JPWO2020027258A1 - Method for producing fluorinated aromatic secondary amine compound - Google Patents

Method for producing fluorinated aromatic secondary amine compound Download PDF

Info

Publication number
JPWO2020027258A1
JPWO2020027258A1 JP2019568116A JP2019568116A JPWO2020027258A1 JP WO2020027258 A1 JPWO2020027258 A1 JP WO2020027258A1 JP 2019568116 A JP2019568116 A JP 2019568116A JP 2019568116 A JP2019568116 A JP 2019568116A JP WO2020027258 A1 JPWO2020027258 A1 JP WO2020027258A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
integer
substituted
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019568116A
Other languages
Japanese (ja)
Other versions
JP6708319B1 (en
Inventor
小島 圭介
圭介 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Application granted granted Critical
Publication of JP6708319B1 publication Critical patent/JP6708319B1/en
Publication of JPWO2020027258A1 publication Critical patent/JPWO2020027258A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/10Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/11Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/90Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C223/00Compounds containing amino and —CHO groups bound to the same carbon skeleton
    • C07C223/06Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

フッ化芳香族第一級アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とを、ジベンジリデンアセトンのパラジウム0価錯体を含む触媒、下記式(L)で表される配位子および塩基の存在下で反応させるフッ化芳香族第二級アミン化合物の製造方法により、特殊な触媒を用いることなくフッ化芳香族アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とをカップリング反応させ、分子内にフルオロアリール部位を有する第二級アミン化合物を簡便かつ効率的に製造できる。(R1は、それぞれ独立して、炭素数1〜20のアルキル基等を表し、R2〜R5は、それぞれ独立して、水素原子または炭素数1〜20のアルキル基等を表し、R6〜R8は、それぞれ独立して、水素原子または炭素数1〜20のアルキル基等を表す。)A catalyst containing a fluorinated aromatic primary amine compound and a chlorinated, brominated or iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon, and a palladium zero-valent complex of dibenzylideneacetone, the following formula (L ) A fluorinated aromatic amine compound can be chlorinated or brominated without using a special catalyst by a method for producing a fluorinated aromatic secondary amine compound which is reacted in the presence of a ligand and a base. Alternatively, a secondary amine compound having a fluoroaryl moiety in the molecule can be simply and efficiently produced by a coupling reaction with an iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon. (R1 independently represents an alkyl group having 1 to 20 carbon atoms, R2 to R5 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbons, and R6 to R8 are , Each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)

Description

本発明は、フッ化芳香族第二級アミン化合物の製造方法に関する。 The present invention relates to a method for producing a fluorinated aromatic secondary amine compound.

パラジウム触媒を用いたアミンとハロゲン化物や擬ハロゲン化物とをクロスカップリングさせてC−N結合を形成させる反応は、芳香族アミンの合成やヘテロ環の形成に有用である。このクロスカップリングは、医薬分野、材料分野等といった多くの分野で重要な技術となっており(非特許文献1)、この反応に用いられる触媒や、反応プロセスについての研究が幅広く展開されている。 Cross-coupling of an amine with a halide or pseudohalide using a palladium catalyst to form a C—N bond is useful for synthesizing an aromatic amine or forming a heterocycle. This cross-coupling has become an important technology in many fields such as the medical field and the material field (Non-Patent Document 1), and research on the catalyst used in this reaction and the reaction process has been widely conducted. ..

一方、フッ素は、電気陰性度が全元素中最大であるため、それを分子内に導入することで分子全体の電子状態を大きく変えることができるという特徴だけでなく、その原子半径が水素原子と同程度であるため、水素原子に代えてフッ素原子を分子内に導入したとしても、その他の原子や置換基を導入した場合と比べて、分子サイズの変化を抑えられるという特徴を有している。
このため、フッ化物に関する研究が盛んに行われ、医薬や電子材料用のフッ化物の報告が多数なされている。例えば、電子材料の分野では、分子内にフッ素原子を有するアミン化合物が電荷輸送性物質として好適なことが報告されている(特許文献1)。
On the other hand, since fluorine has the highest electronegativity of all elements, not only the feature that it can change the electronic state of the whole molecule by introducing it into the molecule, but its atomic radius is Since they are about the same, even if a fluorine atom is introduced into the molecule instead of a hydrogen atom, it has a feature that the change in molecular size can be suppressed as compared with the case where another atom or a substituent is introduced. ..
Therefore, studies on fluorides have been actively conducted, and many reports on fluorides for medicines and electronic materials have been made. For example, in the field of electronic materials, it has been reported that an amine compound having a fluorine atom in the molecule is suitable as a charge transporting substance (Patent Document 1).

このような状況の下、アミノ基を有するフルオロアリール化合物の合成法として、酢酸銅を触媒とした芳香族アミンとパーフルオロアリールボロン酸との反応(非特許文献2)、水酸化リチウム存在下でのホルムアニリドとパーフルオロベンゼンとの反応(非特許文献3)、t−BuONa存在下でのアニリンとパーフルオロベンゼンとの反応(非特許文献4)などが報告されているが、これらの反応では、いずれも反応部位であるアミノ基は、カップリング反応に供される2つの原料のうち、フッ素原子を有しない芳香族化合物側に存在している。 Under these circumstances, as a method for synthesizing a fluoroaryl compound having an amino group, a reaction between an aromatic amine and perfluoroarylboronic acid catalyzed by copper acetate (Non-Patent Document 2), in the presence of lithium hydroxide Of formanilide with perfluorobenzene (Non-Patent Document 3), reaction of aniline with perfluorobenzene in the presence of t-BuONa (Non-Patent Document 4), etc. have been reported. In each of the two raw materials used for the coupling reaction, the amino group, which is the reaction site, is present on the aromatic compound side having no fluorine atom.

フッ素原子およびアミノ基を有するフルオロアリールアミン化合物と、ハロアリール化合物とのカップリング反応の報告例は少なく、例えば、非特許文献5には、特殊なパラジウムカルベン錯体を触媒として用い、フルオロアリールアミン化合物とハロアリール化合物とをカップリングさせる手法が報告されているものの、触媒が高価であるうえ、目的物の収率が低いという問題がある。 There are few reports on the coupling reaction of a fluoroarylamine compound having a fluorine atom and an amino group with a haloaryl compound. For example, in Non-Patent Document 5, a special palladium carbene complex is used as a catalyst to give a fluoroarylamine compound. Although a method of coupling with a haloaryl compound has been reported, there are problems that the catalyst is expensive and the yield of the target product is low.

国際公開第2008/032617号International Publication No. 2008/032617

Chem. Rev. 2016, 116, 12564-12649Chem. Rev. 2016, 116, 12564-12649 Angew. Chem. Int. Ed. 2014, 53, 3223Angew. Chem. Int. Ed. 2014, 53, 3223 Journal of Fluorine Chemistry, 74(2), 177-9; 1995Journal of Fluorine Chemistry, 74(2), 177-9; 1995 RSC Advances, 5(10), 7035-7048; 2015RSC Advances, 5(10), 7035-7048; 2015 Angew. Chem. Int. Ed. 2014, 53, 3223Angew. Chem. Int. Ed. 2014, 53, 3223

本発明は、上記事情に鑑みてなされたものであり、特殊な触媒を用いることなくフッ化芳香族アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とをカップリング反応させ、分子内にフルオロアリール部位を有する第二級アミン化合物を簡便かつ効率的に製造する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a fluorinated aromatic amine compound, a chlorinated, brominated or iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon without using a special catalyst. An object of the present invention is to provide a method for easily and efficiently producing a secondary amine compound having a fluoroaryl moiety in the molecule by coupling with and.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、所定のパラジウム触媒、所定の配位子および塩基の存在下で、フッ化芳香族アミン化合物のアミノ基と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素の塩素原子、臭素原子もしくはヨウ素原子または擬ハロゲン基とのカップリング反応が効率的に進行し、分子内にフルオロアリール部位を有する第二級アミン化合物が選択的に収率よく得られることを見出し、本発明を完成させた。 The present inventor has conducted extensive studies to achieve the above object, and in the presence of a predetermined palladium catalyst, a predetermined ligand and a base, an amino group of a fluorinated aromatic amine compound and chlorination, Coupling reaction of brominated or iodinated aromatic hydrocarbons or pseudohalogenated aromatic hydrocarbons with chlorine atom, bromine atom, iodine atom or pseudohalogen group proceeds efficiently and has a fluoroaryl moiety in the molecule The present invention has been completed by finding that a secondary amine compound can be selectively obtained in high yield.

すなわち、本発明は、
1. フッ化芳香族第一級アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とを、触媒、配位子および塩基の存在下で反応させる工程を備えるフッ化芳香族第二級アミン化合物の製造方法であって、前記触媒が、ジベンジリデンアセトンのパラジウム0価錯体を含み、前記配位子が、下記式(L)で表されるビフェニルホスフィン化合物を含むことを特徴とするフッ化芳香族第二級アミン化合物の製造方法、

Figure 2020027258
(式中、R1は、それぞれ独立して、炭素数1〜20のアルキル基または炭素数6〜20のアリール基を表し、R2〜R5は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基または炭素数1〜20のアルコキシ基を表し、R6〜R8は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、またはNR9 2基を表し、R9は、それぞれ独立して、炭素数1〜20のアルキル基を表す。)
2. 前記触媒が、ジベンジリデンアセトンのパラジウム0価錯体であり、前記配位子が、前記式(L)で表されるビフェニルホスフィン化合物である1のフッ化芳香族第二級アミン化合物の製造方法、
3. 前記R1が、それぞれ独立して、リン原子と結合する炭素原子が第2級または第3級炭素原子である炭素数3〜20の分岐鎖状アルキル基または環状アルキル基である1または2のフッ化芳香族第二級アミンの製造方法、
4. 前記R1が、ともにシクロヘキシル基またはt−ブチル基である3のフッ化芳香族第二級アミンの製造方法、
5. 前記R2およびR5が、それぞれ独立して、水素原子または炭素数1〜5のアルコキシ基を表し、前記R3およびR4が、ともに水素原子であり、前記R6〜R8が、それぞれ独立して、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を表す1〜4のいずれかのフッ化芳香族第二級アミンの製造方法、
6. 前記式(L)で表されるビフェニルホスフィン化合物が、下記式(L1)〜(L4)のいずれかで表されるビフェニルホスフィン化合物である1〜5のいずれかのフッ化芳香族第二級アミンの製造方法、
Figure 2020027258
(式中、Meはメチル基を、i−Prはイソプロピル基を、Cyはシクロヘキシル基を、t−Buはt−ブチル基を意味する。)
7. 前記ジベンジリデンアセトンのパラジウム0価錯体が、ビス(ジベンジリデンアセトン)パラジウム(0)である1〜6のいずれかのフッ化芳香族第二級アミンの製造方法、
8. 前記フッ化芳香族第一級アミン化合物が、分子内にフッ素原子を2個以上有するフッ化芳香族第一級モノアミン化合物またはジアミン化合物である1〜7のいずれかのフッ化芳香族第二級アミンの製造方法、
9. 前記塩素化、臭素化もしくはヨウ素化芳香族炭化水素が、モノもしくはジクロロ芳香族炭化水素、モノもしくはジブロモ芳香族炭化水素、またはモノもしくはジヨード芳香族炭化水素である1〜8のいずれかのフッ化芳香族第二級アミンの製造方法、
10. 式(T1)または(T2)で表される含フッ素アニリン誘導体(但し、下記式[1]〜[13]で表される化合物を除く。)、
Figure 2020027258
〔式中、X211は、式(A01−1)〜(A09)のいずれかで表される2価の基を表し、
Figure 2020027258
(式中、L01は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ10−を表し、
02およびL03は、それぞれ独立して、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
04は、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
Z′は、芳香環の置換基を表し、それぞれ独立して、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
01〜Z09は、芳香環の置換基を表し、それぞれ独立して、塩素原子、臭素原子、ニトロ基、シアノ基、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
10は、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
11は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基またはZ13で置換されていてもよい炭素数6〜20のアリール基を表し、
12は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z13で置換されていてもよい炭素数1〜20のアルキル基またはZ13で置換されていてもよい炭素数2〜20のアルケニル基を表し、
13は、フッ素原子、塩素原子、臭素原子、ニトロ基またはシアノ基を表し、
a11、a13、a21、a23、a31、a33、a41、a51、a61、a71、a73、a81、a83、a91およびa93は、芳香環に置換するフッ素原子の数を表し、
a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、芳香環に置換するZ01〜Z09の数を表し、
a75およびa76は、芳香環に置換するZ′の数を表し、
a11は、2〜4の整数であり、a12は、0〜2の整数であり、かつ、a11+a12≦4を満たし、
a13は、2〜4の整数であり、a14は、0〜2の整数であり、かつ、a13+a14≦4を満たし、
a21およびa23は、それぞれ独立して1〜4の整数であり、a22およびa24は、それぞれ独立して0〜3の整数であり、かつ、a21+a22≦4およびa23+a24≦4を満たし、
a31およびa33は、それぞれ独立して1〜4の整数であり、a32およびa34は、それぞれ独立して0〜3の整数であり、かつ、a31+a32≦4およびa33+a34≦4を満たし、
a41は、1〜6の整数であり、a42は、0〜5の整数であり、かつ、a41+a42≦6を満たし、
a51は、1〜8の整数であり、a52は、0〜7の整数であり、かつ、a51+a52≦8を満たし、
a61は、1〜8の整数であり、a62は、0〜7の整数であり、かつ、a61+a62≦8を満たし、
a71およびa73は、それぞれ独立して1〜3の整数であり、a72およびa74は、それぞれ独立して0〜2の整数であり、かつ、a71+a72≦3およびa73+a74≦3を満たし、a75およびa76は、それぞれ独立して0〜4の整数であり、
a81およびa83は、それぞれ独立して1〜3の整数であり、a82およびa84は、それぞれ独立して0〜2の整数であり、かつ、a81+a82≦3およびa83+a84≦3を満たし、
a91およびa93は、それぞれ独立して1〜3の整数であり、a92およびa94は、それぞれ独立して0〜2の整数であり、かつ、a91+a92≦3およびa93+a94≦3を満たす。)
211およびY212は、それぞれ独立して、式(B01)〜(B21)のいずれかで表される1価の基を表し、
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、L11は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ100−を表し、
12は、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
13およびL14は、それぞれ独立して、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
100は、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
101〜Z107およびZ109〜Z121は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
108は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基もしくはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、異なるベンゼン環上に存在するZ108同士が結合して環を形成していてもよく、
130は、それぞれ独立して、フッ素原子、塩素原子、臭素原子またはZ132で置換されていてもよい炭素数6〜20のアリール基を表し、
131は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、Z132で置換されていてもよい炭素数1〜20のアルキル基またはZ132で置換されていてもよい炭素数2〜20のアルケニル基を表し、
132は、フッ素原子、塩素原子または臭素原子を表し、
Ar1は、それぞれ独立して、炭素数6〜20のアリール基を表し、
Ar2は、単結合または炭素数6〜20のアリーレン基を表す。)
221およびX222は、それぞれ独立して、式(C01)〜(C09)のいずれかで表される1価の基を表し、
Figure 2020027258
(式中、b11、b21、b23、b31、b33、b41、b51、b61、b71、b73、b81、b83、b91およびb93は、芳香環に置換するフッ素原子の数を表し、
b12、b22、b24、b32、b34、b42、b52、b62、b72、b74、b82、b84、b92およびb94は、芳香環に置換するZ01〜Z09の数を表し、
b75およびb76は、芳香環に置換するZ′の数を表し、
b11は、2〜5の整数であり、b12は、0〜3の整数であり、かつ、b11+b12≦5を満たし、
b21は、1〜4の整数であり、b23は、1〜5の整数であり、b22は、0〜3の整数であり、b24は、0〜4の整数であり、かつ、b21+b22≦4およびb23+b24≦5を満たし、
b31は、1〜4の整数であり、b33は、1〜5の整数であり、b32は、0〜3の整数であり、b34は、0〜4の整数であり、かつ、b31+b32≦4およびb33+b34≦5を満たし、
b41は、1〜7の整数であり、b42は、0〜6の整数であり、かつ、b41+b42≦7を満たし、
b51は、1〜9の整数であり、b52は、0〜8の整数であり、かつ、b51+b52≦9を満たし、
b61は、1〜9の整数であり、b62は、0〜8の整数であり、かつ、b61+b62≦9を満たし、
b71は、1〜3の整数であり、b73は、1〜4の整数であり、b72は、0〜2の整数であり、b74は、0〜3の整数であり、かつ、b71+b72≦3およびb73+b74≦4を満たし、b75およびb76は、それぞれ独立して、0〜4の整数であり、
b81は、1〜3の整数であり、b83は、1〜4の整数であり、b82は、0〜2の整数であり、b84は、0〜3の整数であり、かつ、b81+b82≦3およびb83+b84≦4を満たし、
b91は、1〜3の整数であり、b93は、1〜4の整数であり、b92は、0〜2の整数であり、b94は、0〜3の整数であり、かつ、b91+b92≦3およびb93+b94≦4を満たし、
01〜L04、Z′およびZ01〜Z07は、前記と同じ意味を表す。)
221は、式(D01−1)〜(D21)のいずれかで表される2価の基を表す。
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、Ar3は、それぞれ独立して、炭素数6〜20のアリーレン基を表し、L11〜L14、Z101〜Z121、およびAr1は、前記と同じ意味を表す。)〕
Figure 2020027258
11. 前記X211が、前記式(A02)で表される2価の基である10の含フッ素アニリン誘導体、
12. 前記X211が、下記式(A02−1)で表される2価の基である11の含フッ素アニリン誘導体、
Figure 2020027258
(式中、a21〜a24およびZ02は前記と同じ意味を表す。)
13. 前記Y211およびY212が、同一の1価の基である10〜12のいずれかの含フッ素アニリン誘導体、
14. 前記Y211およびY212が、ともに前記式(B01)、(B02)、(B04)、(B08)および(B18)のいずれかで表される1価の基である13の含フッ素アニリン誘導体、
15. 前記Y221が、前記式(D02)で表される2価の基である10の含フッ素アニリン誘導体、
16. 前記Y221が、下記式(D02−1)で表される2価の基である15の含フッ素アニリン誘導体、
Figure 2020027258
17. X221およびX222が、同一の1価の基である10、15または16の含フッ素アニリン誘導体、
18. X221およびX222が、ともに前記式(C01)で表される1価の基である17の含フッ素アニリン誘導体、
19. 下記式(P1−2)で表される繰り返し単位を含む重合体、
Figure 2020027258
〔式中、X211は、式(A01−1)〜(A09)のいずれかで表される2価の基を表し、
Figure 2020027258
(式中、L01は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ10−を表し、
02およびL03は、それぞれ独立して、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
04は、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
Z′は、芳香環の置換基を表し、それぞれ独立して、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
01〜Z09は、芳香環の置換基を表し、それぞれ独立して、塩素原子、臭素原子、ニトロ基、シアノ基、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
10は、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
11は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基またはZ13で置換されていてもよい炭素数6〜20のアリール基を表し、
12は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z13で置換されていてもよい炭素数1〜20のアルキル基またはZ13で置換されていてもよい炭素数2〜20のアルケニル基を表し、
13は、フッ素原子、塩素原子、臭素原子、ニトロ基またはシアノ基を表し、
a11、a13、a21、a23、a31、a33、a41、a51、a61、a71、a73、a81、a83、a91およびa93は、芳香環に置換するフッ素原子の数を表し、
a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、芳香環に置換するZ01〜Z09の数を表し、
a75およびa76は、芳香環に置換するZ′の数を表し、
a11は、2〜4の整数であり、a12は、0〜2の整数であり、かつ、a11+a12≦4を満たし、
a13は、2〜4の整数であり、a14は、0〜2の整数であり、かつ、a13+a14≦4を満たし、
a21およびa23は、それぞれ独立して1〜4の整数であり、a22およびa24は、それぞれ独立して0〜3の整数であり、かつ、a21+a22≦4およびa23+a24≦4を満たし、
a31およびa33は、それぞれ独立して1〜4の整数であり、a32およびa34は、それぞれ独立して0〜3の整数であり、かつ、a31+a32≦4およびa33+a34≦4を満たし、
a41は、1〜6の整数であり、a42は、0〜5の整数であり、かつ、a41+a42≦6を満たし、
a51は、1〜8の整数であり、a52は、0〜7の整数であり、かつ、a51+a52≦8を満たし、
a61は、1〜8の整数であり、a62は、0〜7の整数であり、かつ、a61+a62≦8を満たし、
a71およびa73は、それぞれ独立して1〜3の整数であり、a72およびa74は、それぞれ独立して0〜2の整数であり、かつ、a71+a72≦3およびa73+a74≦3を満たし、a75およびa76は、それぞれ独立して0〜4の整数であり、
a81およびa83は、それぞれ独立して1〜3の整数であり、a82およびa84は、それぞれ独立して0〜2の整数であり、かつ、a81+a82≦3およびa83+a84≦3を満たし、
a91およびa93は、それぞれ独立して1〜3の整数であり、a92およびa94は、それぞれ独立して0〜2の整数であり、かつ、a91+a92≦3およびa93+a94≦3を満たす。)
221は、式(D01−1)〜(D21)のいずれかで表される2価の基を表す。
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、L11は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH―または−NZ02−を表し、
12は、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
13およびL14は、それぞれ独立して、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
101〜Z107およびZ109〜Z121は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
108は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基もしくはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、異なるベンゼン環上に存在するZ108同士が結合して環を形成していてもよく、
130は、それぞれ独立して、フッ素原子、塩素原子、臭素原子またはZ132で置換されていてもよい炭素数6〜20のアリール基を表し、
131は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、Z132で置換されていてもよい炭素数1〜20のアルキル基またはZ132で置換されていてもよい炭素数2〜20のアルケニル基を表し、
132は、フッ素原子、塩素原子または臭素原子を表し、
Ar1は、それぞれ独立して、炭素数6〜20のアリール基を表し、
Ar3は、それぞれ独立して、炭素数6〜20のアリーレン基を表す。)〕
20. 前記X211が、前記式(A02)で表される2価の基である19の重合体、
21. 前記X211が、下記式(A02−1)で表される2価の基である20の重合体、
Figure 2020027258
(式中、a21〜a24およびZ02は前記と同じ意味を表す。)
22. 前記Y221が、前記式(D02)、(D17)および(D19)のいずれかで表される2価の基である19〜21のいずれかの重合体、
23. 10〜18のいずれかのアニリン誘導体からなる電荷輸送性物質、
24. 19〜22のいずれかの重合体からなる電荷輸送性物質、
25. 23または24の電荷輸送性物質と、有機溶媒とを含む電荷輸送性組成物、
26. ドーパント物質を含む25の電荷輸送性組成物、
27. 25または26の電荷輸送性組成物から得られる電荷輸送性薄膜、
28. 27の電荷輸送性薄膜を備える電子素子、
29. 27の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子、
30. 前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である29の有機エレクトロルミネッセンス素子
を提供する。That is, the present invention is
1. A step of reacting a fluorinated aromatic primary amine compound with a chlorinated, brominated or iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon in the presence of a catalyst, a ligand and a base. A method for producing a fluorinated aromatic secondary amine compound, wherein the catalyst comprises a palladium zero-valent complex of dibenzylideneacetone, and the ligand is a biphenylphosphine compound represented by the following formula (L). A method for producing a fluorinated aromatic secondary amine compound, which comprises:
Figure 2020027258
(In the formula, each R 1 independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 2 to R 5 each independently represent a hydrogen atom or a carbon number. Represents an alkyl group having 1 to 20 or an alkoxy group having 1 to 20 carbon atoms, and R 6 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. , or an NR 9 2 group, R 9 each independently represent an alkyl group having 1 to 20 carbon atoms.)
2. The catalyst is a palladium zero-valent complex of dibenzylideneacetone, and the ligand is a biphenylphosphine compound represented by the formula (L).
3. 1 or 2 wherein each R 1 is independently a branched chain alkyl group having 3 to 20 carbon atoms or a cyclic alkyl group in which the carbon atom bonded to the phosphorus atom is a secondary or tertiary carbon atom; A method for producing a fluorinated aromatic secondary amine,
4. The method for producing a fluorinated aromatic secondary amine of 3, wherein R 1 is both a cyclohexyl group or a t-butyl group,
5. R 2 and R 5 each independently represent a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, R 3 and R 4 are both hydrogen atoms, and R 6 to R 8 are respectively Independently, a method for producing a fluorinated aromatic secondary amine of any one of 1 to 4, which represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms,
6. The biphenylphosphine compound represented by the formula (L) is a biphenylphosphine compound represented by any of the following formulas (L1) to (L4), and the fluorinated aromatic secondary amine according to any one of 1 to 5 Manufacturing method of
Figure 2020027258
(In the formula, Me means a methyl group, i-Pr means an isopropyl group, Cy means a cyclohexyl group, and t-Bu means a t-butyl group.)
7. The method for producing a fluorinated aromatic secondary amine according to any one of 1 to 6, wherein the palladium zero-valent complex of dibenzylideneacetone is bis(dibenzylideneacetone)palladium(0),
8. The fluorinated aromatic primary amine compound is a fluorinated aromatic primary monoamine compound having two or more fluorine atoms in the molecule or a diamine compound, and the fluorinated aromatic secondary amine according to any one of 1 to 7 above. A method for producing an amine,
9. Fluorination of any one of 1 to 8 wherein the chlorinated, brominated or iodinated aromatic hydrocarbon is a mono or dichloro aromatic hydrocarbon, a mono or dibromo aromatic hydrocarbon, or a mono or diiodo aromatic hydrocarbon. A method for producing an aromatic secondary amine,
10. A fluorine-containing aniline derivative represented by the formula (T1) or (T2) (however, the compounds represented by the following formulas [1] to [13] are excluded):
Figure 2020027258
[In the formula, X 211 represents a divalent group represented by any of formulas (A01-1) to (A09),
Figure 2020027258
(In the formula, L 01 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 10 - represents,
L 02 and L 03 are each independently hydrogen atom, Z 11 alkyl group carbon atoms which may be have 1 to 20 substituents, alkenyl group optionally having 2 to 20 carbon atoms optionally substituted by Z 11 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
L 04 represents a hydrogen atom, optionally substituted alkenyl group or Z 12 alkyl group, optionally 2 to 20 carbon atoms optionally substituted by Z 11 of carbon atoms which may be have 1-20 substituted with Z 11 Represents an aryl group having 6 to 20 carbon atoms,
Z 'represents a substituent of the aromatic ring, each independently, an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, Z 11 which may be 2-20 carbons substituted with Represents an alkenyl group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
Z 01 to Z 09 represent a substituent of an aromatic ring, and each independently represent a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 11 , Represents an alkenyl group having 2 to 20 carbon atoms which may be substituted by Z 11 or an aryl group having 6 to 20 carbon atoms which may be substituted by Z 12 .
Z 10 represents an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, which may be substituted with alkenyl or Z 12 good 2 to 20 carbon atoms optionally substituted by Z 11 carbon Represents an aryl group of the number 6 to 20,
Z 11's each independently represent a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 13 .
Z 12 are each independently a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, optionally substituted with an alkyl group or Z 13 of carbon atoms which may be have 1-20 substituted with Z 13 Represents a good alkenyl group having 2 to 20 carbon atoms,
Z 13 represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group or a cyano group,
a 11 , a 13 , a 21 , a 23 , a 31 , a 33 , a 41 , a 51 , a 61 , a 71 , a 73 , a 81 , a 83 , a 91 and a 93 are substituted with an aromatic ring. Represents the number of fluorine atoms
a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 are substituted with an aromatic ring. Represents the number of Z 01 to Z 09
a 75 and a 76 represent the number of Z′ substituting the aromatic ring,
a 11 is an integer of 2 to 4, a 12 is an integer of 0 to 2 and satisfies a 11 +a 12 ≦4,
a 13 is an integer of 2 to 4, a 14 is an integer of 0 to 2 and satisfies a 13 +a 14 ≦4,
a 21 and a 23 are each independently an integer of 1 to 4, a 22 and a 24 are each independently an integer of 0 to 3, and a 21 +a 22 ≦4 and a 23 +a Satisfies 24 ≤ 4,
a 31 and a 33 are each independently an integer of 1 to 4, a 32 and a 34 are each independently an integer of 0 to 3, and a 31 +a 32 ≦4 and a 33 +a. Satisfies 34 ≤ 4,
a 41 is an integer of 1 to 6, a 42 is an integer of 0 to 5, and a 41 +a 42 ≦6 is satisfied,
a 51 is an integer of 1 to 8, a 52 is an integer of 0 to 7 and a 51 +a 52 ≦8 is satisfied,
a 61 is an integer of 1 to 8, a 62 is an integer of 0 to 7 and a 61 +a 62 ≦8 is satisfied,
a 71 and a 73 are each independently an integer of 1 to 3, a 72 and a 74 are each independently an integer of 0 to 2, and a 71 +a 72 ≦3 and a 73 +a 74 ≦3 is satisfied, and a 75 and a 76 are each independently an integer of 0 to 4,
a 81 and a 83 are each independently an integer of 1 to 3, a 82 and a 84 are each independently an integer of 0 to 2, and a 81 +a 82 ≦3 and a 83 +a Satisfying 84 ≦3,
a 91 and a 93 are each independently an integer of 1 to 3, a 92 and a 94 are each independently an integer of 0 to 2, and a 91 +a 92 ≦3 and a 93 +a 94 ≦3 is satisfied. )
Y 211 and Y 212 each independently represent a monovalent group represented by any of formulas (B01) to (B21),
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, L 11 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 100 - represents,
L 12 represents a hydrogen atom, optionally substituted alkenyl group or Z 131 of is an alkyl group having 1 to 20 carbon atoms also be good 2-20 carbon atoms substituted with Z 130 substituted with Z 130 Represents an aryl group having 6 to 20 carbon atoms,
L 13 and L 14 are each independently a hydrogen atom, Z 130 with an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group which may C2-20 optionally substituted by Z 130 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 ,
Z 100 represents an alkyl group with carbon atoms which may have 1 to 20 substituted by Z 130, which may be substituted with alkenyl or Z 131 good 2 to 20 carbon atoms optionally substituted by Z 130 carbon Represents an aryl group of the number 6 to 20,
Z 101 to Z 107 and Z 109 to Z 121 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, or a C 1-20 optionally substituted with Z 130. Represents an alkyl group having 2 to 20 carbon atoms, which may be substituted with Z 130 , or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 131 .
Z 108 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having carbon atoms which may be have 1-20 substituted with Z 130, is substituted with Z 130 Represents an alkenyl group having 2 to 20 carbon atoms which may be present or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and Z 108 existing on different benzene rings are bonded to each other to form a ring. May be formed,
Z 130 s each independently represent a fluorine atom, a chlorine atom, a bromine atom or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 132 .
Z 131 are each independently a fluorine atom, a chlorine atom, a bromine atom, an alkyl group or Z 132 carbon atoms which may be have 2-20 substituted with 1 to 20 carbon atoms which may be substituted with Z 132 Represents an alkenyl group of
Z 132 represents a fluorine atom, a chlorine atom or a bromine atom,
Ar 1's each independently represent an aryl group having 6 to 20 carbon atoms,
Ar 2 represents a single bond or an arylene group having 6 to 20 carbon atoms. )
X 221 and X 222 each independently represent a monovalent group represented by any of formulas (C01) to (C09),
Figure 2020027258
(In the formula, b 11 , b 21 , b 23 , b 31 , b 33 , b 41 , b 51 , b 61 , b 71 , b 73 , b 81 , b 83 , b 91 and b 93 are aromatic rings. Represents the number of fluorine atoms to be substituted,
b 12 , b 22 , b 24 , b 32 , b 34 , b 42 , b 52 , b 62 , b 72 , b 74 , b 82 , b 84 , b 92 and b 94 are substituted with an aromatic ring Z 01 ~ Represents the number of Z 09 ,
b 75 and b 76 represent the number of Z′ substituting the aromatic ring,
b 11 is an integer of 2 to 5, b 12 is an integer of 0 to 3 and satisfies b 11 +b 12 ≦5,
b 21 is an integer of 1 to 4, b 23 is an integer of 1 to 5, b 22 is an integer of 0 to 3, b 24 is an integer of 0 to 4, and satisfying b 21 +b 22 ≦4 and b 23 +b 24 ≦5,
b 31 is an integer of 1 to 4, b 33 is an integer of 1 to 5, b 32 is an integer of 0 to 3, b 34 is an integer of 0 to 4, and b 31 +b 32 ≦4 and b 33 +b 34 ≦5 are satisfied,
b 41 is an integer of 1 to 7, b 42 is an integer of 0 to 6, and b 41 +b 42 ≦7 is satisfied,
b 51 is an integer of 1 to 9, b 52 is an integer of 0 to 8 and satisfies b 51 +b 52 ≦9,
b 61 is an integer of 1 to 9, b 62 is an integer of 0 to 8 and satisfies b 61 +b 62 ≦9,
b 71 is an integer of 1 to 3, b 73 is an integer of 1 to 4, b 72 is an integer of 0 to 2, b 74 is an integer of 0 to 3, and b 71 +b 72 ≦3 and b 73 +b 74 ≦4 are satisfied, and b 75 and b 76 are each independently an integer of 0 to 4,
b 81 is an integer of 1 to 3, b 83 is an integer of 1 to 4, b 82 is an integer of 0 to 2, b 84 is an integer of 0 to 3, and satisfies b 81 +b 82 ≦3 and b 83 +b 84 ≦4,
b 91 is an integer of 1 to 3, b 93 is an integer of 1 to 4, b 92 is an integer of 0 to 2, b 94 is an integer of 0 to 3, and b 91 +b 92 ≤3 and b 93 +b 94 ≤4 are satisfied,
L 01 to L 04 , Z′ and Z 01 to Z 07 have the same meanings as described above. )
Y 221 represents a divalent group represented by any of formulas (D01-1) to (D21).
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, Ar 3 independently represents an arylene group having 6 to 20 carbon atoms, and L 11 to L 14 , Z 101 to Z 121 , and Ar 1 have the same meanings as described above.)]
Figure 2020027258
11. Wherein X 211 is a fluorine-containing aniline derivative of 10, which is a divalent group represented by the formula (A02),
12. Wherein X 211 is a fluorine-containing aniline derivative of 11, which is a divalent group represented by the following formula (A02-1),
Figure 2020027258
(In the formula, a 21 to a 24 and Z 02 have the same meanings as described above.)
13. Y 211 and Y 212 are fluorine-containing aniline derivatives according to any one of 10 to 12 in which the same monovalent groups are present.
14. 13. The fluorine-containing aniline derivative of 13, wherein Y 211 and Y 212 are each a monovalent group represented by any of the formulas (B01), (B02), (B04), (B08) and (B18),
15. The Y 221 is a fluorine-containing aniline derivative of 10, which is a divalent group represented by the formula (D02),
16. Y 221 is a divalent group represented by the following formula (D02-1), a fluorine-containing aniline derivative of 15;
Figure 2020027258
17. X 221 and X 222 are 10, 15 or 16 fluorine-containing aniline derivatives, wherein X 221 and X 222 are the same monovalent group,
18. X 221 and X 222 are 17 fluorinated aniline derivatives, each of which is a monovalent group represented by the above formula (C01);
19. A polymer containing a repeating unit represented by the following formula (P1-2),
Figure 2020027258
[In the formula, X 211 represents a divalent group represented by any of formulas (A01-1) to (A09),
Figure 2020027258
(In the formula, L 01 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 10 - represents,
L 02 and L 03 are each independently hydrogen atom, Z 11 alkyl group carbon atoms which may be have 1 to 20 substituents, alkenyl group optionally having 2 to 20 carbon atoms optionally substituted by Z 11 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
L 04 represents a hydrogen atom, optionally substituted alkenyl group or Z 12 alkyl group, optionally 2 to 20 carbon atoms optionally substituted by Z 11 of carbon atoms which may be have 1-20 substituted with Z 11 Represents an aryl group having 6 to 20 carbon atoms,
Z 'represents a substituent of the aromatic ring, each independently, an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, Z 11 which may be 2-20 carbons substituted with Represents an alkenyl group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
Z 01 to Z 09 represent a substituent of an aromatic ring, and each independently represent a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 11 , Represents an alkenyl group having 2 to 20 carbon atoms which may be substituted by Z 11 or an aryl group having 6 to 20 carbon atoms which may be substituted by Z 12 .
Z 10 represents an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, which may be substituted with alkenyl or Z 12 good 2 to 20 carbon atoms optionally substituted by Z 11 carbon Represents an aryl group of the number 6 to 20,
Z 11's each independently represent a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 13 .
Z 12 are each independently a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, optionally substituted with an alkyl group or Z 13 of carbon atoms which may be have 1-20 substituted with Z 13 Represents a good alkenyl group having 2 to 20 carbon atoms,
Z 13 represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group or a cyano group,
a 11 , a 13 , a 21 , a 23 , a 31 , a 33 , a 41 , a 51 , a 61 , a 71 , a 73 , a 81 , a 83 , a 91 and a 93 are substituted with an aromatic ring. Represents the number of fluorine atoms
a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 are substituted with an aromatic ring. Represents the number of Z 01 to Z 09
a 75 and a 76 represent the number of Z′ substituting the aromatic ring,
a 11 is an integer of 2 to 4, a 12 is an integer of 0 to 2 and satisfies a 11 +a 12 ≦4,
a 13 is an integer of 2 to 4, a 14 is an integer of 0 to 2 and satisfies a 13 +a 14 ≦4,
a 21 and a 23 are each independently an integer of 1 to 4, a 22 and a 24 are each independently an integer of 0 to 3, and a 21 +a 22 ≦4 and a 23 +a Satisfies 24 ≤ 4,
a 31 and a 33 are each independently an integer of 1 to 4, a 32 and a 34 are each independently an integer of 0 to 3, and a 31 +a 32 ≦4 and a 33 +a. Satisfies 34 ≤ 4,
a 41 is an integer of 1 to 6, a 42 is an integer of 0 to 5, and a 41 +a 42 ≦6 is satisfied,
a 51 is an integer of 1 to 8, a 52 is an integer of 0 to 7 and a 51 +a 52 ≦8 is satisfied,
a 61 is an integer of 1 to 8, a 62 is an integer of 0 to 7 and a 61 +a 62 ≦8 is satisfied,
a 71 and a 73 are each independently an integer of 1 to 3, a 72 and a 74 are each independently an integer of 0 to 2, and a 71 +a 72 ≦3 and a 73 +a 74 ≦3 is satisfied, and a 75 and a 76 are each independently an integer of 0 to 4,
a 81 and a 83 are each independently an integer of 1 to 3, a 82 and a 84 are each independently an integer of 0 to 2, and a 81 +a 82 ≦3 and a 83 +a Satisfying 84 ≦3,
a 91 and a 93 are each independently an integer of 1 to 3, a 92 and a 94 are each independently an integer of 0 to 2, and a 91 +a 92 ≦3 and a 93 +a 94 ≦3 is satisfied. )
Y 221 represents a divalent group represented by any of formulas (D01-1) to (D21).
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, L 11 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 02 - represents,
L 12 represents a hydrogen atom, optionally substituted alkenyl group or Z 131 of is an alkyl group having 1 to 20 carbon atoms also be good 2-20 carbon atoms substituted with Z 130 substituted with Z 130 Represents an aryl group having 6 to 20 carbon atoms,
L 13 and L 14 are each independently a hydrogen atom, Z 130 with an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group which may C2-20 optionally substituted by Z 130 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 ,
Z 101 to Z 107 and Z 109 to Z 121 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, or a C 1-20 optionally substituted with Z 130. Represents an alkyl group having 2 to 20 carbon atoms, which may be substituted with Z 130 , or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 131 .
Z 108 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having carbon atoms which may be have 1-20 substituted with Z 130, is substituted with Z 130 Represents an alkenyl group having 2 to 20 carbon atoms which may be present or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and Z 108 existing on different benzene rings are bonded to each other to form a ring. May be formed,
Z 130 s each independently represent a fluorine atom, a chlorine atom, a bromine atom or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 132 .
Z 131 are each independently a fluorine atom, a chlorine atom, a bromine atom, an alkyl group or Z 132 carbon atoms which may be have 2-20 substituted with 1 to 20 carbon atoms which may be substituted with Z 132 Represents an alkenyl group of
Z 132 represents a fluorine atom, a chlorine atom or a bromine atom,
Ar 1's each independently represent an aryl group having 6 to 20 carbon atoms,
Ar 3's each independently represent an arylene group having 6 to 20 carbon atoms. )]
20. The polymer of 19 wherein X 211 is a divalent group represented by the formula (A02),
21. A polymer of 20, wherein X 211 is a divalent group represented by the following formula (A02-1),
Figure 2020027258
(In the formula, a 21 to a 24 and Z 02 have the same meanings as described above.)
22. The polymer according to any one of 19 to 21, wherein Y 221 is a divalent group represented by any of the formulas (D02), (D17) and (D19),
23. A charge-transporting substance consisting of the aniline derivative of any of 10 to 18,
24. A charge-transporting substance made of the polymer of any one of 19 to 22,
25. A charge-transporting composition containing 23 or 24 charge-transporting substances and an organic solvent,
26. 25 charge transporting compositions comprising a dopant material,
27. A charge transporting thin film obtained from the charge transporting composition of 25 or 26,
28. An electronic device comprising 27 charge transporting thin films,
29. 27. An organic electroluminescent device comprising 27 charge transporting thin films,
30. 29. The organic electroluminescent device according to 29, wherein the charge transporting thin film is a hole injecting layer or a hole transporting layer.

