JPWO2020030916A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020030916A5
JPWO2020030916A5 JP2021506286A JP2021506286A JPWO2020030916A5 JP WO2020030916 A5 JPWO2020030916 A5 JP WO2020030916A5 JP 2021506286 A JP2021506286 A JP 2021506286A JP 2021506286 A JP2021506286 A JP 2021506286A JP WO2020030916 A5 JPWO2020030916 A5 JP WO2020030916A5
Authority
JP
Japan
Prior art keywords
sensor
view
field
less
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021506286A
Other languages
Japanese (ja)
Other versions
JP2021533488A (en
Publication date
Priority claimed from GBGB1812818.1A external-priority patent/GB201812818D0/en
Priority claimed from GBGB1906885.7A external-priority patent/GB201906885D0/en
Priority claimed from GB1909605.6A external-priority patent/GB2579689A/en
Application filed filed Critical
Publication of JP2021533488A publication Critical patent/JP2021533488A/en
Publication of JPWO2020030916A5 publication Critical patent/JPWO2020030916A5/ja
Pending legal-status Critical Current

Links

Description

センサの視野への言及は、センサ及び任意の関連の光学要素の視野をいうこともある。
なお、本発明には、以下の態様が含まれることを付記する。
〔態様1〕
シーンの3次元表現を生成する際に使用する装置であって、
マルチピクセルセンサ及び光源を備え、前記センサの視野にわたって空間的に不均一な強度を有する照明を出射するように配置されたタイム・オブ・フライト(ToF)撮像カメラシステムと、
前記センサの前記視野の少なくとも一部にわたって前記照明を移動させることによって前記表現の生成を可能とするための作動機構と
を備える前記装置。
〔態様2〕
前記空間的に不均一な強度は、ピーク出射強度が実質的に一定であり及び/又は該ピーク出射強度が最大レベルの少なくとも50%である一組の領域に対応する、態様1に記載の装置。
〔態様3〕
前記一組の領域が所与の瞬間に前記センサの前記視野の1%~50%をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の10%超で50%未満、40%未満、30%未満又は20%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の20%超で50%未満、40%未満又は30%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の30%超で50%未満又は40%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の40%超で50%未満をともに覆う、態様2に記載の装置。
〔態様4〕
前記作動機構は、前記照明を前記センサの前記視野の少なくとも一部にわたって走査パターンで移動させる、態様2又は3に記載の装置。
〔態様5〕
前記走査パターンは、前記照明を前記センサの前記視野の少なくとも一部にわたって1つの軸に沿って移動させることを含む、態様4に記載の装置。
〔態様6〕
前記走査パターンは、出射される前記照明を前記シーンの少なくとも一部にわたって2つの軸に沿って移動させることを備える、態様4に記載の装置。
〔態様7〕
前記走査パターンのサイクル中に前記移動によって前記領域が前記センサの前記視野の75%超、90%超又は実質的に全域を覆うように、前記一組の領域が配置された、態様5又は6に記載の装置。
〔態様8〕
前記走査パターンのサイクル中に前記移動が前記センサの前記視野の同じ部分を2回以上覆う領域を回避するように、前記一組の領域が配置された、態様5~7のいずれか一項に記載の装置。
〔態様9〕
前記移動は、前記不均一な強度における特定の点に、前記走査パターンのサイクル中に前記センサの前記視野の幅又は高さの50%未満、40%未満、30%未満、20%未満、10%未満又は5%未満だけ移動させる、態様5~8のいずれか一項に記載の装置。
〔態様10〕
前記一組の領域は前記センサの前記視野の少なくとも1つの方向において周期性を有し、前記移動は、前記不均一な強度における特定の点に、前記少なくとも1つの方向における前記周期性の略逆数だけ移動させる、態様5~9のいずれか一項に記載の装置。
〔態様11〕
出射された前記照明が、円形ビーム形状を有する光ビームであり、光の平行縞のパターンからなり、又は光のドット若しくは円のパターンからなる、態様1~10のいずれか一項に記載の装置。
〔態様12〕
前記表現を生成する所与の瞬間における前記一組の領域内の視野を有する、前記センサの画素のみからの情報を用いるように構成された、態様2~11のいずれか一項に記載の装置。
〔態様13〕
前記出射された照明は、前記一組の領域の全体にわたって実質的に同じ時間変動を有する、態様2~12のいずれか一項に記載の装置。
〔態様14〕
