JPWO2020026374A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2020026374A1
JPWO2020026374A1 JP2020533966A JP2020533966A JPWO2020026374A1 JP WO2020026374 A1 JPWO2020026374 A1 JP WO2020026374A1 JP 2020533966 A JP2020533966 A JP 2020533966A JP 2020533966 A JP2020533966 A JP 2020533966A JP WO2020026374 A1 JPWO2020026374 A1 JP WO2020026374A1
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
cooling device
heat exchanger
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020533966A
Other languages
Japanese (ja)
Other versions
JP6991338B2 (en
Inventor
利徳 大手
利徳 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020026374A1 publication Critical patent/JPWO2020026374A1/en
Application granted granted Critical
Publication of JP6991338B2 publication Critical patent/JP6991338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

空気調和装置は、圧縮機と室外熱交換器と膨張弁と室内熱交換器とを冷媒配管で順次接続した冷凍サイクル回路と、室外熱交換器と膨張弁との間の冷媒配管に配置され、外部熱源によって冷媒配管を流通する冷媒を冷却する冷却装置と、冷凍サイクル回路が冷房運転するために室外熱交換器を凝縮器として機能させ、当該凝縮器から膨張弁に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、冷却装置の冷却能力を変更するように構成された制御装置と、を備える。The air conditioner is arranged in a refrigerating cycle circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, and a refrigerant pipe between the outdoor heat exchanger and the expansion valve. When a cooling device that cools the refrigerant flowing through the refrigerant piping by an external heat source and an outdoor heat exchanger functioning as a condenser for the refrigeration cycle circuit to perform cooling operation, and the refrigerant is passed from the condenser to the expansion valve, A control device configured to change the cooling capacity of the cooling device according to conditions reflecting the refrigerant state is provided.

Description

本発明は、室外熱交換器と膨張弁との間の冷媒配管に配置された冷却装置を備える空気調和装置に関する。 The present invention relates to an air conditioner including a cooling device arranged in a refrigerant pipe between an outdoor heat exchanger and an expansion valve.

従来、空気調和装置では、冷凍サイクル回路の効率を高めるために、凝縮器の出口の冷媒が適切な過冷却度になるように制御されている。凝縮器の出口の冷媒を適切な過冷却度にするためには、圧縮機、送風機及び膨張弁などの出力を調整する方法が実用的に実施されている。 Conventionally, in an air conditioner, in order to improve the efficiency of a refrigeration cycle circuit, the refrigerant at the outlet of the condenser is controlled to have an appropriate degree of supercooling. In order to obtain an appropriate degree of supercooling of the refrigerant at the outlet of the condenser, a method of adjusting the output of the compressor, the blower, the expansion valve and the like is practically implemented.

特許文献1〜3では、凝縮器の出口の冷媒を適切な過冷却度にする手段として、凝縮器と膨張弁との間の冷媒配管にペルチェ素子を用いた補助熱交換器が設けられている。特に、特許文献3では、ペルチェ素子の放熱面からの熱を圧縮機のインジェクション回路に副次的に利用している。 In Patent Documents 1 to 3, an auxiliary heat exchanger using a Peltier element is provided in the refrigerant pipe between the condenser and the expansion valve as a means for adjusting the refrigerant at the outlet of the condenser to an appropriate degree of supercooling. .. In particular, in Patent Document 3, the heat from the heat radiating surface of the Peltier element is secondarily used in the injection circuit of the compressor.

特開平10−35270号公報Japanese Unexamined Patent Publication No. 10-35270 特開平10−38409号公報Japanese Unexamined Patent Publication No. 10-38409 特開2011−202939号公報Japanese Unexamined Patent Publication No. 2011-202939

しかしながら、特許文献1〜3の技術の場合には、冷凍サイクル回路の能力及び効率を向上させることを目的としている。このため、ペルチェ素子には、電力が常に供給されている。そのため、消費電力が大きくなり、消費エネルギーの損失が大きくなる課題があった。 However, in the case of the techniques of Patent Documents 1 to 3, it is an object to improve the capacity and efficiency of the refrigeration cycle circuit. Therefore, electric power is always supplied to the Peltier element. Therefore, there is a problem that the power consumption becomes large and the energy consumption loss becomes large.