本発明のフッ化芳香族第二級アミン化合物の製造方法によれば、市販のパラジウム触媒およびビフェニル骨格を有する配位子を用い、フッ化芳香族アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とから、効率的かつ高収率に、かつ安価に分子内にフルオロアリール部位を有する第二級アミン化合物(含フッ素アニリン誘導体)を製造することができる。
また、この反応において、フッ化芳香族アミン化合物および塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素のいずれも2官能の化合物を用いることで重合反応が進行し、分子内にフルオロアリール部位を有するオリゴアニリン誘導体またはポリアニリン誘導体といった重合体を効率的に製造することができる。
このような本発明の製造方法で得られた含フッ素アニリン誘導体、重合体等の含フッ素アミン化合物は、分子内にフッ素原子を有することから透明性に優れ、また電荷輸送性を示すため、それ単独で、またはその他の電荷輸送性材料やドーパント物質と組み合わせることで、有機EL素子をはじめとした電子素子用の電荷輸送性薄膜形成用材料として好適に用いることができる。
According to the method for producing a fluorinated aromatic secondary amine compound of the present invention, a fluorinated aromatic amine compound is chlorinated, brominated or iodinated using a commercially available palladium catalyst and a ligand having a biphenyl skeleton. A secondary amine compound (fluorine-containing aniline derivative) having a fluoroaryl moiety in the molecule can be efficiently and inexpensively produced from an aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon at low cost. it can.
Further, in this reaction, the polymerization reaction proceeds by using a bifunctional compound for each of the fluorinated aromatic amine compound and the chlorinated, brominated or iodinated aromatic hydrocarbon or the pseudohalogenated aromatic hydrocarbon, A polymer such as an oligoaniline derivative or a polyaniline derivative having a fluoroaryl moiety in the molecule can be efficiently produced.
The fluorine-containing aniline derivative obtained by the production method of the present invention, the fluorine-containing amine compound such as a polymer is excellent in transparency because it has a fluorine atom in the molecule, and also exhibits charge transportability. It can be suitably used as a material for forming a charge-transporting thin film for an electronic element such as an organic EL element, alone or in combination with another charge-transporting material or a dopant substance.

以下、本発明についてさらに詳しく説明する。
[1]フッ化芳香族第二級アミン化合物の製造方法
本発明に係るフッ化芳香族第二級アミン化合物の製造方法は、フッ化芳香族第一級アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とを、触媒、配位子および塩基の存在下で反応させる工程を備えるものである。
Hereinafter, the present invention will be described in more detail.
[1] Method for producing fluorinated aromatic secondary amine compound A method for producing a fluorinated aromatic secondary amine compound according to the present invention is a fluorinated aromatic primary amine compound, chlorinated, brominated or It comprises a step of reacting an iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon in the presence of a catalyst, a ligand and a base.

(1)触媒
本発明で用いる触媒は、ジベンジリデンアセトンのパラジウム0価錯体を含む。
ジベンジリデンアセトンのパラジウム0価錯体の具体例としては、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム(0)等が挙げられるが、これらの中でも、ビス(ジベンジリデンアセトン)パラジウム(0)が好ましい。
ジベンジリデンアセトンのパラジウム0価錯体の使用量は、目的とするカップリング反応が進行する量であれば特に制限はないが、フッ化芳香族第一級アミン化合物のアミン部位のNH1molに対し、パラジウム金属として0.0001〜0.2molが好ましく、0.005〜0.15molがより好ましく、0.01〜0.12molがより一層好ましく、0.02〜0.1molがさらに好ましい。
(1) Catalyst The catalyst used in the present invention contains a palladium zero-valent complex of dibenzylideneacetone.
Specific examples of the palladium zero-valent complex of dibenzylideneacetone include bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), tris(dibenzylideneacetone)(chloroform)dipalladium(0). ) And the like, and of these, bis(dibenzylideneacetone)palladium(0) is preferable.
The amount of the palladium zero-valent complex of dibenzylideneacetone used is not particularly limited as long as the desired coupling reaction proceeds, but the amount of palladium is based on 1 mol of NH at the amine moiety of the fluorinated aromatic primary amine compound. The metal is preferably 0.0001 to 0.2 mol, more preferably 0.005 to 0.15 mol, even more preferably 0.01 to 0.12 mol, and further preferably 0.02 to 0.1 mol.

また、本発明においては、本発明の効果を損なわない範囲で、ジベンジリデンアセトンのパラジウム0価錯体とともに、その他の金属触媒を用いてもよい。
その他の金属触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(P−t−Bu32(ビス(トリ(t−ブチルホスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。
これらその他の金属触媒を使用する場合、その使用量は、一概に規定できないが、ジベンジリデンアセトンのパラジウム0価錯体に対し、通常100モル%未満である。
Further, in the present invention, other metal catalysts may be used together with the palladium zero-valent complex of dibenzylideneacetone within a range that does not impair the effects of the present invention.
Examples of other metal catalysts include copper catalysts such as copper chloride, copper bromide, and copper iodide; Pd(PPh 3 ) 4 (tetrakis(triphenylphosphine)palladium), Pd(PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (P-t- Bu 3) 2 ( bis (tri (t-butylphosphine)) palladium), and the like palladium catalysts such as Pd (OAc) 2 (palladium acetate) ..
When these other metal catalysts are used, the amount thereof is not generally specified, but it is usually less than 100 mol% based on the palladium zero-valent complex of dibenzylideneacetone.

(2)配位子
本発明で用いる配位子は、下記式(L)で表されるビフェニルホスフィン化合物を含む。
(2) Ligand The ligand used in the present invention contains a biphenylphosphine compound represented by the following formula (L).

Figure 2020027258
Figure 2020027258

式(L)において、R1は、それぞれ独立して、炭素数1〜20のアルキル基または炭素数6〜20のアリール基を表し、R2〜R5は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基または炭素数1〜20のアルコキシ基を表し、R6〜R8は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、またはNR9 2基を表し、R9は、それぞれ独立して、炭素数1〜20のアルキル基を表す。In formula (L), R 1's each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom, Represents an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms, and R 6 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms. an alkoxy group, or NR 9 2 group,, R 9 each independently represent an alkyl group having 1 to 20 carbon atoms.

炭素数1〜20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル、n−デシル、ウンデシル、ドデシル、トリデシル、イコシル基等の炭素数1〜20の直鎖または分岐鎖状アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロブチル、ビシクロペンチル、ビシクロヘキシル、ビシクロヘプチル、ビシクロオクチル、ビシクロノニル、ビシクロデシル、アダマンチル基等の炭素数3〜20の環状アルキル基などが挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl. , N-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, undecyl, dodecyl, tridecyl, icosyl groups and the like straight or branched chain alkyl groups having 1 to 20 carbon atoms; Cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, bicyclopentyl, bicyclohexyl, bicycloheptyl, bicyclooctyl, bicyclononyl, bicyclodecyl, adamantyl group and the like having 3 to 20 carbon atoms. Examples thereof include cyclic alkyl groups.

炭素数6〜20のアリール基の具体例としては、フェニル、1−ナフチル、2−ナフチル、1−アントリル、2−アントリル、9−アントリル、1−フェナントリル、2−フェナントリル、3−フェナントリル、4−フェナントリル、9−フェナントリル基等が挙げられる。
炭素数1〜20のアルコキシ基の具体例としては、メトキシ、エトキシ、n−プロポキシ、i−プロポキシ、c−プロポキシ、n−ブトキシ、i−ブトキシ、s−ブトキシ、t−ブトキシ、n−ペントキシ、n−ヘキソキシ、n−ヘプチルオキシ、n−オクチルオキシ、n−ノニルオキシ、n−デシルオキシ基等が挙げられる。
Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl and 4-. Examples thereof include phenanthryl and 9-phenanthryl groups.
Specific examples of the alkoxy group having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, c-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, Examples thereof include n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy and n-decyloxy groups.

これらの中でも、再現性よく目的物を得る観点から、R1は、それぞれ独立して、比較的かさ高い基が好適であり、結合手が存在する炭素原子が第2級炭素原子か第3級炭素原子である3〜20の分岐鎖状アルキル基、炭素数3〜20の環状アルキル基、炭素数6〜20のアリール基が好ましく、さらに溶媒への溶解性や安定性の観点から、炭素数3〜5の分岐鎖状アルキル基、炭素数5〜7の環状アルキル基がより好ましく、t−ブチル基、シクロヘキシル基がより一層好ましい。
なお、2つのR1は、合成の容易性の観点から、同一であることが好ましい。
Among these, R 1 is preferably a relatively bulky group independently from the viewpoint of obtaining the target product with good reproducibility, and the carbon atom having a bond is a secondary carbon atom or a tertiary carbon atom. A branched chain alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms are preferable, and the carbon number is more preferable from the viewpoint of solubility and stability in a solvent. A branched alkyl group having 3 to 5 and a cyclic alkyl group having 5 to 7 carbon atoms are more preferable, and a t-butyl group and a cyclohexyl group are even more preferable.
In addition, it is preferable that two R 1 are the same from the viewpoint of easiness of synthesis.

また、化合物の安定性の観点や再現性よく目的物を得る観点から、R2〜R5は、それぞれ独立して、水素原子、炭素数1〜5のアルコキシ基が好ましく、R2およびR5が、それぞれ独立して、水素原子または炭素数1〜5のアルコキシ基、R3およびR4が、ともに水素原子の組み合わせがより好ましく、R2〜R5が、全て水素原子がより一層好ましい。Further, from the viewpoint of stability of the compound and obtaining the target product with good reproducibility, R 2 to R 5 are each independently preferably a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, and R 2 and R 5 Are each independently a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, R 3 and R 4 are more preferably a combination of hydrogen atoms, and R 2 to R 5 are all more preferably hydrogen atoms.

さらに、化合物の安定性の観点や再現性よく目的物を得る観点から、R6〜R8は、水素原子、炭素数1〜20の直鎖状アルキル基、結合手が存在する炭素原子が第1級炭素原子か第2級炭素原子である3〜20の分岐鎖状アルキル基、炭素数1〜20のアルコキシ基が好ましく、さらに溶媒への溶解性や安定性の観点から、水素原子、炭素数1〜5の直鎖状アルキル基、炭素数3〜5の分岐鎖状アルキル基、炭素数1〜5のアルコキシ基がより好ましく、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、メトキシ基、イソプロポキシ基がより一層好ましい。Further, from the viewpoint of stability of the compound and obtaining the target compound with good reproducibility, R 6 to R 8 are each a hydrogen atom, a linear alkyl group having 1 to 20 carbon atoms, or a carbon atom having a bond. A branched chain alkyl group having 3 to 20 carbon atoms, which is a primary carbon atom or a secondary carbon atom, and an alkoxy group having 1 to 20 carbon atoms are preferable. Further, from the viewpoint of solubility and stability in a solvent, a hydrogen atom or a carbon atom. A straight chain alkyl group having 1 to 5 carbon atoms, a branched chain alkyl group having 3 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms are more preferable, and a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, A methoxy group and an isopropoxy group are even more preferable.

特に、R6およびR8としては、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基が好ましく、水素原子、メチル基、イソプロピル基、メトキシ基、イソプロポキシ基がより好ましい。
7としては、水素原子、炭素数1〜5のアルキル基が好ましく、水素原子、イソプロピル基がより好ましい。
Particularly, as R 6 and R 8 , a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms is preferable, and a hydrogen atom, a methyl group, an isopropyl group, a methoxy group or an isopropoxy group is preferable. More preferable.
R 7 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an isopropyl group.

本発明で好適に用いられる配位子としては、下記式(L1)〜(L7)で表されるものが挙げられるが、これらに限定されるものではない。 Examples of the ligand preferably used in the present invention include those represented by the following formulas (L1) to (L7), but the ligands are not limited thereto.

Figure 2020027258
(式中、Meはメチル基を、i−Prはイソプロピル基を、t−Buはt−ブチル基を、Cyはシクロヘキシル基を意味する。)
Figure 2020027258
(In the formula, Me means a methyl group, i-Pr means an isopropyl group, t-Bu means a t-butyl group, and Cy means a cyclohexyl group.)

上記式(L)で表される配位子は、市販品として入手でき、例えば、Buchwaldリガンド等としてAldrich社で市販されている、JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2’-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me3(OMe)tBuXPhos, (2-Biphenyl)di-1-adamantylphosphine, RockPhos, CPhos等が挙げられる。
また、上記式(L)で表される配位子は、公知の手法により合成することもできる。
The ligand represented by the above formula (L) is available as a commercial product, and is commercially available, for example, as a Buchwald ligand or the like from Aldrich, JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2'-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me 3 (OMe)tBuXPhos, (2-Biphenyl)phine-manemanada Etc.
The ligand represented by the above formula (L) can also be synthesized by a known method.

式(L)で表される配位子の使用量は、使用する触媒に対し、1〜2当量が好ましい。特に、1当量未満の場合、パラジウムブラックが生じる可能性がある。 The amount of the ligand represented by the formula (L) used is preferably 1 to 2 equivalents with respect to the catalyst used. Particularly, when the amount is less than 1 equivalent, palladium black may occur.

本発明においては、本発明の効果を損なわない範囲で、式(L)で表される配位子とともに、その他の配位子を用いてもよい。
その他の配子位の具体例としては、トリフェニルホスフィン、トリ−o−トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ−t−ブチルホスフィン、ジ−t−ブチル(フェニル)ホスフィン、ジ−t−ブチル(4−ジメチルアミノフェニル)ホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,4−ビス(ジフェニルホスフィノ)ブタン、1,1’−ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級フォスファイトなどが挙げられる。
その他の配位子を用いる場合、その使用量は一概に規定できないが、通常、式(L)で表される配位子に対して、100モル%未満である。
In the present invention, other ligands may be used together with the ligand represented by the formula (L) as long as the effects of the present invention are not impaired.
Specific examples of other coordination positions include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl. (Phenyl)phosphine, di-t-butyl(4-dimethylaminophenyl)phosphine, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenyl) Examples include tertiary phosphines such as phosphino)butane and 1,1′-bis(diphenylphosphino)ferrocene, and tertiary phosphites such as trimethylphosphite, triethylphosphite, and triphenylphosphite.
When other ligands are used, their use amount cannot be unconditionally specified, but it is usually less than 100 mol% with respect to the ligand represented by the formula (L).

(3)フッ化芳香族第一級アミン化合物
本発明の製造方法では、上述した触媒および配位子に特徴があるため、カップリング反応に供される原料であるフッ化芳香族第一級アミン化合物については特に制限はない。
フッ化芳香族第一級アミン化合物は、モノアミン化合物でもジアミン化合物でもよく、例えば、下記式(X1)および(X2)で表されるものが挙げられる。
(3) Fluorinated aromatic primary amine compound Since the production method of the present invention is characterized by the above-mentioned catalyst and ligand, a fluorinated aromatic primary amine that is a raw material to be subjected to the coupling reaction. There is no particular limitation on the compound.
The fluorinated aromatic primary amine compound may be a monoamine compound or a diamine compound, and examples thereof include those represented by the following formulas (X1) and (X2).

Figure 2020027258
(式中、ArF1は、フッ化アリール基を表し、ArF2は、フッ化アリーレン基を表す。)
Figure 2020027258
(In the formula, Ar F1 represents a fluorinated aryl group, and Ar F2 represents a fluorinated arylene group.)

フッ化アリール基は、アリール基の少なくとも1つの水素原子がフッ素原子で置換されたものであればよいが、2個以上の水素原子がフッ素原子で置換されていることが好ましい。
フッ化アリーレン基は、アリーレン基の少なくとも1つの水素原子がフッ素原子で置換されたものであればよいが、2個以上の水素原子がフッ素原子で置換されていることが好ましい。
すなわち、本発明で用いるフッ化芳香族第一級アミン化合物は、分子内にフッ素原子を2個以上有するフッ化芳香族第一級モノアミン化合物またはジアミン化合物が好ましい。
The fluorinated aryl group may be one in which at least one hydrogen atom of the aryl group is substituted with a fluorine atom, but it is preferable that two or more hydrogen atoms are substituted with a fluorine atom.
The fluorinated arylene group may be one in which at least one hydrogen atom of the arylene group is substituted with a fluorine atom, but it is preferable that two or more hydrogen atoms are substituted with a fluorine atom.
That is, the fluorinated aromatic primary amine compound used in the present invention is preferably a fluorinated aromatic primary monoamine compound or diamine compound having two or more fluorine atoms in the molecule.

アリール基としては、炭素数6〜20のアリール基が好ましく、その具体例としては、フェニル基;1−ナフチル、2−ナフチル、1−アントリル、2−アントリル、9−アントリル、1−フェナントリル、2−フェナントリル、3−フェナントリル、4−フェナントリル、9−フェナントリル、1−ナフタセニル、2−ナフタセニル、5−ナフタセニル、2−クリセニル、1−ピレニル、2−ピレニル、ペンタセニル、ベンゾピレニル、トリフェニレニル基等の縮合環芳香族炭化水素化合物の芳香環上の水素原子を一つ取り除いて誘導される基;ビフェニル−2−イル、ビフェニル−3−イル、ビフェニル−4−イル、パラテルフェニル−4−イル、メタテルフェニル−4−イル、オルトテルフェニル−4−イル、1,1’−ビナフチル−2−イル、2,2’−ビナフチル−1−イル基等の環連結炭化水素化合物の芳香環上の水素原子を一つ取り除いて誘導される基などが挙げられる。
アリーレン基としては、炭素数6〜20のアリーレン基が好ましく、その具体例としては、1,2−フェニレン、1,3−フェニレン、1,4−フェニレン基;1,5−ナフタレンジイル、1,8−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル、1,2−アントラセンジイル、1,3−アントラセンジイル、1,4−アントラセンジイル、1,5−アントラセンジイル、1,6−アントラセンジイル、1,7−アントラセンジイル、1,8−アントラセンジイル、2,3−アントラセンジイル、2,6−アントラセンジイル、2,7−アントラセンジイル、2,9−アントラセンジイル、2,10−アントラセンジイル、9,10−アントラセンジイル基等の縮合環芳香族炭化水素化合物の芳香環上の水素原子を二つ取り除いて誘導される基;ビフェニル−4,4’−ジイル基、パラテルフェニル−4,4”−ジイル基基等の環連結炭化水素化合物の芳香環上の水素原子を二つ取り除いて誘導される基などが挙げられる。
The aryl group is preferably an aryl group having 6 to 20 carbon atoms, and specific examples thereof include a phenyl group; 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2 -Fused ring aromatics such as phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-naphthacenyl, 2-naphthacenyl, 5-naphthacenyl, 2-chrysenyl, 1-pyrenyl, 2-pyrenyl, pentacenyl, benzopyrenyl, triphenylenyl groups A group derived by removing one hydrogen atom on the aromatic ring of a group hydrocarbon compound; biphenyl-2-yl, biphenyl-3-yl, biphenyl-4-yl, paraterphenyl-4-yl, metaterphenyl -4-yl, orthoterphenyl-4-yl, 1,1'-binaphthyl-2-yl, 2,2'-binaphthyl-1-yl group and the like, the hydrogen atom on the aromatic ring of the ring-linked hydrocarbon compound is Examples include groups that are derived by removing one.
The arylene group is preferably an arylene group having 6 to 20 carbon atoms, and specific examples thereof include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene group; 1,5-naphthalenediyl, 1, 8-naphthalenediyl, 2,6-naphthalenediyl, 2,7-naphthalenediyl, 1,2-anthracenediyl, 1,3-anthracenediyl, 1,4-anthracenediyl, 1,5-anthracenediyl, 1,6 -Anthracene diyl, 1,7-anthracene diyl, 1,8-anthracene diyl, 2,3-anthracene diyl, 2,6-anthracene diyl, 2,7-anthracene diyl, 2,9-anthracene diyl, 2,10- A group derived by removing two hydrogen atoms on the aromatic ring of a condensed ring aromatic hydrocarbon compound such as anthracenediyl or 9,10-anthracenediyl group; biphenyl-4,4′-diyl group, paraterphenyl- Examples thereof include groups derived by removing two hydrogen atoms on the aromatic ring of a ring-linked hydrocarbon compound such as a 4,4″-diyl group group.

(4)塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素
塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素としては、モノクロロ、モノブロモもしくはモノヨードまたはモノ擬ハロゲン化合物のような、フッ化芳香族第一級アミンのアミノ基と反応する反応部位を1つ有する化合物であっても、ジクロロ、ジブロモもしくはジヨードまたはジ擬ハロゲン化合物のような、フッ化芳香族第一級アミンのアミノ基と反応する反応部位を2つ以上有する化合物であってもよく、例えば、下記式(Y1)および(Y2)で表されるものが挙げられる。
(4) Chlorinated, brominated or iodinated aromatic hydrocarbons or pseudohalogenated aromatic hydrocarbons As chlorinated, brominated or iodinated aromatic hydrocarbons or pseudohalogenated aromatic hydrocarbons, monochloro, monobromo or Even compounds having one reactive site which reacts with the amino group of a fluorinated aromatic primary amine, such as monoiodo or mono-pseudohalogen compounds, such as dichloro, dibromo or diiodo or dipseudohalogen compounds, It may be a compound having two or more reaction sites that react with an amino group of a fluorinated aromatic primary amine, and examples thereof include those represented by the following formulas (Y1) and (Y2).

Figure 2020027258
(式中、Ar4は、アリール基を表し、Ar5は、アリーレン基を表し、Xは、それぞれ独立して、塩素原子、臭素原子、ヨウ素原子または擬ハロゲン基を表す。)
Figure 2020027258
(In the formula, Ar 4 represents an aryl group, Ar 5 represents an arylene group, and X's each independently represent a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group.)

アリール基およびアリーレン基としては、上記と同様のものが挙げられる。
擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
Xとしては、反応性という点から、臭素原子、ヨウ素原子が好ましい。
Examples of the aryl group and the arylene group are the same as those described above.
Examples of the pseudohalogen group include (fluoro)alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group. Are listed.
From the standpoint of reactivity, X is preferably a bromine atom or an iodine atom.

特に、本発明で用いる塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素は、モノもしくはジクロロ芳香族炭化水素、モノもしくはジブロモ芳香族炭化水素、またはモノもしくはジヨード芳香族炭化水素が好ましく、モノもしくはジブロモ芳香族炭化水素、またはモノもしくはジヨード芳香族炭化水素がより好ましい。 In particular, the chlorinated, brominated or iodinated aromatic hydrocarbons or pseudohalogenated aromatic hydrocarbons used in the present invention are mono or dichloro aromatic hydrocarbons, mono or dibromo aromatic hydrocarbons, or mono or diiodo aromatics. Hydrocarbons are preferred, with mono or dibromo aromatic hydrocarbons, or mono or diiodo aromatic hydrocarbons being more preferred.

(5)塩基
塩基としても特に限定されるものではなく、例えば、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化リチウム、水酸化カリウム、t−ブトキシリチウム、t−ブトキシナトリウム、t−ブトキシカリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水素化アルカリ金属、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウム、リチウムジイソプロピルアミド(LDA),リチウム2,2,6,6−テトラメチルピペリジン(LiTMP),ヘキサメチルジシラザンリチウム(LHMDS)等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類などが挙げられるが、LDA、LiTMP、LHMDS等の二級アミンをリチオ化したリチウムアミド試薬やt−ブトキシリチウム等のアルコキシアルカリ金属が好適である。
(5) Base The base is not particularly limited, and examples thereof include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium and t. -Alkali metal simple substance such as potassium butoxy, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, carbonic acid Alkali hydrogen metal; alkaline earth metal carbonate such as calcium carbonate; n-butyllithium, s-butyllithium, t-butyllithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidine (LiTMP) ), organic lithium such as lithium hexamethyldisilazane (LHMDS); amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine, etc., but secondary amines such as LDA, LiTMP, LHMDS are lithio. A modified lithium amide reagent or an alkoxyalkali metal such as t-butoxylithium is suitable.

(6)カップリング反応
本発明の製造方法において、フッ化芳香族第一級アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素との仕込み比は、フッ化芳香族第一級アミン化合物のNH2基1mol対して、芳香族炭化水素の塩素、臭素もしくはヨウまたは擬ハロゲンである反応部位1.0〜1.2mol程度が好適である。
例えば、物質量(mol)比で、式(X1)と式(Y1)との反応では、(X1)1に対して(Y1)1〜1.2程度が好適であり、式(X1)と(Y2)との反応では、(X1)1に対して、(Y1)0.5〜0.6程度が好適であり、式(X2)と式(Y1)との反応では、(X2)1に対して(Y1)2〜2.4程度が好適であり、式(X2)と(Y2)との反応では、(X2)1に対して、(Y2)1〜1.2程度が好適である。
(6) Coupling Reaction In the production method of the present invention, the charging ratio of the fluorinated aromatic primary amine compound to the chlorinated, brominated or iodinated aromatic hydrocarbon or the pseudohalogenated aromatic hydrocarbon is A reaction site of about 1.0 to 1.2 mol which is chlorine, bromine or iodine of an aromatic hydrocarbon or pseudohalogen is suitable for 1 mol of NH 2 group of a fluorinated aromatic primary amine compound.
For example, in the reaction between the formula (X1) and the formula (Y1) in terms of the amount of substance (mol), about (Y1)1 to 1.2 is preferable with respect to (X1)1. In the reaction with (Y2), (Y1) is preferably about 0.5 to 0.6 with respect to (X1)1, and in the reaction between formula (X2) and formula (Y1), (X2)1. To (Y1) 2 to 2.4 are suitable, and in the reaction of the formulas (X2) and (Y2), (Y2) 1 to 1.2 are suitable for (X2) 1. is there.

本発明のカップリング反応は、原料化合物が全て固体である場合あるいは目的とするフッ化芳香族第二級アミン化合物を効率よく得る観点から、溶媒中で行う。
溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n−ヘキサン、n−オクタン、n−デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノン等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ラクタムおよびラクトン類(N−メチルピロリドン、γ−ブチロラクトン等)、尿素類(N,N−ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。
特に、本発明では、溶媒としてエーテル類を用いることが好ましく、ジオキサンを用いることがより好ましい。
The coupling reaction of the present invention is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the desired fluorinated aromatic secondary amine compound.
When a solvent is used, its type is not particularly limited as long as it does not adversely affect the reaction. Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene etc.), ethers (diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane etc.), ketones (acetone, methyl ethyl ketone, Methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), urea (N,N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethyl sulfoxide, sulfolane, etc.), nitrites (acetonitrile, propionitrile, butyronitrile, etc.), etc., and these solvents are used alone. They may be used, or two or more kinds may be mixed and used.
In particular, in the present invention, it is preferable to use ethers as the solvent, and it is more preferable to use dioxane.

反応温度の下限は、反応基質の反応性等に応じて異なるため一概に規定できないが、45℃以上であれば、通常、カップリング反応は良好に進行する。特に、反応性をより向上させることを考慮すると、反応温度は60℃以上が好ましく、75℃以上がより好ましく、90℃以上がより一層好ましく、特に、溶媒の加熱還流下で反応を行うことが好適である。一方、反応温度の上限は、用いる溶媒の沸点に応じて異なるため一概に規定できないが、通常200℃程度以下である。
反応終了後は、常法にしたがって後処理をし、目的とするフッ化芳香族第二級アミン化合物を得ることができる。
The lower limit of the reaction temperature cannot be unconditionally specified because it depends on the reactivity of the reaction substrate and the like, but if it is 45° C. or higher, the coupling reaction normally proceeds well. In particular, in consideration of further improving the reactivity, the reaction temperature is preferably 60° C. or higher, more preferably 75° C. or higher, even more preferably 90° C. or higher, and it is particularly preferable to carry out the reaction under heating reflux of the solvent. It is suitable. On the other hand, the upper limit of the reaction temperature cannot be unconditionally specified because it depends on the boiling point of the solvent used, but it is usually about 200° C. or lower.
After completion of the reaction, post-treatment is carried out by a conventional method to obtain the desired fluorinated aromatic secondary amine compound.

[2]含フッ素アニリン誘導体
本発明に係る含フッ素アニリン誘導体の1つは、下記式(T1)で表される。
[2] Fluorine-containing aniline derivative One of the fluorine-containing aniline derivatives according to the present invention is represented by the following formula (T1).

Figure 2020027258
Figure 2020027258

上記式(T1)において、X211は、式(A01−1)〜(A09)のいずれかで表される2価の基を表す。In the above formula (T1), X 211 represents a divalent group represented by any of formulas (A01-1) to (A09).

Figure 2020027258
Figure 2020027258

ここで、L01は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ10−を表す。
02およびL03は、それぞれ独立して、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表すが、水素原子、炭素数1〜5のアルキル基、炭素数6〜20のアリール基が好ましく、ともに水素原子、メチル基、フェニル基がより好ましい。
上記アルキル基およびアリール基の具体例としては、上記と同様のものが挙げられる。
炭素数2〜20のアルケニル基の具体例としては、エテニル、n−1−プロペニル、n−2−プロペニル、1−メチルエテニル、n−1−ブテニル、n−2−ブテニル、n−3−ブテニル、2−メチル−1−プロペニル、2−メチル−2−プロペニル、1−エチルエテニル、1−メチル−1−プロペニル、1−メチル−2−プロペニル、n−1−ペンテニル、n−1−デセニル、n−1−エイコセニル基等が挙げられる。
Here, L 01 is, -S -, - O -, - CO -, - CH 2 -, - (CH 2) 2 -, - C (CH 3) 2 -, - CF 2 -, - (CF 2 ) 2 -, - C (CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 10 - represents a.
L 02 and L 03 are each independently hydrogen atom, Z 11 alkyl group carbon atoms which may be have 1 to 20 substituents, alkenyl group optionally having 2 to 20 carbon atoms optionally substituted by Z 11 Or, it represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 , and a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and an aryl group having 6 to 20 carbon atoms are preferable, and both are a hydrogen atom and methyl. A group and a phenyl group are more preferable.
Specific examples of the alkyl group and aryl group include the same ones as described above.
Specific examples of the alkenyl group having 2 to 20 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-1-decenyl, n- Examples thereof include a 1-eicosenyl group.

