15mmとした(実施例4)を得た。ポリエステル樹脂原料10の代わりに、ポリエステル樹脂原料11、12を用いた以外は、実施例4と同様にして実施例5、6を得た。実施例4〜6において、カルボン酸:エポキシ基のmol比は1:1であり、エステル交換触媒の割合はフリーの水酸基に対して20mol%であった。 Further, using the polyester resin raw material 10, the crosslinked resin obtained in the same manner as in Example 1 was cut into a film using a cutter to make a width: 4 mm, a thickness: 0.15 mm, and a length: about 15 mm. (Example 4) was obtained. Examples 5 and 6 were obtained in the same manner as in Example 4 except that the polyester resin raw materials 11 and 12 were used instead of the polyester resin raw material 10. In Examples 4 to 6, the mol ratio of the carboxylic acid: epoxy group was 1: 1 and the ratio of the transesterification catalyst was 20 mol% with respect to the free hydroxyl group.

さらにポリエステル樹脂原料10の代わりに、ポリエステル樹脂原料11を用いた以外は、実施例1と同様にして得た架橋樹脂を、カッターを用いてフィルム状に切り取り、幅:4mm、厚さ:0.5mm、長さ:25mmとした架橋ポリエステル樹脂フィイル22(実施例7)を2枚得た。一方、実施例7について、エステル交換触媒を良く溶解させるクロロホルムに浸漬することで、エステル交換触媒を溶出させ、エステル交換触媒を含まないポリエステル樹脂フィルム(比較例1)を作製した。 Further, the crosslinked resin obtained in the same manner as in Example 1 except that the polyester resin raw material 11 was used instead of the polyester resin raw material 10 was cut into a film shape using a cutter, and the width: 4 mm and the thickness: 0. Two crosslinked polyester resin fills 22 (Example 7) having a length of 5 mm and a length of 25 mm were obtained. On the other hand, in Example 7, the transesterification catalyst was eluted by immersing the transesterification catalyst in chloroform, which dissolves the transesterification catalyst well, to prepare a polyester resin film (Comparative Example 1) containing no transesterification catalyst.

(引っ張り試験)
実施例1〜3を用い、以下のようにして、引っ張り試験を行った。その結果を表2に示した。また、図7に実施例3を用いた最大応力、破断伸びの定義についてのチャートを示した。
SHIMADZU AG−X plusを用いて、室温、10mm/minの引っ張り速度で測定を行った。ヤング率(MPa)は、5%変形時の応力から、応力(MPa)/変位(%)として求めた。最大応力(MPa)は、破断までに計測された最大の応力として求めた。破断伸びは、破断時の試料変位(%)として求めた。なお、初期の治具間距離は、約15mmであった。

Figure 2020045439
(Tensile test)
Using Examples 1 to 3, a tensile test was performed as follows. The results are shown in Table 2. In addition, FIG. 7 shows a chart regarding the definitions of maximum stress and elongation at break using Example 3.
Measurements were carried out using SHIMADZU AG-X plus at room temperature and a tensile speed of 10 mm / min. Young's modulus (MPa) was determined as stress (MPa) / displacement (%) from the stress at the time of 5% deformation. The maximum stress (MPa) was determined as the maximum stress measured before breaking. The elongation at break was determined as the sample displacement (%) at break. The initial distance between jigs was about 15 mm.
Figure 2020045439

表2より、本分子設計において得られる架橋ポリエステル樹脂フィルムは、結合交換型架橋を導入しているものの、室温において十分な柔軟性があることが判る(破断伸び>>20%)。また、カルボン酸基を側差に多点で導入しているため、柔軟フィルムとして十分なヤング率が示された(>>1MPa)。そのヤング率は、COOH/Ester比の高い試料ほど高くなる傾向があり、網目構造中の架橋密度はCOOH/Ester比で制御可能であることが示唆される。
上記の引っ張り試験において、強度と柔軟性を保持する観点から、ヤング率は0.10.1MPaから100MPaが好ましく、1MPaから10MPaがより好ましい。また、破断伸びは、良伸縮性を保持する観点から、10%から500%が好ましく、30%から200%がより好ましい。
From Table 2, it can be seen that the crosslinked polyester resin film obtained in this molecular design has sufficient flexibility at room temperature (break elongation >> 20%), although it has introduced bond exchange type crosslinking. In addition, since the carboxylic acid groups were introduced at multiple points in the lateral difference, a sufficient Young's modulus as a flexible film was shown (>> 1 MPa). The Young's modulus tends to be higher in the sample having a higher COOH / Ester ratio, suggesting that the crosslink density in the network structure can be controlled by the COOH / Ester ratio.
In the above tensile test, the Young's modulus is preferably 0.10.1 MPa to 100 MPa, more preferably 1 MPa to 10 MPa, from the viewpoint of maintaining strength and flexibility. Further, the elongation at break is preferably 10% to 500%, more preferably 30% to 200%, from the viewpoint of maintaining good elasticity.

図8(A)に示したように、ピンセット40で摘まれた実施例7から、それが透明性を有していることが確認できた。 As shown in FIG. 8 (A), it was confirmed from Example 7 picked with the tweezers 40 that it had transparency.