前記出射された照明は、高頻度で変動され、比較的低頻度で反復的に前記視野にわたって移動される、態様13に記載の装置。
〔態様15〕
前記作動機構は、前記出射された照明を前記シーンにおける独立した位置に移動させる、態様1~14のいずれか一項に記載の装置。
〔態様16〕
前記作動機構は、前記出射された照明を前記シーンの少なくとも一部にわたって連続的に移動させる、態様1~15のいずれか一項に記載の装置。
〔態様17〕
前記作動機構は、少なくとも1つの形状記憶合金(SMA)アクチュエータワイヤを備える、態様1~16のいずれか一項に記載の装置。
〔態様18〕
前記光源は、アレイ状に配置された複数のレーザを備える、態様1~17のいずれか一項に記載の装置。
〔態様19〕
前記複数のレーザが、垂直共振器面発光レーザ(VCSEL)アレイに対応する、態様18に記載の装置。
〔態様20〕
前記複数のレーザからの照明を前記センサの前記視野の割合に対応する単一のビームに合焦させる合焦レンズを備える態様18又は19に記載の装置。
〔態様21〕
複数のマイクロレンズであって、各マイクロレンズは前記複数のレーザの1つからの照明を複数のビームの1つに合焦させるように構成され、前記複数のビームの各々が前記センサの前記視野の割合に対応する、複数のマイクロレンズを備える態様18又は19に記載の装置。
〔態様22〕
前記ビーム又は前記複数のビームの各々を更なる複数のビームに分割するように構成された光学要素を備える態様20又は21に記載の装置。
〔態様23〕
態様20に従属する場合に、前記更なる複数のビームが扇パターンに対応する、態様22に記載の装置。
〔態様24〕
前記作動機構は、前記複数のレーザ及び1以上の更なる光学要素を備えるサブモジュールを少なくとも1つの軸に関してティルトさせるように構成された、態様18~23のいずれか一項に記載の装置。
〔態様25〕
前記作動機構は、前記照明を前記センサの前記視野の前記少なくとも一部にわたって移動させるために、レーザの前記アレイに少なくとも実質的に平行な平面内で1以上の直交方向に移動可能な少なくとも1つのレンズを備える、態様18~23のいずれか一項に記載の装置。
〔態様26〕
前記少なくとも1つのレンズは、ボールレンズに対応する、態様25に記載の装置。
〔態様27〕
態様21に従属する場合に、前記少なくとも1つのレンズは、前記複数のマイクロレンズに対応する、態様25に記載の装置。
〔態様28〕
前記少なくとも1つのレンズの移動の0.025度/μm超の角度だけ前記照明の方向を変化させるように構成された、態様25~27のいずれか一項に記載の装置。
〔態様29〕
前記作動機構は、前記出射された照明をステアリングするために少なくとも1つのティルト用ミラーを備える、態様18~23のいずれか一項に記載の装置。
〔態様30〕
前記作動機構は、前記出射された照明をステアリングするために少なくとも一対の回転可能プリズムを備える、態様18~23のいずれか一項に記載の装置。
〔態様31〕
前記作動機構は、前記照明をステアリングするための適応ビームステアリング機構を備える、態様1~30のいずれか一項に記載の装置。
〔態様32〕
前記ToF撮像カメラシステム又は光学カメラが、前記シーンの最初の走査を実行して前記シーン内の1以上の対象の被写体を識別するように構成された、態様1~31のいずれか一項に記載の装置。
〔態様33〕
シーンの3次元表現を生成する際に使用する方法であって、
タイム・オブ・フライト(ToF)撮像カメラシステムを用いて、反射光を受光するのに用いられるセンサの視野にわたって空間的に不均一な強度を有する照明を出射するステップと、
作動機構を用いて、前記センサの前記視野の少なくとも一部にわたって前記照明を移動させることによって前記表現の生成を可能とするステップと
を備える方法。
〔態様34〕
態様33に記載の方法を実施するプロセッサ制御コードを保持する非一時的データキャリア。
References to the field of view of the sensor may also refer to the field of view of the sensor and any associated optical elements.
It should be noted that the present invention includes the following aspects.
[Aspect 1]
A device for use in generating a three-dimensional representation of a scene, comprising:
a time-of-flight (ToF) imaging camera system comprising a multi-pixel sensor and a light source arranged to emit illumination having a spatially non-uniform intensity over the sensor's field of view;
an actuation mechanism for enabling generation of the representation by moving the illumination across at least a portion of the field of view of the sensor;
The device comprising:
[Aspect 2]
2. The apparatus of aspect 1, wherein the spatially non-uniform intensity corresponds to a set of regions where the peak exit intensity is substantially constant and/or where the peak exit intensity is at least 50% of a maximum level. .