04は、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。これらの中でも、L04は、水素原子、フェニル基が好ましい。
Z′は、芳香環の置換基を表し、それぞれ独立して、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。
L 04 represents a hydrogen atom, optionally substituted alkenyl group or Z 12 alkyl group, optionally 2 to 20 carbon atoms optionally substituted by Z 11 of carbon atoms which may be have 1-20 substituted with Z 11 And the aryl group having 6 to 20 carbon atoms is preferable, and specific examples of these alkyl group, alkenyl group and aryl group include the same ones as described above. Among these, L 04 is preferably a hydrogen atom or a phenyl group.
Z 'represents a substituent of the aromatic ring, each independently, an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, Z 11 which may be 2-20 carbons substituted with The alkenyl group or the aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 is represented, and specific examples of these alkyl group, alkenyl group and aryl group include the same ones as described above.

01〜Z09は、芳香環の置換基を表し、それぞれ独立して、塩素原子、臭素原子、ニトロ基、シアノ基、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、Z10は、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、Z11は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基またはZ13で置換されていてもよい炭素数6〜20のアリール基を表し、Z12は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z13で置換されていてもよい炭素数1〜20のアルキル基またはZ13で置換されていてもよい炭素数2〜20のアルケニル基を表し、Z13は、フッ素原子、塩素原子、臭素原子、ニトロ基またはシアノ基を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。
中でも、Z01〜Z09が存在する場合は、ニトロ基、フッ素原子で置換されていてもよい炭素数1〜5のアルキル基が好ましい。また、Z10は、フッ素原子で置換されていてもよいフェニル基が好ましい。
なお、芳香環の置換基Zp(p=′,01〜09)が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
Z 01 to Z 09 represent a substituent of an aromatic ring, each independently a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 11 , Represents an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 11 or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 , wherein Z 10 may be substituted with Z 11. an alkyl group having 1 to 20 carbon atoms, an alkenyl group, or Z 12 in the 6 to 20 carbon atoms which may be substituted aryl group which may C2-20 optionally substituted by Z 11, Z 11 Each independently represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 13 , and Z 12 is each independently , a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, alkenyl group or Z 13 good 2-20 carbon atoms which may be substituted with the carbon atoms which may be have 1-20 substituted with Z 13 Represents a group, Z 13 represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group or a cyano group, and specific examples of these alkyl group, alkenyl group and aryl group include the same ones as described above.
Among them, when Z 01 to Z 09 are present, a nitro group and an alkyl group having 1 to 5 carbon atoms which may be substituted with a fluorine atom are preferable. Further, Z 10 is preferably a phenyl group which may be substituted with a fluorine atom.
When there are a plurality of aromatic ring substituents Z p (p=′, 01 to 09), they may be the same or different.

a11、a13、a21、a23、a31、a33、a41、a51、a61、a71、a73、a81、a83、a91およびa93は、芳香環に置換するフッ素原子の数を表し、a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、芳香環に置換するZ01〜Z09の数を表し、a75およびa76は、芳香環に置換するZ′の数を表す。
a11は、2〜4の整数であり、a12は、0〜2の整数であり、かつ、a11+a12≦4を満たす。
a13は、2〜4の整数であり、a14は、0〜2の整数であり、かつ、a13+a14≦4を満たす。
a21およびa23は、それぞれ独立して1〜4の整数であり、a22およびa24は、それぞれ独立して0〜3の整数であり、かつ、a21+a22≦4およびa23+a24≦4を満たす。
a31およびa33は、それぞれ独立して1〜4の整数であり、a32およびa34は、それぞれ独立して0〜3の整数であり、かつ、a31+a32≦4およびa33+a34≦4を満たす。
a41は、1〜6の整数であり、a42は、0〜5の整数であり、かつ、a41+a42≦6を満たす。
a51は、1〜8の整数であり、a52は、0〜7の整数であり、かつ、a51+a52≦8を満たす。
a61は、1〜8の整数であり、a62は、0〜7の整数であり、かつ、a61+a62≦8を満たす。
a71およびa73は、それぞれ独立して1〜3の整数であり、a72およびa74は、それぞれ独立して0〜2の整数であり、かつ、a71+a72≦3およびa73+a74≦3を満たし、a75およびa76は、それぞれ独立して0〜4の整数である。
a81およびa83は、それぞれ独立して1〜3の整数であり、a82およびa84は、それぞれ独立して0〜2の整数であり、かつ、a81+a82≦3およびa83+a84≦3を満たす。
a91およびa93は、それぞれ独立して1〜3の整数であり、a92およびa94は、それぞれ独立して0〜2の整数であり、かつ、a91+a92≦3およびa93+a94≦3を満たす。
特に、a41、a51、a61は、2以上の整数が好ましい。
また、a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、0が好ましく、a75およびa76は、0が好ましい。
a 11 , a 13 , a 21 , a 23 , a 31 , a 33 , a 41 , a 51 , a 61 , a 71 , a 73 , a 81 , a 83 , a 91 and a 93 are substituted with an aromatic ring. Represents the number of fluorine atoms, a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 represents the number of Z 01 to Z 09 substituted on the aromatic ring, and a 75 and a 76 represent the number of Z′ substituted on the aromatic ring.
a 11 is an integer of 2 to 4, a 12 is an integer of 0 to 2 and satisfies a 11 +a 12 ≦4.
a 13 is an integer of 2 to 4, a 14 is an integer of 0 to 2 and satisfies a 13 +a 14 ≦4.
a 21 and a 23 are each independently an integer of 1 to 4, a 22 and a 24 are each independently an integer of 0 to 3, and a 21 +a 22 ≦4 and a 23 +a 24 ≦4 is satisfied.
a 31 and a 33 are each independently an integer of 1 to 4, a 32 and a 34 are each independently an integer of 0 to 3, and a 31 +a 32 ≦4 and a 33 +a. 34 ≦ 4 is satisfied.
a 41 is an integer of 1 to 6, a 42 is an integer of 0 to 5 and satisfies a 41 +a 42 ≦6.
a 51 is an integer of 1 to 8, a 52 is an integer of 0 to 7, and a 51 +a 52 ≦8 is satisfied.
a 61 is an integer of 1 to 8, a 62 is an integer of 0 to 7, and a 61 +a 62 ≦8 is satisfied.
a 71 and a 73 are each independently an integer of 1 to 3, a 72 and a 74 are each independently an integer of 0 to 2, and a 71 +a 72 ≦3 and a 73 +a 74 ≦3 is satisfied, and a 75 and a 76 are each independently an integer of 0 to 4.
a 81 and a 83 are each independently an integer of 1 to 3, a 82 and a 84 are each independently an integer of 0 to 2, and a 81 +a 82 ≦3 and a 83 +a It satisfies 84 ≦3.
a 91 and a 93 are each independently an integer of 1 to 3, a 92 and a 94 are each independently an integer of 0 to 2, and a 91 +a 92 ≦3 and a 93 +a 94 ≦3 is satisfied.
Particularly, a 41 , a 51 , and a 61 are preferably integers of 2 or more.
Also, a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 are 0. Preferably, a 75 and a 76 are 0.

これらの中でも、X211は、式(A02)で表される2価の基が好ましく、下記式(A02−1)で表される2価の基がより好ましく、電荷輸送性物質として用いることを考慮すると、式(A02−1−1)で表されるパーフルオロビフェニレン基がより一層好ましい。Among these, X 211 is preferably a divalent group represented by the formula (A02), more preferably a divalent group represented by the following formula (A02-1), and used as a charge transporting substance. Considering this, the perfluorobiphenylene group represented by the formula (A02-1-1) is even more preferable.

Figure 2020027258
(式中、a21〜a24およびZ02は、上記と同じ意味を表す。)
Figure 2020027258
(In the formula, a 21 to a 24 and Z 02 have the same meanings as described above.)

Figure 2020027258
Figure 2020027258

一方、Y211およびY212は、それぞれ独立して、式(B01)〜(B21)のいずれかで表される1価の基を表す。On the other hand, Y 211 and Y 212 each independently represent a monovalent group represented by any of formulas (B01) to (B21).

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

ここで、L11は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ100−を表す。
12は、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。これらの中でも、L12は、水素原子、フェニル基が好ましい。
13およびL14は、それぞれ独立して、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。これらの中でも、L13およびL14としては、水素原子、炭素数1〜5のアルキル基、炭素数6〜10のアリール基が好ましく、ともに水素原子、メチル基、フェニル基がより好ましい。
Here, L 11 is, -S -, - O -, - CO -, - CH 2 -, - (CH 2) 2 -, - C (CH 3) 2 -, - CF 2 -, - (CF 2 ) 2 -, - C (CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 100 - represents a.
L 12 represents a hydrogen atom, optionally substituted alkenyl group or Z 131 of is an alkyl group having 1 to 20 carbon atoms also be good 2-20 carbon atoms substituted with Z 130 substituted with Z 130 The same as the above is mentioned as a specific example of the alkyl group, the alkenyl group and the aryl group. Among these, L 12 is preferably a hydrogen atom or a phenyl group.
L 13 and L 14 are each independently a hydrogen atom, Z 130 with an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group which may C2-20 optionally substituted by Z 130 Or, it represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and specific examples of these alkyl group, alkenyl group and aryl group include the same ones as described above. Among these, as L 13 and L 14 , a hydrogen atom, an alkyl group having 1 to 5 carbon atoms and an aryl group having 6 to 10 carbon atoms are preferable, and a hydrogen atom, a methyl group and a phenyl group are more preferable.

100は、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、フッ素原子で置換されていてもよいフェニル基が好ましい。
101〜Z107およびZ109〜Z121は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、Z108は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基もしくはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、異なるベンゼン環上に存在するZ108同士が結合して環を形成していてもよく、Z130は、それぞれ独立して、フッ素原子、塩素原子、臭素原子またはZ132で置換されていてもよい炭素数6〜20のアリール基を表し、Z131は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、Z132で置換されていてもよい炭素数1〜20のアルキル基またはZ132で置換されていてもよい炭素数2〜20のアルケニル基を表し、Z132は、フッ素原子、塩素原子または臭素原子を表し、これらアルキル基、アルケニル基およびアリール基の具体例としては、上記と同様のものが挙げられる。これらの中でも、Z101〜Z107およびZ109〜Z121は、水素原子が好ましい。Z108は、水素原子であるか、異なるベンゼン環上において、窒素原子のオルト位に存在する少なくとも1組のZ108同士が結合した単結合が好ましい。なお、Z108同士が単結合を形成した式(B08)としては、例えば下記式(B08’)で示されるものが挙げられる。
なお、Zq(q=101〜121)はそれぞれ同一でも異なっていてもよい。
Z 100 represents an alkyl group with carbon atoms which may have 1 to 20 substituted by Z 130, which may be substituted with alkenyl or Z 131 good 2 to 20 carbon atoms optionally substituted by Z 130 carbon It represents an aryl group of the formulas 6 to 20, but a phenyl group which may be substituted with a fluorine atom is preferable.
Z 101 to Z 107 and Z 109 to Z 121 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, or a C 1-20 optionally substituted with Z 130. Represents an alkyl group, a C 2-20 alkenyl group which may be substituted with Z 130 , or a C 6-20 aryl group which may be substituted with Z 131 , and Z 108 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, Z 130 with an optionally substituted alkyl group having a carbon number of 1 to 20, Z 130 is optionally carbon atoms, which may 2 substituted with 20 represents an alkenyl group having 20 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and Z 108 existing on different benzene rings may be bonded to each other to form a ring. 130 each independently represents a fluorine atom, a chlorine atom, a bromine atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 132 , and Z 131 each independently represents a fluorine atom or a chlorine atom. atom, a bromine atom, an alkenyl group of an alkyl group or Z 132 good 2 to 20 carbon atoms optionally substituted with a carbon atoms which may be have 1-20 substituted with Z 132, Z 132 is a fluorine atom, It represents a chlorine atom or a bromine atom, and specific examples of these alkyl group, alkenyl group and aryl group include the same ones as described above. Of these, Z 101 to Z 107 and Z 109 to Z 121 are preferably hydrogen atoms. Z 108 is preferably a hydrogen atom or a single bond in which at least one set of Z 108 existing at the ortho positions of nitrogen atoms on different benzene rings are bonded. The formula (B08) in which Z 108 s form a single bond includes, for example, one represented by the following formula (B08′).
Z q (q=101 to 121) may be the same or different.

Figure 2020027258
Figure 2020027258

Ar1は、それぞれ独立して、炭素数6〜20のアリール基を表し、このアリール基としては、上記と同様のものが挙げられる。中でも、Ar1は、フェニル基、1−ナフチル基、2−ナフチル基が好ましく、フェニル基がより好ましい。
Ar2は、単結合または炭素数6〜20のアリーレン基を表す。炭素数6〜20のアリーレン基の具体例としては、1,2−フェニレン、1,3−フェニレン、1,4−フェニレン、1,5−ナフタレンジイル、1,8−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル基等が挙げられる。中でも、Ar2は、単結合、1,4−フェニレン基が好ましい。
Ar 1's each independently represent an aryl group having 6 to 20 carbon atoms, and examples of the aryl group include the same ones as described above. Among them, Ar 1 is preferably a phenyl group, a 1-naphthyl group or a 2-naphthyl group, more preferably a phenyl group.
Ar 2 represents a single bond or an arylene group having 6 to 20 carbon atoms. Specific examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,5-naphthalenediyl, 1,8-naphthalenediyl, 2,6- Examples thereof include naphthalenediyl and 2,7-naphthalenediyl groups. Above all, Ar 2 is preferably a single bond or a 1,4-phenylene group.

特に、合成の容易性等を考慮すると、Y211およびY212は同一の1価の基であることが好ましく、ともに式(B01)、(B02)、(B04)、(B08)および(B18)のいずれかで表される1価の基であることがより好ましい。Particularly, in consideration of easiness of synthesis and the like, Y 211 and Y 212 are preferably the same monovalent group, and both are represented by formulas (B01), (B02), (B04), (B08) and (B18). More preferably, it is a monovalent group represented by any of the above.

また、本発明に係る含フッ素アニリン誘導体の他の1つは、下記式(T2)で表される。 Further, another one of the fluorine-containing aniline derivatives according to the present invention is represented by the following formula (T2).

Figure 2020027258
Figure 2020027258

式(T2)において、X221およびX222は、それぞれ独立して、式(C01)〜(C09)のいずれかで表される1価の基を表す。In formula (T2), X 221 and X 222 each independently represent a monovalent group represented by any of formulas (C01) to (C09).

Figure 2020027258
Figure 2020027258

ここで、b11、b21、b23、b31、b33、b41、b51、b61、b71、b73、b81、b83、b91およびb93は、芳香環に置換するフッ素原子の数を表し、b12、b22、b24、b32、b34、b42、b52、b62、b72、b74、b82、b84、b92およびb94は、芳香環に置換するZ01〜Z09の数を表し、b75およびb76は、芳香環に置換するZ′の数を表す。
b11は、2〜5の整数であり、b12は、0〜3の整数であり、かつ、b11+b12≦5を満たす。
b21は、1〜4の整数であり、b23は、1〜5の整数であり、b22は、0〜3の整数であり、b24は、0〜4の整数であり、かつ、b21+b22≦4およびb23+b24≦5を満たす。
b31は、1〜4の整数であり、b33は、1〜5の整数であり、b32は、0〜3の整数であり、b34は、0〜4の整数であり、かつ、b31+b32≦4およびb33+b34≦5を満たす。
b41は、1〜7の整数であり、b42は、0〜6の整数であり、かつ、b41+b42≦7を満たす。
b51は、1〜9の整数であり、b52は、0〜8の整数であり、かつ、b51+b52≦9を満たす。
b61は、1〜9の整数であり、b62は、0〜8の整数であり、かつ、b61+b62≦9を満たす。
b71は、1〜3の整数であり、b73は、1〜4の整数であり、b72は、0〜2の整数であり、b74は、0〜3の整数であり、かつ、b71+b72≦3およびb73+b74≦4を満たし、b75およびb76は、それぞれ独立して、0〜4の整数である。
b81は、1〜3の整数であり、b83は、1〜4の整数であり、b82は、0〜2の整数であり、b84は、0〜3の整数であり、かつ、b81+b82≦3およびb83+b84≦4を満たす。
b91は、1〜3の整数であり、b93は、1〜4の整数であり、b92は、0〜2の整数であり、b94は、0〜3の整数であり、かつ、b91+b92≦3およびb93+b94≦4を満たす。
特に、b41、b51、b61は、2以上の整数が好ましい。
また、b12、b22、b24、b32、b34、b42、b52、b62、b72、b74、b82、b84、b92およびb94は0が好ましく、b75およびb76は、0が好ましい。
なお、L01〜L04、Z′およびZ01〜Z09は、上記と同じ意味を表す。
Here, b 11 , b 21 , b 23 , b 31 , b 33 , b 41 , b 51 , b 61 , b 71 , b 73 , b 81 , b 83 , b 91 and b 93 are substituted with aromatic rings. Represents the number of fluorine atoms, b 12 , b 22 , b 24 , b 32 , b 34 , b 42 , b 52 , b 62 , b 72 , b 74 , b 82 , b 84 , b 92 and b 94 are , And the number of Z 01 to Z 09 substituted on the aromatic ring, and b 75 and b 76 represent the number of Z′ substituted on the aromatic ring.
b 11 is an integer of 2 to 5, b 12 is an integer of 0 to 3 and satisfies b 11 +b 12 ≦5.
b 21 is an integer of 1 to 4, b 23 is an integer of 1 to 5, b 22 is an integer of 0 to 3, b 24 is an integer of 0 to 4, and b 21 +b 22 ≦4 and b 23 +b 24 ≦5 are satisfied.
b 31 is an integer of 1 to 4, b 33 is an integer of 1 to 5, b 32 is an integer of 0 to 3, b 34 is an integer of 0 to 4, and b 31 +b 32 ≦4 and b 33 +b 34 ≦5 are satisfied.
b 41 is an integer of 1 to 7, b 42 is an integer of 0 to 6 and satisfies b 41 +b 42 ≦7.
b 51 is an integer of 1 to 9, b 52 is an integer of 0 to 8 and satisfies b 51 +b 52 ≦9.
b 61 is an integer of 1 to 9, b 62 is an integer of 0 to 8 and satisfies b 61 +b 62 ≦9.
b 71 is an integer of 1 to 3, b 73 is an integer of 1 to 4, b 72 is an integer of 0 to 2, b 74 is an integer of 0 to 3, and b 71 +b 72 ≦3 and b 73 +b 74 ≦4 are satisfied, and b 75 and b 76 are each independently an integer of 0 to 4.
b 81 is an integer of 1 to 3, b 83 is an integer of 1 to 4, b 82 is an integer of 0 to 2, b 84 is an integer of 0 to 3, and b 81 +b 82 ≦3 and b 83 +b 84 ≦4 are satisfied.
b 91 is an integer of 1 to 3, b 93 is an integer of 1 to 4, b 92 is an integer of 0 to 2, b 94 is an integer of 0 to 3, and b 91 +b 92 ≤3 and b 93 +b 94 ≤4 are satisfied.
In particular, b 41 , b 51 and b 61 are preferably integers of 2 or more.
Further, b 12 , b 22 , b 24 , b 32 , b 34 , b 42 , b 52 , b 62 , b 72 , b 74 , b 82 , b 84 , b 92 and b 94 are preferably 0, and b 75 And b 76 is preferably 0.
L 01 to L 04 , Z′ and Z 01 to Z 09 have the same meanings as described above.

特に、合成の容易性や電荷輸送性等を考慮すると、X221およびX222は、同一の1価の基が好ましく、ともに式(C01)で表される1価の基がより好ましく、ともに下記式(C01−1)で表される1価の基がより一層好ましい。In particular, in consideration of easiness of synthesis, charge transportability, etc., X 221 and X 222 are preferably the same monovalent group, more preferably both monovalent groups represented by the formula (C01). The monovalent group represented by the formula (C01-1) is even more preferable.

Figure 2020027258
Figure 2020027258

一方、Y221は、式(D01−1)〜(D21)のいずれかで表される2価の基を表す。On the other hand, Y 221 represents a divalent group represented by any of formulas (D01-1) to (D21).

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

式中、Ar3は、それぞれ独立して、炭素数6〜20のアリーレン基を表し、このアリーレン基の具体例としては上記と同様のものが挙げられる。
また、L11〜L14、Z101〜Z121、およびAr1は、上記と同じ意味を表す。
In the formula, Ar 3's each independently represent an arylene group having 6 to 20 carbon atoms, and specific examples of the arylene group include the same ones as described above.
L 11 to L 14 , Z 101 to Z 121 , and Ar 1 have the same meanings as described above.

これらの中でも、Y221は、式(D02)で表される2価の基が好ましく、下記式(D02−1)で表される2価の基がより好ましく、下記式(D02−1−1)で表されるビフェニレン基がより一層好ましい。Among these, Y 221 is preferably a divalent group represented by the formula (D02), more preferably a divalent group represented by the following formula (D02-1), and a divalent group represented by the following formula (D02-1-1). The biphenylene group represented by the formula (4) is even more preferable.

Figure 2020027258
(式中、Z102は、上記と同じ意味を表す。)
Figure 2020027258
(In the formula, Z 102 has the same meaning as above.)

なお、本発明の含フッ素アニリン誘導体には、下記式[1]〜[13]で表される化合物は含まれない。 The fluorine-containing aniline derivative of the present invention does not include compounds represented by the following formulas [1] to [13].

Figure 2020027258
Figure 2020027258

本発明の含フッ素アニリン誘導体の具体例としては、下記式で表されるものが挙げられるが、これらに限定されるものではない。 Specific examples of the fluorinated aniline derivative of the present invention include those represented by the following formulas, but the invention is not limited thereto.

Figure 2020027258
(式中、t−Buは、t−ブチル基を表す。)
Figure 2020027258
(In the formula, t-Bu represents a t-butyl group.)

[3]重合体
本発明に係る重合体は、下記式(P1−2)で表される繰り返し単位を含む。
[3] Polymer The polymer according to the present invention contains a repeating unit represented by the following formula (P1-2).

Figure 2020027258
Figure 2020027258

式(P1−2)において、X211は、上記含フッ素アニリン誘導体で例示した基と同様のものが挙げられ、その好適範囲も上記と同様である。
また、Y221は、上記含フッ素アニリン誘導体で例示した基と同様のものが挙げられるが、中でも、式(D02)、(D17)および(D19)のいずれかで表される2価の基が好ましい。
In formula (P1-2), examples of X 211 include the same groups as those exemplified for the above-mentioned fluorine-containing aniline derivative, and the preferable range thereof is also the same as above.
Examples of Y 221 include the same groups as those exemplified for the above-mentioned fluorine-containing aniline derivative, but among them, a divalent group represented by any one of formulas (D02), (D17) and (D19) is preferable. preferable.

本発明の重合体の分子量は特に限定されるものではないが、電荷輸送性物質として用いる場合の導電性および有機溶媒への溶解性等を考慮すると、重量平均分子量1000〜100000が好ましく、2000〜50000がより好ましく、5000〜30000がより一層好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値である。 The molecular weight of the polymer of the present invention is not particularly limited, but in consideration of conductivity and solubility in an organic solvent when used as a charge transporting substance, a weight average molecular weight of 1000 to 100000 is preferable, and a weight average molecular weight of 2000 to 50,000 is more preferable, and 5000 to 30,000 is even more preferable. The weight average molecular weight is a polystyrene conversion value by gel permeation chromatography.

本発明の重合体の具体例としては、下記式で表されるものが挙げられるが、これらに限定されるものではない。 Specific examples of the polymer of the present invention include those represented by the following formulas, but the present invention is not limited thereto.

Figure 2020027258
(式中、mは、それぞれ独立して、2以上の整数を表す。)
Figure 2020027258
(In the formula, m independently represents an integer of 2 or more.)

[4]含フッ素アニリン誘導体および重合体の製造法
以上説明した本発明の含フッ素アニリン誘導体および重合体は、既に述べた本発明のフッ化芳香族第二級アミンの製造方法を用いて合成することができる。
例えば、含フッ素アニリン誘導体は、ジベンジリデンアセトンのパラジウム0価錯体、上記式(L)で表される配位子および塩基の存在下、上記式(X2)で表されるフッ化芳香族第一級ジアミンと、2当量の上記式(Y1)で表される塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とを反応させて、あるいは、上記式(X1)で表されるフッ化芳香族第一級アミンと、0.5当量の上記式(Y2)で表されるジ塩素化、ジ臭素化もしくはジヨウ素化芳香族炭化水素またはジ擬ハロゲン化芳香族炭化水素と、を反応させて得ることができる。
一方、重合体は、ジベンジリデンアセトンのパラジウム0価錯体、上記式(L)で表される配位子および塩基の存在下、上記式(X2)で表されるフッ化芳香族第一級ジアミン化合物と、上記式(Y2)で表されるジ塩素化、ジ臭素化もしくはジヨウ素化芳香族炭化水素またはジ擬ハロゲン化芳香族炭化水素とを反応させて得ることができる。なお、重合体の合成においては、触媒量を増やすことで分子量が増大するため、触媒量を調節することで、得られる重合体の分子量を調節することができる。
[4] Method for Producing Fluorine-Containing Aniline Derivative and Polymer The fluorine-containing aniline derivative and polymer of the present invention described above are synthesized by using the above-described method for producing a fluorinated aromatic secondary amine of the present invention. be able to.
For example, the fluorinated aniline derivative is a fluorinated aromatic first group represented by the above formula (X2) in the presence of a palladium zero-valent complex of dibenzylideneacetone, a ligand represented by the above formula (L) and a base. By reacting a secondary diamine with 2 equivalents of a chlorinated, brominated or iodinated aromatic hydrocarbon or pseudohalogenated aromatic hydrocarbon represented by the above formula (Y1), or in the above formula (X1) Fluorinated aromatic primary amine represented and 0.5 equivalent of dichlorinated, dibrominated or diiodinated aromatic hydrocarbon represented by the above formula (Y2) or dipseudohalogenated aromatic hydrocarbon It can be obtained by reacting with hydrogen.
On the other hand, the polymer is a fluorinated aromatic primary diamine represented by the above formula (X2) in the presence of a palladium zero-valent complex of dibenzylideneacetone, the ligand represented by the above formula (L) and a base. It can be obtained by reacting a compound with a dichlorinated, dibrominated or diiodinated aromatic hydrocarbon or dipseudohalogenated aromatic hydrocarbon represented by the above formula (Y2). In the synthesis of the polymer, the molecular weight is increased by increasing the amount of the catalyst. Therefore, the molecular weight of the obtained polymer can be adjusted by adjusting the amount of the catalyst.

[5]電荷輸送性物質、電荷輸送性組成物および電荷輸送性薄膜
上述した本発明の含フッ素アニリン誘導体および重合体は、フッ素原子を分子内に有することから透明性に優れるとともに、それ単独でまたはドーパント物質と組み合わせた場合に導電性を示すことから、電荷輸送性物質として好適に用いることができ、本発明の含フッ素アニリン誘導体や重合体を溶媒に溶解させることで、容易に電荷輸送性組成物を調製することができる。
例えば、本発明の電荷輸送性組成物としては、上述した含フッ素アニリン誘導体または重合体からなる電荷輸送性物質と、有機溶媒とを含むものが挙げられるが、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパント物質を含んでいてもよい。
ドーパント物質は、組成物に使用する少なくとも一種の溶媒に溶解するものであれば、特に限定されない。
[5] Charge-transporting substance, charge-transporting composition and charge-transporting thin film The above-mentioned fluorine-containing aniline derivative and polymer of the present invention have excellent transparency because they have a fluorine atom in the molecule, and they are used alone. Alternatively, since it exhibits conductivity when combined with a dopant substance, it can be suitably used as a charge-transporting substance. By dissolving the fluorine-containing aniline derivative or polymer of the present invention in a solvent, the charge-transporting property can be easily obtained. The composition can be prepared.
For example, examples of the charge transporting composition of the present invention include those containing a charge transporting substance composed of the above-mentioned fluorine-containing aniline derivative or polymer, and an organic solvent. A dopant substance may be included for the purpose of improving the charge transport ability.
The dopant substance is not particularly limited as long as it is soluble in at least one solvent used in the composition.

ドーパント物質の具体例としては、塩化水素、硫酸、硝酸、リン酸等の無機強酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4−ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等のルイス酸;ベンゼンスルホン酸、トシル酸、カンファスルホン酸、ヒドロキシベンゼンスルホン酸、5−スルホサリチル酸、ドデシルベンゼンスルホン酸、1,5−ナフタレンジスルホン酸等のナフタレンジスルホン酸、1,3,5−ナフタレントリスルホン酸,1,3,6−ナフタレントリスルホン酸等のナフタレントリスルホン酸、ポリスチレンスルホン酸、国際公開第2005/000832号に記載されている1,4−ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号に記載されているナフタレンまたはアントラセンスルホン酸化合物、特開2005−108828号公報に記載されているジノニルナフタレンスルホン酸化合物等のアリールスルホン酸化合物などの有機強酸;7,7,8,8−テトラシアノキノジメタン(TCNQ)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)、ヨウ素等の有機酸化剤、国際公開第2010/058777号に記載されているリンモリブデン酸、リンタングステン酸、リンタングストモリブデン酸等のヘテロポリ酸等の無機酸化剤などが挙げられ、それぞれを組み合わせて使用してもよい。Specific examples of the dopant substance include strong inorganic acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ). ), boron trifluoride ether complex (BF 3 ·OEt 2 ), iron chloride (III) (FeCl 3 ), copper (II) chloride (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), pentafluoride Lewis acids such as arsenic (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris(4-bromophenyl)aluminum hexachloroantimonate (TBPAH); benzenesulfonic acid, tosylic acid, camphorsulfonic acid, hydroxybenzene Naphthalene disulfonic acid such as sulfonic acid, 5-sulfosalicylic acid, dodecylbenzene sulfonic acid, 1,5-naphthalene disulfonic acid, naphthalene such as 1,3,5-naphthalene trisulfonic acid, 1,3,6-naphthalene trisulfonic acid Trisulfonic acid, polystyrene sulfonic acid, 1,4-benzodioxane disulfonic acid compound described in WO 2005/000832, naphthalene or anthracene sulfonic acid compound described in WO 2006/025342, Organic strong acids such as aryl sulfonic acid compounds such as dinonylnaphthalene sulfonic acid compounds described in JP 2005-108828 A; 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro. Organic oxidizers such as -5,6-dicyano-1,4-benzoquinone (DDQ) and iodine, heteropoly compounds such as phosphomolybdic acid, phosphotungstic acid and phosphotungstomolybdic acid described in WO 2010/058777. Inorganic oxidizing agents such as acids may be used, and these may be used in combination.

これらの中でも、アリールスルホン酸化合物が好ましく、式(H1)または(H2)で表されるアリールスルホン酸化合物が好適である。なお、ドーパント物質として用いるアリールスルホン酸化合物の分子量は、有機溶媒への溶解性を考慮すると、好ましくは3000以下、より好ましくは2500以下である。 Among these, the aryl sulfonic acid compound is preferable, and the aryl sulfonic acid compound represented by the formula (H1) or (H2) is preferable. The molecular weight of the aryl sulfonic acid compound used as the dopant substance is preferably 3000 or less, more preferably 2500 or less in consideration of the solubility in an organic solvent.

Figure 2020027258
Figure 2020027258

1は、OまたはSを表すが、Oが好ましい。
2は、ナフタレン環またはアントラセン環を表すが、ナフタレン環が好ましい。
3は、2〜4価のパーフルオロビフェニル基を表し、pは、A1とA3との結合数を示し、2≦p≦4を満たす整数であるが、A3がパーフルオロビフェニルジイル基、好ましくはパーフルオロビフェニル−4,4’−ジイル基であり、かつ、pが2であることが好ましい。
qは、A2に結合するスルホン酸基数を表し、1≦q≦4を満たす整数であるが、2が最適である。
A 1 represents O or S, and O is preferable.
A 2 represents a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
A 3 represents a divalent to tetravalent perfluorobiphenyl group, p represents the number of bonds between A 1 and A 3, and is an integer satisfying 2≦p≦4, but A 3 is perfluorobiphenyldiyl It is preferably a group, preferably a perfluorobiphenyl-4,4′-diyl group, and p is 2.
q represents the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1≦q≦4, and 2 is optimal.

4〜A8は、互いに独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のハロゲン化アルキル基、または炭素数2〜20のハロゲン化アルケニル基を表すが、A4〜A8のうち少なくとも3つは、ハロゲン原子である。A 4 to A 8 are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or a halogenated group having 2 to 20 carbon atoms. It represents an alkenyl group, but at least three of A 4 to A 8 are halogen atoms.

炭素数1〜20のハロゲン化アルキル基としては、トリフルオロメチル、2,2,2−トリフルオロエチル、1,1,2,2,2−ペンタフルオロエチル、3,3,3−トリフルオロプロピル、2,2,3,3,3−ペンタフルオロプロピル、1,1,2,2,3,3,3−ヘプタフルオロプロピル、4,4,4−トリフルオロブチル、3,3,4,4,4−ペンタフルオロブチル、2,2,3,3,4,4,4−ヘプタフルオロブチル、1,1,2,2,3,3,4,4,4−ノナフルオロブチル基等が挙げられる。 Examples of the halogenated alkyl group having 1 to 20 carbon atoms include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl and 3,3,3-trifluoropropyl. , 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4 , 4-pentafluorobutyl, 2,2,3,3,4,4,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group and the like. To be

炭素数2〜20のハロゲン化アルケニル基としては、パーフルオロビニル、パーフルオロプロペニル(パーフルオロアリル)、パーフルオロブテニル基等が挙げられる。
ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子、フッ素原子が挙げられるが、フッ素原子が好ましい。
その他、炭素数1〜20のアルキル基の例としては上記と同様のものが挙げられる。
Examples of the halogenated alkenyl group having 2 to 20 carbon atoms include perfluorovinyl, perfluoropropenyl (perfluoroallyl), and perfluorobutenyl groups.
Examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom and a fluorine atom, and a fluorine atom is preferable.
In addition, examples of the alkyl group having 1 to 20 carbon atoms include the same ones as described above.

これらの中でも、A4〜A8は、水素原子、ハロゲン原子、シアノ基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、または炭素数2〜10のハロゲン化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つは、フッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のアルキル基、炭素数1〜5のフッ化アルキル基、または炭素数2〜5のフッ化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つはフッ素原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のパーフルオロアルキル基、または炭素数1〜5のパーフルオロアルケニル基であり、かつ、A4、A5およびA8がフッ素原子であることがより一層好ましい。
なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。
Among these, A 4 to A 8 are hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 10 carbon atoms, halogenated alkyl group having 1 to 10 carbon atoms, or alkenyl halide having 2 to 10 carbon atoms. It is a group, and at least three of A 4 to A 8 are preferably fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 5 carbon atoms, or a carbon atom having 1 to 5 carbon atoms A fluorinated alkyl group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least three of A 4 to A 8 are more preferably fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, It is even more preferable that it is a perfluoroalkyl group having 1 to 5 carbon atoms or a perfluoroalkenyl group having 1 to 5 carbon atoms, and A 4 , A 5 and A 8 are fluorine atoms.
The perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are replaced with fluorine atoms, and the perfluoroalkenyl group is the group in which all the hydrogen atoms of the alkenyl group are replaced with fluorine atoms.

rは、ナフタレン環に結合するスルホン酸基数を表し、1≦r≦4を満たす整数であるが、2〜4が好ましく、2が最適である。 r represents the number of sulfonic acid groups bonded to the naphthalene ring, and is an integer satisfying 1≦r≦4, preferably 2 to 4, and most preferably 2.