図8(B)に示したように、実施例7について両端を180°曲げてその両端を合わせるようにしても、折れることはなく、また、曲げた力を解除すると、もとの状態に戻った。そのことにより、実施例7は室温では高強度柔軟性を有することが分かった。このような室温で高強度柔軟性を有することは、実施例7のTg(ガラス転移温度)が約−30℃であって、室温より極めて低いことからも推定できることであった。 As shown in FIG. 8 (B), even if both ends are bent 180 ° and the both ends are aligned with each other in the seventh embodiment, the two ends are not broken, and when the bending force is released, the original state is restored. rice field. As a result, it was found that Example 7 had high strength and flexibility at room temperature. Having such high strength flexibility at room temperature can be estimated from the fact that the Tg (glass transition temperature) of Example 7 is about −30 ° C., which is extremely lower than room temperature.

(軟化特性)
実施例4〜6を試料として用い、以下のようにして軟化特性を測定した。軟化温度は図10に示したように求め(図10中、Lは測定中の試料長、L100℃は100℃での試料初期長を表す)、その結果を表3に示した。
HITACHI TMA7100を用いて、室温〜230℃までの試料の線膨張率変化の屈曲点からもとめた。測定は、窒素ガス雰囲気下で、試料のたわみを防ぐために微一定張力(30mN)印加下で行った。なお、初期の治具間距離は約15mmであった。また
(Softening characteristics)
Using Examples 4 to 6 as samples, the softening characteristics were measured as follows. The softening temperature was determined as shown in FIG. 10 (in FIG. 10, L represents the sample length under measurement and L 100 ° C. represents the initial sample length at 100 ° C.), and the results are shown in Table 3.
Using HITACHI TMA7100, it was determined from the inflection point of the change in the coefficient of linear expansion of the sample from room temperature to 230 ° C. The measurement was performed in a nitrogen gas atmosphere and under a slightly constant tension (30 mN) to prevent the sample from bending. The initial distance between jigs was about 15 mm. also

Figure 2020045439
Figure 2020045439

表3から、結合交換型動的共有結合架橋を導入した架橋ポリエステル樹脂は、高温では特異的な軟化特性を示すことが判る。通常の非晶性架橋樹脂は、ガラス転移温度や分解温度以外に、高温での軟化点を示すことはない。実施例4、5、6の試料は、ガラス転移温度を約−30℃、且つ分解温度を200℃以上に有するため、上記軟化特性は、エステル結合―フリーOH基間の結合交換が活性化されることに因むと言える。また、軟化温度は、COOH/Ester比の高い試料ほど低くなっている。この理由は、COOH/Ester比の高い試料ほど、エステル交換反応の担い手である「フリーOH基」の導入率が高くなっており、結合交換が低温度で活性化されやすいためである。この結果から、、本ポリエステル架橋樹脂はCOOH/Ester比で制御可能であることが示唆される。
上記の軟化特性において、熱安定性を保ち高分子鎖の熱分解を防ぐ観点から、軟化温度は100℃から250℃が好ましく、120℃から200℃がより好ましい。
From Table 3, it can be seen that the cross-linked polyester resin into which the bond-exchange type dynamic covalent bond cross-linking has been introduced exhibits specific softening properties at high temperatures. A normal amorphous crosslinked resin does not show a softening point at a high temperature other than the glass transition temperature and the decomposition temperature. Since the samples of Examples 4, 5 and 6 have a glass transition temperature of about -30 ° C and a decomposition temperature of 200 ° C or higher, the softening property is that the bond exchange between the ester bond and the free OH group is activated. It can be said that it is due to that. Further, the softening temperature is lower as the sample has a higher COOH / Ester ratio. The reason for this is that the higher the COOH / Ester ratio of the sample, the higher the introduction rate of the "free OH group" that is responsible for the transesterification reaction, and the bond exchange is more likely to be activated at a lower temperature. From this result, it is suggested that the present polyester crosslinked resin can be controlled by the COOH / Ester ratio.
In the above softening characteristics, the softening temperature is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 200 ° C. from the viewpoint of maintaining thermal stability and preventing thermal decomposition of the polymer chain.

(2層架橋ポリエステル樹脂フィルム、実施例8、比較例2)
2枚の実施例7を用い、図8(A)のように、それらの一端同士を重ね、温度は140℃、押圧は400kPa、押圧時間は4hrとして、実施例7同士が接着して積層した部分を含む2層架橋ポリエステル樹脂フィルム30(実施例8)を作製した。
一方、2枚の比較例1を用いて実施例7と同様にして、2層ポリエステル樹脂フィルムを作製しようとしたが、比較例1同士は接着せず、2層ポリエステル樹脂フィルムは作製できなかった(比較例2)。
(Two-layer crosslinked polyester resin film, Example 8, Comparative Example 2)
As shown in FIG. 8A, two sheets of Example 7 were used, and one ends thereof were overlapped with each other, the temperature was 140 ° C., the pressing time was 400 kPa, and the pressing time was 4 hr. A two-layer crosslinked polyester resin film 30 (Example 8) including a portion was produced.
On the other hand, an attempt was made to produce a two-layer polyester resin film using two Comparative Examples 1 in the same manner as in Example 7, but Comparative Examples 1 did not adhere to each other and the two-layer polyester resin film could not be produced. (Comparative example 2).