[Aspect 3]
said set of areas together covering between 1% and 50% of said field of view of said sensor at a given moment, optionally said set of areas covering more than 10% of said field of view of said sensor at a given moment together covering less than 50%, less than 40%, less than 30% or less than 20% of the field of view of the sensor at a given moment; % or less than 30% together, optionally said set of regions together covering more than 30% and less than 50% or less than 40% of said field of view of said sensor at a given moment, optionally 3. The apparatus of aspect 2, wherein the pair of regions together cover more than 40% and less than 50% of the field of view of the sensor at a given moment.
[Aspect 4]
4. The apparatus of aspects 2 or 3, wherein the actuation mechanism moves the illumination in a scanning pattern across at least a portion of the field of view of the sensor.
[Aspect 5]
5. The apparatus of aspect 4, wherein the scanning pattern includes moving the illumination along one axis over at least a portion of the field of view of the sensor.
[Aspect 6]
5. The apparatus of aspect 4, wherein the scanning pattern comprises moving the emitted illumination along two axes over at least a portion of the scene.
[Aspect 7]
Aspect 5 or 6, wherein said set of regions are arranged such that said movement causes said regions to cover more than 75%, more than 90%, or substantially all of said field of view of said sensor during a cycle of said scanning pattern. The apparatus described in .
[Aspect 8]
8. Aspects 5-7, wherein the set of areas are arranged such that the movement avoids areas that cover the same portion of the field of view of the sensor more than once during a cycle of the scan pattern. Apparatus as described.
[Aspect 9]
The movement is less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10% of the width or height of the field of view of the sensor during a cycle of the scan pattern to a particular point in the non-uniform intensity. 9. The device of any one of aspects 5-8, wherein the device moves less than 5% or less than 5%.
[Aspect 10]
The set of regions has a periodicity in at least one direction of the field of view of the sensor, and the movement is approximately the inverse of the periodicity in the at least one direction to a particular point in the non-uniform intensity. 10. Apparatus according to any one of aspects 5-9, wherein the device moves only
[Aspect 11]
11. The apparatus of any one of aspects 1-10, wherein the emitted illumination is a light beam having a circular beam shape, consisting of a pattern of parallel stripes of light, or consisting of a pattern of dots or circles of light. .
[Aspect 12]
12. Apparatus according to any one of aspects 2-11, configured to use information only from pixels of said sensor having a field of view within said set of regions at a given moment to generate said representation. .
[Aspect 13]
13. The apparatus of any one of aspects 2-12, wherein the emitted illumination has substantially the same temporal variation across the set of regions.
[Aspect 14]
14. The apparatus of aspect 13, wherein the emitted illumination is frequently varied and relatively infrequently repetitively moved across the field of view.
[Aspect 15]
15. The apparatus of any one of aspects 1-14, wherein the actuation mechanism moves the emitted illumination to independent positions in the scene.
[Aspect 16]
16. The apparatus of any one of aspects 1-15, wherein the actuation mechanism continuously moves the emitted illumination over at least a portion of the scene.
[Aspect 17]
17. The apparatus of any one of aspects 1-16, wherein the actuation mechanism comprises at least one shape memory alloy (SMA) actuator wire.
[Aspect 18]
18. The apparatus of any one of aspects 1-17, wherein the light source comprises a plurality of lasers arranged in an array.
[Aspect 19]
19. The apparatus of aspect 18, wherein the plurality of lasers corresponds to a vertical cavity surface emitting laser (VCSEL) array.
[Aspect 20]
20. Apparatus according to aspect 18 or 19, comprising a focusing lens for focusing illumination from said plurality of lasers into a single beam corresponding to a fraction of said field of view of said sensor.
[Aspect 21]
a plurality of microlenses, each microlens configured to focus illumination from one of said plurality of lasers into one of a plurality of beams, each of said plurality of beams corresponding to said field of view of said sensor; 20. Apparatus according to aspect 18 or 19, comprising a plurality of microlenses corresponding to a proportion of .
[Aspect 22]
22. Apparatus according to aspect 20 or 21, comprising an optical element configured to split each of said beam or said plurality of beams into a further plurality of beams.
[Aspect 23]
23. Apparatus according to aspect 22, when dependent on aspect 20, wherein the further plurality of beams corresponds to a fan pattern.
[Aspect 24]
24. The apparatus of any one of aspects 18-23, wherein the actuation mechanism is configured to tilt a sub-module comprising the plurality of lasers and one or more further optical elements about at least one axis.
[Aspect 25]
The actuation mechanism comprises at least one movable in one or more orthogonal directions in a plane at least substantially parallel to the array of lasers to move the illumination across the at least a portion of the field of view of the sensor. 24. A device according to any one of aspects 18-23, comprising a lens.