以下、好適なアリールスルホン酸化合物の具体例を挙げるが、これらに限定されるわけではない。 Specific examples of suitable aryl sulfonic acid compounds are shown below, but the invention is not limited thereto.

Figure 2020027258
Figure 2020027258

有機溶媒としては、電荷輸送性物質およびドーパント物質を溶解または分散可能なものであれば特に限定されるものではなく、例えば、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、シクロヘキサノール、エチレングリコール、1,3−オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3−ブタンジオール、2,3−ブタンジオール、1,4−ブタンジオール、プロピレングリコール、へキシレングリコール、テトラヒドロフルフリルアルコール、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチルカルビトール、ジアセトンアルコール、γ−ブチロラクトン、エチルラクテート、n−ヘキシルアセテート等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。 The organic solvent is not particularly limited as long as it can dissolve or disperse the charge transporting substance and the dopant substance, and for example, benzene, toluene, o-xylene, m-xylene, p-xylene, N-. Methylformamide, N,N-dimethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, cyclohexanol, ethylene Glycol, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene Glycol, tetrahydrofurfuryl alcohol, butyl cellosolve, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl carbitol, diacetone Examples thereof include alcohol, γ-butyrolactone, ethyl lactate, and n-hexyl acetate, and these may be used alone or in combination of two or more.

本発明の電荷輸送性組成物の粘度は、通常、25℃で1〜50mPa・sであり、表面張力は、通常、25℃で20〜50mN/mである。
本発明の電荷輸送性組成物の粘度と表面張力は、用いる塗布方法、所望の膜厚等の各種要素を考慮して、用いる有機溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。
The viscosity of the charge transporting composition of the present invention is usually 1 to 50 mPa·s at 25° C., and the surface tension is usually 20 to 50 mN/m at 25° C.
The viscosity and surface tension of the charge-transporting composition of the present invention should be changed in consideration of various factors such as the coating method used and the desired film thickness, the type of organic solvent used, their ratio, and the solid content concentration. It can be adjusted with.

また、本発明の電荷輸送性組成物の固形分濃度は、組成物の粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常0.1〜15.0質量%程度であり、組成物中の電荷輸送性物質の凝集を抑制する等の観点から、好ましくは10.0質量%以下、より好ましくは8.0質量%以下、より一層好ましくは5質量%以下である。
なお、ここでいう固形分濃度の固形分とは、本発明の電荷輸送性組成物に含まれる溶媒以外の成分を意味する。
The solid content concentration of the charge transporting composition of the present invention is appropriately set in consideration of the viscosity and surface tension of the composition, the thickness of the thin film to be produced, etc. It is about 15.0% by mass, and preferably from 10.0% by mass or less, more preferably 8.0% by mass or less, and even more preferably from the viewpoint of suppressing aggregation of the charge transporting substance in the composition. It is 5 mass% or less.
In addition, the solid content of the solid content concentration as used herein means a component other than the solvent contained in the charge transporting composition of the present invention.

本発明の電荷輸送性組成物は、本発明の電荷輸送性物質と、有機溶媒と、必要に応じて用いられるドーパント物質とを混合することで製造できる。その混合順序は特に限定されるものではない。
組成物を調製する際、成分が分解したり変質したりしない範囲で、適宜、加熱してもよい。
本発明においては、電荷輸送性組成物は、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過することが望ましい。
The charge-transporting composition of the present invention can be produced by mixing the charge-transporting substance of the present invention, an organic solvent, and a dopant substance used as necessary. The mixing order is not particularly limited.
When the composition is prepared, heating may be appropriately performed within a range in which the components are not decomposed or deteriorated.
In the present invention, the charge-transporting composition is a sub-micrometer order filter or the like after dissolving the charge-transporting substance or the like in an organic solvent, from the viewpoint of obtaining a highly flat thin film with good reproducibility. It is desirable to filter.

以上で説明した電荷輸送性組成物を基材上に塗布して焼成することで、基材上に本発明の電荷輸送性薄膜を形成させることができる。
組成物の塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じて組成物の粘度および表面張力を調節することが好ましい。
The charge-transporting thin film of the present invention can be formed on the substrate by applying the above-described charge-transporting composition onto the substrate and baking the composition.
The method for applying the composition is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an inkjet method, a spray method, and a slit coating method. The viscosity and surface tension of the composition are preferably adjusted accordingly.

本発明の電荷輸送性組成物を用いる場合、焼成雰囲気も特に限定されるものではなく、大気雰囲気(空気下)だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができるが、通常空気下である。
また、焼成条件も特に限定されるものではないが、例えばホットプレートを用いて加熱焼成する。通常、所望の電荷輸送性等も考慮して、焼成温度は100〜260℃の範囲内で、焼成時間は1分間〜1時間の範囲内で適宜決定する。さらに、必要に応じて、異なる2以上の温度で多段階の焼成をしてもよい。
When the charge transporting composition of the present invention is used, the firing atmosphere is not particularly limited, and a uniform film formation surface and a high charge can be obtained not only in the air atmosphere (under air) but also in an inert gas such as nitrogen or vacuum. A thin film having transportability can be obtained, but usually under air.
The firing conditions are also not particularly limited, but heating and firing are performed using a hot plate, for example. Usually, in consideration of desired charge transportability and the like, the firing temperature is appropriately determined within the range of 100 to 260° C., and the firing time is appropriately determined within the range of 1 minute to 1 hour. Furthermore, if necessary, multi-step firing may be performed at two or more different temperatures.

電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の機能層として用いる場合、5〜300nmが好ましい。膜厚を変化させる方法としては、電荷輸送性組成物中の固形分濃度を変化させたり、塗布時の液量を変化させたりする等の方法がある。 The thickness of the charge transporting thin film is not particularly limited, but when used as a functional layer of an organic EL element, it is preferably 5 to 300 nm. As a method for changing the film thickness, there are methods such as changing the solid content concentration in the charge transporting composition and changing the liquid amount at the time of coating.

本発明の含フッ素アニリン誘導体または重合体は、フッ素原子を含むことから、塗布性の向上、得られる膜の透明性向上、膜表面の濡れ性の調整等の膜物性の調整を主目的として、その他の電荷輸送性物質を含む電荷輸送性組成物に添加する添加剤としても用い得る。 Since the fluorine-containing aniline derivative or polymer of the present invention contains a fluorine atom, its main purpose is to improve the coating properties, improve the transparency of the obtained film, and adjust the film physical properties such as adjusting the wettability of the film surface. It can also be used as an additive added to a charge transporting composition containing other charge transporting substance.

[6]有機EL素子
本発明の有機EL素子は、一対の電極を有し、これら電極の間に、上述の本発明の電荷輸送性薄膜を有するものである。
有機EL素子の代表的な構成としては、以下(a)〜(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
[6] Organic EL Element The organic EL element of the present invention has a pair of electrodes and the above-described charge transporting thin film of the present invention between the electrodes.
Typical configurations of the organic EL element include the following (a) to (f), but are not limited to these. In the following structure, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole (hole) block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injecting layer, the hole transporting layer or the hole injecting and transporting layer may also have a function as an electron blocking layer, and the electron injecting layer, the electron transporting layer or the electron injecting and transporting layer may be holes (holes). You may also have the function as a block layer etc.
(A) Anode/hole injecting layer/hole transporting layer/light emitting layer/electron transporting layer/electron injecting layer/cathode (b) anode/hole injecting layer/hole transporting layer/light emitting layer/electron injecting/transporting layer/ Cathode (c) Anode/hole injecting/transporting layer/light emitting layer/electron transporting layer/electron injecting layer/cathode (d) anode/hole injecting/transporting layer/light emitting layer/electron injecting/transporting layer/cathode (e) anode/positive Hole injection layer/hole transport layer/light emitting layer/cathode (f) Anode/hole injection transport layer/light emitting layer/cathode

「正孔注入層」、「正孔輸送層」および「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
The "hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer. In the case where only one layer of the hole-transporting material is provided between the light-emitting layer and the anode, which has a function, it is a "hole injecting and transporting layer", and between the light-emitting layer and the anode, When two or more layers of the hole transporting material are provided, the layer close to the anode is the “hole injection layer” and the other layers are the “hole transporting layers”. In particular, as the hole injecting (transporting) layer, a thin film having excellent hole injecting property to the hole transporting (light emitting) layer as well as the hole accepting property from the anode is used.
"Electron injection layer", "electron transport layer" and "electron injection transport layer" are layers formed between a light emitting layer and a cathode and having a function of transporting electrons from the cathode to the light emitting layer. When only one layer of the electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and a layer of the electron transporting material is provided between the light emitting layer and the cathode. When two or more layers are provided, the layer close to the cathode is the “electron injection layer” and the other layers are the “electron transport layer”.
The “light emitting layer” is an organic layer having a light emitting function and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly has a function of promoting recombination of electrons and holes and confining excitons in the light-emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Have a function. In the case of a phosphorescent device, the host material has a function of mainly confining excitons generated by the dopant in the light emitting layer.

本発明の電荷輸送性薄膜は、有機EL素子における陽極と発光層との間に設けられる有機機能膜として好適に用いることができるが、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適に用いることができ、正孔注入層としてより一層好適に用いることができる。
本発明の電荷輸送性組成物を用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
The charge-transporting thin film of the present invention can be preferably used as an organic functional film provided between an anode and a light-emitting layer in an organic EL device, and is a hole injection layer, a hole transport layer, a hole injection transport layer. As the hole injecting layer.
Examples of materials used and methods for producing an organic EL device using the charge-transporting composition of the present invention include, but are not limited to, the following.

本発明の電荷輸送性組成物から得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素−プラズマ処理等による表面処理を予め行うことが好ましい。
陽極基板上に、上記の方法により、上記電荷輸送性組成物を用いて正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成する代わりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
An example of a method for producing an OLED device having a hole injection layer composed of a thin film obtained from the charge transporting composition of the present invention is as follows. It is preferable that the electrode is previously subjected to cleaning with alcohol, pure water, or the like, or surface treatment such as UV ozone treatment or oxygen-plasma treatment, to the extent that the electrode is not adversely affected.
A hole injection layer is formed on the anode substrate by the above method using the above charge transporting composition. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer/hole block layer, an electron injection layer, and a cathode metal are sequentially deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a hole transport layer forming composition containing the hole transporting polymer and a light emitting layer forming composition containing the light emitting polymer are provided. Are used to form these layers by a wet process. If necessary, an electron blocking layer may be provided between the light emitting layer and the hole transport layer.

陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されるわけではない。
Examples of the anode material include a transparent electrode typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and a metal anode composed of a metal typified by aluminum or an alloy thereof. Those subjected to a chemical treatment are preferable. A polythiophene derivative or a polyaniline derivative having a high charge transporting property can also be used.
Other metals that compose the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.

正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−ベンジジン(α−NPD)、4,4’,4”−トリス[3−メチルフェニル(フェニル)アミノ]トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス[1−ナフチル(フェニル)アミノ]トリフェニルアミン(1−TNATA)等のトリアリールアミン類、5,5”−ビス−{4−[ビス(4−メチルフェニル)アミノ]フェニル}−2,2’:5’,2”−ターチオフェン(BMA−3T)等のオリゴチオフェン類などが挙げられる。 As the material for forming the hole transport layer, (triphenylamine) dimer derivative, [(triphenylamine) dimer] spiro dimer, N,N'-bis(naphthalen-1-yl)-N,N'-bis (Phenyl)-benzidine (α-NPD), 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA), 4,4′,4″-Tris[1 -Triarylamines such as naphthyl(phenyl)amino]triphenylamine (1-TNATA), 5,5"-bis-{4-[bis(4-methylphenyl)amino]phenyl}-2,2': Examples thereof include oligothiophenes such as 5′,2″-terthiophene (BMA-3T).

発光層を形成する材料としては、8−ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10−ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2−ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p−フェニレンビニレン)、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ(3−アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられる。
また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2−フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられる。
As a material for forming the light emitting layer, a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo[h]quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, (2-hydroxyphenyl)benzo. Low molecular weight light emitting materials such as metal complexes of thiazole and silole derivatives; poly(p-phenylene vinylene), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene], poly(3-alkyl) Examples thereof include a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) and polyvinylcarbazole.
When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal complex such as tris(2-phenylpyridine)iridium(III)(Ir(ppy) 3 ). And naphthacene derivatives such as rubrene, quinacridone derivatives, condensed polycyclic aromatic rings such as perylene, and the like.

電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられる。 Examples of materials for forming the electron transport layer/hole blocking layer include oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, and pyrimidine derivatives.

電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物が挙げられるが、これらに限定されない。
陰極材料としては、アルミニウム、マグネシウム−銀合金、アルミニウム−リチウム合金等が挙げられる。
電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF). But not limited to.
Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy and the like.
Examples of the material forming the electron block layer include tris(phenylpyrazole)iridium.

正孔輸送性高分子としては、ポリ[(9,9−ジヘキシルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,1’−ビフェニレン−4,4−ジアミン)]、ポリ[(9,9−ビス{1’−ペンテン−5’−イル}フルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン]−エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9−ジジオクチルフルオレニル−2,7−ジイル)−co−(4,4’−(N−(p−ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of the hole transporting polymer include poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(N,N'-bis{p-butylphenyl}-1,4-diaminophenylene. )], poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N′-bis{p-butylphenyl}-1,1′-biphenylene-4,4-diamine). )], poly[(9,9-bis{1′-penten-5′-yl}fluorenyl-2,7-diyl)-co-(N,N′-bis{p-butylphenyl}-1,4 -Diaminophenylene)], poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine]-endcapped with polysilcisquinoxane, poly[(9,9- Didioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(p-butylphenyl))diphenylamine)] and the like.

発光性高分子としては、ポリ(9,9−ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2−メトキシ−5−(2’−エチルヘキソキシ)−1,4−フェニレンビニレン)(MEH−PPV)等のポリフェニレンビニレン誘導体、ポリ(3−アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the light-emitting polymer include poly(9,9-dialkylfluorene) (PDAF) and other polyfluorene derivatives, poly(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylenevinylene) (MEH- Examples thereof include polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly(3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).

本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤などとともに封止してもよい。 The organic EL device of the present invention may be sealed with a water catching agent or the like according to a conventional method in order to prevent deterioration of characteristics.

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔装置〕
試料の物性測定は、下記の条件のもとで下記の装置を使用して行った。
(1)液体クロマトグラフィー(反応の追跡)
装置:(株)島津製作所製
UV-VIS検出器:SPD-20A
カラムオーブン:CTO-20A
脱気ユニット:DGU-20A
送液ユニット:LC-20AB
オートサンプラ:SIL-20A
カラム:Poroshell 120 EC−C18(2.7μm、3.0×50mm、Agilent)
カラム温度:40℃
溶媒:アセトニトリル/水 アセトニトリル濃度:40%(0−0.01min)→40%−100%(0.01−5min)→100%(5−15min)(体積比)
検出器:UV
(2)ゲル浸透クロマトグラフィー(重合体の分子量測定)
装置:(株)島津製作所製
UV-VIS検出器:SPD-20A
示差屈折計検出器:RID-20A
カラムオーブン:CTO-20A
脱気ユニット:DGU-20A
送液ユニット:LC-20AD
オートサンプラ:SIL-20A
カラム:Shodex KF−G+KF−804L
カラム温度:40℃
溶媒:テトラヒドロフラン
検出器:UV
(3)組成物の塗布:ミカサ(株)製、スピンコーターMS−A100
(4)素子の作製:長州産業(株)製 多機能蒸着装置システムC−E2L1G1−N
(5)素子の電流密度の測定:(有)テック・ワールド製 I−V−L測定システム
(6)ガラス転移温度(Tg)測定装置:Perkin elmer社製 Diamond DSC
測定条件:窒素雰囲気下
昇温速度:5℃/分(40〜300℃)
(7)5%重量減少温度(Td5%)測定
装置:(株)リガク製 TG8120
測定条件:空気雰囲気下
昇温速度:10℃/分(40〜500℃)
(8)自動カラムクロマトグラフィー装置(目的物の分取):昭光サイエンティフィック株式会社製 2CHパラレル精製装置 Purif−espoir2
(9)NMR:Bruker社製Avance III 500MHz
内部標準
19F-NMR化学シフト補正
Trifluoro toluene=-64ppm
13C-NMR化学シフト補正
Acetone-d6=206.68ppm
Chloroform-d1=77.23ppm
N,N-Dimethylformamide-d7=163.15ppm
Tetrahydrofuran-d8=67.57ppm
〔apparatus〕
The physical properties of the sample were measured using the following apparatus under the following conditions.
(1) Liquid chromatography (tracing reaction)
Equipment: Shimadzu Corporation
UV-VIS detector: SPD-20A
Column oven: CTO-20A
Degassing unit: DGU-20A
Liquid transfer unit: LC-20AB
Autosampler: SIL-20A
Column: Poroshell 120 EC-C18 (2.7 μm, 3.0×50 mm, Agilent)
Column temperature: 40°C
Solvent: acetonitrile/water Acetonitrile concentration: 40% (0-0.01 min)→40%-100% (0.01-5 min)→100% (5-15 min) (volume ratio)
Detector: UV
(2) Gel permeation chromatography (molecular weight measurement of polymer)
Equipment: Shimadzu Corporation
UV-VIS detector: SPD-20A
Differential refractometer detector: RID-20A
Column oven: CTO-20A
Degassing unit: DGU-20A
Liquid transfer unit: LC-20AD
Autosampler: SIL-20A
Column: Shodex KF-G+KF-804L
Column temperature: 40°C
Solvent: Tetrahydrofuran Detector: UV
(3) Application of composition: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(4) Fabrication of device: Choshu Sangyo Co., Ltd. Multifunctional evaporation system C-E2L1G1-N
(5) Measurement of current density of device: (Present) Tech World IVL measuring system (6) Glass transition temperature (Tg) measuring apparatus: Perkin elmer Diamond DSC
Measurement conditions: Temperature rising rate under nitrogen atmosphere: 5°C/min (40 to 300°C)
(7) 5% weight loss temperature (Td5%) measuring device: TG8120 manufactured by Rigaku Corporation
Measurement conditions: Temperature rising rate in air atmosphere: 10°C/min (40 to 500°C)
(8) Automatic column chromatography device (preparation of the target substance): 2CH parallel purification device Purif-espoir2 manufactured by Shoko Scientific Co., Ltd.
(9) NMR: Bruker Avance III 500 MHz
Internal standard
19 F-NMR chemical shift correction
Trifluoro toluene=-64ppm
13 C-NMR chemical shift correction
Acetone-d6=206.68ppm
Chloroform-d1=77.23ppm
N,N-Dimethylformamide-d7=163.15ppm
Tetrahydrofuran-d8=67.57ppm

〔試薬〕
下記の実施例および比較例で使用した試薬は以下のとおりである。
Pd(PPh34[東京化成工業(株)製]
Pd(DBA)2[東京化成工業(株)製]
Pd(dppf)Cl2[東京化成工業(株)製]
t−BuONa[キシダ化学(株)製]
BINAP[東京化成工業(株)製]
炭酸セシウム[純正化学(株)製]
硫酸マグネシウム[キシダ化学(株)製]
酢酸カリウム[純正化学(株)製]
リチウムヘキサメチルジシラジド(LHMDS)1.3mol/Lテトラヒドロフラン溶液[東京化成工業(株)製]
リチウムヘキサメチルジシラジド(LHMDS)1mol/Lトルエン溶液[Aldrich社製]
RuPhos[Aldrich社製]
t−BuXPhos[Aldrich社製]
SPhos[Aldrich社製]
t−BuMePhos[Aldrich社製]
JhonPhos[Aldrich社製]
CyJhonPhos[Aldrich社製]
N,N−ジメチルホルムアミド[純正化学(株)製]
酢酸エチル[東京化成工業(株)製または純正化学(株)製]
トルエン[純正化学(株)製または関東化学(株)製]
ジオキサン[関東化学(株)製]
ヘキサン[純正化学(株)製]
テトラヒドロフラン[純正化学(株)製]
テトラヒドロフルフリルアルコール[関東化学(株)製]
ペンタフルオロアニリン[東京化成工業(株)製]
フルオロベンゼン[東京化成工業(株)製]
クロロベンゼン[東京化成工業(株)製]
ブロモベンゼン[東京化成工業(株)製]
ヨードベンゼン[東京化成工業(株)製]
ブロモペンタフルオロベンゼン[東京化成工業(株)製]
2−フルオロアニリン[東京化成工業(株)製]
4−ブロモアニソール[東京化成工業(株)製]
4,4′−ジアミノオクタフルオロビフェニル[東京化成工業(株)製]
1−ブロモ−4−t−ブチルベンゼン[東京化成工業(株)製]
1−ブロモナフタレン[純正化学(株)製]
2−ブロモナフタレン[東京化成工業(株)製]
4−ブロモトリフェニルアミン[東京化成工業(株)製]
4−ヨードトリフェニルアミン[東京化成工業(株)製]
4−ブロモ−4′−(ジフェニルアミノ)ビフェニル[富士フイルム和光純薬(株)製]
2−ブロモ−9,9′−スピロビ[9H−フルオレン][東京化成工業(株)製]
4,4′−ジブロモビフェニル[東京化成工業(株)製]
1,4−ジブロモベンゼン[東京化成工業(株)製]
3,6−ジブロモ−9−フェニルカルバゾール[富士フイルム和光純薬(株)製]
2,7−ジブロモ−9,9−ジメチルフルオレン[東京化成工業(株)製]
4−フルオロブロモベンゼン[東京化成工業(株)製]
〔reagent〕
The reagents used in the following Examples and Comparative Examples are as follows.
Pd(PPh 3 ) 4 [Tokyo Chemical Industry Co., Ltd.]
Pd(DBA) 2 [manufactured by Tokyo Chemical Industry Co., Ltd.]
Pd(dppf)Cl 2 [manufactured by Tokyo Chemical Industry Co., Ltd.]
t-BuONa [manufactured by Kishida Chemical Co., Ltd.]
BINAP [manufactured by Tokyo Chemical Industry Co., Ltd.]
Cesium carbonate [manufactured by Junsei Chemical Co., Ltd.]
Magnesium sulfate [manufactured by Kishida Chemical Co., Ltd.]
Potassium acetate [made by Junsei Chemical Co., Ltd.]
Lithium hexamethyldisilazide (LHMDS) 1.3 mol/L tetrahydrofuran solution [Tokyo Chemical Industry Co., Ltd.]
Lithium hexamethyldisilazide (LHMDS) 1 mol/L toluene solution [manufactured by Aldrich]
RuPhos [made by Aldrich]
t-BuXPhos [manufactured by Aldrich]
SPhos [Made by Aldrich]
t-BuMePhos [manufactured by Aldrich]
JhonPhos [Aldrich]
CyJhonPhos [Aldrich]
N,N-Dimethylformamide [manufactured by Junsei Chemical Co., Ltd.]
Ethyl acetate [Tokyo Chemical Industry Co., Ltd. or Junsei Chemical Co., Ltd.]
Toluene [made by Junsei Chemical Co., Ltd. or Kanto Chemical Co., Ltd.]
Dioxane [Kanto Chemical Co., Ltd.]
Hexane [made by Junsei Chemical Co., Ltd.]
Tetrahydrofuran [Junsei Kagaku Co., Ltd.]
Tetrahydrofurfuryl alcohol [Kanto Chemical Co., Inc.]
Pentafluoroaniline [Tokyo Chemical Industry Co., Ltd.]
Fluorobenzene [Tokyo Chemical Industry Co., Ltd.]
Chlorobenzene [Tokyo Chemical Industry Co., Ltd.]
Bromobenzene [Tokyo Chemical Industry Co., Ltd.]
Iodobenzene [manufactured by Tokyo Chemical Industry Co., Ltd.]
Bromopentafluorobenzene [Tokyo Chemical Industry Co., Ltd.]
2-Fluoroaniline [Tokyo Chemical Industry Co., Ltd.]
4-Bromoanisole [Tokyo Chemical Industry Co., Ltd.]
4,4'-Diaminooctafluorobiphenyl [Tokyo Chemical Industry Co., Ltd.]
1-Bromo-4-t-butylbenzene [Tokyo Chemical Industry Co., Ltd.]
1-Bromonaphthalene [manufactured by Junsei Chemical Co., Ltd.]
2-Bromonaphthalene [Tokyo Chemical Industry Co., Ltd.]
4-Bromotriphenylamine [Tokyo Chemical Industry Co., Ltd.]
4-Iodotriphenylamine [Tokyo Chemical Industry Co., Ltd.]
4-Bromo-4'-(diphenylamino)biphenyl [Fujifilm Wako Pure Chemical Industries, Ltd.]
2-Bromo-9,9'-spirobi [9H-fluorene] [Tokyo Chemical Industry Co., Ltd.]
4,4'-Dibromobiphenyl [Tokyo Chemical Industry Co., Ltd.]
1,4-dibromobenzene [Tokyo Chemical Industry Co., Ltd.]
3,6-Dibromo-9-phenylcarbazole [Fujifilm Wako Pure Chemical Industries, Ltd.]
2,7-Dibromo-9,9-dimethylfluorene [Tokyo Chemical Industry Co., Ltd.]
4-fluorobromobenzene [Tokyo Chemical Industry Co., Ltd.]

[1]フッ化芳香族第二級アミン化合物の合成
(1)ペンタフルオロアニリンと4−ブロモアニソールとの反応

Figure 2020027258
[1] Synthesis of Fluorinated Aromatic Secondary Amine Compound (1) Reaction of Pentafluoroaniline with 4-Bromoanisole
Figure 2020027258

[比較例1−1]
還流塔を取り付けた30mLの反応フラスコに、Pd(PPh340.05mmol(57.8mg)、t−BuONa1.2mmol(115.3mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-1]
A 30 mL reaction flask equipped with a reflux tower was weighed with 0.05 mmol (57.8 mg) of Pd(PPh 3 ) 4 , 1.2 mmol (115.3 mg) of t-BuONa, and 1.2 mmol (219.7 mg) of pentafluoroaniline. Then, the system was replaced with nitrogen. Dioxane 4 mL and 4-bromoanisole 1 mmol (187.0 mg) were added thereto, and the mixture was stirred at room temperature for 5 minutes and then heated and stirred in a 110°C bath for 5 hours (internal temperature 92°C), but collected from the flask. In liquid chromatography using a small amount of solution, peaks that could be assigned to the raw materials could be confirmed, but peaks that could be attributed to the target substance could not be confirmed.

[比較例1−2]
還流塔を取り付けた30mLの反応フラスコに、Pd(PPh340.05mmol(57.8mg)、(±)BINAP0.075mmol(46.7mg)、炭酸セシウム1.2mmol(391.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-2]
In a 30 mL reaction flask equipped with a reflux tower, Pd(PPh 3 ) 4 0.05 mmol (57.8 mg), (±) BINAP 0.075 mmol (46.7 mg), cesium carbonate 1.2 mmol (391.0 mg), penta 1.2 mmol (219.7 mg) of fluoroaniline was weighed in, and the system was replaced with nitrogen. Dioxane 4 mL and 4-bromoanisole 1 mmol (187.0 mg) were added thereto, and the mixture was stirred at room temperature for 5 minutes and then heated and stirred in a 110°C bath for 5 hours (internal temperature 92°C), but collected from the flask. In liquid chromatography using a small amount of solution, peaks that could be assigned to the raw materials could be confirmed, but peaks that could be attributed to the target substance could not be confirmed.

[比較例1−3]
還流塔を取り付けた30mLの反応フラスコに、Pd(PPh340.05mmol(57.8mg)、(±)BINAP0.075mmol(46.7mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、さらにLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-3]
A 30 mL reaction flask equipped with a reflux tower was charged with 0.05 mmol (57.8 mg) of Pd(PPh 3 ) 4 , 0.075 mmol (46.7 mg) of (±) BINAP, and 1.2 mmol (219.7 mg) of pentafluoroaniline. It was weighed in and the system was replaced with nitrogen. Dioxane 4mL, 4-bromoanisole 1mmol (187.0mg) were added there, LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS 1.2mmol equivalent) was added, and after stirring at room temperature for 5 minutes, 110 degreeC bath. The mixture was heated and stirred in the flask for 5 hours (internal temperature: 92° C.), but in the liquid chromatography using a small amount of the solution collected from the flask, a peak attributable to the raw material was confirmed, but a peak attributable to the target substance was confirmed. could not.

[比較例1−4]
(±)BINAPの代わりに、下記式(L2)で表されるRuPhos0.075mmol(35.0mg)を用いた以外は、比較例1−3と同様にして作業を行ったが、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-4]
The work was performed in the same manner as in Comparative Example 1-3, except that RuPhos 0.075 mmol (35.0 mg) represented by the following formula (L2) was used instead of (±) BINAP, but the sample was collected from the flask. In liquid chromatography using the trace amount of the solution, a peak attributable to the raw material could be confirmed, but a peak attributable to the target product could not be confirmed.

Figure 2020027258
(式中、i−Prはイソプロピル基を、Cyはシクロヘキシル基を表す。)
Figure 2020027258
(In the formula, i-Pr represents an isopropyl group, and Cy represents a cyclohexyl group.)

[比較例1−5]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、さらにLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-5]
In a 30 mL reaction flask equipped with a reflux tower, 0.05 mmol (28.8 mg) of Pd(DBA) 2 and 1.2 mmol (219.7 mg) of pentafluoroaniline were weighed and the system was replaced with nitrogen. Dioxane 4mL, 4-bromoanisole 1mmol (187.0mg) were added there, LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS 1.2mmol equivalent) was added, and after stirring at room temperature for 5 minutes, 110 degreeC bath. The mixture was heated and stirred in the flask for 5 hours (internal temperature: 92° C.), but in the liquid chromatography using a small amount of the solution collected from the flask, a peak attributable to the raw material was confirmed, but a peak attributable to the target substance was confirmed. could not.

[比較例1−6]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、(±)BINAP0.075mmol(46.7mg)、ペンタフルオロアニリン1.2mmol(219.7mg)、炭酸セシウム1.2mmol(391.0mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-6]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.05 mmol (28.8 mg), (±) BINAP 0.075 mmol (46.7 mg), pentafluoroaniline 1.2 mmol (219.7 mg), carbonic acid. 1.2 mmol (391.0 mg) of cesium was weighed in, and the system was replaced with nitrogen. Dioxane 4 mL and 4-bromoanisole 1 mmol (187.0 mg) were added thereto, and the mixture was stirred at room temperature for 5 minutes and then heated and stirred in a 110°C bath for 5 hours (internal temperature 92°C), but collected from the flask. In liquid chromatography using a small amount of solution, peaks that could be assigned to the raw materials could be confirmed, but peaks that could be attributed to the target substance could not be confirmed.

[比較例1−7]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、(±)BINAP0.075mmol(46.7mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、さらにLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)が、フラスコ内から採取した微量の溶液を用いた液体クロマトグラフィーにおいて、原料に帰属できるピークは確認できたが、目的物に帰属できるピークは確認できなかった。
[Comparative Example 1-7]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.05 mmol (28.8 mg), (±) BINAP 0.075 mmol (46.7 mg), and pentafluoroaniline 1.2 mmol (219.7 mg) were weighed. Then, the system was replaced with nitrogen. Dioxane 4mL, 4-bromoanisole 1mmol (187.0mg) were added there, LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS 1.2mmol equivalent) was added, and after stirring at room temperature for 5 minutes, 110 degreeC bath. The mixture was heated and stirred in the flask for 5 hours (internal temperature: 92° C.), but in the liquid chromatography using a small amount of the solution collected from the flask, a peak attributable to the raw material was confirmed, but a peak attributable to the target substance was confirmed. could not.

[実施例1−1]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、炭酸セシウム1.2mmol(391.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物67.2mgを得た(収率26%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.76 (s, 3H), 5.14 (brs, 1H), 6.72-6.75 (m, 6H), 6.8 (d, J = 9.0 Hz, 2 H)
13C NMR (125.77 MHz, CDCl3): δ = 55.8, 114.7, 119.5, 120.1, 135.4, 136.3, 138.5, 140.6, 155.9
19F NMR (470.53 MHz, CDCl3): δ = -167.6 (t, J = 21.7 Hz, 1F), -164.5 (td, J = 21.7, 5.2 Hz, 2F), -153.3 (brd, 2F); IR (neat)
ν~ = 3314 (w), 3063 (w), 2968 (w), 1694 (s), 1670 (m), 1653 (m), 1609 (m), 1590 (m), 1503 (s), 1460 (m), 1440 (s), 1414 (m), 1295 (m), 1196 (m), 1176 (m), 1138 (w), 1119 (m), 1106 (m), 1073 (w), 1022 (m), 1008 (m), 982 (s), 905 (m), 845 (m), 765 (s), 753 (m), 735 (m), 697 (m)
HRMS (ESI): Calcd for C13H8F5NO (M+H)+ 289.0526, found 290.0589.
[Example 1-1]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), cesium carbonate 1.2 mmol (391.0 mg), pentafluoroaniline 1. 2 mmol (219.7 mg) was weighed in and the system was replaced with nitrogen. Dioxane 4mL, 4-bromoanisole 1mmol (187.0mg) were added there, and it stirred at room temperature for 5 minutes, and then LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS1.2mmol) was added, and stirred at room temperature for 5 minutes. Then, the mixture was heated and stirred in a bath at 110°C for 5 hours (internal temperature 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 67.2 mg of the desired product (yield 26%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.76 (s, 3H), 5.14 (brs, 1H), 6.72-6.75 (m, 6H), 6.8 (d, J = 9.0 Hz, 2 H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.8, 114.7, 119.5, 120.1, 135.4, 136.3, 138.5, 140.6, 155.9
19 F NMR (470.53 MHz, CDCl 3 ): δ = -167.6 (t, J = 21.7 Hz, 1F), -164.5 (td, J = 21.7, 5.2 Hz, 2F), -153.3 (brd, 2F); IR (neat)
ν~ = 3314 (w), 3063 (w), 2968 (w), 1694 (s), 1670 (m), 1653 (m), 1609 (m), 1590 (m), 1503 (s), 1460 ( m), 1440 (s), 1414 (m), 1295 (m), 1196 (m), 1176 (m), 1138 (w), 1119 (m), 1106 (m), 1073 (w), 1022 ( m), 1008 (m), 982 (s), 905 (m), 845 (m), 765 (s), 753 (m), 735 (m), 697 (m)
HRMS (ESI): Calcd for C 13 H 8 F 5 NO (M+H) + 289.0526, found 290.0589.

[実施例1−2]
炭酸セシウムの代わりに、t−BuONa1.2mmol(115.3mg)を用いた以外は、実施例1−1と同様に反応および後処理を行い、目的物286.1mgを得た(収率>99%)。
[Example 1-2]
The reaction and post-treatment were carried out in the same manner as in Example 1-1, except that t-BuONa 1.2 mmol (115.3 mg) was used instead of cesium carbonate, to obtain 286.1 mg of the desired product (yield >99). %).

[実施例1−3]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で3時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物287.3mgを得た(収率>99%)。
[Example 1-3]
Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), and pentafluoroaniline 1.2 mmol (219.7 mg) were weighed into a 30 mL reaction flask equipped with a reflux tower, and the system was added. The inside was replaced with nitrogen. Dioxane 4mL, 4-bromoanisole 1mmol (187.0mg) were added there, and it stirred at room temperature for 5 minutes, then LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (equivalent to LHMDS 1.2mmol), and stirred at room temperature for 5 minutes. After that, the mixture was heated and stirred in a bath at 110°C for 3 hours (internal temperature 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80° C. to obtain 287.3 mg of the desired product (yield>99%).