図9(A)に示したように、2層架橋ポリエステル樹脂フィルム30の両端をそれぞれ摘んで引っ張ったところ、図9(B)に示したように、積層部分36では破断せずに、積層部分36以外の部分で破断して、端部分が破断した多層架橋ポリエステル樹脂フィルム35ができた。そのことにより、2層部分36すなわち接着部分での引張強度は大きいことが分かった。 As shown in FIG. 9A, when both ends of the two-layer crosslinked polyester resin film 30 were picked and pulled, as shown in FIG. 9B, the laminated portion 36 did not break and the laminated portion was formed. A multilayer crosslinked polyester resin film 35 having a broken end portion was formed by breaking at a portion other than 36. From this, it was found that the tensile strength at the two-layer portion 36, that is, the adhesive portion was large.

例えば2枚のフィルム形状の架橋ポリエステル樹脂の間に、所定の空間を形成し、、その所定の空間に有用な目的物を包めるように、架橋ポリエステル樹脂同士を接着する包装体とすることができる。 For example, a packaging body may be formed in which a predetermined space is formed between two film-shaped crosslinked polyester resins, and the crosslinked polyester resins are bonded to each other so as to wrap a useful object in the predetermined space. ..

(再成型性、実施例9)
実施例1(図11)を用い、図12(A)に示したように、実施例1に変形工程を施した。すなわち実施例1をスパーテル41に巻き付け、その両端をテープ42とめ、スパーテル41に固定して、変形を受けた架橋ポリエステル樹脂フィルム23とした。その後、変形を受けた架橋ポリエステル樹脂フィルム23に、熱によって処理される熱処理工程を施した。熱処理工程としては、高温(160℃)で2時間放置し、室温まで放冷した。放冷後、変形を受けた架橋ポリエステル樹脂フィルム23を、スパーテル41から取り外した。すると、図12(B)に示したように、変形を受けた架橋ポリエステル樹脂フィルム23は、巻き付けられた状態が維持された、再成型された架橋ポリエステル樹脂フィルム24となった(実施例9)。
架橋ポリエステル樹脂フィルムが再成型されたのは、高温時にエステル交換が活性化され、放冷中に新しい平衡網目構造が固定化ためと推定された。
(Reformability, Example 9)
Using Example 1 (FIG. 11), as shown in FIG. 12 (A), Example 1 was subjected to a deformation step. That is, Example 1 was wound around a spatula 41, both ends thereof were taped, and fixed to the spatula 41 to obtain a deformed crosslinked polyester resin film 23. Then, the deformed crosslinked polyester resin film 23 was subjected to a heat treatment step of being treated by heat. As a heat treatment step, the mixture was left at a high temperature (160 ° C.) for 2 hours and allowed to cool to room temperature. After allowing to cool, the deformed crosslinked polyester resin film 23 was removed from the spatula 41. Then, as shown in FIG. 12B, the deformed crosslinked polyester resin film 23 became a remolded crosslinked polyester resin film 24 in which the wound state was maintained (Example 9). ..
It was presumed that the cross-linked polyester resin film was remolded because transesterification was activated at high temperatures and a new equilibrium network structure was immobilized during cooling.

熱処理工程として、変形を受けた架橋ポリエステル樹脂フィルムにかける温度(高温)は、結合交換活性化温度の観点から、150℃以上が好ましく、170℃以上がさらに好ましい。一方、高分子鎖の分解の観点から、200℃以下が好ましい。
また、その温度をかける時間は、十分な結合交換を進行させる観点から、1時間以上が好ましく、2時間以上がさらに好ましい。架橋ポリエステル樹脂フィルムが受ける変形は、上記の他に様々な態様があり、例えば折り曲げる、丸める、圧縮する、伸ばす等である。
As the heat treatment step, the temperature (high temperature) applied to the deformed crosslinked polyester resin film is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, from the viewpoint of the bond exchange activation temperature. On the other hand, from the viewpoint of decomposition of the polymer chain, 200 ° C. or lower is preferable.
Further, the time for applying the temperature is preferably 1 hour or more, more preferably 2 hours or more, from the viewpoint of advancing sufficient bond exchange. The deformation of the crosslinked polyester resin film has various aspects other than the above, such as bending, rolling, compressing, and stretching.

(傷修復性、実施例10)
実施例1(図11)に対し、カッター(カッターの刃の厚み:0.1mm)を用いてその表面が、図13(A)に示したような傷50を受ける工程を施した。傷50の観察は、傷50を含む架橋ポリエステル樹脂フィルム25の表面に対し、顕微鏡を用いて行い、その画像を取得した。顕微鏡観察の条件は、倍率20倍、窒素雰囲気下であった。
図13(A)から傷50の長さは約550μmを超えており、カッターの刃により表面に切り込まれたものであることが確認され、また、傷50の深さは約0.1mmであった。
(Scratch repairability, Example 10)
Example 1 (FIG. 11) was subjected to a step of receiving a scratch 50 on the surface thereof as shown in FIG. 13 (A) using a cutter (thickness of a cutter blade: 0.1 mm). The scratch 50 was observed on the surface of the crosslinked polyester resin film 25 including the scratch 50 using a microscope, and an image thereof was acquired. The conditions for microscopic observation were a magnification of 20 times and a nitrogen atmosphere.
From FIG. 13 (A), the length of the scratch 50 exceeds about 550 μm, and it is confirmed that the scratch 50 is cut into the surface by the blade of the cutter, and the depth of the scratch 50 is about 0.1 mm. there were.