[Aspect 26]
26. The apparatus of aspect 25, wherein the at least one lens corresponds to a ball lens.
[Aspect 27]
26. The apparatus of aspect 25, when dependent on aspect 21, wherein the at least one lens corresponds to the plurality of microlenses.
[Aspect 28]
28. The apparatus of any one of aspects 25-27, configured to change the direction of the illumination by an angle of movement of the at least one lens greater than 0.025 degrees/μm.
[Aspect 29]
24. The apparatus of any one of aspects 18-23, wherein the actuation mechanism comprises at least one tilting mirror for steering the emitted illumination.
[Aspect 30]
24. The apparatus of any one of aspects 18-23, wherein the actuation mechanism comprises at least one pair of rotatable prisms for steering the emitted illumination.
[Aspect 31]
31. The apparatus according to any one of aspects 1-30, wherein said actuation mechanism comprises an adaptive beam steering mechanism for steering said illumination.
[Aspect 32]
32. Aspect 1-31, wherein the ToF imaging camera system or optical camera is configured to perform an initial scan of the scene to identify one or more objects of interest within the scene. device.
[Aspect 33]
A method for use in generating a three-dimensional representation of a scene, comprising:
using a time-of-flight (ToF) imaging camera system to emit illumination having spatially non-uniform intensity over the field of view of the sensor used to receive the reflected light;
enabling generation of the representation by moving the illumination across at least a portion of the field of view of the sensor using an actuation mechanism;
How to prepare.
[Aspect 34]
34. A non-transitory data carrier carrying processor control code for implementing the method of aspect 33.

Claims (20)

シーンの3次元表現を生成する際に使用する装置であって、
マルチピクセルセンサ及び光源を備え、前記センサの視野にわたって空間的に不均一な強度を有する照明を出射するように配置されたタイム・オブ・フライト(ToF)撮像カメラシステムと、
前記センサの前記視野の少なくとも一部にわたって前記照明を移動させることによって前記表現の生成を可能とするための作動機構と
を備える前記装置。
A device for use in generating a three-dimensional representation of a scene, comprising:
a time-of-flight (ToF) imaging camera system comprising a multi-pixel sensor and a light source arranged to emit illumination having a spatially non-uniform intensity over the sensor's field of view;
and an actuation mechanism for enabling generation of the representation by moving the illumination over at least a portion of the field of view of the sensor.
前記空間的に不均一な強度は、出射強度が実質的に一定である一組の領域、及び/又は出射強度が最大レベルの少なくとも50%である一組の領域に対応
選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の1%~50%をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の10%超で50%未満、40%未満、30%未満又は20%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の20%超で50%未満、40%未満又は30%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の30%超で50%未満又は40%未満をともに覆い、選択的に、前記一組の領域が所与の瞬間に前記センサの前記視野の40%超で50%未満をともに覆う、請求項に記載の装置。
said spatially non-uniform intensity corresponds to a set of regions where the output intensity is substantially constant and/or a set of regions where the output intensity is at least 50% of a maximum level;
Optionally, said set of areas together cover 1% to 50% of said field of view of said sensor at a given moment; optionally said set of areas covers said field of view of said sensor at any given moment. together covering more than 10% but less than 50%, less than 40%, less than 30% or less than 20% of the field of view of said sensor, optionally said set of regions covering more than 50% of said field of view of said sensor at any given moment. %, less than 40% or less than 30% together, optionally said set of regions together covering more than 30% and less than 50% or less than 40% of said field of view of said sensor at a given moment; 2. The device of claim 1 , optionally wherein said pair of regions together cover more than 40% and less than 50% of said field of view of said sensor at a given moment.