[実施例1−4]
RuPhos0.2mmol(93.3mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物286.0mgを得た(収率>99%)。
[Example 1-4]
RuPhos 0.2 mmol (93.3 mg) was used, and the reaction and post-treatment were carried out in the same manner as in Example 1-3 except that the reaction time was 5 hours, to obtain 286.0 mg of the desired product (yield >99%). ).

[実施例1−5]
RuPhosの代わりに、下記式(L4)で表されるt−BuXPhos0.075mmol(31.8mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物243.9mgを得た(収率84%)。
[Example 1-5]
Instead of RuPhos, t-BuXPhos 0.075 mmol (31.8 mg) represented by the following formula (L4) was used, and the reaction and post-treatment were carried out in the same manner as in Example 1-3 except that the reaction time was 5 hours. The desired product (243.9 mg) was obtained (yield 84%).

Figure 2020027258
(式中、i−Prはイソプロピル基を、t−Buはt−ブチル基を表す。)
Figure 2020027258
(In the formula, i-Pr represents an isopropyl group, and t-Bu represents a t-butyl group.)

[実施例1−6]
RuPhosの代わりに、下記式(L1)で表されるSPhos0.075mmol(30.8mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物246.0mgを得た(収率85%)。
[Example 1-6]
Instead of RuPhos, SPhos 0.075 mmol (30.8 mg) represented by the following formula (L1) was used, and the reaction and post-treatment were performed in the same manner as in Example 1-3 except that the reaction time was 5 hours. 246.0 mg of the target product was obtained (yield 85%).

Figure 2020027258
(式中、Meはメチル基を、Cyはシクロヘキシル基を表す。)
Figure 2020027258
(In the formula, Me represents a methyl group and Cy represents a cyclohexyl group.)

[実施例1−7]
RuPhosの代わりに、下記式(L5)で表されるt−BuMePhos0.075mmol(23.4mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物246.3mgを得た(収率85%)。
[Example 1-7]
Instead of RuPhos, t-BuMePhos 0.075 mmol (23.4 mg) represented by the following formula (L5) was used, and the reaction and post-treatment were carried out in the same manner as in Example 1-3 except that the reaction time was 5 hours. Then, 246.3 mg of the desired product was obtained (yield 85%).

Figure 2020027258
(式中、Meはメチル基を、t−Buはt−ブチル基を表す。)
Figure 2020027258
(In the formula, Me represents a methyl group and t-Bu represents a t-butyl group.)

[実施例1−8]
RuPhosの代わりに、下記式(L6)で表されるJhonPhos0.075mmol(22.4mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物268.2mgを得た(収率95%)。
[Example 1-8]
Instead of RuPhos, JhonPhos 0.075 mmol (22.4 mg) represented by the following formula (L6) was used, and the reaction and post-treatment were performed in the same manner as in Example 1-3 except that the reaction time was 5 hours. 268.2 mg of the target product was obtained (yield 95%).

Figure 2020027258
(式中、t−Buはt−ブチル基を表す。)
Figure 2020027258
(In the formula, t-Bu represents a t-butyl group.)

[実施例1−9]
RuPhosの代わりに、下記式(L7)で表されるCyJhonPhos0.075mmol(26.3mg)を用い、反応時間を5時間とした以外は、実施例1−3と同様に反応および後処理を行い、目的物208.9mgを得た(収率73%)。
[Example 1-9]
Instead of RuPhos, CyJhonPhos 0.075 mmol (26.3 mg) represented by the following formula (L7) was used, and the reaction and post-treatment were performed in the same manner as in Example 1-3, except that the reaction time was 5 hours. 208.9 mg of the target product was obtained (yield 73%).

Figure 2020027258
(式中、Cyはシクロヘキシル基を表す。)
Figure 2020027258
(In the formula, Cy represents a cyclohexyl group.)

上記実施例1−1〜1〜9および比較例1―1〜1−7のまとめを表1に示す。 Table 1 shows a summary of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-7.

Figure 2020027258
(実施例1−4:RuPhos使用量0.2mmol)
Figure 2020027258
(Example 1-4: RuPhos usage amount 0.2 mmol)

(2)ペンタフルオロアニリンとハロゲン化アリールとの反応

Figure 2020027258
(2) Reaction of pentafluoroaniline with aryl halide
Figure 2020027258

[比較例1−8]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、フルオロベンゼン1mmol(96.1mg)を加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内から採取した微量の溶液を用いて液体クロマトグラフィーで反応を追跡したが、原料に帰属できるピークの他に、目的物に帰属できない多数の目立ったピークが確認できた。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、原料を主に含むフラクション以外のフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、固体を得た。しかし、得られた固体の1H−NMRスペクトルにおいて、原料、目的物のいずれにも帰属できない多数のピークが認められた。この混合物は、複数の副生成物が含まれる混合物であり、これから目的物を単離することは困難と判断し、それ以上の精製を試みなかった。
[Comparative Example 1-8]
Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), and pentafluoroaniline 1.2 mmol (219.7 mg) were weighed into a 30 mL reaction flask equipped with a reflux tower, and the system was added. The inside was replaced with nitrogen. 4 mL of dioxane and 1 mmol (96.1 mg) of fluorobenzene were added thereto and stirred at room temperature for 5 minutes, then 0.923 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (corresponding to LHMDS 1.2 mmol) was added and stirred at room temperature for 5 minutes. The mixture was heated and stirred in a 110°C bath for 5 hours (internal temperature 92°C). Incidentally, the reaction was traced by liquid chromatography using a small amount of the solution collected from the inside of the flask, and a large number of prominent peaks that could not be attributed to the target substance were confirmed in addition to the peaks that could be attributed to the raw material.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was carried out using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and fractions other than the fraction mainly containing the raw materials were used. Was collected.
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain a solid. However, in the 1 H-NMR spectrum of the obtained solid, a large number of peaks that could not be assigned to any of the raw material and the target substance were observed. This mixture was a mixture containing a plurality of by-products, and it was judged that isolation of the desired product from this was difficult, and no further purification was attempted.

[実施例1−10]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mL、クロロベンゼン1mmol(112.6mg)を加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で3時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物195.7mgを得た(収率81%)。
[Example 1-10]
Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), and pentafluoroaniline 1.2 mmol (219.7 mg) were weighed into a 30 mL reaction flask equipped with a reflux tower, and the system was added. The inside was replaced with nitrogen. Dioxane 4mL, chlorobenzene 1mmol (112.6mg) was added thereto, and the mixture was stirred at room temperature for 5 minutes, then LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS 1.2mmol equivalent) was added, and the mixture was stirred at room temperature for 5 minutes, The mixture was heated and stirred in a 110°C bath for 3 hours (internal temperature 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 195.7 mg of the desired product (yield 81%).

[実施例1−11]
クロロベンゼンの代わりに、ブロモベンゼン1mmol(157.0mg)を用い、反応時間を5時間とした以外は、実施例1−10と同様に反応および後処理を行い、目的物256.6mgを得た(収率>99%)。
[Example 1-11]
In place of chlorobenzene, 1 mmol (157.0 mg) of bromobenzene was used, and the reaction and post-treatment were carried out in the same manner as in Example 1-10 except that the reaction time was 5 hours, to obtain 256.6 mg of the desired product ( Yield >99%).

[実施例1−12]
ジオキサンの代わりに、トルエンを用い、LHMDS1.3mol/Lテトラヒドロフラン溶液の代わりに、LHMDS1mol/Lトルエン溶液1.2mL(LHMDS1.2mmol相当)を用い、反応時間を5時間とした以外は、実施例1−10と同様に反応および後処理を行い、目的物243.5mgを得た(収率94%)。
[Example 1-12]
Example 1 except that toluene was used instead of dioxane, 1.2 mL of LHMDS 1 mol/L toluene solution (corresponding to LHMDS 1.2 mmol) was used instead of the LHMDS 1.3 mol/L tetrahydrofuran solution, and the reaction time was 5 hours. The same reaction and post-treatment were carried out as in -10 to obtain 243.5 mg of the desired product (yield 94%).

[実施例1−13]
クロロベンゼンの代わりに、ヨードベンゼン1mmol(204.0mg)を用いた以外は、実施例1−10と同様に反応および後処理を行い、目的物257.4mgを得た(収率>99%)。
[Example 1-13]
The reaction and post-treatment were performed in the same manner as in Example 1-10 except that 1 mmol (204.0 mg) of iodobenzene was used instead of chlorobenzene, to obtain 257.4 mg of the target product (yield>99%).

[実施例1−14]

Figure 2020027258
[Example 1-14]
Figure 2020027258

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、ペンタフルオロアニリン1.2mmol(219.7mg)、4−フルオロブロモベンゼン1mmol(175.0mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mLを加え、5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、50℃、減圧下で分取したフラクションから溶媒を取り除き、目的物242.9mgを得た(収率88%)。
1H NMR (500.13 MHz, CDCl3): δ = 5.39 (brs, 1H), 6.84 (m, 2h), 7.00 (brt, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 116.0, 116.2, 118.9, 119.0,138.3, 157.8, 159.7
19F NMR (470.53 MHz, CDCl3): δ -165.6 (brt, 1F), -164.0 (brdt, F), 151.8 (brd, 2F), 122.6 (brs, 1 F);
IR (neat)ν~ = 3425.6 (m), 1656.9 (w), 1504.5 (s), 1205.5 (s), 1153.4 (m), 1101.4 (m), 1008.8 (s), 997.9 (s), 827.5 (s), 748.4 (m), 717.5 (m), 702.1 (m), 669.3 (m), 636.5 (m)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), pentafluoroaniline 1.2 mmol (219.7 mg), 4-fluorobromo. 1 mmol (175.0 mg) of benzene was weighed in and the system was replaced with nitrogen. Dioxane (4 mL) was added thereto, and the mixture was stirred for 5 minutes, then LHMDS 1.3 mol/L tetrahydrofuran solution 0.923 mL (LHMDS 1.2 mmol equivalent) was added, and the mixture was stirred at room temperature for 5 minutes, and then heated and stirred in a bath at 110°C for 5 hours. (Internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 50°C to obtain 242.9 mg of the desired product (yield 88%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 5.39 (brs, 1H), 6.84 (m, 2h), 7.00 (brt, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 116.0, 116.2, 118.9, 119.0,138.3, 157.8, 159.7
19 F NMR (470.53 MHz, CDCl 3 ): δ -165.6 (brt, 1F), -164.0 (brdt, F), 151.8 (brd, 2F), 122.6 (brs, 1 F);
IR (neat)ν~ = 3425.6 (m), 1656.9 (w), 1504.5 (s), 1205.5 (s), 1153.4 (m), 1101.4 (m), 1008.8 (s), 997.9 (s), 827.5 (s ), 748.4 (m), 717.5 (m), 702.1 (m), 669.3 (m), 636.5 (m)

上記実施例1−10〜1−14および比較例1−8のまとめを表2に示す。 Table 2 shows a summary of Examples 1-10 to 1-14 and Comparative Example 1-8.

Figure 2020027258
Figure 2020027258

(3)モノ〜テトラフルオロアニリンと4−ブロモアニソールとの反応

Figure 2020027258
(3) Reaction of mono-tetrafluoroaniline with 4-bromoanisole
Figure 2020027258

[実施例1−15]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mLを加え、さらに2−フルオロアニリン1.2mmol(133.3mg)、4−ブロモアニソール1mmol(187.0mg)を加え、室温で5分間撹拌し、次いでLHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、室温で5分間撹拌した後、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物217.6mgを得た(収率98%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.84 (s, 3H), 5.68 (brs, 1H), 6.77-6.79 (m, 1H), 6.93 (d, J = 9.0 Hz, 2H), 7.00 (brt, 1H), 7.07-7.12 (m, 2H); 7.15 (d, J = 9.0 Hz, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 55.7, 114.9, 115.2, 115.3, 119.1, 123.3, 124.5, 134.1, 134.7, 152.4, 156.1
19F NMR (470.53 MHz, CDCl3): δ -136.1 (brs); IR (neat)
ν~ = 3382 (m), 3010 (w), 2938 (w), 2906 (w), 2838 (w), 1617 (m), 1585 (w), 1504 (s), 1477 (m), 1464 (m), 1455 (m), 1442 (m), 1332 (m), 1296 (m), 1288 (m), 1255 (m), 1233 (s), 1222 (s), 1180 (s), 1171 (m), 1109 (m), 1095 (s), 1029 (s), 1008 (m), 925 (w), 917 (w), 886 (w), 838 (m), 821 (s), 757 (m), 742 (s), 707 (m), 696 (w)
HRMS (ESI): Calcd for C13H12FNO (M+H)+ 217.0903, found 218.0963.
[Example 1-15]
Pd(DBA) 2 0.05 mmol (28.8 mg) and RuPhos 0.075 mmol (35.0 mg) were weighed into a 30 mL reaction flask equipped with a reflux tower, and the system was replaced with nitrogen. 4 mL of dioxane was added thereto, 1.2 mmol (133.3 mg) of 2-fluoroaniline and 1 mmol (187.0 mg) of 4-bromoanisole were added, and the mixture was stirred at room temperature for 5 minutes, and then LHMDS 1.3 mol/L tetrahydrofuran solution 0 After adding 923 mL (corresponding to LHMDS 1.2 mmol) and stirring at room temperature for 5 minutes, the mixture was heated and stirred in a bath at 110° C. for 5 hours (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 217.6 mg of the desired product (yield 98%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.84 (s, 3H), 5.68 (brs, 1H), 6.77-6.79 (m, 1H), 6.93 (d, J = 9.0 Hz, 2H), 7.00 ( brt, 1H), 7.07-7.12 (m, 2H); 7.15 (d, J = 9.0 Hz, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.7, 114.9, 115.2, 115.3, 119.1, 123.3, 124.5, 134.1, 134.7, 152.4, 156.1
19 F NMR (470.53 MHz, CDCl 3 ): δ -136.1 (brs); IR (neat)
ν~ = 3382 (m), 3010 (w), 2938 (w), 2906 (w), 2838 (w), 1617 (m), 1585 (w), 1504 (s), 1477 (m), 1464 ( m), 1455 (m), 1442 (m), 1332 (m), 1296 (m), 1288 (m), 1255 (m), 1233 (s), 1222 (s), 1180 (s), 1171 ( m), 1109 (m), 1095 (s), 1029 (s), 1008 (m), 925 (w), 917 (w), 886 (w), 838 (m), 821 (s), 757 ( m), 742 (s), 707 (m), 696 (w)
HRMS (ESI): Calcd for C 13 H 12 FNO (M+H) + 217.0903, found 218.0963.

[実施例1−16]
2−フルオロアニリンの代わりに、3−フルオロアニリン1.2mmol(133.3mg)を用いた以外は、実施例1−15と同様に反応および後処理を行い、目的物210.6mgを得た(収率97%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.79 (s, 3H), 5.57 (brs, 1H), 6.47 (ddd, J = 8.3, 2.3, 0.9 Hz, 1H), 6.56 (dt, J = 11.4, 2.3 Hz, 1H), 6.59 (ddd, J = 8.3, 2.2, 0.9 Hz, 1H), 6.87 (d, J = 8.9, 6.7 Hz, 2H), 7.07 (dd, J = 8.9, 6.7 Hz, 2H), 7.11 (td, J = 8.3, 6.7 Hz, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 55.7, 101.9, 105.9, 111.0, 1145.0, 123.6, 130.6, 134.8, 147.7, 156.2, 164.2
19F NMR (470.53 MHz, CDCl3): δ = -113.7 (ms)
IR (neat): ν~ = 3361 (m), 3043 (w), 2966(w), 2915 (w), 2839 (w), 1600 (s), 1584 (m), 1526 (m), 1506 (s), 1490 (s), 1465 (m), 1334 (m), 1290 (m), 1251 (m), 1181 (w), 1174 (w), 1168 (w), 1138 (s), 1109 (s), 1072 (w), 827 (m), 755 (m), 742 (s)
HRMS (ESI): Calcd for C13H12FNO (M+H)+ 217.0903, found 218.0969.
[Example 1-16]
The reaction and post-treatment were carried out in the same manner as in Example 1-15 except that 1.2 mmol (133.3 mg) of 3-fluoroaniline was used instead of 2-fluoroaniline, to obtain 210.6 mg of the target product ( Yield 97%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.79 (s, 3H), 5.57 (brs, 1H), 6.47 (ddd, J = 8.3, 2.3, 0.9 Hz, 1H), 6.56 (dt, J = 11.4) , 2.3 Hz, 1H), 6.59 (ddd, J = 8.3, 2.2, 0.9 Hz, 1H), 6.87 (d, J = 8.9, 6.7 Hz, 2H), 7.07 (dd, J = 8.9, 6.7 Hz, 2H) , 7.11 (td, J = 8.3, 6.7 Hz, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.7, 101.9, 105.9, 111.0, 1145.0, 123.6, 130.6, 134.8, 147.7, 156.2, 164.2
19 F NMR (470.53 MHz, CDCl 3 ): δ = -113.7 (ms)
IR (neat): ν~ = 3361 (m), 3043 (w), 2966 (w), 2915 (w), 2839 (w), 1600 (s), 1584 (m), 1526 (m), 1506 ( s), 1490 (s), 1465 (m), 1334 (m), 1290 (m), 1251 (m), 1181 (w), 1174 (w), 1168 (w), 1138 (s), 1109 ( s), 1072 (w), 827 (m), 755 (m), 742 (s)
HRMS (ESI): Calcd for C 13 H 12 FNO (M+H) + 217.0903, found 218.0969.

[実施例1−17]
2−フルオロアニリンの代わりに、4−フルオロアニリン1.2mmol(133.3mg)を用いた以外は、実施例1−15と同様に反応および後処理を行い、目的物161.7mgを得た(収率74%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.79 (s, 3H), 5.36 (brs, 1H), 6.84-7.25 (m, 8H)
13C NMR (125.77 MHz, CDCl3): δ = 55.8, 115.0, 116.0, 118.0, 121.4, 136.8, 141.4, 155.3, 157.4
19F NMR (470.45 MHz, CDCl3): δ = -125.6(s)
IR (neat): ν~ = 3392 (w), 3037 (w), 2955 (w), 2934 (w), 2834 (w), 1603 (w), 1590 (w), 1497 (s), 1464 (m), 1442 (m), 1316 (m), 1295 (m), 1245 (m), 1213 (s), 1179 (m), 1154 (w), 1109 (w), 1098 (w), 1034 (m), 818 (s), 773 (m), 696 (w)
HRMS (ESI): Calcd for C13H12FNO (M+H)+ 217.0903, found 218.0965.
[Example 1-17]
The reaction and post-treatment were carried out in the same manner as in Example 1-15 except that 1.2 mmol (133.3 mg) of 4-fluoroaniline was used instead of 2-fluoroaniline to obtain 161.7 mg of the target product ( Yield 74%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.79 (s, 3H), 5.36 (brs, 1H), 6.84-7.25 (m, 8H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.8, 115.0, 116.0, 118.0, 121.4, 136.8, 141.4, 155.3, 157.4
19 F NMR (470.45 MHz, CDCl 3 ): δ = -125.6(s)
IR (neat): ν~ = 3392 (w), 3037 (w), 2955 (w), 2934 (w), 2834 (w), 1603 (w), 1590 (w), 1497 (s), 1464 ( m), 1442 (m), 1316 (m), 1295 (m), 1245 (m), 1213 (s), 1179 (m), 1154 (w), 1109 (w), 1098 (w), 1034 ( m), 818 (s), 773 (m), 696 (w)
HRMS (ESI): Calcd for C 13 H 12 FNO (M+H) + 217.0903, found 218.0965.

[実施例1−18]
2−フルオロアニリンの代わりに、2,6−ジフルオロアニリン1.2mmol(154.9mg)を用いた以外は、実施例1−15と同様に反応および後処理を行い、目的物216.2mgを得た(収率92%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.77 (s, 3H), 5.37 (brs, 1H), 6.81 (brs, 4H), 6.91-6.93 (m, 3H)
13C NMR (125.77 MHz, CDCl3): δ = 55.8, 112.0, 114.6, 118.8, 121.0, 121.9, 137.1, 154.9, 156.1
19F NMR (470.45 MHz, CDCl3): δ = -123.4 (m)
IR (neat): ν~ = 3411 (w), 2935 (w), 2835 (w), 1623 (w), 1598 (w), 1504 (s), 1456 (m), 1406 (w), 1294 (m), 1233 (s), 1179 (m), 1111 (w), 1060 (w), 1033 (m), 999 (s), 818 (m), 778 (w), 758 (m), 728 (w), 707 (w), 695 (w)
HRMS (ESI): Calcd for C13H11F2NO (M+H)+ 235.0809, found 236.0867.
[Example 1-18]
The reaction and post-treatment were carried out in the same manner as in Example 1-15 except that 1.2 mmol (154.9 mg) of 2,6-difluoroaniline was used instead of 2-fluoroaniline, to obtain 216.2 mg of the desired product. (Yield 92%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.77 (s, 3H), 5.37 (brs, 1H), 6.81 (brs, 4H), 6.91-6.93 (m, 3H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.8, 112.0, 114.6, 118.8, 121.0, 121.9, 137.1, 154.9, 156.1
19 F NMR (470.45 MHz, CDCl 3 ): δ = -123.4 (m)
IR (neat): ν~ = 3411 (w), 2935 (w), 2835 (w), 1623 (w), 1598 (w), 1504 (s), 1456 (m), 1406 (w), 1294 ( m), 1233 (s), 1179 (m), 1111 (w), 1060 (w), 1033 (m), 999 (s), 818 (m), 778 (w), 758 (m), 728 ( w), 707 (w), 695 (w)
HRMS (ESI): Calcd for C 13 H 11 F 2 NO (M+H) + 235.0809, found 236.0867.

[実施例1−19]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.05mmol(28.8mg)、RuPhos0.075mmol(35.0mg)、2,4,6−トリフルオロアニリン1.2mmol(176.5mg)を量り入れ、系中を窒素置換した。そこへジオキサン4mLを加え、さらに4−ブロモアニソール1mmol(187.0mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、110℃の浴中で4時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→97/3)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物237.4mgを得た(収率91%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.76 (s, 3H), 5.14 (brs, 1H), 6.72-6.75 (m, 3H), 6.80 (d, J = 9.0 Hz, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 55.8, 100.9, 114.7, 117.4, 117.9, 137.6, 154.8, 156.7, 157.8
19F NMR (470.45 MHz, CDCl3): δ = -119.8 (brs), -116.9 (brs)
IR (neat): ν~ = 3396 (w), 3083 (w), 2913 (w), 2837 (w), 1636 (w), 1608 (w), 1504 (s), 1442 (m), 1288 (w), 1235 (s), 1173 (m), 1116 (s), 1030 (s), 996 (s), 837 (s), 817 (s)
HRMS (ESI): Calcd for C13H10F3NO (M+H)+ 253.0714, found 254.0772.
[Example 1-19]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.05 mmol (28.8 mg), RuPhos 0.075 mmol (35.0 mg), 2,4,6-trifluoroaniline 1.2 mmol (176.5 mg). ) Was weighed in and the system was replaced with nitrogen. Dioxane 4mL was added there, 4-bromoanisole 1mmol (187.0 mg) was further added, and after stirring for 5 minutes, LHMDS 1.3mol/L tetrahydrofuran solution 0.923mL (LHMDS 1.2mmol equivalent) was added, and a bath at 110°C. The mixture was heated with stirring for 4 hours (internal temperature: 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→97/3) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was collected. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 237.4 mg of the desired product (yield 91%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.76 (s, 3H), 5.14 (brs, 1H), 6.72-6.75 (m, 3H), 6.80 (d, J = 9.0 Hz, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.8, 100.9, 114.7, 117.4, 117.9, 137.6, 154.8, 156.7, 157.8
19 F NMR (470.45 MHz, CDCl 3 ): δ = -119.8 (brs), -116.9 (brs)
IR (neat): ν~ = 3396 (w), 3083 (w), 2913 (w), 2837 (w), 1636 (w), 1608 (w), 1504 (s), 1442 (m), 1288 ( w), 1235 (s), 1173 (m), 1116 (s), 1030 (s), 996 (s), 837 (s), 817 (s)
HRMS (ESI): Calcd for C 13 H 10 F 3 NO (M+H) + 253.0714, found 254.0772.

[実施例1−20]
2,4,6−トリフルオロアニリンの代わりに、2,3,5,6−テトラフルオロアニリン1.2mmol(154.9mg)を用いた以外は、実施例1−19と同様に反応および後処理を行い、目的物243.9mgを得た(収率90%)。
1H NMR (500.13 MHz, CDCl3): δ = 3.79 (s, 3H), 5.56 (brs, 1H), 6.63 (tt, J = 10.0, 7.1Hz, 1H), 6.84 (d, J = 8.9 Hz, 2H), 6.92 (brd, J = 8.9 Hz, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 55.8, 96.8, 114.6, 121.1, 124.6, 134.9, 139.4, 146.8, 156.2
19F NMR (470.45 MHz, CDCl3): δ = -154.00, -154.08 (m, 2F), -141.49, -141.57 (m, 2F); IR (neat): ν~ = 3398 (m), 3083 (w), 2927 (w), 2845 (w), 1646 (m), 1613 (w), 1526 (s), 1507 (s), 1497 (s), 1456 (s), 1409 (m), 1294 (m), 1261 (m), 1241 (s), 1172 (s), 1120 (m), 1112 (m), 1077 (m), 1031 (m), 949 (s), 820 (s), 804 (m), 769 (m), 726 (m), 709 (m), 691 (m)
HRMS (ESI): Calcd for C13H9F4NO (M+H)+ 271.0620, found 272.0694.
[Example 1-20]
Reaction and post-treatment were conducted in the same manner as in Example 1-19, except that 2,3,5,6-tetrafluoroaniline (1.2 mmol, 154.9 mg) was used instead of 2,4,6-trifluoroaniline. The desired product (243.9 mg) was obtained (yield 90%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 3.79 (s, 3H), 5.56 (brs, 1H), 6.63 (tt, J = 10.0, 7.1Hz, 1H), 6.84 (d, J = 8.9 Hz, 2H), 6.92 (brd, J = 8.9 Hz, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 55.8, 96.8, 114.6, 121.1, 124.6, 134.9, 139.4, 146.8, 156.2
19 F NMR (470.45 MHz, CDCl 3 ): δ = -154.00, -154.08 (m, 2F), -141.49, -141.57 (m, 2F); IR (neat): ν~ = 3398 (m), 3083 ( w), 2927 (w), 2845 (w), 1646 (m), 1613 (w), 1526 (s), 1507 (s), 1497 (s), 1456 (s), 1409 (m), 1294 ( m), 1261 (m), 1241 (s), 1172 (s), 1120 (m), 1112 (m), 1077 (m), 1031 (m), 949 (s), 820 (s), 804 ( m), 769 (m), 726 (m), 709 (m), 691 (m)
HRMS (ESI): Calcd for C 13 H 9 F 4 NO (M+H) + 271.0620, found 272.0694.

上記実施例1−15〜1−20のまとめを表3に示す。なお、実施例1−3の結果も併せて示す。 Table 3 shows a summary of the above Examples 1-15 to 1-20. The results of Examples 1-3 are also shown.

Figure 2020027258
Figure 2020027258

[実施例1−21]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.2mmol(115.0mg)、RuPhos0.3mmol(140.0mg)、4,4′−ジアミノオクタフルオロビフェニル2.5mmol(656.3mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、さらにブロモベンゼン4.8mmol(753.6mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液3.7mL(LHMDS4.8mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→90/10)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物0.88gを得た(収率92%)。
1H NMR (500.13 MHz, CDCl3): δ = 5.45 (brs, 1H), 6.85 (brd, 2H), 7.02 (brt, 1H), 7.30 (brt, 2H)
13C NMR (125.77 MHz, CDCl3): δ = 116.7, 122.2, 129.5, 142.3
19F NMR (470.53 MHz, CDCl3): δ = -164.9 (brt, 1F), -164.1 (dt, J = 22.1, 5.8 Hz, 2F), -150.7 (brd, 2F), IR (neat): ν~ = 3408.2 (m), 1602.9 (m), 1521.8 (s), 1500.6 (s), 1483.3 (s), 1462.0 (S), 1421.54 (S), 1315.5 (m), 1292.31 (m)
[Example 1-21]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.2 mmol (115.0 mg), RuPhos 0.3 mmol (140.0 mg), 4,4′-diaminooctafluorobiphenyl 2.5 mmol (656.3 mg). ) Was weighed in and the system was replaced with nitrogen. 8 mL of dioxane was added thereto, 4.8 mmol (753.6 mg) of bromobenzene was further added, and the mixture was stirred for 5 minutes, then 3.7 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (equivalent to LHMDS 4.8 mmol) was added, and a bath at 110° C. The mixture was heated and stirred for 5 hours (internal temperature: 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→90/10) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was fractionated. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 0.88 g of the desired product (yield 92%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 5.45 (brs, 1H), 6.85 (brd, 2H), 7.02 (brt, 1H), 7.30 (brt, 2H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 116.7, 122.2, 129.5, 142.3
19 F NMR (470.53 MHz, CDCl 3 ): δ = -164.9 (brt, 1F), -164.1 (dt, J = 22.1, 5.8 Hz, 2F), -150.7 (brd, 2F), IR (neat): ν ~ = 3408.2 (m), 1602.9 (m), 1521.8 (s), 1500.6 (s), 1483.3 (s), 1462.0 (S), 1421.54 (S), 1315.5 (m), 1292.31 (m)

[実施例1−22]
ブロモベンゼンの代わりに、1−ブロモ−4−t−ブチルベンゼン4.8mmol(1023.0mg)を用いた以外は、実施例1−21と同様に反応および後処理を行い、目的物1.07gを得た(収率91%)。
1H NMR (500.13 MHz, Acetone): δ = 1.31 (s, 18H), 7.03 (d, J = 8.7 Hz, 4H), 7.36 (d, J = 8.7 Hz, 4H), 7.78 (brs, 2H)
13C NMR (125.77 MHz, Acetone): δ =31.9, 34.8, 98.5, 118.9, 125.9, 126.6, 140.4, 141.2, 146.0
19F NMR (470.45 MHz, Acetone): δ =-152.67 (brd, F), -143.45-(-143.1) (m, 4F)
IR (neat): ν~ = 3406 (w), 3394 (w), 2966 (w), 2909 (w), 2869 (w), 1651 (m), 1610 (m), 1487 (s), 1449 (m), 1403 (w), 1394 (w), 1364 (w), 1291 (w), 1263 (m), 1243 (m), 1191 (w), 1125 (w), 1115 (w), 1082 (m), 996 (m), 976 (s), 829 (m), 821 (s), 728 (m), 723 (s)
HRMS (ESI): Calcd for C32H28F8N2 (M+H)+ 592.2125, found 593.2170.
[Example 1-22]
1.07 g of the desired product was obtained by the same reaction and post-treatment as in Example 1-21 except that 4.8 mmol (1023.0 mg) of 1-bromo-4-t-butylbenzene was used instead of bromobenzene. Was obtained (yield 91%).
1 H NMR (500.13 MHz, Acetone): δ = 1.31 (s, 18H), 7.03 (d, J = 8.7 Hz, 4H), 7.36 (d, J = 8.7 Hz, 4H), 7.78 (brs, 2H)
13 C NMR (125.77 MHz, Acetone): δ =31.9, 34.8, 98.5, 118.9, 125.9, 126.6, 140.4, 141.2, 146.0
19 F NMR (470.45 MHz, Acetone): δ = -152.67 (brd, F), -143.45-(-143.1) (m, 4F)
IR (neat): ν~ = 3406 (w), 3394 (w), 2966 (w), 2909 (w), 2869 (w), 1651 (m), 1610 (m), 1487 (s), 1449 ( m), 1403 (w), 1394 (w), 1364 (w), 1291 (w), 1263 (m), 1243 (m), 1191 (w), 1125 (w), 1115 (w), 1082 ( m), 996 (m), 976 (s), 829 (m), 821 (s), 728 (m), 723 (s)
HRMS (ESI): Calcd for C 32 H 28 F 8 N 2 (M+H) + 592.2125, found 593.2170.

[実施例1−23]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.2mmol(115.0mg)、RuPhos0.3mmol(140.0mg)、4,4′−ジアミノオクタフルオロビフェニル2.5mmol(656.3mg)、4−ブロモ−4′−t−ブチルビフェニル4.8mmol(1388.2mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液3.7mL(LHMDS4.8mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→90/10)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物892.6mgを得た(収率60%)。
1H NMR (500.13 MHz, THF): δ = 1.38 (s, 18H), 7.09 (brd, 4H), 7.47 (brd, 4H), 7.56 (brt, 8H), 8.07 (brs, 2H)
13C NMR (125.77 MHz, THF): δ =31.9, 34.8, 98.5, 118.9, 125.9, 126.6, 140.4, 141.2, 146.0
19F NMR (470.45 MHz, THF): δ = -152.14 (brd, F), -143.24, -143.29 (m, 4F)
IR (neat): ν~ = 3421 (w), 3030 (w), 2960 (w), 2902 (w), 2866 (w), 1651 (m), 1608 (m), 1510 (s), 1484 (s), 1457 (s), 1452 (s), 1394 (w), 1366 (w), 1359 (w), 1314 (w), 1293 (w), 1262 (m), 1238 (w), 1198 (w), 1184 (w), 1121 (w), 1114 (w), 1085 (m), 997 (m), 972 (m), 816 (s), 778(w), 746 (w), 739 (w), 721 (s), 667 (w)
HRMS (ESI): Calcd for C44H36F8N2 (M+H)+ 744.2751, found 745.2794.
[Example 1-23]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.2 mmol (115.0 mg), RuPhos 0.3 mmol (140.0 mg), 4,4′-diaminooctafluorobiphenyl 2.5 mmol (656.3 mg). ) And 4-bromo-4′-t-butylbiphenyl (4.8 mmol, 1388.2 mg) were weighed in and the system was replaced with nitrogen. After 8 mL of dioxane was added thereto and stirred for 5 minutes, 3.7 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (equivalent to LHMDS 4.8 mmol) was added, and the mixture was heated with stirring in a 110° C. bath for 5 hours (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→90/10) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was fractionated. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 892.6 mg of the desired product (yield 60%).
1 H NMR (500.13 MHz, THF): δ = 1.38 (s, 18H), 7.09 (brd, 4H), 7.47 (brd, 4H), 7.56 (brt, 8H), 8.07 (brs, 2H)
13 C NMR (125.77 MHz, THF): δ =31.9, 34.8, 98.5, 118.9, 125.9, 126.6, 140.4, 141.2, 146.0
19 F NMR (470.45 MHz, THF): δ = -152.14 (brd, F), -143.24, -143.29 (m, 4F)
IR (neat): ν~ = 3421 (w), 3030 (w), 2960 (w), 2902 (w), 2866 (w), 1651 (m), 1608 (m), 1510 (s), 1484 ( s), 1457 (s), 1452 (s), 1394 (w), 1366 (w), 1359 (w), 1314 (w), 1293 (w), 1262 (m), 1238 (w), 1198 ( w), 1184 (w), 1121 (w), 1114 (w), 1085 (m), 997 (m), 972 (m), 816 (s), 778(w), 746 (w), 739 ( w), 721 (s), 667 (w)
HRMS (ESI): Calcd for C 44 H 36 F 8 N 2 (M+H) + 744.2751, found 745.2794.