その画像取得後、架橋ポリエステル樹脂フィルム25に、熱によって処理される熱処理工程を施した。熱処理工程としては、高温(180℃)で10分間放置し、室温まで放冷した。熱処理工程を施すと、図13(B)に示したように、傷50はきれいに消失して、表面に傷50がない架橋ポリエステル樹脂フィルム26となった(実施例10)。
傷が消失したことすなわち架橋ポリエステル樹脂フィルムが傷修復性を有するのは、高温で結合交換が活性化され、表面近傍の分子鎖の再配列が促されたためと推定された。
After acquiring the image, the crosslinked polyester resin film 25 was subjected to a heat treatment step of being treated by heat. As a heat treatment step, the mixture was left at a high temperature (180 ° C.) for 10 minutes and allowed to cool to room temperature. When the heat treatment step was performed, as shown in FIG. 13B, the scratches 50 disappeared cleanly, and the crosslinked polyester resin film 26 having no scratches 50 on the surface was obtained (Example 10).
It was presumed that the scratches disappeared, that is, the crosslinked polyester resin film had scratch repair properties, because the bond exchange was activated at high temperature and the rearrangement of the molecular chains near the surface was promoted.

熱処理工程として、傷を含む架橋ポリエステル樹脂フィルムにかける温度(高温)は、結合交換活性化温度の観点から、150℃以上が好ましく、170℃以上がさらに好ましい。一方、高分子鎖の分解の観点から、200℃以下が好ましい。また、その温度をかける時間は、十分な結合交換を進行させる観点の観点から、10分間以上が好ましく、20分間以上がさらに好ましい。 As the heat treatment step, the temperature (high temperature) applied to the crosslinked polyester resin film including scratches is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, from the viewpoint of the bond exchange activation temperature. On the other hand, from the viewpoint of decomposition of the polymer chain, 200 ° C. or lower is preferable. Further, the time for applying the temperature is preferably 10 minutes or more, more preferably 20 minutes or more, from the viewpoint of advancing sufficient bond exchange.

(エステル交換触媒溶液に浸漬することによる架橋ポリエステル樹脂の製造)
図14には、エステル交換触媒を含まない架橋ポリエステル樹脂を、エステル交換触媒を含む溶液に浸漬することにより得られる架橋ポリエステル樹脂の製造方法の概略を示した。エステル交換触媒を含まない架橋ポリエステル樹脂による成型品9を、エステル交換触媒溶液60に一定時間浸漬することによって架橋ポリエステル樹脂による成型品8Aを得ることができる。
(Manufacture of crosslinked polyester resin by immersing in transesterification catalyst solution)
FIG. 14 shows an outline of a method for producing a crosslinked polyester resin obtained by immersing a crosslinked polyester resin containing no transesterification catalyst in a solution containing a transesterification catalyst. A molded product 8A made of a crosslinked polyester resin can be obtained by immersing the molded product 9 made of a crosslinked polyester resin containing no transesterification catalyst in the transesterification catalyst solution 60 for a certain period of time.

図14では、エステル交換触媒を含まない架橋ポリエステル樹脂として成型品9を示したが、その形状はフィルム形状を含む様々な形状であってよい。エステル交換触媒としては溶解性の観点から酢酸亜鉛やアセチルアセトン亜鉛(II)塩が好ましく、エステル交換触媒を含む溶液としては溶解性や揮発しやすさの観点からクロロホルムやテトラヒドロフランが好ましい。エステル交換触媒が酢酸亜鉛で溶液がクロロホルムである場合には、酢酸亜鉛がクロロホルムに溶解しており、試料への浸透度の観点から、そのような溶解状態であることが好ましい。一方、触媒活性度の観点からはエステル交換触媒が溶液中で分散状態であってもよい。 In FIG. 14, the molded product 9 is shown as a crosslinked polyester resin that does not contain a transesterification catalyst, but the shape may be various shapes including a film shape. As the ester exchange catalyst, zinc acetate or acetylacetone zinc (II) salt is preferable from the viewpoint of solubility, and as the solution containing the ester exchange catalyst, chloroform or tetrahydrofuran is preferable from the viewpoint of solubility and volatile easiness. When the ester exchange catalyst is zinc acetate and the solution is chloroform, zinc acetate is dissolved in chloroform, and it is preferable that the solution is in such a dissolved state from the viewpoint of permeability to the sample. On the other hand, from the viewpoint of catalytic activity, the transesterification catalyst may be in a dispersed state in the solution.