一方、過冷却度の確保は、性能面以外に品質的にも必要な条件である。すなわち、過冷却度が適切に制御されているときには、凝縮器の後段に位置する膨張弁の手前の冷媒が液相状態となる。しかし、過冷却度が十分でないときには、凝縮器の後段に位置する膨張弁の手前の冷媒が気液二相状態となる。そして、気液二相状態の冷媒が膨張弁を通過すると、冷媒の不快な流通音が発生し易い課題があった。特に、中間期のような外気温度の低いときに冷房運転する場合、あるいは、室内機と室外機の間の距離が長く凝縮器の出口から膨張弁までの冷媒配管に圧力損失が大きく生じる場合では、圧縮機、送風機及び膨張弁などの出力の調整のみでは十分な過冷却度を得ることが困難であり、冷媒の不快な流通音が品質的な課題であった。 On the other hand, ensuring the degree of supercooling is a necessary condition not only in terms of performance but also in terms of quality. That is, when the degree of supercooling is appropriately controlled, the refrigerant in front of the expansion valve located at the rear stage of the condenser is in the liquid phase state. However, when the degree of supercooling is not sufficient, the refrigerant in front of the expansion valve located at the rear stage of the condenser becomes a gas-liquid two-phase state. Then, when the refrigerant in the gas-liquid two-phase state passes through the expansion valve, there is a problem that an unpleasant flow noise of the refrigerant is likely to be generated. In particular, when the cooling operation is performed when the outside air temperature is low as in the intermediate period, or when the distance between the indoor unit and the outdoor unit is long and a large pressure loss occurs in the refrigerant pipe from the outlet of the compressor to the expansion valve. , It is difficult to obtain a sufficient degree of supercooling only by adjusting the output of the compressor, blower, expansion valve, etc., and the unpleasant flow noise of the refrigerant has been a quality issue.

本発明は、上記課題を解決するためのものであり、冷却装置の消費エネルギーが適切に抑制できるとともに、膨張弁を流通する際の冷媒の流通音が抑制されて品質が向上できる空気調和装置を提供することを目的とする。 The present invention is for solving the above problems, and provides an air conditioner capable of appropriately suppressing the energy consumption of the cooling device and suppressing the flow noise of the refrigerant when flowing through the expansion valve to improve the quality. The purpose is to provide.

本発明に係る空気調和装置は、圧縮機と室外熱交換器と膨張弁と室内熱交換器とを冷媒配管で順次接続した冷凍サイクル回路と、前記室外熱交換器と前記膨張弁との間の前記冷媒配管に配置され、外部熱源によって前記冷媒配管を流通する冷媒を冷却する冷却装置と、前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、前記冷却装置の冷却能力を変更するように構成された制御装置と、を備えるものである。 The air conditioner according to the present invention is a refrigeration cycle circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, and between the outdoor heat exchanger and the expansion valve. A cooling device arranged in the refrigerant pipe and cooling the refrigerant flowing through the refrigerant pipe by an external heat source and the outdoor heat exchanger functioning as a condenser for the refrigerating cycle circuit to perform cooling operation are performed from the condenser. It is provided with a control device configured to change the cooling capacity of the cooling device according to conditions reflecting the state of the refrigerant when the refrigerant is circulated through the expansion valve.