[実施例1−24]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、1−ブロモナフタレン4.8mmol(993.9mg)を用いた以外は、実施例1−23と同様に反応および後処理を行い、目的物617.0mgを得た(収率68%)。
1H NMR (500.13 MHz, DMF): δ = 7.27 (brd, 2H), 7.51 (t, J = 7.8 Hz, 2H), 7.59-7.64 (m, 4H), 7.74 (brd, 2H), 8.00-8.03 (m, 2H), 8.47-8.50 (m, 2H), 8.82 (brs, 2H)
13C NMR (125.77 MHz, DMF): δ = 98.3, 116.5, 124.0, 124.6, 126.8, 126.9, 127.4, 127.7, 128.6, 129126.9, 127.4, 127.7, 128.6, 129, 135.6, 141.4, 146.1
19F NMR (470.45 MHz, DMF): δ =-153.18 (brd, J = 13.9 Hz, 4F), -143.45-(-143.35) (m, 4F)
IR (neat): ν~ = 3396 (w), 3373 (w), 3063 (w), 1653 (m), 1595 (m), 1577 (w), 1522 (m), 1496 (s), 1489 (s), 1466 (s), 1430 (m), 1401 (m), 1391 (m), 1274 (m), 1267 (m), 1251 (w), 1241 (w), 1168 (w), 1154 (w), 1131 (w), 1106 (m), 1088 (w), 1075 (w), 1040 (w), 1017 (w), 986 (s), 955 (s), 794 (s), 772 (s), 727 (s)
HRMS (ESI): Calcd for C32H16F8N2 (M+H)+ 580.1186, found 581.1249.
[Example 1-24]
The reaction and post-treatment were performed in the same manner as in Example 1-23 except that 4.8 mmol (993.9 mg) of 1-bromonaphthalene was used instead of 4-bromo-4′-t-butylbiphenyl to obtain the desired product. 617.0 mg was obtained (yield 68%).
1 H NMR (500.13 MHz, DMF): δ = 7.27 (brd, 2H), 7.51 (t, J = 7.8 Hz, 2H), 7.59-7.64 (m, 4H), 7.74 (brd, 2H), 8.00-8.03 (m, 2H), 8.47-8.50 (m, 2H), 8.82 (brs, 2H)
13 C NMR (125.77 MHz, DMF): δ = 98.3, 116.5, 124.0, 124.6, 126.8, 126.9, 127.4, 127.7, 128.6, 129126.9, 127.4, 127.7, 128.6, 129, 135.6, 141.4, 146.1
19 F NMR (470.45 MHz, DMF): δ =-153.18 (brd, J = 13.9 Hz, 4F), -143.45-(-143.35) (m, 4F)
IR (neat): ν~ = 3396 (w), 3373 (w), 3063 (w), 1653 (m), 1595 (m), 1577 (w), 1522 (m), 1496 (s), 1489 ( s), 1466 (s), 1430 (m), 1401 (m), 1391 (m), 1274 (m), 1267 (m), 1251 (w), 1241 (w), 1168 (w), 1154 ( w), 1131 (w), 1106 (m), 1088 (w), 1075 (w), 1040 (w), 1017 (w), 986 (s), 955 (s), 794 (s), 772 ( s), 727 (s)
HRMS (ESI): Calcd for C 32 H 16 F 8 N 2 (M+H) + 580.1186, found 581.1249.

[実施例1−25]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、2−ブロモナフタレン4.8mmol(993.9mg)を用いた以外は、実施例1−23と同様に反応および後処理を行い、目的物770.2mgを得た(収率53%)。
1H NMR (500.13 MHz, DMSO): δ = 7.23-7.35 (m, 6H), 7.43 (brt, 2H), 7.77 (brd, 2H), 7.83 (brt, 4H), 9.00 (brs, 2H)
13C NMR (125.77 MHz, DMSO): δ = 98.2, 111.9, 119.9, 124.2, 124.4, 126.9, 127.0, 128.0, 129.0, 129.4, 134.3, 140.3, 140.9, 144.9
19F NMR (470.45 MHz, DMSO): δ =-148.08 (brd, 4F), -140.33 (brd, 4F)
IR (neat): ν~ = 3412 (m), 3054 (w), 1651 (m), 1627 (s), 1602 (m), 1591 (w), 1506 (s), 1484 (s), 1456 (s), 1425 (m), 1290, 1276, 1264, 1225 (s), 1183 (m), 1132 (m), 1091 (s), 999 (s), 967 (s), 846 (s), 823 (s), 746 (s), 732 (s), 708 (m), 641 (m)
HRMS (ESI): Calcd for C32H16F8N2 (M+H)+ 580.1186, found 581.1249.
[Example 1-25]
The reaction and post-treatment were carried out in the same manner as in Example 1-23, except that 4.8 mmol (993.9 mg) of 2-bromonaphthalene was used instead of 4-bromo-4′-t-butylbiphenyl to obtain the desired product. 770.2 mg was obtained (yield 53%).
1 H NMR (500.13 MHz, DMSO): δ = 7.23-7.35 (m, 6H), 7.43 (brt, 2H), 7.77 (brd, 2H), 7.83 (brt, 4H), 9.00 (brs, 2H)
13 C NMR (125.77 MHz, DMSO): δ = 98.2, 111.9, 119.9, 124.2, 124.4, 126.9, 127.0, 128.0, 129.0, 129.4, 134.3, 140.3, 140.9, 144.9.
19 F NMR (470.45 MHz, DMSO): δ = -148.08 (brd, 4F), -140.33 (brd, 4F)
IR (neat): ν~ = 3412 (m), 3054 (w), 1651 (m), 1627 (s), 1602 (m), 1591 (w), 1506 (s), 1484 (s), 1456 ( s), 1425 (m), 1290, 1276, 1264, 1225 (s), 1183 (m), 1132 (m), 1091 (s), 999 (s), 967 (s), 846 (s), 823 (s), 746 (s), 732 (s), 708 (m), 641 (m)
HRMS (ESI): Calcd for C 32 H 16 F 8 N 2 (M+H) + 580.1186, found 581.1249.

[実施例1−26]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、4−ブロモトリフェニルアミン4.8mmol(1556.2mg)を用いた以外は、実施例1−23と同様に反応および後処理を行い、目的物1417.3mgを得た(収率87%)。
1H NMR (500.13 MHz, Acetone): δ = 6.98 (t, J = 7.3, 4H), 7.05 (m, 16H), 7.26 (dd, J = 8.6, 7.3 Hz, 8H), 8.86 (brs, 2H)
13C NMR (125.77 MHz, Acetone): δ = 99.1, 120.9, 123.7, 124.7, 126.2, 127.3, 130.7, 139.4, 141.7, 143.8, 146.5, 149.6
19F NMR (470.45 MHz, Acetone): δ = -152.72 (brd, J = 13.9 Hz, 4F), -143.27 (m, 4F)
IR (neat): ν~ = 3394 (w), 3023 (w), 1649 (m), 1586 (m), 1485 (s), 1410 (m), 1333 (w), 1319 (w), 1293 (w), 1273 (m), 1260 (m), 1235 (m), 1175 (w), 1156 (w), 1152 (w), 1132 (w), 1118 (w), 1112 (w), 1085 (m), 995 (m), 974 (m), 968 (m), 899 (w), 891 (w), 826 (m), 817 (m), 749 (s), 739 (m), 722 (m), 714 (m), 693 (s)
HRMS (ESI): Calcd for C48H30F8N4 (M+H)+ 814.2343, found 814.2312.
[Example 1-26]
Reaction and post-treatment were carried out in the same manner as in Example 1-23, except that 4.8 mmol (1556.2 mg) of 4-bromotriphenylamine was used instead of 4-bromo-4′-t-butylbiphenyl. 1417.3 mg of the target product was obtained (yield 87%).
1 H NMR (500.13 MHz, Acetone): δ = 6.98 (t, J = 7.3, 4H), 7.05 (m, 16H), 7.26 (dd, J = 8.6, 7.3 Hz, 8H), 8.86 (brs, 2H)
13 C NMR (125.77 MHz, Acetone): δ = 99.1, 120.9, 123.7, 124.7, 126.2, 127.3, 130.7, 139.4, 141.7, 143.8, 146.5, 149.6.
19 F NMR (470.45 MHz, Acetone): δ = -152.72 (brd, J = 13.9 Hz, 4F), -143.27 (m, 4F)
IR (neat): ν~ = 3394 (w), 3023 (w), 1649 (m), 1586 (m), 1485 (s), 1410 (m), 1333 (w), 1319 (w), 1293 ( w), 1273 (m), 1260 (m), 1235 (m), 1175 (w), 1156 (w), 1152 (w), 1132 (w), 1118 (w), 1112 (w), 1085 ( m), 995 (m), 974 (m), 968 (m), 899 (w), 891 (w), 826 (m), 817 (m), 749 (s), 739 (m), 722 ( m), 714 (m), 693 (s)
HRMS (ESI): Calcd for C 48 H 30 F 8 N 4 (M+H) + 814.2343, found 814.2312.

[実施例1−27]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、4−ヨードトリフェニルアミン4.8mmol(1781.9mg)を用いた以外は、実施例1−23と同様に反応および後処理を行い、目的物1101.3mgを得た(収率68%)。
[Example 1-27]
The reaction and the post-treatment were performed in the same manner as in Example 1-23, except that 4.8 mmol (1781.9 mg) of 4-iodotriphenylamine was used instead of 4-bromo-4′-t-butylbiphenyl. 1101.3 mg of the target product was obtained (yield 68%).

[実施例1−28]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、4−ブロモ−4′−(ジフェニルアミノ)ビフェニル4.8mmol(1921.5mg)を用いた以外、実施例1−23と同様に反応および後処理行い、目的物1903.1mgを得た(収率99%)。
[Example 1-28]
Instead of 4-bromo-4′-t-butylbiphenyl, 4-bromo-4′-(diphenylamino)biphenyl (4.8 mmol, 1921.5 mg) was used, and the same reaction and reaction as in Example 1-23. Post-treatment was performed to obtain 1903.1 mg of the desired product (yield 99%).

[実施例1−29]
4−ブロモ−4′−t−ブチルビフェニルの代わりに、2−ブロモ−9,9′−スピロビ[9H−フルオレン]4.8mmol(1897.4mg)を用いた以外は、実施例24と同様に反応および後処理を行い、目的物1.88gを得た(収率98%)
1H NMR (500.13 MHz, Acetone): δ = 6.39 (brs, 2H), 6.62 (dd, J = 7.5, 1.0 Hz, 2H), 6.73 (dd, J = 7.5, 1.0 Hz, 4H), 7.05-7.09 (m, 4H), 7.16 (td, J = 7.5, 1.0 Hz, 4 H), 7.36 (td, J = 7.5, 1.0 Hz, 2H), 7.40 (td, J = 7.5, 1.0 Hz, 4 H), 7.82 (s, 2H), 7.89 (brdd, 4 H) 7.97 (brd, J = 7.5, 4 H)
13C NMR (125.77 MHz, Acetone): δ = 66.9, 99.0, 114.6, 118.0, 120.5, 121.1, 121.5, 124.5, 124.8, 125.1, 127.9, 128.6, 128.88, 136.9, 141.2, 142.7, 142.8, 142.9, 145.8, 149.4, 149.9, 151.0
19F NMR (470.45 MHz, Acetone): δ = -152.3 (brd, 4F), -143.2 (m, 4F)
IR (neat): ν~ = 3391 (w), 3063 (w), 3042 (w), 3015 (w), 1653 (m), 1614 (m), 1488 (s), 1446 (s), 1346 (w), 1299 (m), 1290 (m), 1284 (m), 1267 (m), 1215 (m), 1167 (w), 1153 (w), 1120 (m), 1089 (m), 1078 (m), 979 (m), 967 (m), 851 (w), 821 (m), 750 (s), 735 (s), 725 (s), 717 (s), 636 (m)
HRMS (ESI): Calcd for C62H32F8N2 (M+H)+ 956.2438, found 812.4212.
[Example 1-29]
In the same manner as in Example 24 except that 4.8 mmol (1897.4 mg) of 2-bromo-9,9′-spirobi[9H-fluorene] was used instead of 4-bromo-4′-t-butylbiphenyl. The reaction and post-treatment were carried out to obtain 1.88 g of the desired product (yield 98%).
1 H NMR (500.13 MHz, Acetone): δ = 6.39 (brs, 2H), 6.62 (dd, J = 7.5, 1.0 Hz, 2H), 6.73 (dd, J = 7.5, 1.0 Hz, 4H), 7.05-7.09 (m, 4H), 7.16 (td, J = 7.5, 1.0 Hz, 4 H), 7.36 (td, J = 7.5, 1.0 Hz, 2H), 7.40 (td, J = 7.5, 1.0 Hz, 4 H), 7.82 (s, 2H), 7.89 (brdd, 4 H) 7.97 (brd, J = 7.5, 4 H)
13 C NMR (125.77 MHz, Acetone): δ = 66.9, 99.0, 114.6, 118.0, 120.5, 121.1, 121.5, 124.5, 124.8, 125.1, 127.9, 128.6, 128.88, 136.9, 141.2, 142.7, 142.8, 142.9, 145.8, 149.4, 149.9, 151.0
19 F NMR (470.45 MHz, Acetone): δ = -152.3 (brd, 4F), -143.2 (m, 4F)
IR (neat): ν~ = 3391 (w), 3063 (w), 3042 (w), 3015 (w), 1653 (m), 1614 (m), 1488 (s), 1446 (s), 1346 ( w), 1299 (m), 1290 (m), 1284 (m), 1267 (m), 1215 (m), 1167 (w), 1153 (w), 1120 (m), 1089 (m), 1078 ( m), 979 (m), 967 (m), 851 (w), 821 (m), 750 (s), 735 (s), 725 (s), 717 (s), 636 (m)
HRMS (ESI): Calcd for C 62 H 32 F 8 N 2 (M+H) + 956.2438, found 812.4212.

[実施例1−30]

Figure 2020027258
[Example 1-30]
Figure 2020027258

還流塔を取り付けた100mLの反応フラスコに、Pd(dppf)Cl20.45mmol(367.5mg)、酢酸カリウム45mmol(4416.3mg)、3−ブロモ−N−フェニルカルバゾール15mmol(4833.2mg)、ビス(ピナコラト)ジボロン11mmol(4190.0mg)を量り入れ、系中を窒素置換した。そこへN,N−ジメチルホルムアミド150mLを加え、5分間撹拌した後、90℃の浴中で3時間加熱撹拌した。なお、系中から採取した微量の反応混合物を用いたクロマトグラフィー(TLC)法によって、反応を追跡した。
反応混合物を室温まで冷却した後、冷却した反応混合物から減圧下で溶媒を取り除き濃縮し、濃縮物をイオン交換水50mLとともに分液漏斗に入れて洗浄し、次いでクロロホルム50mLを入れて抽出を行い、分液漏斗から有機層を回収した。そして、回収した有機層を硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液を濃縮し、得られた濃縮物を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→96/4)を行い、目的物を含むフラクションを分取した。
最後に、減圧下で分取したフラクションから溶媒を取り除き、N−フェニルカルバゾール−3−イル−ボロン酸ピナコラト4.21gを得た(収率76%)。
1H NMR (500.13 MHz, CDCl3): δ = 1.41(s、12H), 7.29 (ddd, J = 7.9, 6.0, 2.0 Hz, 1H), 7.37 (brd, J = 8.2 Hz, 1H), 7.40 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.55 (m, 2H), 7.61 (m, 2H), 8.76 (dd, J = 8.2, 1.2 Hz, 2H), 8.18 (d, J = 7.6 Hz, 1H), 8.64 (s, 1H)
In a 100 mL reaction flask equipped with a reflux tower, Pd(dppf)Cl 2 0.45 mmol (367.5 mg), potassium acetate 45 mmol (4416.3 mg), 3-bromo-N-phenylcarbazole 15 mmol (4823.2 mg), 11 mmol (4190.0 mg) of bis(pinacolato)diborone was weighed in and the system was replaced with nitrogen. After adding thereto 150 mL of N,N-dimethylformamide, the mixture was stirred for 5 minutes and then heated and stirred for 3 hours in a bath at 90°C. The reaction was traced by a chromatography (TLC) method using a minute amount of the reaction mixture collected from the system.
After cooling the reaction mixture to room temperature, the solvent was removed from the cooled reaction mixture under reduced pressure and concentrated, the concentrate was washed with 50 mL of ion-exchanged water in a separatory funnel, and then 50 mL of chloroform was added for extraction. The organic layer was collected from the separatory funnel. Then, the collected organic layer was dried over magnesium sulfate.
Magnesium sulfate was removed by filtration, the obtained filtrate was concentrated, and the obtained concentrate was subjected to column chromatography (developing solvent: hexane/ethyl acetate=100/0→96/4) to obtain the desired product. The containing fraction was collected.
Finally, the solvent was removed from the fractions collected under reduced pressure to obtain 4.21 g of pinacolato N-phenylcarbazol-3-yl-boronic acid (yield 76%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 1.41(s, 12H), 7.29 (ddd, J = 7.9, 6.0, 2.0 Hz, 1H), 7.37 (brd, J = 8.2 Hz, 1H), 7.40 ( m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.55 (m, 2H), 7.61 (m, 2H), 8.76 (dd, J = 8.2, 1.2 Hz, 2H), 8.18 (d, J = 7.6 Hz, 1H), 8.64 (s, 1H)

Figure 2020027258
Figure 2020027258

還流塔を取り付けた50mLの反応フラスコに、Pd(PPh340.09mmol(104.1mg)、水酸化ナトリウム9mmol(359.9mg)、N−フェニルカルバゾール−3−イル−ボロン酸ピナコラト3mmol(1107.8mg)、4−ブロモ−4′−ヨードビフェニル3.3mmol(1184.7mg)を量り入れ、系中を窒素置換した。そこへテトラヒドロフランと水の混合溶媒(2/1(v/v))13.5mLを加え、5分間撹拌した後、50℃の浴中で5時間加熱撹拌した。なお、系中から採取した微量の反応混合物を用いたクロマトグラフィー(TLC)法によって、反応を追跡した。
反応混合物を室温まで冷却した後、冷却した反応混合物から減圧下で溶媒を取り除き濃縮し、濃縮物をイオン交換水50mLとともに分液漏斗に入れて洗浄し、次いでテトラヒドロフラン50mLを入れて抽出を行い、分液漏斗から有機層を回収した。そして、回収した有機層を硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液を濃縮し、得られた濃縮物を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→96/4)を行い、目的物を含むフラクションを分取した。
最後に、減圧下で分取したフラクションから溶媒を取り除き、4−ブロモ−4′−(N−フェニルカルバゾール−3−イル)−ビフェニル810mgを得た(収率57%)。
1H NMR (500.13 MHz, CDCl3): δ = 7.30-7.33 (m, 1H), 7.43 (m, 2H), 7.50 (m, 4H), 7.57-7.70 (m, 9H), 7.79 (d, J = 8.5 Hz, 2H), 8.20 (d, J = 7.9 Hz, 1H), 8.39 (brs, 1H)
Reaction flask fitted with a reflux column 50mL, Pd (PPh 3) 4 0.09mmol (104.1mg), sodium hydroxide 9mmol (359.9mg), N- phenyl-carbazol-3-yl - boronic acid pinacolato 3 mmol ( 1107.8 mg) and 4-bromo-4'-iodobiphenyl 3.3 mmol (1184.7 mg) were weighed in and the system was replaced with nitrogen. 13.5 mL of a mixed solvent (2/1 (v/v)) of tetrahydrofuran and water was added thereto, and the mixture was stirred for 5 minutes and then heated and stirred in a bath at 50°C for 5 hours. The reaction was traced by a chromatography (TLC) method using a minute amount of the reaction mixture collected from the system.
After cooling the reaction mixture to room temperature, the solvent was removed from the cooled reaction mixture under reduced pressure and concentrated, the concentrate was washed with 50 mL of ion-exchanged water in a separating funnel, and then 50 mL of tetrahydrofuran was added for extraction. The organic layer was collected from the separatory funnel. Then, the collected organic layer was dried over magnesium sulfate.
Magnesium sulfate was removed by filtration, the obtained filtrate was concentrated, and the obtained concentrate was subjected to column chromatography (developing solvent: hexane/ethyl acetate=100/0→96/4) to obtain the desired product. The containing fraction was collected.
Finally, the solvent was removed from the fractions collected under reduced pressure to obtain 810 mg of 4-bromo-4′-(N-phenylcarbazol-3-yl)-biphenyl (yield 57%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 7.30-7.33 (m, 1H), 7.43 (m, 2H), 7.50 (m, 4H), 7.57-7.70 (m, 9H), 7.79 (d, J = 8.5 Hz, 2H), 8.20 (d, J = 7.9 Hz, 1H), 8.39 (brs, 1H)

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.5mmol(28.8mg)、RuPhos0.75mmol(35.0mg)、4,4′−ジアミノオクタフルオロビフェニル0.5mmol(164.1mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、さらに4−ブロモ−4′−(N−フェニルカルバゾール−3−イル)−ビフェニル1.05mmol(498.1mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(1.2mmol)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→90/10)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物457mgを得た(収率82%)。
1H NMR (500.13 MHz, CDCl3): δ = 5.94 (brs、2H), 7.11 (brd, 2H), 7.32(brquin, 1H), 7.43 (brd, 2H), 7.48-7.51 (m, 2H), 7.60-7.66 (m, 6H), 7.70-7.72 (brm, 3H), 7.80-7.82 (m, 3H), 8.21 (brd, 2H), 8.41 (brs, 1H)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.5 mmol (28.8 mg), RuPhos 0.75 mmol (35.0 mg), 4,4′-diaminooctafluorobiphenyl 0.5 mmol (164.1 mg). ) Was weighed in and the system was replaced with nitrogen. 8 mL of dioxane was added thereto, 1.05 mmol (498.1 mg) of 4-bromo-4′-(N-phenylcarbazol-3-yl)-biphenyl was added thereto, and the mixture was stirred for 5 minutes, and then LHMDS 1.3 mol/L tetrahydrofuran. 0.923 mL (1.2 mmol) of the solution was added, and the mixture was heated and stirred in a bath at 110°C for 5 hours (internal temperature 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→90/10) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was fractionated. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 457 mg of the desired product (yield 82%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 5.94 (brs, 2H), 7.11 (brd, 2H), 7.32 (brquin, 1H), 7.43 (brd, 2H), 7.48-7.51 (m, 2H), 7.60-7.66 (m, 6H), 7.70-7.72 (brm, 3H), 7.80-7.82 (m, 3H), 8.21 (brd, 2H), 8.41 (brs, 1H)

[実施例1−31]

Figure 2020027258
[Example 1-31]
Figure 2020027258

還流塔を取り付けた100mLの反応フラスコに、Pd(dppf)Cl20.45mmol(367.5mg)、酢酸カリウム45mmol(4416.3mg)、2−ブロモ−9,9′−スピロビ[9H−フルオレン]15mmol(5929.5mg)、ビス(ピナコラト)ジボロン16.5mmol(4190.0mg)を量り入れ、系中を窒素置換した。そこへN,N−ジメチルホルムアミド150mLを加え、5分間撹拌した後、90℃の浴中で3時間加熱撹拌した。なお、系中から採取した微量の反応混合物を用いたクロマトグラフィー(TLC)法によって、反応を追跡した。
反応混合物を室温まで冷却した後、冷却した反応混合物から減圧下で溶媒を取り除き濃縮し、濃縮物をイオン水50mLとともに分液漏斗に入れて洗浄し、次いでクロロホルム50mLを入れて抽出を行い、分液漏斗から有機層を回収した。そして、回収した有機層を硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液を濃縮し、得られた濃縮物を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→96/4)を行い、目的物を含むフラクションを分取した。
最後に、減圧下で分取したフラクションから溶媒を取り除き、9,9′−スピロビ[9H−フルオレン]−2−イル−ボロン酸ピナコラト1.85gを得た(収率28%)。
1H NMR (500.13 MHz, CDCl3): δ = 1.25 (s、12H), 6.68 (brd, J = 7.5 Hz 1H), 6.71 (brd, J = 7.5 Hz, 2H), 7.09 (dt, J = 7.5, 1.1 Hz 2H), 7.11 (dt, J = 7.5, 1.1 Hz 1H), 7.18 (brs、1H), 7.35 (dt, J = 7.5, 1.1 Hz 1H), 7.36 (dt, J = 7.5, 1.1 Hz 2H), 7.33-7.37 (m, 5H)
In a 100 mL reaction flask equipped with a reflux tower, Pd(dppf)Cl 2 0.45 mmol (367.5 mg), potassium acetate 45 mmol (4416.3 mg), 2-bromo-9,9′-spirobi[9H-fluorene]. 15 mmol (5929.5 mg) and bis(pinacolato)diboron 16.5 mmol (4190.0 mg) were weighed in and the system was replaced with nitrogen. After adding thereto 150 mL of N,N-dimethylformamide, the mixture was stirred for 5 minutes and then heated and stirred for 3 hours in a bath at 90°C. The reaction was traced by a chromatography (TLC) method using a minute amount of the reaction mixture collected from the system.
After cooling the reaction mixture to room temperature, the solvent was removed from the cooled reaction mixture under reduced pressure and the mixture was concentrated. The concentrate was washed with 50 mL of deionized water in a separating funnel, and then 50 mL of chloroform was added for extraction. The organic layer was collected from the liquid funnel. Then, the collected organic layer was dried over magnesium sulfate.
Magnesium sulfate was removed by filtration, the obtained filtrate was concentrated, and the obtained concentrate was subjected to column chromatography (developing solvent: hexane/ethyl acetate=100/0→96/4) to obtain the desired product. The containing fraction was collected.
Finally, the solvent was removed from the fractions collected under reduced pressure to obtain 1.85 g of 9,9'-spirobi[9H-fluoren]-2-yl-boronic acid pinacolato (yield 28%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 1.25 (s, 12H), 6.68 (brd, J = 7.5 Hz 1H), 6.71 (brd, J = 7.5 Hz, 2H), 7.09 (dt, J = 7.5 , 1.1 Hz 2H), 7.11 (dt, J = 7.5, 1.1 Hz 1H), 7.18 (brs, 1H), 7.35 (dt, J = 7.5, 1.1 Hz 1H), 7.36 (dt, J = 7.5, 1.1 Hz 2H) ), 7.33-7.37 (m, 5H)

Figure 2020027258
Figure 2020027258

還流塔を取り付けた50mLの反応フラスコに、Pd(PPh340.09mmol(104.1mg)、水酸化ナトリウム9mmol(359.9mg)、9,9′−スピロビ[9H−フルオレン]−2−イル−ボロン酸ピナコラト3mmol(1327.1mg)、4−ブロモ−4′−ヨードビフェニル3.3mmol(1184.7mg)を量り入れ、系中を窒素置換した。そこへテトラヒドロフランと水の混合溶媒(2/1(v/v)13.5mLを加え、5分間撹拌した後、50℃の浴中で5時間加熱撹拌した。なお、系中から採取した微量の反応混合物を用いたクロマトグラフィー(TLC)法によって、反応を追跡した。
反応混合物を室温まで冷却した後、冷却した反応混合物から減圧下で溶媒を取り除き濃縮し、濃縮物をイオン交換水50mLとともに分液漏斗に入れて洗浄し、次いでテトラヒドロフラン50mLを入れて抽出を行い、分液漏斗から有機層を回収した。そして、回収した有機層を硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液を濃縮し、得られた濃縮物を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→96/4)を行い、目的物を含むフラクションを分取した。
最後に、減圧下で分取したフラクションから溶媒を取り除き、2−(4′−ブロモビフェニル−4−イル)−9,9′−スピロビ[9H−フルオレン]836.4mgを得た(収率51%)。
1H NMR (500.13 MHz, CDCl3): δ = 6.73 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 2H), 6.97 (s, 1H), 7.12 (brt, 3H), 7.36-7.42 (m, 5 H), 7.49 (s, 4H), 7.53 (d,2H), 7.66 (dd, J = 7.9, 1.8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2 H), 7.87 (d, J = 7.6 Hz, 1 H), 7.92 (d, J = 7.9 Hz, 1H)
Reaction flask fitted with a reflux column 50mL, Pd (PPh 3) 4 0.09mmol (104.1mg), sodium hydroxide 9mmol (359.9mg), 9,9'- spirobi [9H-fluoren] -2 3 mmol (1327.1 mg) of yl-boronic acid pinacolato and 3.3 mmol (1184.7 mg) of 4-bromo-4'-iodobiphenyl were weighed in and the system was replaced with nitrogen. 13.5 mL of a mixed solvent of tetrahydrofuran and water (2/1 (v/v)) was added thereto, and the mixture was stirred for 5 minutes and then heated and stirred in a bath at 50° C. for 5 hours. The reaction was followed by chromatography (TLC) method using the reaction mixture.
After cooling the reaction mixture to room temperature, the solvent was removed from the cooled reaction mixture under reduced pressure and concentrated, the concentrate was washed with 50 mL of ion-exchanged water in a separating funnel, and then 50 mL of tetrahydrofuran was added for extraction. The organic layer was collected from the separatory funnel. Then, the collected organic layer was dried over magnesium sulfate.
Magnesium sulfate was removed by filtration, the obtained filtrate was concentrated, and the obtained concentrate was subjected to column chromatography (developing solvent: hexane/ethyl acetate=100/0→96/4) to obtain the desired product. The containing fraction was collected.
Finally, the solvent was removed from the fractions collected under reduced pressure to obtain 836.4 mg of 2-(4'-bromobiphenyl-4-yl)-9,9'-spirobi[9H-fluorene] (yield 51 %).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 6.73 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 2H), 6.97 (s, 1H), 7.12 (brt, 3H) , 7.36-7.42 (m, 5 H), 7.49 (s, 4H), 7.53 (d,2H), 7.66 (dd, J = 7.9, 1.8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2 H ), 7.87 (d, J = 7.6 Hz, 1 H), 7.92 (d, J = 7.9 Hz, 1H)

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.5mmol(28.8mg)、RuPhos0.75mmol(35.0mg)、4,4′−ジアミノオクタフルオロビフェニル0.5mmol(164.1mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、さらに2−(4′−ブロモビフェニル−4−イル)−9,9′−スピロビ[9H−フルオレン]1.05mmol(574.9mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液0.923mL(LHMDS1.2mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→90/10)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物532mgを得た(収率86%)。
1H NMR (500.13 MHz, CDCl3): δ = 6.78 (brd, 2H), 6.83 (brd, 4H), 7.05 (brm, 6H), 7.15 (brt, 6H), 7.41 (brt, 6H), 7.54 (brm, 12H), 7.70 (brd, 2H), 7.90 (brd, 6H), 7.95 (brd, 2H),
13C NMR (125.77 MHz, CDCl3): δ = 118.7, 120.2, 120.3, 120.5, 122.8, 124.3, 124.4, 126.9, 127.1, 127.6, 127.8, 128.0, 128.1, 135.5, 139.4, 139.7, 140.4, 140.6, 141.3, 141.6, 142.0, 18.9, 149.4, 149.8
19F NMR (470.45 MHz, CDCl3): δ =-151.41 (brd, 4F), -140.63 (m, 4F)
IR (neat): ν~ = 3387.0 (w), 3059.1 (w), 3030.2 (w), 2953.0 (w), 2926.0 (w), 2856.6 (w), 1653.0 (m), 1606.7 (m), 1485.2 (s), 1446.6 (s), 1236.4 (m), 1085.9 (m), 975.98 (m), 813.96 (s), 750.31 (s), 727.16 (s)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.5 mmol (28.8 mg), RuPhos 0.75 mmol (35.0 mg), 4,4′-diaminooctafluorobiphenyl 0.5 mmol (164.1 mg). ) Was weighed in and the system was replaced with nitrogen. Dioxane (8 mL) was added thereto, and 2-(4'-bromobiphenyl-4-yl)-9,9'-spirobi[9H-fluorene] 1.05 mmol (574.9 mg) was added thereto, followed by stirring for 5 minutes. LHMDS 1.3 mol/L tetrahydrofuran solution 0.923 mL (corresponding to LHMDS 1.2 mmol) was added, and the mixture was heated and stirred in a 110° C. bath for 5 hours (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→90/10) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was fractionated. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 532 mg of the desired product (yield 86%).
1 H NMR (500.13 MHz, CDCl 3 ): δ = 6.78 (brd, 2H), 6.83 (brd, 4H), 7.05 (brm, 6H), 7.15 (brt, 6H), 7.41 (brt, 6H), 7.54 ( brm, 12H), 7.70 (brd, 2H), 7.90 (brd, 6H), 7.95 (brd, 2H),
13 C NMR (125.77 MHz, CDCl 3 ): δ = 118.7, 120.2, 120.3, 120.5, 122.8, 124.3, 124.4, 126.9, 127.1, 127.6, 127.8, 128.0, 128.1, 135.5, 139.4, 139.7, 140.4, 140.6, 141.3. , 141.6, 142.0, 18.9, 149.4, 149.8
19 F NMR (470.45 MHz, CDCl 3 ): δ = -151.41 (brd, 4F), -140.63 (m, 4F)
IR (neat): ν~ = 3387.0 (w), 3059.1 (w), 3030.2 (w), 2953.0 (w), 2926.0 (w), 2856.6 (w), 1653.0 (m), 1606.7 (m), 1485.2 ( s), 1446.6 (s), 1236.4 (m), 1085.9 (m), 975.98 (m), 813.96 (s), 750.31 (s), 727.16 (s)

上記実施例1−21〜1−31のまとめを表4に示す。 Table 4 shows a summary of Examples 1-21 to 1-31.

Figure 2020027258
Figure 2020027258

(4)ペンタフルオロアニリンと4,4′−ジブロモビフェニルとの反応

Figure 2020027258
(4) Reaction of pentafluoroaniline with 4,4'-dibromobiphenyl
Figure 2020027258

[実施例1−32]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.1mmol(57.5mg)、RuPhos0.15mmol(69.8mg)、4,4′−ジブロモビフェニル1mmol(312.7mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLとペンタフルオロアニリン2.4mmol(439.3mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液1.84mL(LHMDS2.4mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液50mL、酢酸エチル30mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル20mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をトルエン3mLに溶解させて得られた溶液を用いてカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=100/0→90/10)を行い、目的物を含むフラクションを分取した。
最後に、80℃、減圧下で分取したフラクションから溶媒を取り除き、目的物451.7mgを得た(収率58%)。
1H NMR (500.13 MHz, DMSO): δ = 6.86 (brd, J = 8.1 Hz, 4H), 7.45 (brd, J =8.1 Hz, 4H), 8.32 (brs, 2H)
13C NMR (125.77 MHz, DMSO): δ =116.1, 118.1, 126.9, 132.4, 137.0, 138.3, 142.3, 142.7
19F NMR (470.45 MHz, DMSO): δ =-165.04 (brt, 2F), -163.81 (brt, 4F), -148.47 (brd, 4H)
IR (neat): ν~ = 3410 (m), 3029 (w), 1611 (m), 1577 (w), 1517 (s), 1502 (s), 1482 (s) 1446 (s), 1327 (m), 1277 (m), 1238 (m), 1183 (m), 1159 (m), 1136 (m), 977 (s), 817 (s), 779 (m), 727 (m), 710 (m); HRMS (ESI)
[Example 1-32]
Pd(DBA) 2 0.1 mmol (57.5 mg), RuPhos 0.15 mmol (69.8 mg) and 4,4′-dibromobiphenyl 1 mmol (312.7 mg) were weighed into a 30 mL reaction flask equipped with a reflux tower. The system was replaced with nitrogen. 8 mL of dioxane and 2.4 mmol (439.3 mg) of pentafluoroaniline were added thereto, and the mixture was stirred for 5 minutes. The mixture was heated and stirred for 5 hours (internal temperature 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separating funnel together with 50 mL of a saturated aqueous solution of ammonium chloride and 30 mL of ethyl acetate for extraction. The organic layer was left in the separating funnel and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 20 mL of ethyl acetate for extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. Column chromatography (developing solvent: hexane/ethyl acetate=100/0→90/10) was performed using the solution obtained by dissolving the obtained residue in 3 mL of toluene, and the fraction containing the target substance was fractionated. ..
Finally, the solvent was removed from the fractions collected under reduced pressure at 80°C to obtain 451.7 mg of the desired product (yield 58%).
1 H NMR (500.13 MHz, DMSO): δ = 6.86 (brd, J = 8.1 Hz, 4H), 7.45 (brd, J = 8.1 Hz, 4H), 8.32 (brs, 2H)
13 C NMR (125.77 MHz, DMSO): δ =116.1, 118.1, 126.9, 132.4, 137.0, 138.3, 142.3, 142.7
19 F NMR (470.45 MHz, DMSO): δ = -165.04 (brt, 2F), -163.81 (brt, 4F), -148.47 (brd, 4H)
IR (neat): ν~ = 3410 (m), 3029 (w), 1611 (m), 1577 (w), 1517 (s), 1502 (s), 1482 (s) 1446 (s), 1327 (m ), 1277 (m), 1238 (m), 1183 (m), 1159 (m), 1136 (m), 977 (s), 817 (s), 779 (m), 727 (m), 710 (m ); HRMS (ESI)

(5)ペンタフルオロアニリンとブロモベンゼンとの反応:塩基の影響

Figure 2020027258
(5) Reaction of pentafluoroaniline with bromobenzene: influence of base
Figure 2020027258

[実施例1−33]
ペンタフルオロアニリン(1mmol)、ブロモベンゼン(2.4mmol)、LHMDS1.3mol/Lテトラヒドロフラン溶液1.85mL(LHMDS2.4mmol相当)を用いた以外は、実施例1−11と同様に反応および後処理を行い、目的物179.8mgを得た(収率69%)。
[Example 1-33]
Reaction and post-treatment were carried out in the same manner as in Example 1-11, except that pentafluoroaniline (1 mmol), bromobenzene (2.4 mmol), and LHMDS 1.3 mol/L tetrahydrofuran solution 1.85 mL (equivalent to LHMDS 2.4 mmol) were used. The desired product (179.8 mg) was obtained (yield 69%).