エステル交換触媒の濃度は触媒活性度の観点から、1.0mg/mL以上が好ましく、2.5mg/mL以上がより好ましい。また、溶媒への溶解度の観点から、20mg/mL以下が好ましく、10mg/mL以下がより好ましい。エステル交換触媒を含まない架橋ポリエステル樹脂をエステル交換触媒溶液に浸漬する時間は、平衡膨潤度の観点から、6時間以上が好ましく、12時間以上がより好ましい。 The concentration of the transesterification catalyst is preferably 1.0 mg / mL or more, more preferably 2.5 mg / mL or more, from the viewpoint of catalytic activity. Further, from the viewpoint of solubility in a solvent, 20 mg / mL or less is preferable, and 10 mg / mL or less is more preferable. The time for immersing the crosslinked polyester resin containing no transesterification catalyst in the transesterification catalyst solution is preferably 6 hours or more, more preferably 12 hours or more, from the viewpoint of equilibrium swelling degree.

(エステル交換触媒を含まない架橋樹脂(フィルム状片)、参考比較例1〜4)
ポリエステル樹脂原料10と、ジエポキシ架橋剤(1,4−ブタンジオール ジグリシジルエーテル)をクロロホルムにそれぞれ溶解させた。その溶液を、テフロン(登録商標)型内で混合し、その後溶媒をヒーター上40℃で揮発させた。この混合試料を、温度120℃で4hr、真空状下で加熱することでエステル交換触媒を含まない架橋樹脂を得た。得られたエステル交換触媒を含まない架橋樹脂を、カッターを用いてフィルム状に切り取り、幅:4mm、厚さ:0.3mm、長さ:約15mmとして4枚(参考比較例1〜4)を得た。参考比較例1〜4において、カルボン酸:エポキシ基のmol比は1:1であった。
(Cross-linked resin (film-like piece) not containing a transesterification catalyst, Reference Comparative Examples 1 to 4)
The polyester resin raw material 10 and the diepoxy cross-linking agent (1,4-butanediol diglycidyl ether) were dissolved in chloroform, respectively. The solution was mixed in a Teflon® mold and then the solvent was volatilized on a heater at 40 ° C. This mixed sample was heated at a temperature of 120 ° C. for 4 hours under vacuum to obtain a crosslinked resin containing no transesterification catalyst. The obtained crosslinked resin containing no transesterification catalyst was cut into a film using a cutter, and 4 sheets (Reference Comparative Examples 1 to 4) were formed with a width of 4 mm, a thickness of 0.3 mm, and a length of about 15 mm. Obtained. In Reference Comparative Examples 1 to 4, the mol ratio of the carboxylic acid: epoxy group was 1: 1.

(架橋ポリエステル樹脂(フィルム状片)、比較例3、実施例11〜13)
酢酸亜鉛濃度が0mg/mL、2.5mg/mL、5mg/mL、10mg/mLであるクロロホルム溶液に、参考比較例1〜4のフィルム状片をそれぞれ1枚ずつ12時間浸漬して、フィルム状片の架橋ポリエステル樹脂(比較例3、実施例11〜13)を得た。比較例3(酢酸亜鉛濃度が0mg/mL)、実施例11(酢酸亜鉛濃度が2.5mg/mL)、実施例12(酢酸亜鉛濃度が5mg/mL)、実施例13(酢酸亜鉛濃度が10mg/mL)に対してそれぞれの線膨張率測定を行った。
(Crosslinked polyester resin (film-like piece), Comparative Example 3, Examples 11 to 13)
A film-like piece of Reference Comparative Examples 1 to 4 was immersed in a chloroform solution having zinc acetate concentrations of 0 mg / mL, 2.5 mg / mL, 5 mg / mL, and 10 mg / mL for 12 hours, respectively, to form a film. A piece of crosslinked polyester resin (Comparative Example 3, Examples 11 to 13) was obtained. Comparative Example 3 (zinc acetate concentration 0 mg / mL), Example 11 (zinc acetate concentration 2.5 mg / mL), Example 12 (zinc acetate concentration 5 mg / mL), Example 13 (zinc acetate concentration 10 mg) Each linear expansion rate was measured for / mL).

(線膨張率測定)
線膨張率測定はフィルム状片に対して、一定微弱応力(30mN)で温度上昇させ(100℃〜200℃)、フィルム状片の試料長変化を測定することによって行い、その測定結果を、横軸に温度、縦軸にL(フィルム長)/100℃におけるフィルム長L100℃(100℃におけるフィルム長)として図15に示した。
図15から実施例11〜13は、高温で試料長が急激に増加すなわち軟化し、その増加の程度は、実施例11から13に向かってすなわち酢酸亜鉛濃度が高くなるに従って大きくなることが分かった。その増加傾向は、高温でのエステル交換活性化に起因すると推定された。
(Measurement of coefficient of linear expansion)
The linear expansion rate is measured by raising the temperature (100 ° C. to 200 ° C.) of the film-shaped piece with a constant weak stress (30 mN) and measuring the change in the sample length of the film-shaped piece. The axis is the temperature, and the vertical axis is L (film length) / film length at 100 ° C. L 100 ° C. (film length at 100 ° C.) is shown in FIG.
From FIG. 15, it was found that in Examples 11 to 13, the sample length rapidly increased or softened at a high temperature, and the degree of the increase increased toward Examples 11 to 13, that is, as the zinc acetate concentration increased. .. The increasing tendency was presumed to be due to transesterification activation at high temperatures.