本発明に係る空気調和装置によれば、空気調和装置は、冷凍サイクル回路が冷房運転するために室外熱交換器を凝縮器として機能させ、当該凝縮器から膨張弁に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、冷却装置の冷却能力を変更するように構成された制御装置を備える。したがって、冷却装置の消費エネルギーが適切に抑制できるとともに、膨張弁を流通する際の冷媒の流通音が抑制されて品質が向上できる。 According to the air conditioner according to the present invention, the air conditioner causes the outdoor heat exchanger to function as a condenser for the cooling operation of the refrigeration cycle circuit, and the refrigerant is circulated from the condenser to the expansion valve. A control device configured to change the cooling capacity of the cooling device according to conditions reflecting the refrigerant state is provided. Therefore, the energy consumption of the cooling device can be appropriately suppressed, and the flow noise of the refrigerant when flowing through the expansion valve can be suppressed to improve the quality.

本発明の実施の形態1に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置を示すブロック図である。It is a block diagram which shows the control apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る外気温度に応じて冷却装置出力を調整する制御を示すフローチャート図である。It is a flowchart which shows the control which adjusts the output of a cooling apparatus according to the outside air temperature which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る外気温度と冷却装置出力との関係を示す図である。It is a figure which shows the relationship between the outside air temperature and the output of a cooling device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る過冷却度に応じて冷却装置出力を調整する制御を示すフローチャート図である。It is a flowchart which shows the control which adjusts the output of a cooling apparatus according to the degree of supercooling which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る過冷却度と冷却装置出力との関係を示す図である。It is a figure which shows the relationship between the degree of supercooling which concerns on Embodiment 2 of this invention, and the output of a cooling apparatus. 本発明の実施の形態3に係る外気温度及び過冷却度に応じて冷却装置出力を調整する制御を示すフローチャート図である。It is a flowchart which shows the control which adjusts the output of a cooling apparatus according to the outside air temperature and the degree of supercooling which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る外気温度及び過冷却度と冷却装置出力との関係を示す図である。It is a figure which shows the relationship between the outside air temperature and the degree of supercooling which concerns on Embodiment 3 of this invention, and the output of a cooling apparatus. 本発明の実施の形態4に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioner which concerns on Embodiment 4 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, those having the same reference numerals are the same or equivalent thereof, and they are common in the entire text of the specification. Further, in the cross-sectional view, hatching is omitted as appropriate in view of visibility. Furthermore, the forms of the components shown in the full text of the specification are merely examples and are not limited to these descriptions.

実施の形態1.
<空気調和装置100の構成>
図1は、本発明の実施の形態1に係る空気調和装置100を示す冷媒回路図である。図1に示す空気調和装置100は、室外機1と室内機10とをガス冷媒配管及び液冷媒配管によって接続した構成である。空気調和装置100は、圧縮機2と室外熱交換器4と膨張弁12と室内熱交換器13とを冷媒配管で順次接続した冷凍サイクル回路を備える。
Embodiment 1.
<Structure of air conditioner 100>
FIG. 1 is a refrigerant circuit diagram showing an air conditioner 100 according to a first embodiment of the present invention. The air conditioner 100 shown in FIG. 1 has a configuration in which the outdoor unit 1 and the indoor unit 10 are connected by a gas refrigerant pipe and a liquid refrigerant pipe. The air conditioner 100 includes a refrigeration cycle circuit in which the compressor 2, the outdoor heat exchanger 4, the expansion valve 12, and the indoor heat exchanger 13 are sequentially connected by a refrigerant pipe.

室外機1は、圧縮機2、四方弁3、室外熱交換器4及び送風機5を有する。 The outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and a blower 5.

圧縮機2は、吸入した冷媒を圧縮して吐出する。圧縮機2は、たとえばインバータ回路などにより、運転周波数を任意に変化させ、圧縮機2の単位時間あたりの冷媒を送り出す容量を変化させてもよい。 The compressor 2 compresses and discharges the sucked refrigerant. The compressor 2 may arbitrarily change the operating frequency by, for example, an inverter circuit or the like, and change the capacity for delivering the refrigerant per unit time of the compressor 2.

四方弁3は、たとえば冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。 The four-way valve 3 is a valve that switches the flow of the refrigerant depending on, for example, the cooling operation and the heating operation.