[実施例1−34]
ペンタフルオロアニリン(2.4mmol)、ブロモベンゼン(1mmol)、LHMDS1.3mol/Lテトラヒドロフラン溶液1.85mL(LHMDS2.4mmol相当)を用いた以外は、実施例1−11と同様に反応および後処理を行い、目的物193.6mgを得た(収率75%)。
[Example 1-34]
Reaction and post-treatment were carried out in the same manner as in Example 1-11 except that pentafluoroaniline (2.4 mmol), bromobenzene (1 mmol), and LHMDS 1.3 mol/L tetrahydrofuran solution 1.85 mL (equivalent to LHMDS 2.4 mmol) were used. The desired product (193.6 mg) was obtained (yield 75%).

実施例1−33および実施例1−34のまとめを表5に示す。これらの結果から、系中に過剰の塩基が存在すると収率が低下する傾向があることがわかる。 Table 5 shows a summary of Examples 1-33 and 1-34. From these results, it can be seen that the yield tends to decrease when an excess amount of base is present in the system.

Figure 2020027258
Figure 2020027258

(6)重合体の合成

Figure 2020027258
(6) Synthesis of polymer
Figure 2020027258

[実施例2−1]
還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.08mmol(46.0mg)、RuPhos0.12mmol(56.0mg)、4,4′−ジアミノオクタフルオロビフェニル4.2mmol(1378.3mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mL、1,4−ジブロモベンゼン10mmol(943.6mg)を加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液7.1mL(LHMDS9.2mmol相当))を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液100mL、酢酸エチル50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル30mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をテトラヒドロフラン10mLに溶解して得られた溶液を、ヘキサンとトルエンの混合溶媒(2/1(v/v))500mLに滴下し、生じた固体をろ過により回収し、得られたろ物を80℃、減圧下で乾燥し、目的物0.47gを得た。
1H NMR (500.13 MHz, DMSO): δ = 7.08 (brd, J = 7.7 Hz, 4H), 7.56 (brd, J = 7.7 Hz, 4H), 8.68 (brs, 2H)
13C NMR (125.77 MHz, DMSO): δ = 97.2, 117.6, 123.9, 126.1, 127.8, 128.5, 132.9, 140.0, 140.7, 144.2
19F NMR (470.45 MHz, DMSO): δ =-148.76 (d, J = 17.3 Hz, 4F), -140.67 (s, 4F)
IR (neat): ν~ = 3421 (w), 3398 (w), 3030 (w), 1652 (m), 1610 (m), 1575 (w), 1482 (s), 1410 (m), 1394 (m), 1291 (m), 1261 (s), 1234 (s), 1183 (m), 1118 (m), 1085 (s), 995 (s), 973 (s), 938 (m), 812 (s), 721 (s)
[Example 2-1]
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.08 mmol (46.0 mg), RuPhos 0.12 mmol (56.0 mg), 4,4′-diaminooctafluorobiphenyl 4.2 mmol (1378.3 mg). ) Was weighed in and the system was replaced with nitrogen. 8 mL of dioxane and 10 mmol of 1,4-dibromobenzene (943.6 mg) were added thereto, and the mixture was stirred for 5 minutes, then, LHMDS 1.3 mol/L tetrahydrofuran solution 7.1 mL (equivalent to LHMDS 9.2 mmol)) was added, and a bath at 110°C was added. The mixture was heated and stirred for 5 hours (internal temperature: 92°C). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separatory funnel together with 100 mL of a saturated aqueous solution of ammonium chloride and 50 mL of ethyl acetate for extraction, the organic layer was left in the separatory funnel, and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 30 mL of ethyl acetate to perform extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. The solution obtained by dissolving the obtained residue in 10 mL of tetrahydrofuran was added dropwise to 500 mL of a mixed solvent of hexane and toluene (2/1 (v/v)), the resulting solid was collected by filtration, and the obtained solid was obtained. The product was dried at 80° C. under reduced pressure to obtain 0.47 g of the desired product.
1 H NMR (500.13 MHz, DMSO): δ = 7.08 (brd, J = 7.7 Hz, 4H), 7.56 (brd, J = 7.7 Hz, 4H), 8.68 (brs, 2H)
13 C NMR (125.77 MHz, DMSO): δ = 97.2, 117.6, 123.9, 126.1, 127.8, 128.5, 132.9, 140.0, 140.7, 144.2.
19 F NMR (470.45 MHz, DMSO): δ = -148.76 (d, J = 17.3 Hz, 4F), -140.67 (s, 4F)
IR (neat): ν~ = 3421 (w), 3398 (w), 3030 (w), 1652 (m), 1610 (m), 1575 (w), 1482 (s), 1410 (m), 1394 ( m), 1291 (m), 1261 (s), 1234 (s), 1183 (m), 1118 (m), 1085 (s), 995 (s), 973 (s), 938 (m), 812 ( s), 721 (s)

[実施例2−2]
Pd(DBA)20.4mmol(230.0mg)、RuPhos0.6mmol(280.0mg)を用いた以外は、実施例2−1と同様に反応および後処理を行い、目的物1.60gを得た。
[Example 2-2]
Reaction and post-treatment were carried out in the same manner as in Example 2-1, except that 0.4 mmol (230.0 mg) of Pd(DBA) 2 and 0.6 mmol (280.0 mg) of RuPhos were used, and thus 1.60 g of the desired product was obtained. It was

実施例2−1および実施例2−2のまとめを表6に示す。表6に示されるように、触媒量を変えることで得られる重合体の分子量を制御できることがわかる。 Table 6 shows a summary of Example 2-1 and Example 2-2. As shown in Table 6, it is understood that the molecular weight of the obtained polymer can be controlled by changing the catalyst amount.

Figure 2020027258
Figure 2020027258

Figure 2020027258
Figure 2020027258

[実施例2−3]

Figure 2020027258
[Example 2-3]
Figure 2020027258

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.5mmol(287.5mg)、0.75mmol(350.0mg)、4,4′−ジアミノオクタフルオロビフェニル2.5mmol(820.4mg)、4,4′−ジブロモビフェニル2.38mmol(742.9mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液7.1mL(LHMDS9.2mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液100mL、酢酸エチル50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル30mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をテトラヒドロフラン10mLに溶解して得られた溶液を、ヘキサンとトルエンの混合溶媒(2/1(v/v))500mLに滴下し、生じた固体をろ過により回収し、得られたろ物を80℃、減圧下で乾燥し、目的物1.01gを得た。得られた重合体は、Mw=32,000、Mn=15,000、Mw/Mn=2.13であり、また、ΔT5が321.6℃でTgは観察されなかった。
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.5 mmol (287.5 mg), 0.75 mmol (350.0 mg), 4,4′-diaminooctafluorobiphenyl 2.5 mmol (820.4 mg). ) And 4,4'-dibromobiphenyl (2.38 mmol, 742.9 mg) were weighed in and the system was replaced with nitrogen. After adding 8 mL of dioxane thereto and stirring for 5 minutes, 7.1 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (corresponding to 9.2 mmol of LHMDS) was added, and the mixture was heated with stirring in a 110° C. bath for 5 hours (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separatory funnel together with 100 mL of a saturated aqueous solution of ammonium chloride and 50 mL of ethyl acetate for extraction, the organic layer was left in the separatory funnel, and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 30 mL of ethyl acetate to perform extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. The solution obtained by dissolving the obtained residue in 10 mL of tetrahydrofuran was added dropwise to 500 mL of a mixed solvent of hexane and toluene (2/1 (v/v)), the resulting solid was collected by filtration, and the obtained solid was obtained. The product was dried at 80° C. under reduced pressure to obtain 1.01 g of the desired product. The obtained polymer had Mw=32,000, Mn=15,000 and Mw/Mn=2.13, and ΔT5 was 321.6° C., and Tg was not observed.

[実施例2−4]

Figure 2020027258
[Example 2-4]
Figure 2020027258

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.3mmol(172.5mg)、RuPhos0.45mmol(210.0mg)、4,4′−ジアミノオクタフルオロビフェニル1.5mmol(492.3mg)、3,6−ジブロモ−9−フェニルカルバゾール1.43mmol(572.3mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液2.54mL(LHMDS3.3mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液100mL、酢酸エチル50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル30mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をテトラヒドロフラン10mLに溶解して得られる溶液を、ヘキサンとトルエンの混合溶媒(2/1(v/v))500mLに滴下し、生じた固体をろ過により回収し、得られたろ物を80℃、減圧下で乾燥し、目的物928mgを得た。得られた重合体は、Mw=12,000、Mn=7,000、Mw/Mn=1.71であり、また、ΔT5が340.1℃でTgは観察されなかった。
1H NMR (500.13 MHz, THF): δ = 5.39 (d, J = 8.5 Hz, 2H), 5.52 (d, J = 8.5 Hz, 2H), 5.62 (brs, H), 5.80 (brs, 4H), 6.07 (d, 2H), 7.62 (brd, J = 8.0 Hz, 2H), 8.06 (brs, 2H)
13C NMR (125.77 MHz, THF): δ = 96.7, 110.8, 113.5, 121.4, 124.6, 126.2, 127.7, 127.8, 128.2, 129.1, 129.8, 130.9, 136.0, 139.1, 139.4, 140.2, 146.3
19F NMR (470.45 MHz, THF): δ =-151.34 (brd, 4F), -145.89 (brd, 4F)
IR (neat): ν~ = 3403 (w), 3029 (w), 2927 (w), 1651 (m), 1597 (w), 1483 (s), 1460 (s), 1364 (w), 1328 (w), 1291 (w), 1282 (w), 1211 (m), 1166 (w), 1121 (w), 1080 (m), 1027 (w), 994 (m), 976 (s), 951 (m), 939 (m), 925 (w), 863 (w), 757 (m), 723 (s)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.3 mmol (172.5 mg), RuPhos 0.45 mmol (210.0 mg), 4,4′-diaminooctafluorobiphenyl 1.5 mmol (492.3 mg). ), and 1.43 mmol (572.3 mg) of 3,6-dibromo-9-phenylcarbazole were weighed in and the system was replaced with nitrogen. After 8 mL of dioxane was added thereto and stirred for 5 minutes, 2.54 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (equivalent to LHMDS 3.3 mmol) was added, and the mixture was heated and stirred for 5 hours in a 110° C. bath (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separatory funnel together with 100 mL of a saturated aqueous solution of ammonium chloride and 50 mL of ethyl acetate for extraction, the organic layer was left in the separatory funnel, and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 30 mL of ethyl acetate to perform extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. The solution obtained by dissolving the obtained residue in 10 mL of tetrahydrofuran was added dropwise to 500 mL of a mixed solvent of hexane and toluene (2/1 (v/v)), and the resulting solid was collected by filtration, and the obtained filtrate was obtained. Was dried at 80° C. under reduced pressure to obtain 928 mg of the desired product. The obtained polymer had Mw=12,000, Mn=7,000, and Mw/Mn=1.71, and ΔT5 was 340.1° C., and Tg was not observed.
1 H NMR (500.13 MHz, THF): δ = 5.39 (d, J = 8.5 Hz, 2H), 5.52 (d, J = 8.5 Hz, 2H), 5.62 (brs, H), 5.80 (brs, 4H), 6.07 (d, 2H), 7.62 (brd, J = 8.0 Hz, 2H), 8.06 (brs, 2H)
13 C NMR (125.77 MHz, THF): δ = 96.7, 110.8, 113.5, 121.4, 124.6, 126.2, 127.7, 127.8, 128.2, 129.1, 129.8, 130.9, 136.0, 139.1, 139.4, 140.2, 146.3.
19 F NMR (470.45 MHz, THF): δ = -151.34 (brd, 4F), -145.89 (brd, 4F)
IR (neat): ν~ = 3403 (w), 3029 (w), 2927 (w), 1651 (m), 1597 (w), 1483 (s), 1460 (s), 1364 (w), 1328 ( w), 1291 (w), 1282 (w), 1211 (m), 1166 (w), 1121 (w), 1080 (m), 1027 (w), 994 (m), 976 (s), 951 ( m), 939 (m), 925 (w), 863 (w), 757 (m), 723 (s)

[実施例2−5]

Figure 2020027258
[Example 2-5]
Figure 2020027258

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.4mmol(230.0mg)、RuPhos0.6mmol(280.0mg)、4,4′−ジアミノオクタフルオロビフェニル2mmol(656.3mg)、2,7−ジブロモ−9,9−ジメチルフルオレン1.90mmol(670.6mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液3.2mL(LHMDS4.2mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液100mL、酢酸エチル50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル30mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をテトラヒドロフラン10mLに溶解して得られた溶液を、ヘキサンとトルエンの混合溶媒(2/1(v/v))500mLに滴下し、生じた固体をろ過により回収し、80℃、減圧下で乾燥し、目的物926mgを得た。得られた重合体は、Mw=20,000、Mn=11,000、Mw/Mn=1.82であり、また、ΔT5が340.1℃でTgは観察されなかった。
1H NMR (500.13 MHz, THF): δ = 1.52 (s, 6H), 7.02 (brd, J = 8.0 Hz, 2H), 7.18 (s, 2H), 7.62 (brd, J = 8.0 Hz, 2H), 8.06 (brs, 2H)
13C NMR (125.77 MHz, THF): δ = 26.6, 46.5, 97.1, 113.1, 117.4, 119.3, 125.0, 127.9, 128.7, 133.8, 139.9, 140.7, 145.1, 154.3
19F NMR (470.45 MHz, THF): δ =-151.76 (brd, 4F), -142.20 (brd, 4F)
IR (neat): ν~ = 3423 (w), 2958 (w), 2925 (w), 2859 (w), 1651 (m), 1613 (w), 1587 (w), 1518 (m), 1485 (s), 1464 (s), 1417 (m), 1295 (m), 1259 (w), 1239 (m), 1220 (w), 1195 (w), 1089 (m), 995 (m), 979 (s), 971 (s), 809 (m), 724 (m), 718 (m)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.4 mmol (230.0 mg), RuPhos 0.6 mmol (280.0 mg), 4,4′-diaminooctafluorobiphenyl 2 mmol (656.3 mg), 1.90 mmol (670.6 mg) of 2,7-dibromo-9,9-dimethylfluorene was weighed in and the system was replaced with nitrogen. After 8 mL of dioxane was added thereto and stirred for 5 minutes, 3.2 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (corresponding to 4.2 mmol of LHMDS) was added, and the mixture was heated and stirred in a 110° C. bath for 5 hours (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separatory funnel together with 100 mL of a saturated aqueous solution of ammonium chloride and 50 mL of ethyl acetate for extraction, the organic layer was left in the separatory funnel, and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 30 mL of ethyl acetate to perform extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. The solution obtained by dissolving the obtained residue in 10 mL of tetrahydrofuran was added dropwise to 500 mL of a mixed solvent of hexane and toluene (2/1 (v/v)), and the resulting solid was collected by filtration, and then at 80°C. It was dried under reduced pressure to obtain 926 mg of the desired product. The obtained polymer had Mw=20,000, Mn=11,000 and Mw/Mn=1.82, and ΔT5 was 340.1° C., and Tg was not observed.
1 H NMR (500.13 MHz, THF): δ = 1.52 (s, 6H), 7.02 (brd, J = 8.0 Hz, 2H), 7.18 (s, 2H), 7.62 (brd, J = 8.0 Hz, 2H), 8.06 (brs, 2H)
13 C NMR (125.77 MHz, THF): δ = 26.6, 46.5, 97.1, 113.1, 117.4, 119.3, 125.0, 127.9, 128.7, 133.8, 139.9, 140.7, 145.1, 154.3
19 F NMR (470.45 MHz, THF): δ = -151.76 (brd, 4F), -142.20 (brd, 4F)
IR (neat): ν~ = 3423 (w), 2958 (w), 2925 (w), 2859 (w), 1651 (m), 1613 (w), 1587 (w), 1518 (m), 1485 ( s), 1464 (s), 1417 (m), 1295 (m), 1259 (w), 1239 (m), 1220 (w), 1195 (w), 1089 (m), 995 (m), 979 ( s), 971 (s), 809 (m), 724 (m), 718 (m)

[実施例2−6]

Figure 2020027258
[Example 2-6]
Figure 2020027258

還流塔を取り付けた30mLの反応フラスコに、Pd(DBA)20.3mmol(172.5mg)、RuPhos0.45mmol(210.0mg)、4,4′−ジアミノオクタフルオロビフェニル1.5mmol(492.3mg)、9,10−ジブロモアントラセン1.43mmol(480mg)を量り入れ、系中を窒素置換した。そこへジオキサン8mLを加え、5分間撹拌した後、LHMDS1.3mol/Lテトラヒドロフラン溶液2.54mL(LHMDS3.3mmol相当)を加え、110℃の浴中で5時間加熱撹拌した(内温92℃)。なお、途中、フラスコ内の溶液を微量採取し、液体クロマトグラフィーを用いて反応を追跡した。原料に帰属できるピークの面積の減少に伴い目的物に帰属できるピークの面積が増加した。その際、副生成物に対応するような目立ったピークは確認されなかった。
反応混合物を室温まで冷却した後、冷却した反応混合物を飽和塩化アンモニウム水溶液100mL、酢酸エチル50mLとともに分液漏斗に入れて抽出を行い、分液漏斗に有機層を残し、水層を回収した。飽和食塩水50mLを分液漏斗に入れて残った有機層を洗浄し、水層、有機層をそれぞれ回収した。そして、回収した全ての水層を併せて分液漏斗に入れ、そこへ酢酸エチル30mLを入れて抽出を行い、有機層を回収し、回収した全ての有機層を併せ、これを硫酸マグネシウムで乾燥した。
硫酸マグネシウムを濾過により除去し、得られたろ液からロータリーエバポレーターにより溶媒を留去した。得られた残渣をテトラヒドロフラン10mLに溶解して得られた溶液を、ヘキサンとトルエンの混合溶媒(2/1(v/v))500mLに滴下し、生じた固体をろ過により回収し、ろ物を80℃、減圧下で乾燥し、目的物928mgを得た。得られた重合体は、Mw=18,000、Mn=8,100、Mw/Mn=2.22であった。
1H NMR (500.13 MHz, DMSO): δ = 7.60 (brs, 2H), 8.31 (brs, 2H), 9.30 (brs, 1H)
13C NMR (125.77 MHz, CDCl3): δ = 123.9, 126.4, 128.7, 129.3, 131.3, 135.8, 137.7, 143.5, 145.5
19F NMR (470.53 MHz, CDCl3): δ = -160.0 (brs, 4F), -143.2 (brs, 4F)
IR (neat): ν~ = 3361.9 (w), 1651.1 (m), 1485.1 (s), 1435.0 (m), 1377.2 (m), 12771.1 (w), 1178.5 (w), 1134.1 (w), 1111.0 (w), 1045.4 (w), 970.2 (s), 950.9 (m), 763.8 (s), 723.3 (s)
In a 30 mL reaction flask equipped with a reflux tower, Pd(DBA) 2 0.3 mmol (172.5 mg), RuPhos 0.45 mmol (210.0 mg), 4,4′-diaminooctafluorobiphenyl 1.5 mmol (492.3 mg). ), 9,10-dibromoanthracene 1.43 mmol (480 mg) were weighed in and the system was replaced with nitrogen. After 8 mL of dioxane was added thereto and stirred for 5 minutes, 2.54 mL of LHMDS 1.3 mol/L tetrahydrofuran solution (equivalent to LHMDS 3.3 mmol) was added, and the mixture was heated and stirred for 5 hours in a 110° C. bath (internal temperature 92° C.). During the process, a small amount of the solution in the flask was sampled and the reaction was traced using liquid chromatography. The area of the peak that can be attributed to the target substance increased as the area of the peak that can be attributed to the raw material decreased. At that time, no prominent peak corresponding to a by-product was confirmed.
After cooling the reaction mixture to room temperature, the cooled reaction mixture was put into a separatory funnel together with 100 mL of a saturated aqueous solution of ammonium chloride and 50 mL of ethyl acetate for extraction, the organic layer was left in the separatory funnel, and the aqueous layer was recovered. 50 mL of saturated saline was put in a separatory funnel to wash the remaining organic layer, and the aqueous layer and the organic layer were respectively collected. Then, put all the collected aqueous layers together into a separating funnel, and add 30 mL of ethyl acetate to perform extraction, collect the organic layers, combine all the collected organic layers, and dry them with magnesium sulfate. did.
Magnesium sulfate was removed by filtration, and the solvent was distilled off from the obtained filtrate with a rotary evaporator. The solution obtained by dissolving the obtained residue in 10 mL of tetrahydrofuran was added dropwise to 500 mL of a mixed solvent of hexane and toluene (2/1 (v/v)), the resulting solid was collected by filtration, and the filtrate was collected. It was dried at 80° C. under reduced pressure to obtain 928 mg of the desired product. The polymer obtained had Mw=18,000, Mn=8,100 and Mw/Mn=2.22.
1 H NMR (500.13 MHz, DMSO): δ = 7.60 (brs, 2H), 8.31 (brs, 2H), 9.30 (brs, 1H)
13 C NMR (125.77 MHz, CDCl 3 ): δ = 123.9, 126.4, 128.7, 129.3, 131.3, 135.8, 137.7, 143.5, 145.5.
19 F NMR (470.53 MHz, CDCl 3 ): δ = -160.0 (brs, 4F), -143.2 (brs, 4F)
IR (neat): ν~ = 3361.9 (w), 1651.1 (m), 1485.1 (s), 1435.0 (m), 1377.2 (m), 12771.1 (w), 1178.5 (w), 1134.1 (w), 1111.0 ( w), 1045.4 (w), 970.2 (s), 950.9 (m), 763.8 (s), 723.3 (s)

[2]電荷輸送性組成物および電荷輸送性薄膜の作製
[実施例3−1]
サンプル瓶(10mL)に実施例1−24で合成した下記式(H1)で表されるナフチル基を有するフッ化アリールアミン化合物35.9mgと下記式(D2)で表されるアリールスルホン酸化合物56.2mgを量りとり、テトラヒドロフルフリルアルコール3gを加えて均一になるまで室温で撹拌し、固形分3質量%の溶液を得た。この溶液を、ITO基板上にスピンコーターを用いて塗布した後、大気下で、80℃で1分間乾燥し、次いで230℃で15分間焼成し、厚さ50nmの薄膜を作製した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚50nmで形成されたガラス基板を用いた。この薄膜の上に、蒸着装置(真空度4.0×10-5Pa)を用いてアルミニウム薄膜を形成して単層素子を得た。蒸着は、蒸着レート0.2nm/秒の条件で行った。アルミニウム薄膜の膜厚は80nmとした。なお、下記式(D2)で表されるアリールスルホン酸化合物は、国際公開第2006/025342号に記載の方法に従い合成した。
[2] Preparation of charge transporting composition and charge transporting thin film [Example 3-1]
35.9 mg of a fluorinated arylamine compound having a naphthyl group represented by the following formula (H1) synthesized in Example 1-24 in a sample bottle (10 mL) and an arylsulfonic acid compound 56 represented by the following formula (D2). 0.2 mg was weighed, 3 g of tetrahydrofurfuryl alcohol was added, and the mixture was stirred at room temperature until uniform, to obtain a solution having a solid content of 3% by mass. This solution was applied onto an ITO substrate using a spin coater, dried in the atmosphere at 80° C. for 1 minute, and then baked at 230° C. for 15 minutes to form a thin film having a thickness of 50 nm. As the ITO substrate, a glass substrate on the surface of which indium tin oxide (ITO) was formed with a film thickness of 50 nm was used. An aluminum thin film was formed on this thin film using a vapor deposition apparatus (vacuum degree 4.0×10 −5 Pa) to obtain a single layer element. The vapor deposition was performed under the conditions of a vapor deposition rate of 0.2 nm/sec. The thickness of the aluminum thin film was 80 nm. The aryl sulfonic acid compound represented by the following formula (D2) was synthesized according to the method described in WO 2006/025342.

Figure 2020027258
Figure 2020027258

[実施例3−2]
サンプル瓶(10mL)に実施例1−26で合成した下記式(H2)で表されるトリフェニルアミン基を有するフッ化アリールアミン化合物44mgと上記式(D2)で表されるアリールスルホン酸化合物49mgを量りとり、テトラヒドロフルフリルアルコール3gを加えて均一になるまで室温で撹拌し、固形分3質量%の溶液を得た。この溶液を用いた以外は、実施例3−1と同様にして単層素子を作製した。
[Example 3-2]
44 mg of a fluorinated arylamine compound having a triphenylamine group represented by the following formula (H2) synthesized in Example 1-26 in a sample bottle (10 mL) and 49 mg of the arylsulfonic acid compound represented by the above formula (D2). Was weighed out, 3 g of tetrahydrofurfuryl alcohol was added, and the mixture was stirred at room temperature until uniform, to obtain a solution having a solid content of 3% by mass. A single-layer element was produced in the same manner as in Example 3-1, except that this solution was used.

Figure 2020027258
Figure 2020027258

[実施例3−3]
サンプル瓶(10mL)に実施例2−3で合成した下記式(H3)で表されるビフェニル骨格を有するフッ化アリールアミン共重合体21.6mgと上記式(D2)で表されるアリールスルホン酸化合物40mgを量りとり、テトラヒドロフルフリルアルコール3gを加えて均一になるまで室温で撹拌し、固形分2質量%の溶液を得た。この溶液を用いた以外は、実施例3−1と同様にして単層素子を作製した。
[Example 3-3]
21.6 mg of a fluoroarylamine copolymer having a biphenyl skeleton represented by the following formula (H3) synthesized in Example 2-3 in a sample bottle (10 mL) and the arylsulfonic acid represented by the above formula (D2) 40 mg of the compound was weighed out, 3 g of tetrahydrofurfuryl alcohol was added, and the mixture was stirred at room temperature until uniform, to obtain a solution having a solid content of 2% by mass. A single-layer element was produced in the same manner as in Example 3-1, except that this solution was used.

Figure 2020027258
Figure 2020027258

[実施例3−4]
サンプル瓶(10mL)に実施例2−4で合成した下記式(H4)で表されるフェニルカルバゾール基を有するフッ化アリールアミン共重合体36mgと、上記式(D2)で表されるアリールスルホン酸化合物57mgを量りとり、テトラヒドロフルフリルアルコール3gを加えて均一になるまで室温で撹拌し、固形分3質量%の溶液を得た。この溶液を用いた以外は、実施例3−1と同様にして単層素子を作製した。
[Example 3-4]
36 mg of a fluoroarylamine copolymer having a phenylcarbazole group represented by the following formula (H4) synthesized in Example 2-4 in a sample bottle (10 mL), and an arylsulfonic acid represented by the above formula (D2) 57 mg of the compound was weighed out, 3 g of tetrahydrofurfuryl alcohol was added, and the mixture was stirred at room temperature until uniform, to obtain a solution having a solid content of 3% by mass. A single-layer element was produced in the same manner as in Example 3-1, except that this solution was used.

Figure 2020027258
Figure 2020027258

[実施例3−5]
サンプル瓶(10mL)に実施例2−5で合成した下記式(H5)で表される9,9−ジメチルフルオレン基を有するフッ化アリールアミン共重合体34mgと、上記式(D2)で表されるアリールスルホン酸化合物59mgを量りとり、テトラヒドロフルフリルアルコール3gを加えて均一になるまで室温で撹拌し、固形分3質量%の溶液を得た。この溶液を用いた以外は、実施例3−1と同様にして単層素子を作製した。
[Example 3-5]
In a sample bottle (10 mL), 34 mg of a fluoroarylamine copolymer having a 9,9-dimethylfluorene group represented by the following formula (H5) synthesized in Example 2-5 and the above formula (D2) were represented. 59 mg of the aryl sulfonic acid compound was weighed out, 3 g of tetrahydrofurfuryl alcohol was added, and the mixture was stirred at room temperature until uniform, to obtain a solution having a solid content of 3% by mass. A single-layer element was produced in the same manner as in Example 3-1, except that this solution was used.

Figure 2020027258
Figure 2020027258

得られた各単層素子について駆動電圧5Vにおける電流密度を測定した。結果を表7に示す。 The current density at a driving voltage of 5 V was measured for each of the obtained single layer devices. The results are shown in Table 7.

Figure 2020027258
Figure 2020027258

表7に示されるように、本発明のフッ化アリールアミン化合物または重合体を電荷輸送性物質として含む薄膜は、良好な導電性を示すことがわかる。 As shown in Table 7, it is understood that the thin film containing the fluorinated arylamine compound or polymer of the present invention as the charge transporting substance exhibits good conductivity.

Claims (30)