(軟化温度)
図16は、図15に基づき作成したものである。すなわち実際の試料長変化(図15の実線)と一定試料長変化(図15の点線)との差(ΔLexp-const)を求め、その差=0.005で定義した軟化温度(図15の点線)を求めると、その軟化温度は実施例11から13に向かってすなわち酢酸亜鉛濃度が高くなるに従って低下することが分かった。
このように軟化することにより、架橋ポリエステル樹脂に再成型性・再加工性が付与され、例えばフィルムの薄膜化、架橋樹脂の微細加工などに有利となる。
(Softening temperature)
FIG. 16 is created based on FIG. That is, the difference (ΔLexp-const) between the actual sample length change (solid line in FIG. 15) and the constant sample length change (dotted line in FIG. 15) is obtained, and the softening temperature defined by the difference = 0.005 (dotted line in FIG. 15). ) Was determined, and it was found that the softening temperature decreased toward Examples 11 to 13, that is, as the zinc acetate concentration increased.
By softening in this way, the crosslinked polyester resin is imparted with remoldability and reworkability, which is advantageous for, for example, thinning of the film and fine processing of the crosslinked resin.

所定の空間を形成し、その所定の空間に有用な目的物を包むことができる包装体を形成する架橋ポリエステル樹脂として利用することができる。 It can be used as a crosslinked polyester resin that forms a predetermined space and forms a package capable of wrapping a useful object in the predetermined space.

1、1A、1B、1C、1D:高分子主鎖
2:エステル結合
3、3A:共有結合架橋部分
4:フリーOH基(水酸基)
5:ポリエステル樹脂
6、6A:エステル交換触媒
7:架橋ポリエステル樹脂
8:架橋ポリエステル樹脂による成型品
8A:架橋ポリエステル樹脂による成型品
9:エステル交換触媒を含まない架橋ポリエステル樹脂による成型品
10、11、12:ポリエステル樹脂原料
20、21、22:架橋ポリエステル樹脂フィルム
23:変形を受けた架橋ポリエステル樹脂フィルム
24:再成型された架橋ポリエステル樹脂フィルム
25:表面に傷を含む架橋ポリエステル樹脂フィルム
26:熱処理後に表面の傷が消失した架橋ポリエステル樹脂フィルム
30:2層架橋ポリエステル樹脂フィルム
31、31A:接着層
35:端部分が破断した2層架橋ポリエステル樹脂フィルム
36:積層(2層)部分
40:ピンセット
41:スパーテル
42:テープ
50:傷
60:エステル交換触媒溶液

1, 1A, 1B, 1C, 1D: Polymer main chain 2: Ester bond 3, 3A: Covalent bond Cross-linked portion 4: Free OH group (hydroxyl group)
5: Polyester resin 6, 6A: Ester exchange catalyst 7: Crosslinked polyester resin 8: Molded product made of crosslinked polyester resin 8A: Molded product made of crosslinked polyester resin 9: Molded product made of crosslinked polyester resin not containing ester exchange catalyst 10,11, 12: Polyester resin raw materials 20, 21, 22: Cross-linked polyester resin film 23: Deformed cross-linked polyester resin film 24: Remolded cross-linked polyester resin film 25: Cross-linked polyester resin film having scratches on the surface 26: After heat treatment Cross-linked polyester resin film with surface scratches disappeared 30: Two-layer cross-linked polyester resin film 31, 31A: Adhesive layer 35: Two-layer cross-linked polyester resin film with broken edges 36: Laminated (two-layer) portion 40: Tweezers 41: Spartel 42: Tape 50: Scratch 60: Ester exchange catalyst solution

Claims (13)