前記作動機構は、前記照明を前記センサの前記視野の少なくとも一部にわたって走査パターンで移動させ
選択的に、前記走査パターンは、前記照明を前記センサの前記視野の少なくとも一部にわたって1つの軸に沿って移動させることを含む、又は、前記走査パターンは、出射される前記照明を前記シーンの少なくとも一部にわたって2つの軸に沿って移動させることを備え
選択的に、前記走査パターンのサイクル中に前記移動によって前記領域が前記センサの前記視野の75%超、90%超又は実質的に全域を覆うように、前記一組の領域が配置され
選択的に、前記走査パターンのサイクル中に前記移動が前記センサの前記視野の同じ部分を2回以上覆う領域を回避するように、前記一組の領域が配置され
選択的に、前記移動は、前記不均一な強度における特定の点に、前記走査パターンのサイクル中に前記センサの前記視野の幅又は高さの50%未満、40%未満、30%未満、20%未満、10%未満又は5%未満だけ移動させる、かつ/又は、前記一組の領域は前記センサの前記視野の少なくとも1つの方向において周期性を有し、前記移動は、前記不均一な強度における特定の点に、前記少なくとも1つの方向における前記周期性の略逆数だけ移動させる、請求項に記載の装置。
the actuation mechanism moves the illumination in a scanning pattern across at least a portion of the field of view of the sensor ;
Optionally, said scanning pattern includes moving said illumination along at least a portion of said field of view of said sensor along one axis; comprising moving at least in part along two axes ;
optionally, said set of regions are arranged such that said movement causes said regions to cover more than 75%, more than 90% or substantially all of said field of view of said sensor during a cycle of said scan pattern ;
optionally, said set of regions are arranged such that said movement avoids regions where said movement covers the same portion of said field of view of said sensor more than once during a cycle of said scanning pattern ;
Optionally, said movement is less than 50%, less than 40%, less than 30%, less than 20%, less than 50%, less than 40%, less than 30%, less than 20% of the width or height of said field of view of said sensor during a cycle of said scanning pattern to a particular point in said non-uniform intensity. %, less than 10%, or less than 5%, and/or said set of regions is periodic in at least one direction of said field of view of said sensor, said movement causing said uneven intensity 3. The apparatus of claim 2 , wherein a particular point in is moved by approximately the reciprocal of said periodicity in said at least one direction.
出射された前記照明が、円形ビーム形状を有する光ビームであり、光の平行縞のパターンからなり、又は光のドット若しくは円のパターンからなる、請求項1~のいずれか一項に記載の装置。 4. A light beam according to any one of claims 1 to 3 , wherein said emitted illumination is a light beam having a circular beam shape, consisting of a pattern of parallel stripes of light, or consisting of a pattern of dots or circles of light. Device. 前記表現を生成する所与の瞬間における前記一組の領域内の視野を有する、前記センサの画素のみからの情報を用いるように構成された、請求項2~のいずれか一項に記載の装置。 5. A sensor as claimed in any one of claims 2 to 4 , arranged to use information only from pixels of said sensor having a field of view within said set of regions at a given moment to generate said representation. Device. 出射された前記照明は、前記一組の領域の全体にわたって実質的に同じ時間変動を有し、
選択的に、出射された前記照明は、高頻度で変動され、比較的低頻度で反復的に前記視野にわたって移動される、請求項2~5のいずれか一項に記載の装置。
the emitted illumination has substantially the same time variation across the set of regions ;
An apparatus according to any one of claims 2 to 5, optionally wherein the emitted illumination is varied frequently and moved across the field of view repetitively relatively infrequently.
前記作動機構は、出射された前記照明を前記シーンにおける独立した位置に移動させる、又は、前記作動機構は、出射された前記照明を前記シーンの少なくとも一部にわたって連続的に移動させる、請求項1~のいずれか一項に記載の装置。 2. The actuation mechanism moves the emitted illumination to independent positions in the scene, or the actuation mechanism moves the emitted illumination continuously over at least a portion of the scene. 7. Apparatus according to any one of claims 6 to 7. 前記作動機構は、少なくとも1つの形状記憶合金(SMA)アクチュエータワイヤを備える、請求項1~のいずれか一項に記載の装置。 A device according to any preceding claim, wherein the actuation mechanism comprises at least one shape memory alloy (SMA) actuator wire. 前記光源は、アレイ状に配置された複数のレーザを備え
選択的に、前記複数のレーザが、垂直共振器面発光レーザ(VCSEL)アレイに対応する、請求項1~8のいずれか一項に記載の装置。
The light source comprises a plurality of lasers arranged in an array ,
Apparatus according to any preceding claim , optionally wherein said plurality of lasers corresponds to a Vertical Cavity Surface Emitting Laser (VCSEL) array.
前記複数のレーザからの照明を前記センサの前記視野の割合に対応する単一のビームに合焦させる合焦レンズと、
複数のマイクロレンズであって、各マイクロレンズは前記複数のレーザの1つからの照明を複数のビームの1つに合焦させるように構成され、前記複数のビームの各々が前記センサの前記視野の割合に対応する、前記複数のマイクロレンズ
を備え
選択的に、前記装置は、前記ビーム又は前記複数のビームの各々を更なる複数のビームに分割するように構成された光学要素を備え
選択的に、前記更なる複数のビームが扇パターンに対応する、請求項に記載の装置。
a focusing lens that focuses illumination from the plurality of lasers into a single beam corresponding to a fraction of the field of view of the sensor ;
a plurality of microlenses, each microlens configured to focus illumination from one of said plurality of lasers into one of a plurality of beams, each of said plurality of beams corresponding to said field of view of said sensor; the plurality of microlenses corresponding to a proportion of
with
optionally, said apparatus comprises an optical element configured to split each of said beam or said plurality of beams into a further plurality of beams ;