フッ化芳香族第一級アミン化合物と、塩素化、臭素化もしくはヨウ素化芳香族炭化水素または擬ハロゲン化芳香族炭化水素とを、触媒、配位子および塩基の存在下で反応させる工程を備えるフッ化芳香族第二級アミン化合物の製造方法であって、
前記触媒が、ジベンジリデンアセトンのパラジウム0価錯体を含み、
前記配位子が、下記式(L)で表されるビフェニルホスフィン化合物を含むことを特徴とするフッ化芳香族第二級アミン化合物の製造方法。
Figure 2020027258
(式中、R1は、それぞれ独立して、炭素数1〜20のアルキル基または炭素数6〜20のアリール基を表し、R2〜R5は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基または炭素数1〜20のアルコキシ基を表し、R6〜R8は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、またはNR9 2基を表し、R9は、それぞれ独立して、炭素数1〜20のアルキル基を表す。)
A step of reacting a fluorinated aromatic primary amine compound with a chlorinated, brominated or iodinated aromatic hydrocarbon or a pseudohalogenated aromatic hydrocarbon in the presence of a catalyst, a ligand and a base. A method for producing a fluorinated aromatic secondary amine compound,
The catalyst comprises a palladium zero-valent complex of dibenzylideneacetone,
The method for producing a fluorinated aromatic secondary amine compound, wherein the ligand contains a biphenylphosphine compound represented by the following formula (L).
Figure 2020027258
(In the formula, each R 1 independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 2 to R 5 each independently represent a hydrogen atom or a carbon number. Represents an alkyl group having 1 to 20 or an alkoxy group having 1 to 20 carbon atoms, and R 6 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. , or an NR 9 2 group, R 9 each independently represent an alkyl group having 1 to 20 carbon atoms.)
前記触媒が、ジベンジリデンアセトンのパラジウム0価錯体であり、
前記配位子が、前記式(L)で表されるビフェニルホスフィン化合物である請求項1記載のフッ化芳香族第二級アミン化合物の製造方法。
The catalyst is a palladium zero-valent complex of dibenzylideneacetone,
The method for producing a fluorinated aromatic secondary amine compound according to claim 1, wherein the ligand is a biphenylphosphine compound represented by the formula (L).
前記R1が、それぞれ独立して、リン原子と結合する炭素原子が第2級または第3級炭素原子である炭素数3〜20の分岐鎖状アルキル基または環状アルキル基である請求項1または2記載のフッ化芳香族第二級アミンの製造方法。The R 1 is each independently a branched chain alkyl group having 3 to 20 carbon atoms or a cyclic alkyl group in which the carbon atom bonded to the phosphorus atom is a secondary or tertiary carbon atom. 2. The method for producing a fluorinated aromatic secondary amine according to 2. 前記R1が、ともにシクロヘキシル基またはt−ブチル基である請求項3記載のフッ化芳香族第二級アミンの製造方法。The method for producing a fluorinated aromatic secondary amine according to claim 3, wherein both R 1 are a cyclohexyl group or a t-butyl group. 前記R2およびR5が、それぞれ独立して、水素原子または炭素数1〜5のアルコキシ基を表し、前記R3およびR4が、ともに水素原子であり、前記R6〜R8が、それぞれ独立して、水素原子、炭素数1〜5のアルキル基、または炭素数1〜5のアルコキシ基を表す請求項1〜4のいずれか1項記載のフッ化芳香族第二級アミンの製造方法。R 2 and R 5 each independently represent a hydrogen atom or an alkoxy group having 1 to 5 carbon atoms, R 3 and R 4 are both hydrogen atoms, and R 6 to R 8 are respectively The method for producing a fluorinated aromatic secondary amine according to any one of claims 1 to 4, which independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. .. 前記式(L)で表されるビフェニルホスフィン化合物が、下記式(L1)〜(L4)のいずれかで表されるビフェニルホスフィン化合物である請求項1〜5のいずれか1項記載のフッ化芳香族第二級アミンの製造方法。
Figure 2020027258
(式中、Meはメチル基を、i−Prはイソプロピル基を、Cyはシクロヘキシル基を、t−Buはt−ブチル基を意味する。)
The fluorinated aroma according to any one of claims 1 to 5, wherein the biphenylphosphine compound represented by the formula (L) is a biphenylphosphine compound represented by any of the following formulas (L1) to (L4). For producing a secondary amine of group C.
Figure 2020027258
(In the formula, Me means a methyl group, i-Pr means an isopropyl group, Cy means a cyclohexyl group, and t-Bu means a t-butyl group.)
前記ジベンジリデンアセトンのパラジウム0価錯体が、ビス(ジベンジリデンアセトン)パラジウム(0)である請求項1〜6のいずれか1項記載のフッ化芳香族第二級アミンの製造方法。 The method for producing a fluorinated aromatic secondary amine according to claim 1, wherein the palladium zero-valent complex of dibenzylideneacetone is bis(dibenzylideneacetone)palladium(0). 前記フッ化芳香族第一級アミン化合物が、分子内にフッ素原子を2個以上有するフッ化芳香族第一級モノアミン化合物またはジアミン化合物である請求項1〜7のいずれか1項記載のフッ化芳香族第二級アミンの製造方法。 The fluorinated aromatic primary amine compound is a fluorinated aromatic primary monoamine compound or diamine compound having two or more fluorine atoms in the molecule, according to any one of claims 1 to 7. Process for producing aromatic secondary amine. 前記塩素化、臭素化もしくはヨウ素化芳香族炭化水素が、モノもしくはジクロロ芳香族炭化水素、モノもしくはジブロモ芳香族炭化水素、またはモノもしくはジヨード芳香族炭化水素である請求項1〜8のいずれか1項記載のフッ化芳香族第二級アミンの製造方法。 9. The chlorinated, brominated or iodinated aromatic hydrocarbon is a mono or dichloro aromatic hydrocarbon, a mono or dibromo aromatic hydrocarbon, or a mono or diiodo aromatic hydrocarbon. Item 6. A method for producing a fluorinated aromatic secondary amine according to the item. 式(T1)または(T2)で表される含フッ素アニリン誘導体(但し、下記式[1]〜[13]で表される化合物を除く。)。
Figure 2020027258
〔式中、X211は、式(A01−1)〜(A09)のいずれかで表される2価の基を表し、
Figure 2020027258
(式中、L01は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ10−を表し、
02およびL03は、それぞれ独立して、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
04は、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
Z′は、芳香環の置換基を表し、それぞれ独立して、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
01〜Z09は、芳香環の置換基を表し、それぞれ独立して、塩素原子、臭素原子、ニトロ基、シアノ基、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
10は、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
11は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基またはZ13で置換されていてもよい炭素数6〜20のアリール基を表し、
12は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z13で置換されていてもよい炭素数1〜20のアルキル基またはZ13で置換されていてもよい炭素数2〜20のアルケニル基を表し、
13は、フッ素原子、塩素原子、臭素原子、ニトロ基またはシアノ基を表し、
a11、a13、a21、a23、a31、a33、a41、a51、a61、a71、a73、a81、a83、a91およびa93は、芳香環に置換するフッ素原子の数を表し、
a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、芳香環に置換するZ01〜Z09の数を表し、
a75およびa76は、芳香環に置換するZ′の数を表し、
a11は、2〜4の整数であり、a12は、0〜2の整数であり、かつ、a11+a12≦4を満たし、
a13は、2〜4の整数であり、a14は、0〜2の整数であり、かつ、a13+a14≦4を満たし、
a21およびa23は、それぞれ独立して1〜4の整数であり、a22およびa24は、それぞれ独立して0〜3の整数であり、かつ、a21+a22≦4およびa23+a24≦4を満たし、
a31およびa33は、それぞれ独立して1〜4の整数であり、a32およびa34は、それぞれ独立して0〜3の整数であり、かつ、a31+a32≦4およびa33+a34≦4を満たし、
a41は、1〜6の整数であり、a42は、0〜5の整数であり、かつ、a41+a42≦6を満たし、
a51は、1〜8の整数であり、a52は、0〜7の整数であり、かつ、a51+a52≦8を満たし、
a61は、1〜8の整数であり、a62は、0〜7の整数であり、かつ、a61+a62≦8を満たし、
a71およびa73は、それぞれ独立して1〜3の整数であり、a72およびa74は、それぞれ独立して0〜2の整数であり、かつ、a71+a72≦3およびa73+a74≦3を満たし、a75およびa76は、それぞれ独立して0〜4の整数であり、
a81およびa83は、それぞれ独立して1〜3の整数であり、a82およびa84は、それぞれ独立して0〜2の整数であり、かつ、a81+a82≦3およびa83+a84≦3を満たし、
a91およびa93は、それぞれ独立して1〜3の整数であり、a92およびa94は、それぞれ独立して0〜2の整数であり、かつ、a91+a92≦3およびa93+a94≦3を満たす。)
211およびY212は、それぞれ独立して、式(B01)〜(B21)のいずれかで表される1価の基を表し、
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、L11は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ100−を表し、
12は、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
13およびL14は、それぞれ独立して、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
100は、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
101〜Z107およびZ109〜Z121は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
108は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基もしくはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、異なるベンゼン環上に存在するZ108同士が結合して環を形成していてもよく、
130は、それぞれ独立して、フッ素原子、塩素原子、臭素原子またはZ132で置換されていてもよい炭素数6〜20のアリール基を表し、
131は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、Z132で置換されていてもよい炭素数1〜20のアルキル基またはZ132で置換されていてもよい炭素数2〜20のアルケニル基を表し、
132は、フッ素原子、塩素原子または臭素原子を表し、
Ar1は、それぞれ独立して、炭素数6〜20のアリール基を表し、
Ar2は、単結合または炭素数6〜20のアリーレン基を表す。)
221およびX222は、それぞれ独立して、式(C01)〜(C09)のいずれかで表される1価の基を表し、
Figure 2020027258
(式中、b11、b21、b23、b31、b33、b41、b51、b61、b71、b73、b81、b83、b91およびb93は、芳香環に置換するフッ素原子の数を表し、
b12、b22、b24、b32、b34、b42、b52、b62、b72、b74、b82、b84、b92およびb94は、芳香環に置換するZ01〜Z09の数を表し、
b75およびb76は、芳香環に置換するZ′の数を表し、
b11は、2〜5の整数であり、b12は、0〜3の整数であり、かつ、b11+b12≦5を満たし、
b21は、1〜4の整数であり、b23は、1〜5の整数であり、b22は、0〜3の整数であり、b24は、0〜4の整数であり、かつ、b21+b22≦4およびb23+b24≦5を満たし、
b31は、1〜4の整数であり、b33は、1〜5の整数であり、b32は、0〜3の整数であり、b34は、0〜4の整数であり、かつ、b31+b32≦4およびb33+b34≦5を満たし、
b41は、1〜7の整数であり、b42は、0〜6の整数であり、かつ、b41+b42≦7を満たし、
b51は、1〜9の整数であり、b52は、0〜8の整数であり、かつ、b51+b52≦9を満たし、
b61は、1〜9の整数であり、b62は、0〜8の整数であり、かつ、b61+b62≦9を満たし、
b71は、1〜3の整数であり、b73は、1〜4の整数であり、b72は、0〜2の整数であり、b74は、0〜3の整数であり、かつ、b71+b72≦3およびb73+b74≦4を満たし、b75およびb76は、それぞれ独立して、0〜4の整数であり、
b81は、1〜3の整数であり、b83は、1〜4の整数であり、b82は、0〜2の整数であり、b84は、0〜3の整数であり、かつ、b81+b82≦3およびb83+b84≦4を満たし、
b91は、1〜3の整数であり、b93は、1〜4の整数であり、b92は、0〜2の整数であり、b94は、0〜3の整数であり、かつ、b91+b92≦3およびb93+b94≦4を満たし、
01〜L04、Z′およびZ01〜Z07は、前記と同じ意味を表す。)
221は、式(D01−1)〜(D21)のいずれかで表される2価の基を表す。
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、Ar3は、それぞれ独立して、炭素数6〜20のアリーレン基を表し、L11〜L14、Z101〜Z121、およびAr1は、前記と同じ意味を表す。)〕
Figure 2020027258
A fluorine-containing aniline derivative represented by the formula (T1) or (T2) (however, the compounds represented by the following formulas [1] to [13] are excluded).
Figure 2020027258
[In the formula, X 211 represents a divalent group represented by any of formulas (A01-1) to (A09),
Figure 2020027258
(In the formula, L 01 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 10 - represents,
L 02 and L 03 are each independently hydrogen atom, Z 11 alkyl group carbon atoms which may be have 1 to 20 substituents, alkenyl group optionally having 2 to 20 carbon atoms optionally substituted by Z 11 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
L 04 represents a hydrogen atom, optionally substituted alkenyl group or Z 12 alkyl group, optionally 2 to 20 carbon atoms optionally substituted by Z 11 of carbon atoms which may be have 1-20 substituted with Z 11 Represents an aryl group having 6 to 20 carbon atoms,
Z 'represents a substituent of the aromatic ring, each independently, an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, Z 11 which may be 2-20 carbons substituted with Represents an alkenyl group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
Z 01 to Z 09 represent a substituent of an aromatic ring, and each independently represent a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 11 , Represents an alkenyl group having 2 to 20 carbon atoms which may be substituted by Z 11 or an aryl group having 6 to 20 carbon atoms which may be substituted by Z 12 .
Z 10 represents an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, which may be substituted with alkenyl or Z 12 good 2 to 20 carbon atoms optionally substituted by Z 11 carbon Represents an aryl group of the number 6 to 20,
Z 11's each independently represent a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 13 .
Z 12 are each independently a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, optionally substituted with an alkyl group or Z 13 of carbon atoms which may be have 1-20 substituted with Z 13 Represents a good alkenyl group having 2 to 20 carbon atoms,
Z 13 represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group or a cyano group,
a 11 , a 13 , a 21 , a 23 , a 31 , a 33 , a 41 , a 51 , a 61 , a 71 , a 73 , a 81 , a 83 , a 91 and a 93 are substituted with an aromatic ring. Represents the number of fluorine atoms
a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 are substituted with an aromatic ring. Represents the number of Z 01 to Z 09
a 75 and a 76 represent the number of Z′ substituting the aromatic ring,
a 11 is an integer of 2 to 4, a 12 is an integer of 0 to 2 and satisfies a 11 +a 12 ≦4,
a 13 is an integer of 2 to 4, a 14 is an integer of 0 to 2 and satisfies a 13 +a 14 ≦4,
a 21 and a 23 are each independently an integer of 1 to 4, a 22 and a 24 are each independently an integer of 0 to 3, and a 21 +a 22 ≦4 and a 23 +a Satisfies 24 ≤ 4,
a 31 and a 33 are each independently an integer of 1 to 4, a 32 and a 34 are each independently an integer of 0 to 3, and a 31 +a 32 ≦4 and a 33 +a. Satisfies 34 ≤ 4,
a 41 is an integer of 1 to 6, a 42 is an integer of 0 to 5, and a 41 +a 42 ≦6 is satisfied,
a 51 is an integer of 1 to 8, a 52 is an integer of 0 to 7 and a 51 +a 52 ≦8 is satisfied,
a 61 is an integer of 1 to 8, a 62 is an integer of 0 to 7 and a 61 +a 62 ≦8 is satisfied,
a 71 and a 73 are each independently an integer of 1 to 3, a 72 and a 74 are each independently an integer of 0 to 2, and a 71 +a 72 ≦3 and a 73 +a 74 ≦3 is satisfied, and a 75 and a 76 are each independently an integer of 0 to 4,
a 81 and a 83 are each independently an integer of 1 to 3, a 82 and a 84 are each independently an integer of 0 to 2, and a 81 +a 82 ≦3 and a 83 +a Satisfying 84 ≦3,
a 91 and a 93 are each independently an integer of 1 to 3, a 92 and a 94 are each independently an integer of 0 to 2, and a 91 +a 92 ≦3 and a 93 +a 94 ≦3 is satisfied. )
Y 211 and Y 212 each independently represent a monovalent group represented by any of formulas (B01) to (B21),
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, L 11 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 100 - represents,
L 12 represents a hydrogen atom, optionally substituted alkenyl group or Z 131 of is an alkyl group having 1 to 20 carbon atoms also be good 2-20 carbon atoms substituted with Z 130 substituted with Z 130 Represents an aryl group having 6 to 20 carbon atoms,
L 13 and L 14 are each independently a hydrogen atom, Z 130 with an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group which may C2-20 optionally substituted by Z 130 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 ,
Z 100 represents an alkyl group with carbon atoms which may have 1 to 20 substituted by Z 130, which may be substituted with alkenyl or Z 131 good 2 to 20 carbon atoms optionally substituted by Z 130 carbon Represents an aryl group of the number 6 to 20,
Z 101 to Z 107 and Z 109 to Z 121 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, or a C 1-20 optionally substituted with Z 130. Represents an alkyl group having 2 to 20 carbon atoms, which may be substituted with Z 130 , or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 131 .
Z 108 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having carbon atoms which may be have 1-20 substituted with Z 130, is substituted with Z 130 Represents an alkenyl group having 2 to 20 carbon atoms which may be present or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and Z 108 existing on different benzene rings are bonded to each other to form a ring. May be formed,
Z 130 s each independently represent a fluorine atom, a chlorine atom, a bromine atom or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 132 .
Z 131 are each independently a fluorine atom, a chlorine atom, a bromine atom, an alkyl group or Z 132 carbon atoms which may be have 2-20 substituted with 1 to 20 carbon atoms which may be substituted with Z 132 Represents an alkenyl group of
Z 132 represents a fluorine atom, a chlorine atom or a bromine atom,
Ar 1's each independently represent an aryl group having 6 to 20 carbon atoms,
Ar 2 represents a single bond or an arylene group having 6 to 20 carbon atoms. )
X 221 and X 222 each independently represent a monovalent group represented by any of formulas (C01) to (C09),
Figure 2020027258
(In the formula, b 11 , b 21 , b 23 , b 31 , b 33 , b 41 , b 51 , b 61 , b 71 , b 73 , b 81 , b 83 , b 91 and b 93 are aromatic rings. Represents the number of fluorine atoms to be substituted,
b 12 , b 22 , b 24 , b 32 , b 34 , b 42 , b 52 , b 62 , b 72 , b 74 , b 82 , b 84 , b 92 and b 94 are substituted with an aromatic ring Z 01 ~ Represents the number of Z 09 ,
b 75 and b 76 represent the number of Z′ substituting the aromatic ring,
b 11 is an integer of 2 to 5, b 12 is an integer of 0 to 3 and satisfies b 11 +b 12 ≦5,
b 21 is an integer of 1 to 4, b 23 is an integer of 1 to 5, b 22 is an integer of 0 to 3, b 24 is an integer of 0 to 4, and satisfying b 21 +b 22 ≦4 and b 23 +b 24 ≦5,
b 31 is an integer of 1 to 4, b 33 is an integer of 1 to 5, b 32 is an integer of 0 to 3, b 34 is an integer of 0 to 4, and b 31 +b 32 ≦4 and b 33 +b 34 ≦5 are satisfied,
b 41 is an integer of 1 to 7, b 42 is an integer of 0 to 6, and b 41 +b 42 ≦7 is satisfied,
b 51 is an integer of 1 to 9, b 52 is an integer of 0 to 8 and satisfies b 51 +b 52 ≦9,
b 61 is an integer of 1 to 9, b 62 is an integer of 0 to 8 and satisfies b 61 +b 62 ≦9,
b 71 is an integer of 1 to 3, b 73 is an integer of 1 to 4, b 72 is an integer of 0 to 2, b 74 is an integer of 0 to 3, and b 71 +b 72 ≦3 and b 73 +b 74 ≦4 are satisfied, and b 75 and b 76 are each independently an integer of 0 to 4,
b 81 is an integer of 1 to 3, b 83 is an integer of 1 to 4, b 82 is an integer of 0 to 2, b 84 is an integer of 0 to 3, and satisfies b 81 +b 82 ≦3 and b 83 +b 84 ≦4,
b 91 is an integer of 1 to 3, b 93 is an integer of 1 to 4, b 92 is an integer of 0 to 2, b 94 is an integer of 0 to 3, and b 91 +b 92 ≤3 and b 93 +b 94 ≤4 are satisfied,
L 01 to L 04 , Z′ and Z 01 to Z 07 have the same meanings as described above. )
Y 221 represents a divalent group represented by any of formulas (D01-1) to (D21).
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, Ar 3 independently represents an arylene group having 6 to 20 carbon atoms, and L 11 to L 14 , Z 101 to Z 121 , and Ar 1 have the same meanings as described above.)]
Figure 2020027258
前記X211が、前記式(A02)で表される2価の基である請求項10記載の含フッ素アニリン誘導体。The fluorine-containing aniline derivative according to claim 10, wherein X 211 is a divalent group represented by the formula (A02). 前記X211が、下記式(A02−1)で表される2価の基である請求項11記載の含フッ素アニリン誘導体。
Figure 2020027258
(式中、a21〜a24およびZ02は前記と同じ意味を表す。)
The fluorine-containing aniline derivative according to claim 11, wherein X 211 is a divalent group represented by the following formula (A02-1).
Figure 2020027258
(In the formula, a 21 to a 24 and Z 02 have the same meanings as described above.)
前記Y211およびY212が、同一の1価の基である請求項10〜12のいずれか1項記載の含フッ素アニリン誘導体。The fluorine-containing aniline derivative according to claim 10, wherein Y 211 and Y 212 are the same monovalent group. 前記Y211およびY212が、ともに前記式(B01)、(B02)、(B04)、(B08)および(B18)のいずれかで表される1価の基である請求項13記載の含フッ素アニリン誘導体。14. The fluorine-containing group according to claim 13, wherein both Y 211 and Y 212 are a monovalent group represented by any of the formulas (B01), (B02), (B04), (B08) and (B18). Aniline derivative. 前記Y221が、前記式(D02)で表される2価の基である請求項10記載の含フッ素アニリン誘導体。The fluorinated aniline derivative according to claim 10, wherein Y 221 is a divalent group represented by the formula (D02). 前記Y221が、下記式(D02−1)で表される2価の基である請求項15記載の含フッ素アニリン誘導体。
Figure 2020027258
The fluorine-containing aniline derivative according to claim 15, wherein Y 221 is a divalent group represented by the following formula (D02-1).
Figure 2020027258
221およびX222が、同一の1価の基である請求項10、15または16記載の含フッ素アニリン誘導体。The fluorine-containing aniline derivative according to claim 10, 15 or 16, wherein X 221 and X 222 are the same monovalent group. 221およびX222が、ともに前記式(C01)で表される1価の基である請求項17記載の含フッ素アニリン誘導体。The fluorine-containing aniline derivative according to claim 17, wherein both X 221 and X 222 are a monovalent group represented by the formula (C01). 下記式(P1−2)で表される繰り返し単位を含む重合体。
Figure 2020027258
〔式中、X211は、式(A01−1)〜(A09)のいずれかで表される2価の基を表し、
Figure 2020027258
(式中、L01は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH−または−NZ10−を表し、
02およびL03は、それぞれ独立して、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
04は、水素原子、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
Z′は、芳香環の置換基を表し、それぞれ独立して、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
01〜Z09は、芳香環の置換基を表し、それぞれ独立して、塩素原子、臭素原子、ニトロ基、シアノ基、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
10は、Z11で置換されていてもよい炭素数1〜20のアルキル基、Z11で置換されていてもよい炭素数2〜20のアルケニル基またはZ12で置換されていてもよい炭素数6〜20のアリール基を表し、
11は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基またはZ13で置換されていてもよい炭素数6〜20のアリール基を表し、
12は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z13で置換されていてもよい炭素数1〜20のアルキル基またはZ13で置換されていてもよい炭素数2〜20のアルケニル基を表し、
13は、フッ素原子、塩素原子、臭素原子、ニトロ基またはシアノ基を表し、
a11、a13、a21、a23、a31、a33、a41、a51、a61、a71、a73、a81、a83、a91およびa93は、芳香環に置換するフッ素原子の数を表し、
a12、a14、a22、a24、a32、a34、a42、a52、a62、a72、a74、a82、a84、a92およびa94は、芳香環に置換するZ01〜Z09の数を表し、
a75およびa76は、芳香環に置換するZ′の数を表し、
a11は、2〜4の整数であり、a12は、0〜2の整数であり、かつ、a11+a12≦4を満たし、
a13は、2〜4の整数であり、a14は、0〜2の整数であり、かつ、a13+a14≦4を満たし、
a21およびa23は、それぞれ独立して1〜4の整数であり、a22およびa24は、それぞれ独立して0〜3の整数であり、かつ、a21+a22≦4およびa23+a24≦4を満たし、
a31およびa33は、それぞれ独立して1〜4の整数であり、a32およびa34は、それぞれ独立して0〜3の整数であり、かつ、a31+a32≦4およびa33+a34≦4を満たし、
a41は、1〜6の整数であり、a42は、0〜5の整数であり、かつ、a41+a42≦6を満たし、
a51は、1〜8の整数であり、a52は、0〜7の整数であり、かつ、a51+a52≦8を満たし、
a61は、1〜8の整数であり、a62は、0〜7の整数であり、かつ、a61+a62≦8を満たし、
a71およびa73は、それぞれ独立して1〜3の整数であり、a72およびa74は、それぞれ独立して0〜2の整数であり、かつ、a71+a72≦3およびa73+a74≦3を満たし、a75およびa76は、それぞれ独立して0〜4の整数であり、
a81およびa83は、それぞれ独立して1〜3の整数であり、a82およびa84は、それぞれ独立して0〜2の整数であり、かつ、a81+a82≦3およびa83+a84≦3を満たし、
a91およびa93は、それぞれ独立して1〜3の整数であり、a92およびa94は、それぞれ独立して0〜2の整数であり、かつ、a91+a92≦3およびa93+a94≦3を満たす。)
221は、式(D01−1)〜(D21)のいずれかで表される2価の基を表す。
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(式中、L11は、−S−、−O−、−CO−、−CH2−、−(CH22−、−C(CH32−、−CF2−、−(CF22−、−C(CF32−、フルオレン−9,9−ジイル基、−NH―または−NZ02−を表し、
12は、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
13およびL14は、それぞれ独立して、水素原子、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
101〜Z107およびZ109〜Z121は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基またはZ131で置換されていてもよい炭素数6〜20のアリール基を表し、
108は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ニトロ基、シアノ基、Z130で置換されていてもよい炭素数1〜20のアルキル基、Z130で置換されていてもよい炭素数2〜20のアルケニル基もしくはZ131で置換されていてもよい炭素数6〜20のアリール基を表すが、異なるベンゼン環上に存在するZ108同士が結合して環を形成していてもよく、
130は、それぞれ独立して、フッ素原子、塩素原子、臭素原子またはZ132で置換されていてもよい炭素数6〜20のアリール基を表し、
131は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、Z132で置換されていてもよい炭素数1〜20のアルキル基またはZ132で置換されていてもよい炭素数2〜20のアルケニル基を表し、
132は、フッ素原子、塩素原子または臭素原子を表し、
Ar1は、それぞれ独立して、炭素数6〜20のアリール基を表し、
Ar3は、それぞれ独立して、炭素数6〜20のアリーレン基を表す。)〕
A polymer containing a repeating unit represented by the following formula (P1-2).
Figure 2020027258
[In the formula, X 211 represents a divalent group represented by any of formulas (A01-1) to (A09),
Figure 2020027258
(In the formula, L 01 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 10 - represents,
L 02 and L 03 are each independently hydrogen atom, Z 11 alkyl group carbon atoms which may be have 1 to 20 substituents, alkenyl group optionally having 2 to 20 carbon atoms optionally substituted by Z 11 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
L 04 represents a hydrogen atom, optionally substituted alkenyl group or Z 12 alkyl group, optionally 2 to 20 carbon atoms optionally substituted by Z 11 of carbon atoms which may be have 1-20 substituted with Z 11 Represents an aryl group having 6 to 20 carbon atoms,
Z 'represents a substituent of the aromatic ring, each independently, an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, Z 11 which may be 2-20 carbons substituted with Represents an alkenyl group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 12 .
Z 01 to Z 09 represent a substituent of an aromatic ring, and each independently represent a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 11 , Represents an alkenyl group having 2 to 20 carbon atoms which may be substituted by Z 11 or an aryl group having 6 to 20 carbon atoms which may be substituted by Z 12 .
Z 10 represents an alkyl group having carbon atoms which may be have 1-20 replaced by Z 11, which may be substituted with alkenyl or Z 12 good 2 to 20 carbon atoms optionally substituted by Z 11 carbon Represents an aryl group of the number 6 to 20,
Z 11's each independently represent a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 13 .
Z 12 are each independently a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, optionally substituted with an alkyl group or Z 13 of carbon atoms which may be have 1-20 substituted with Z 13 Represents a good alkenyl group having 2 to 20 carbon atoms,
Z 13 represents a fluorine atom, a chlorine atom, a bromine atom, a nitro group or a cyano group,
a 11 , a 13 , a 21 , a 23 , a 31 , a 33 , a 41 , a 51 , a 61 , a 71 , a 73 , a 81 , a 83 , a 91 and a 93 are substituted with an aromatic ring. Represents the number of fluorine atoms
a 12 , a 14 , a 22 , a 24 , a 32 , a 34 , a 42 , a 52 , a 62 , a 72 , a 74 , a 82 , a 84 , a 92 and a 94 are substituted with an aromatic ring. Represents the number of Z 01 to Z 09
a 75 and a 76 represent the number of Z′ substituting the aromatic ring,
a 11 is an integer of 2 to 4, a 12 is an integer of 0 to 2 and satisfies a 11 +a 12 ≦4,
a 13 is an integer of 2 to 4, a 14 is an integer of 0 to 2 and satisfies a 13 +a 14 ≦4,
a 21 and a 23 are each independently an integer of 1 to 4, a 22 and a 24 are each independently an integer of 0 to 3, and a 21 +a 22 ≦4 and a 23 +a Satisfies 24 ≤ 4,
a 31 and a 33 are each independently an integer of 1 to 4, a 32 and a 34 are each independently an integer of 0 to 3, and a 31 +a 32 ≦4 and a 33 +a. Satisfies 34 ≤ 4,
a 41 is an integer of 1 to 6, a 42 is an integer of 0 to 5, and a 41 +a 42 ≦6 is satisfied,
a 51 is an integer of 1 to 8, a 52 is an integer of 0 to 7 and a 51 +a 52 ≦8 is satisfied,
a 61 is an integer of 1 to 8, a 62 is an integer of 0 to 7 and a 61 +a 62 ≦8 is satisfied,
a 71 and a 73 are each independently an integer of 1 to 3, a 72 and a 74 are each independently an integer of 0 to 2, and a 71 +a 72 ≦3 and a 73 +a 74 ≦3 is satisfied, and a 75 and a 76 are each independently an integer of 0 to 4,
a 81 and a 83 are each independently an integer of 1 to 3, a 82 and a 84 are each independently an integer of 0 to 2, and a 81 +a 82 ≦3 and a 83 +a Satisfying 84 ≦3,
a 91 and a 93 are each independently an integer of 1 to 3, a 92 and a 94 are each independently an integer of 0 to 2, and a 91 +a 92 ≦3 and a 93 +a 94 ≦3 is satisfied. )
Y 221 represents a divalent group represented by any of formulas (D01-1) to (D21).
Figure 2020027258
Figure 2020027258
Figure 2020027258
Figure 2020027258
(In the formula, L 11 is —S—, —O—, —CO—, —CH 2 —, —(CH 2 ) 2 —, —C(CH 3 ) 2 —, —CF 2 —, —(CF 2) 2 -, - C ( CF 3) 2 -, 9,9-diyl group, -NH- or -NZ 02 - represents,
L 12 represents a hydrogen atom, optionally substituted alkenyl group or Z 131 of is an alkyl group having 1 to 20 carbon atoms also be good 2-20 carbon atoms substituted with Z 130 substituted with Z 130 Represents an aryl group having 6 to 20 carbon atoms,
L 13 and L 14 are each independently a hydrogen atom, Z 130 with an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group which may C2-20 optionally substituted by Z 130 Or represents an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 ,
Z 101 to Z 107 and Z 109 to Z 121 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, or a C 1-20 optionally substituted with Z 130. Represents an alkyl group having 2 to 20 carbon atoms, which may be substituted with Z 130 , or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 131 .
Z 108 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a nitro group, a cyano group, an alkyl group having carbon atoms which may be have 1-20 substituted with Z 130, is substituted with Z 130 Represents an alkenyl group having 2 to 20 carbon atoms which may be present or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 131 , and Z 108 existing on different benzene rings are bonded to each other to form a ring. May be formed,
Z 130 s each independently represent a fluorine atom, a chlorine atom, a bromine atom or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 132 .
Z 131 are each independently a fluorine atom, a chlorine atom, a bromine atom, an alkyl group or Z 132 carbon atoms which may be have 2-20 substituted with 1 to 20 carbon atoms which may be substituted with Z 132 Represents an alkenyl group of
Z 132 represents a fluorine atom, a chlorine atom or a bromine atom,
Ar 1's each independently represent an aryl group having 6 to 20 carbon atoms,
Ar 3's each independently represent an arylene group having 6 to 20 carbon atoms. )]
前記X211が、前記式(A02)で表される2価の基である請求項19記載の重合体。The polymer according to claim 19, wherein the X 211 is a divalent group represented by the formula (A02). 前記X211が、下記式(A02−1)で表される2価の基である請求項20記載の重合体。
Figure 2020027258
(式中、a21〜a24およびZ02は前記と同じ意味を表す。)
21. The polymer according to claim 20, wherein X 211 is a divalent group represented by the following formula (A02-1).
Figure 2020027258
(In the formula, a 21 to a 24 and Z 02 have the same meanings as described above.)
前記Y221が、前記式(D02)、(D17)および(D19)のいずれかで表される2価の基である請求項19〜21のいずれか1項記載の重合体。22. The polymer according to claim 19, wherein Y 221 is a divalent group represented by any of the formulas (D02), (D17) and (D19). 請求項10〜18のいずれか1項記載のアニリン誘導体からなる電荷輸送性物質。 A charge-transporting substance comprising the aniline derivative according to any one of claims 10 to 18. 請求項19〜22のいずれか1項記載の重合体からなる電荷輸送性物質。 A charge-transporting substance comprising the polymer according to any one of claims 19 to 22. 請求項23または24記載の電荷輸送性物質と、有機溶媒とを含む電荷輸送性組成物。 A charge-transporting composition comprising the charge-transporting substance according to claim 23 or 24 and an organic solvent. ドーパント物質を含む請求項25記載の電荷輸送性組成物。 The charge transporting composition according to claim 25, comprising a dopant substance. 請求項25または26記載の電荷輸送性組成物から得られる電荷輸送性薄膜。 A charge-transporting thin film obtained from the charge-transporting composition according to claim 25 or 26. 請求項27記載の電荷輸送性薄膜を備える電子素子。 An electronic device comprising the charge transporting thin film according to claim 27. 請求項27記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the charge transporting thin film according to claim 27. 前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である請求項29記載の有機エレクトロルミネッセンス素子。 30. The organic electroluminescence device according to claim 29, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
JP2019568116A 2018-08-03 2019-08-01 Method for producing fluorinated aromatic secondary amine compound Active JP6708319B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018146997 2018-08-03
JP2018146997 2018-08-03
PCT/JP2019/030194 WO2020027258A1 (en) 2018-08-03 2019-08-01 Production method for fluorinated aromatic secondary amine compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019236192A Division JP2020063296A (en) 2018-08-03 2019-12-26 Fluorine-containing aniline derivative and polymer

Publications (2)

Publication Number Publication Date
JP6708319B1 JP6708319B1 (en) 2020-06-10
JPWO2020027258A1 true JPWO2020027258A1 (en) 2020-08-06

Family

ID=69231801

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019568116A Active JP6708319B1 (en) 2018-08-03 2019-08-01 Method for producing fluorinated aromatic secondary amine compound
JP2019236192A Pending JP2020063296A (en) 2018-08-03 2019-12-26 Fluorine-containing aniline derivative and polymer
JP2023085045A Pending JP2023116505A (en) 2018-08-03 2023-05-24 Polymer having fluorinated aniline structure
JP2023178726A Pending JP2024003004A (en) 2018-08-03 2023-10-17 Fluorinated aniline derivative

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2019236192A Pending JP2020063296A (en) 2018-08-03 2019-12-26 Fluorine-containing aniline derivative and polymer
JP2023085045A Pending JP2023116505A (en) 2018-08-03 2023-05-24 Polymer having fluorinated aniline structure
JP2023178726A Pending JP2024003004A (en) 2018-08-03 2023-10-17 Fluorinated aniline derivative

Country Status (5)

Country Link
JP (4) JP6708319B1 (en)
KR (1) KR20210041579A (en)
CN (2) CN112543750B (en)
TW (1) TW202031357A (en)
WO (1) WO2020027258A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874352A (en) * 2019-05-31 2021-12-31 日产化学株式会社 Arylamine compound and use thereof
WO2022034421A1 (en) * 2020-08-12 2022-02-17 株式会社半導体エネルギー研究所 Light emitting device, light emitting apparatus, electronic equipment, and illumination apparatus
EP4281183A1 (en) * 2022-03-23 2023-11-29 Alivira Animal Health Limited An improved process for purification of robenacoxib

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9922830D0 (en) * 1999-09-27 1999-11-24 Novartis Ag Processes
US6124462A (en) * 1999-11-30 2000-09-26 E. I. Du Pont De Nemours And Company Catalysis using phosphine oxide compounds
DE10037961A1 (en) * 2000-07-27 2002-02-07 Aventis Res & Tech Gmbh & Co New phosphine ligands, their production and their use in catalytic reactions
DE10141266A1 (en) * 2001-08-21 2003-03-06 Syntec Ges Fuer Chemie Und Tec Electroluminescent derivatives of 2,5-diamino-terephthalic acid and their use in organic light-emitting diodes
JP4135416B2 (en) * 2002-07-09 2008-08-20 日本電気株式会社 Polymer and method for producing the same
JP2005336083A (en) * 2004-05-26 2005-12-08 Sumitomo Chemical Co Ltd Method for producing aromatic amino compound
KR101473294B1 (en) 2006-09-13 2014-12-16 닛산 가가쿠 고교 가부시키 가이샤 Oligoaniline compound and use thereof
JP2008134406A (en) * 2006-11-28 2008-06-12 Kyocera Mita Corp Electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2009190974A (en) * 2008-02-12 2009-08-27 Kyushu Univ Method for producing ortho position-substituted triarylamine
JP5471005B2 (en) * 2008-05-13 2014-04-16 住友化学株式会社 Method for producing aromatic amine compound
JP5374966B2 (en) * 2008-08-25 2013-12-25 三菱化学株式会社 Manufacturing method of amine compound, and electrophotographic photosensitive member, photosensitive member cartridge, and manufacturing method of image forming apparatus
JP2010143979A (en) * 2008-12-17 2010-07-01 Toyo Ink Mfg Co Ltd Polymer, conductive layer, and electronic device
JP2010199250A (en) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd Organic transistor
JP2010225950A (en) * 2009-03-25 2010-10-07 Toyo Ink Mfg Co Ltd Organic electroluminescence element using polymer
JP5796487B2 (en) * 2011-08-09 2015-10-21 東ソー株式会社 Heterogeneous catalyst and method for producing triarylamine compound using the same
WO2016164703A1 (en) * 2015-04-09 2016-10-13 Eisai R & D Management Co., Ltd. Fgfr4 inhibitors
EP3371191B1 (en) * 2015-10-29 2020-08-26 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
CN107021931A (en) * 2017-05-31 2017-08-08 中节能万润股份有限公司 A kind of electroluminescent organic material and its application

Also Published As

Publication number Publication date
JP2024003004A (en) 2024-01-11
CN112543750B (en) 2023-11-03
CN116621715A (en) 2023-08-22
JP2023116505A (en) 2023-08-22
TW202031357A (en) 2020-09-01
KR20210041579A (en) 2021-04-15
JP6708319B1 (en) 2020-06-10
CN112543750A (en) 2021-03-23
JP2020063296A (en) 2020-04-23
WO2020027258A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP2024003004A (en) Fluorinated aniline derivative
JP6004083B2 (en) Charge transport varnish
JP6384605B2 (en) Charge transporting varnish and organic electroluminescence device
JP2019135774A (en) Charge-transporting varnish for hole injection layer formation
JPWO2016006674A1 (en) Fluorine atom-containing polymer and use thereof
EP3000804B1 (en) Triphenylamine derivative and use therefor
JP2023126469A (en) Charge transporting varnish
JP7491302B2 (en) Arylamine compounds and their uses
JP7298611B2 (en) Composition for forming charge-transporting thin film
JP7420073B2 (en) Aniline derivative
WO2020241730A1 (en) Arylamine compound and use thereof
TW202104169A (en) Fluorene derivative and use thereof
JP7322884B2 (en) Polymer and its use
JP7056644B2 (en) Fluorine atom-containing polymer and its utilization
JP6132016B2 (en) Charge transport varnish

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R151 Written notification of patent or utility model registration

Ref document number: 6708319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151