エステル結合を多点で含む高分子主鎖と、エステル結合とフリーOH基を含む多点の共有結合架橋部分を含むポリエステル樹脂、及びエステル交換触媒を含む架橋ポリエステル樹脂。 A polyester resin containing a polymer main chain containing multiple ester bonds, a multi-point covalently bonded crosslinked portion containing an ester bond and a free OH group, and a crosslinked polyester resin containing an ester exchange catalyst. エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤と、前記エステル交換触媒を混合し、加熱して架橋することにより得られる請求項1に記載の架橋ポリエステル樹脂。 The crosslinked polyester resin according to claim 1, which is obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at a large number of points, a diepoxy crosslinking agent, and the transesterification catalyst, and heating and crosslinking the mixture. 前記ポリエステル樹脂原料の平均分子量は8000以上、前記ポリエステル樹脂原料が有するポリエステル結合の数は100個以上である請求項2に記載の架橋ポリエステル樹脂。 The crosslinked polyester resin according to claim 2, wherein the polyester resin raw material has an average molecular weight of 8000 or more, and the polyester resin raw material has 100 or more polyester bonds. 前記ポリエステル樹脂原料のカルボン酸基の割合は、前記ポリエステル樹脂原料のエステル基に対して、10mol%〜50mol%であって、架橋反応における前記ポリエステル樹脂原料が有するカルボン酸基と前記ジエポキシ架橋剤が有するエポキシ基の割合(カルボン酸基:エポキシ基)は、1:0.5〜1:1.5である請求項2又3に記載の架橋ポリエステル樹脂。 The ratio of the carboxylic acid group of the polyester resin raw material is 10 mol% to 50 mol% with respect to the ester group of the polyester resin raw material, and the carboxylic acid group of the polyester resin raw material and the diepoxy cross-linking agent in the cross-linking reaction are present. The crosslinked polyester resin according to claim 2 or 3, wherein the ratio of the epoxy group (carboxylic acid group: epoxy group) is 1: 0.5 to 1: 1.5. 架橋後の網目構造におけるフリーOH基に対するエステル交換触媒のモル比(フリーOH基:エステル交換触媒エポキシ基)は、1:0.1〜1:0.4である請求項2〜4に記載の架橋ポリエステル樹脂。 The second to fourth claims, wherein the molar ratio of the transesterification catalyst to the free OH group (free OH group: transesterification catalyst epoxy group) in the network structure after cross-linking is 1: 0.1 to 1: 0.4. Crosslinked polyester resin. エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤と、エステル交換触媒を混合し、加熱して架橋することにより得られる架橋ポリエステル樹脂の製造方法。 A method for producing a crosslinked polyester resin obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at multiple points, a diepoxy crosslinking agent, and a transesterification catalyst, and heating and crosslinking. 架橋ポリエステル樹脂はフィルム形状である請求項1〜5の何れか1項に記載の架橋ポリエステル樹脂。 The crosslinked polyester resin according to any one of claims 1 to 5, wherein the crosslinked polyester resin is in the form of a film. 請求項7に記載のフィルム形状の架橋ポリエステル樹脂が接着して積層した部分を含む、多層架橋ポリエステル樹脂フィルム。 A multilayer crosslinked polyester resin film comprising a portion in which the film-shaped crosslinked polyester resin according to claim 7 is adhered and laminated. 請求項8に記載の多層架橋ポリエステル樹脂フィルムを少なくても一部に用いたことを特徴とする包装体。 A packaging body characterized in that the multilayer crosslinked polyester resin film according to claim 8 is used at least partially. 請求項7に記載のフィルム形状の架橋ポリエステル樹脂の少なくても一部分を、高温下で押圧する多層架橋ポリエステル樹脂フィルムの製造方法。 The method for producing a multilayer crosslinked polyester resin film, which presses at least a part of the film-shaped crosslinked polyester resin according to claim 7 at a high temperature. 請求項7に記載の架橋ポリエステル樹脂が、その形状について変形を受ける変形工程と、その後熱によって処理される熱処理工程含む、再成型された架橋ポリエステル樹脂の製造方法。 A method for producing a remolded crosslinked polyester resin, which comprises a deformation step in which the crosslinked polyester resin according to claim 7 is deformed with respect to its shape, and then a heat treatment step in which the crosslinked polyester resin is treated by heat. 請求項7に記載の架橋ポリエステル樹脂が、その表面に傷を受ける工程、その後熱によって処理される熱処理工程を含む、前記傷が修復された架橋ポリエステル樹脂の製造方法。 A method for producing a crosslinked polyester resin in which the scratches have been repaired, which comprises a step of scratching the surface of the crosslinked polyester resin according to claim 7 and then a heat treatment step of treating the crosslinked polyester resin with heat. エステル結合とカルボン酸基を多点で含むポリエステル樹脂原料と、ジエポキシ架橋剤を混合し、加熱して架橋することにより得られるエステル交換触媒を含まない架橋ポリエステル樹脂を、前記エステル交換触媒を含む溶液に浸漬することにより得られる架橋ポリエステル樹脂の製造方法。

A solution containing the ester exchange catalyst, which is obtained by mixing a polyester resin raw material containing an ester bond and a carboxylic acid group at multiple points with a diepoxy cross-linking agent and heating and cross-linking the cross-linked polyester resin without an ester exchange catalyst. A method for producing a crosslinked polyester resin obtained by immersing in.

JP2020539504A 2018-08-27 2019-08-27 Soft crosslinked polyester resin/film exhibiting self-adhesiveness, remoldability, and scratch repair properties, and method for producing the same Active JP7405082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023210684A JP2024037883A (en) 2018-08-27 2023-12-14 Soft crosslinked polyester resin/film exhibiting self-adhesive property, re-formability, and flaw-repairing property

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018158180 2018-08-27
JP2018158180 2018-08-27
JP2019036761 2019-02-28
JP2019036761 2019-02-28
JP2019150283 2019-08-20
JP2019150283 2019-08-20
PCT/JP2019/033530 WO2020045439A1 (en) 2018-08-27 2019-08-27 Soft crosslinked polyester resin/film exhibiting self-adhesive property, re-formability, and flaw-repairing property, and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023210684A Division JP2024037883A (en) 2018-08-27 2023-12-14 Soft crosslinked polyester resin/film exhibiting self-adhesive property, re-formability, and flaw-repairing property

Publications (2)