10. The apparatus of claim 9 , optionally wherein said further plurality of beams correspond to a fan pattern.
前記作動機構は、前記複数のレーザ及び1以上の更なる光学要素を備えるサブモジュールを少なくとも1つの軸に関してティルトさせるように構成された、請求項9又は10に記載の装置。 11. Apparatus according to claim 9 or 10 , wherein the actuation mechanism is arranged to tilt the sub-module comprising the plurality of lasers and one or more further optical elements about at least one axis. 前記光源は、アレイ状に配置された複数のレーザを備え、The light source comprises a plurality of lasers arranged in an array,
前記作動機構は、前記照明を前記センサの前記視野の前記少なくとも一部にわたって移動させるために、前記アレイ状のレーザに少なくとも実質的に平行な平面内で1以上の方向に移動可能な少なくとも1つの光学要素を備える、請求項1に記載の装置。The actuation mechanism comprises at least one movable in one or more directions in a plane at least substantially parallel to the array of lasers to move the illumination across the at least a portion of the field of view of the sensor. 11. The device of claim 1, comprising an optical element.
前記少なくとも1つの光学要素は、少なくとも1つのレンズであり、
選択的に、前記少なくとも1つのレンズは、ボールレンズに対応する、請求項12に記載の装置。
the at least one optical element is at least one lens;
13. The apparatus of claim 12 , optionally wherein said at least one lens corresponds to a ball lens .
請求項10に従属する場合において、前記装置は複数のマイクロレンズを備え、前記少なくとも1つのレンズは、前記複数のマイクロレンズに対応する、請求項13に記載の装置。 14. A device as claimed in claim 13 , when dependent on claim 10 , wherein the device comprises a plurality of microlenses, the at least one lens corresponding to the plurality of microlenses. 前記少なくとも1つのレンズの移動の0.025度/μm超の角度だけ前記照明の方向を変化させるように構成された、請求項13又は14に記載の装置。 15. Apparatus according to claim 13 or 14 , configured to change the direction of the illumination by an angle of movement of the at least one lens greater than 0.025 degrees/[mu]m. 前記作動機構は、出射された前記照明をステアリングするために少なくとも1つのティルト用ミラー、又は、出射された前記照明をステアリングするために少なくとも一対の回転可能プリズム、又は、前記照明をステアリングするための適応ビームステアリング機構を備える、請求項9又は10に記載の装置。 The actuation mechanism comprises at least one tilting mirror for steering the emitted illumination ; or at least a pair of rotatable prisms for steering the emitted illumination ; or 11. Apparatus according to claim 9 or 10 , comprising an adaptive beam steering mechanism. 前記ToF撮像カメラシステム又は光学カメラが、前記シーンの最初の走査を実行して前記シーン内の1以上の対象の被写体を識別するように構成された、請求項1~16のいずれか一項に記載の装置。 17. The method of any one of the preceding claims, wherein the ToF imaging camera system or optical camera is configured to perform an initial scan of the scene to identify one or more objects of interest within the scene. Apparatus as described. シーンの3次元表現を生成する際に使用する方法であって、
タイム・オブ・フライト(ToF)撮像カメラシステムを用いて、反射光を受光するのに用いられるセンサの視野にわたって空間的に不均一な強度を有する照明を出射するステップと、
作動機構を用いて、前記センサの前記視野の少なくとも一部にわたって前記照明を移動させることによって前記表現の生成を可能とするステップと
を備える方法。
A method for use in generating a three-dimensional representation of a scene, comprising:
using a time-of-flight (ToF) imaging camera system to emit illumination having spatially non-uniform intensity over the field of view of the sensor used to receive the reflected light;
using an actuation mechanism to move the illumination across at least a portion of the field of view of the sensor to enable generation of the representation.
前記タイム・オブ・フライト撮像カメラシステムは、アレイ状に配置された複数のレーザを含む光源を備え、The time-of-flight imaging camera system comprises a light source including a plurality of lasers arranged in an array,
前記作動機構は、少なくとも1つの光学要素を備え、the actuation mechanism comprises at least one optical element;
前記方法は、前記作動機構を用いて、前記アレイ状のレーザに少なくとも実質的に平行な平面内で1以上の方向に前記少なくとも1つの光学要素を移動させることにより、前記照明を前記センサの前記視野の少なくとも一部にわたって移動させ、それにより、前記表現の生成を可能とする、請求項18に記載の方法。The method uses the actuation mechanism to move the at least one optical element in one or more directions in a plane that is at least substantially parallel to the array of lasers, thereby directing the illumination to the sensor. 19. The method of claim 18, moving across at least part of a field of view, thereby enabling generation of the representation.