Publication Number Publication Date
JPWO2020045439A1 true JPWO2020045439A1 (en) 2021-08-12
JP7405082B2 JP7405082B2 (en) 2023-12-26

Family

ID=69644348

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020539504A Active JP7405082B2 (en) 2018-08-27 2019-08-27 Soft crosslinked polyester resin/film exhibiting self-adhesiveness, remoldability, and scratch repair properties, and method for producing the same
JP2023210684A Pending JP2024037883A (en) 2018-08-27 2023-12-14 Soft crosslinked polyester resin/film exhibiting self-adhesive property, re-formability, and flaw-repairing property

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023210684A Pending JP2024037883A (en) 2018-08-27 2023-12-14 Soft crosslinked polyester resin/film exhibiting self-adhesive property, re-formability, and flaw-repairing property

Country Status (2)

Country Link
JP (2) JP7405082B2 (en)
WO (1) WO2020045439A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411493B2 (en) * 2020-04-22 2024-01-11 株式会社日立製作所 Fiber reinforced resin and its manufacturing method
JP7462931B2 (en) * 2020-05-11 2024-04-08 国立大学法人 名古屋工業大学 Colorless, highly transparent, shape-memory crosslinked polyester resin capable of renewing its shape memory, and its manufacturing method
WO2022080470A1 (en) 2020-10-16 2022-04-21 東洋紡株式会社 Crosslinked polyester resin
WO2022080469A1 (en) 2020-10-16 2022-04-21 東洋紡株式会社 Crosslinked aromatic polyester resin composition and production method therefor
KR20240005888A (en) * 2021-05-10 2024-01-12 국립대학법인 나고야공업대학 Amino group-containing polyester resin and amino group-containing crosslinked polyester resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525849A (en) * 1975-06-26 1977-01-17 Unitech Chemical Inc Heattsensitive carboxylated copolymer adhesive and its production method
JPH02142869A (en) * 1988-11-22 1990-05-31 Toray Ind Inc Coating composition for coated steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525844A (en) * 1975-07-02 1977-01-17 Mitsubishi Electric Corp Process for preparing a powder coating
JP2005023166A (en) * 2003-06-30 2005-01-27 Toshiba Lighting & Technology Corp Self-restorative resin composition, part for lighting equipment and lighting equipment using the resin composition
JP5145564B2 (en) * 2005-12-16 2013-02-20 国立大学法人北陸先端科学技術大学院大学 Self-healing material
JP2008239722A (en) * 2007-03-27 2008-10-09 Japan Advanced Institute Of Science & Technology Hokuriku Self-repairing material
JP2013039784A (en) * 2011-08-19 2013-02-28 Keiichi Uno Polyester type adhesive and sheet-like laminate using the same
JP6617408B2 (en) * 2015-02-12 2019-12-11 東レフィルム加工株式会社 Self-healing film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525849A (en) * 1975-06-26 1977-01-17 Unitech Chemical Inc Heattsensitive carboxylated copolymer adhesive and its production method
JPH02142869A (en) * 1988-11-22 1990-05-31 Toray Ind Inc Coating composition for coated steel sheet

Also Published As

Publication number Publication date
JP7405082B2 (en) 2023-12-26
JP2024037883A (en) 2024-03-19
WO2020045439A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP7405082B2 (en) Soft crosslinked polyester resin/film exhibiting self-adhesiveness, remoldability, and scratch repair properties, and method for producing the same
KR100733652B1 (en) Polyester resin and molded article
EP1220875B1 (en) Copolyesters having improved retained adhesion
EP3309280A1 (en) Low melting point conjugate fiber
CN107922597B (en) Polyester composition
WO1993013152A1 (en) Process for producing high-molecular aliphatic polyester, and film
KR20230088438A (en) cross-linked polyester resin
KR101844998B1 (en) Self-healing polyester and film prepared by using the same
KR101948860B1 (en) Eco-Friendly Cars Ceiling With A Polyester Foam Sheet
KR102621143B1 (en) Biodegradable adhesive composition
WO2022239439A1 (en) Aminated polyester resin and crosslinked aminated polyester resin
JP2021045719A (en) Honeycomb structure and filter
JP2013112721A (en) Chitin nano-fiber composite material and method for producing the same
KR101976763B1 (en) Hot melt adhesive composition
KR102117688B1 (en) Polyester fiber using binder Having Advanced Adhesive Strength
WO2015186653A1 (en) Terminally modified polyethylene terephthalate resin, method for producing same and molded article
KR102690704B1 (en) Biodegradable polyester polymer with excellent adhesive strength and adjustable melting point and hot melt adhesive containing the same
EP4386034A1 (en) Crosslinked polyester resin
EP4421105A1 (en) Biodegradable polyester resin, and biodegradable polyester film and laminate comprising same
CN118265738A (en) Biodegradable polymers
KR20230080341A (en) Biodegradable polymer
EP4414405A1 (en) Biodegradable polymer
JP2002241618A (en) Method for producing resin composite
JP2024151806A (en) Property-changing bond-exchangeable polyester resin
KR101247442B1 (en) Branched polylactic acid-polycaprolactone copolymer and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R151 Written notification of patent or utility model registration

Ref document number: 7405082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151