請求項1に記載の装置に、請求項18に記載の方法を実施させるよう構成されたプロセッサ制御コードを保持する非一時的データキャリア。
19. A non-transitory data carrier carrying processor control code configured to cause the apparatus of claim 1 to perform the method of claim 18 .
JP2021506286A 2018-08-07 2019-08-07 Improved 3D sensing Pending JP2021533488A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB1812818.1 2018-08-07
GBGB1812818.1A GB201812818D0 (en) 2018-08-07 2018-08-07 Improved 3d sensing
GBGB1906885.7A GB201906885D0 (en) 2019-05-15 2019-05-15 Improved 3D sensing
GB1906885.7 2019-05-15
GB1909605.6A GB2579689A (en) 2018-08-07 2019-07-03 Improved 3D sensing
GB1909605.6 2019-07-03
PCT/GB2019/052227 WO2020030916A1 (en) 2018-08-07 2019-08-07 Improved 3d sensing

Publications (2)

Publication Number Publication Date
JP2021533488A JP2021533488A (en) 2021-12-02
JPWO2020030916A5 true JPWO2020030916A5 (en) 2022-08-04

Family

ID=67540106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506286A Pending JP2021533488A (en) 2018-08-07 2019-08-07 Improved 3D sensing

Country Status (7)

Country Link
US (1) US20210311171A1 (en)
EP (1) EP3834000A1 (en)
JP (1) JP2021533488A (en)
KR (1) KR20210040987A (en)
CN (1) CN112805585A (en)
GB (1) GB2579689A (en)
WO (1) WO2020030916A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3811113A1 (en) * 2018-06-22 2021-04-28 Ams Ag Using time-of-flight and pseudo-random bit sequences to measure distance to object
EP4119976A4 (en) * 2020-03-31 2023-08-30 Huawei Technologies Co., Ltd. Light emitting apparatus and electronic device
GB2594921A (en) 2020-04-16 2021-11-17 Cambridge Mechatronics Ltd Actuator assembly
WO2021234333A1 (en) * 2020-05-19 2021-11-25 Cambridge Mechatronics Limited A time-of-flight sensor system
CN111856771B (en) * 2020-08-27 2024-02-20 宁波舜宇奥来技术有限公司 Integrated optical device, integrated projection module and manufacturing process of integrated optical device
WO2022085381A1 (en) 2020-10-21 2022-04-28 ソニーセミコンダクタソリューションズ株式会社 Light emitting device and ranging system
GB2602622A (en) 2020-12-03 2022-07-13 Cambridge Mechatronics Ltd Camera
US11396994B1 (en) 2021-02-16 2022-07-26 Ii-Vi Delaware, Inc. Laser light source having diffuser element and light diverging optic
GB2605368A (en) 2021-03-29 2022-10-05 Cambridge Mechatronics Ltd SMA Actuator Assembly
US20240151821A1 (en) * 2021-03-31 2024-05-09 Sony Semiconductor Solutions Corporation Optical module and distance measuring device
GB2607269A (en) 2021-04-14 2022-12-07 Cambridge Mechatronics Ltd SMA actuator assembly
JP2022168740A (en) * 2021-04-26 2022-11-08 キヤノン株式会社 Light projection unit and distance measuring device using the same
GB2607901B (en) 2021-06-14 2023-10-25 Cambridge Mechatronics Ltd Voice coil motor actuator assembly
US20220413154A1 (en) * 2021-06-25 2022-12-29 Himax Technologies Limited Line pattern projector for use in three-dimensional distance measurement system
CN115542287A (en) * 2021-06-29 2022-12-30 北京小米移动软件有限公司 Laser emission module, depth camera and electronic equipment
EP4374578A1 (en) 2021-07-22 2024-05-29 Cambridge Mechatronics Limited Apparatus with flexible connector
US11922606B2 (en) 2021-10-04 2024-03-05 Samsung Electronics Co., Ltd. Multipass interference correction and material recognition based on patterned illumination without frame rate loss
GB202116679D0 (en) 2021-11-18 2022-01-05 Cambridge Mechatronics Ltd Component for camera assembly
GB202117964D0 (en) 2021-12-13 2022-01-26 Cambridge Mechatronics Ltd SMA actuation apparatus
WO2023166320A1 (en) * 2022-03-03 2023-09-07 Cambridge Mechatronics Limited Sma actuator assembly
GB2617179A (en) 2022-03-31 2023-10-04 Cambridge Mechatronics Ltd Actuator Assembly
GB202204749D0 (en) 2022-03-31 2022-05-18 Cambridge Mechatronics Ltd Actuator assembly
GB2617332A (en) 2022-04-02 2023-10-11 Cambridge Mechatronics Ltd Actuator assembly
WO2023209404A1 (en) 2022-04-28 2023-11-02 Cambridge Mechatronics Limited Actuator assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089114B1 (en) * 2003-07-03 2006-08-08 Baojia Huang Vehicle collision avoidance system and method
JP4402400B2 (en) * 2003-08-28 2010-01-20 オリンパス株式会社 Object recognition device
US8736818B2 (en) * 2010-08-16 2014-05-27 Ball Aerospace & Technologies Corp. Electronically steered flash LIDAR
KR102163728B1 (en) * 2013-12-05 2020-10-08 삼성전자주식회사 Camera for depth image measure and method of measuring depth image using the same
US9874638B2 (en) * 2014-03-06 2018-01-23 University Of Waikato Time of flight camera system which resolves direct and multi-path radiation components
US9696424B2 (en) * 2014-05-19 2017-07-04 Rockwell Automation Technologies, Inc. Optical area monitoring with spot matrix illumination
US9854226B2 (en) * 2014-12-22 2017-12-26 Google Inc. Illuminator for camera system having three dimensional time-of-flight capture with movable mirror element
US9674415B2 (en) * 2014-12-22 2017-06-06 Google Inc. Time-of-flight camera system with scanning illuminator
US9918073B2 (en) * 2014-12-22 2018-03-13 Google Llc Integrated camera system having two dimensional image capture and three dimensional time-of-flight capture with movable illuminated region of interest
US20160182891A1 (en) * 2014-12-22 2016-06-23 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View
US10036801B2 (en) * 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
DE102015221921A1 (en) * 2015-11-09 2016-10-20 Carl Zeiss Smt Gmbh Facet device with a shape memory alloy actuator, method for manufacturing and lithographic system
US10324171B2 (en) * 2015-12-20 2019-06-18 Apple Inc. Light detection and ranging sensor
US10451740B2 (en) * 2016-04-26 2019-10-22 Cepton Technologies, Inc. Scanning lidar systems for three-dimensional sensing
JP6860656B2 (en) * 2016-05-18 2021-04-21 オキーフェ, ジェームスO’KEEFEE, James Dynamic stead LIDAR adapted to the shape of the vehicle
WO2018044958A1 (en) * 2016-08-29 2018-03-08 Okeeffe James Laser range finder with smart safety-conscious laser intensity
US10305247B2 (en) * 2016-08-30 2019-05-28 Apple Inc. Radiation source with a small-angle scanning array
CN109690887B (en) * 2016-09-02 2022-05-17 Lg伊诺特有限公司 Light output module and LIDAR
EP3301478A1 (en) * 2016-10-03 2018-04-04 Xenomatix NV System for determining a distance to an object
WO2018191495A1 (en) * 2017-04-12 2018-10-18 Sense Photonics, Inc. Beam shaping for ultra-small vertical cavity surface emitting laser (vcsel) arrays

Similar Documents

Publication Publication Date Title
JPWO2020030916A5 (en)
US20210311171A1 (en) Improved 3d sensing
KR102027184B1 (en) Three dimensional depth mapping using dynamic structured light
CN107637074B (en) Depth rendering for head mounted displays using stereo cameras and structured light
US20160195610A1 (en) Illumination light projection for a depth camera
KR102626258B1 (en) Optical designs and detector designs for improved resolution in LiDAR systems
US20220264074A1 (en) Method and apparatus for use in a time-of-flight imaging system
JP2022171651A5 (en)
US11555926B2 (en) Optical device, measurement device, robot, electronic apparatus, mobile object, and shaping device
US20230358891A1 (en) A time-of-flight sensor system
US11102459B2 (en) 3D machine-vision system
US10473766B2 (en) Light detection and ranging (LiDAR) system and method
RU2674061C2 (en) Laser device containing optically pumped laser with elongated resonator
JP2021170033A (en) Scanner
JP7354451B2 (en) Transmission unit and LIDAR device with optical homogenizer
US20210333405A1 (en) Lidar projection apparatus
TWI691736B (en) Light emitting device and image capture device using same
JP2022074195A (en) Light detection device
US20220146686A1 (en) Laser emission apparatus and lidar-based surround sensor having a laser emission apparatus
EP4254050A1 (en) Optical module for a laser scanning projector
GB2614527A (en) Calibration of actuation mechanism
US20240210795A1 (en) Camera module
GB2625496A (en) Calibration of actuation mechanism
CN117031884A (en) Linear light field scanning and inscribing device and method based on femtosecond laser space-time synchronous focusing
CN113568001A (en) Time-of-flight ranging imaging system, operating method and light beam emitting device