室外熱交換器4は、冷媒と室外の空気との熱交換を行う。室外熱交換器4は、冷房運転時に凝縮器として機能し、冷媒を凝縮して液化させる。室外熱交換器4は、暖房運転時に蒸発器として機能し、冷媒を蒸発させて気化させる。 The outdoor heat exchanger 4 exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger 4 functions as a condenser during the cooling operation to condense and liquefy the refrigerant. The outdoor heat exchanger 4 functions as an evaporator during the heating operation to evaporate and vaporize the refrigerant.

送風機5は、室外熱交換器4の熱交換を促進するために室外熱交換器4に外気を送風する。 The blower 5 blows outside air to the outdoor heat exchanger 4 in order to promote heat exchange of the outdoor heat exchanger 4.

室内機10は、膨張弁12、室内熱交換器13及び送風機14を有する。 The indoor unit 10 includes an expansion valve 12, an indoor heat exchanger 13, and a blower 14.

膨張弁12は、流量制御弁であり、冷媒を減圧して膨張させる。膨張弁12は、たとえば電子式膨張弁などで構成された場合には、制御装置6の指示に基づいて開度調整を行える。 The expansion valve 12 is a flow rate control valve and decompresses the refrigerant to expand it. When the expansion valve 12 is composed of, for example, an electronic expansion valve, the opening degree can be adjusted based on the instruction of the control device 6.

室内熱交換器13は、たとえば空調対象の空気と冷媒との熱交換を行う。室内熱交換器13は、冷房運転時に蒸発器として機能し、冷媒を蒸発させて気化させる。室内熱交換器13は、暖房運転時に凝縮器として機能し、冷媒を凝縮して液化させる。 The indoor heat exchanger 13 exchanges heat between, for example, air to be air-conditioned and a refrigerant. The indoor heat exchanger 13 functions as an evaporator during the cooling operation to evaporate and vaporize the refrigerant. The indoor heat exchanger 13 functions as a condenser during the heating operation to condense and liquefy the refrigerant.

送風機14は、室内熱交換器13の熱交換を促進するために室内熱交換器13に室内空気を送風する。 The blower 14 blows indoor air to the indoor heat exchanger 13 in order to promote heat exchange of the indoor heat exchanger 13.

以上のように空気調和装置100を構成することにより、室外機1の四方弁3によって冷媒の流れを切り換え、冷房運転又は暖房運転が実現できる。 By configuring the air conditioner 100 as described above, the flow of the refrigerant can be switched by the four-way valve 3 of the outdoor unit 1 to realize a cooling operation or a heating operation.

空気調和装置100は、冷媒圧力センサ7、冷媒温度センサ8及び外気温度センサ9を有する。冷媒圧力センサ7は、圧縮機2から吐出される冷媒の高圧圧力を検出する。冷媒温度センサ8は、室外熱交換器4の出口から流出する冷媒の温度を検出する。つまり、冷媒温度センサ8は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させる場合に、当該凝縮器の出口にて前記冷媒配管を流通する冷媒の温度を検出する。外気温度センサ9は、室外熱交換器4が熱交換する室外機1周囲の外気の温度を検出する。 The air conditioner 100 includes a refrigerant pressure sensor 7, a refrigerant temperature sensor 8, and an outside air temperature sensor 9. The refrigerant pressure sensor 7 detects the high pressure of the refrigerant discharged from the compressor 2. The refrigerant temperature sensor 8 detects the temperature of the refrigerant flowing out from the outlet of the outdoor heat exchanger 4. That is, when the outdoor heat exchanger 4 functions as a condenser for the refrigeration cycle circuit to operate in cooling, the refrigerant temperature sensor 8 detects the temperature of the refrigerant flowing through the refrigerant pipe at the outlet of the condenser. .. The outside air temperature sensor 9 detects the temperature of the outside air around the outdoor unit 1 with which the outdoor heat exchanger 4 exchanges heat.

空気調和装置100は、冷却装置11を備える。冷却装置11は、凝縮器として機能する室外熱交換器4と膨張弁12との間の冷媒配管に設けられ、冷凍サイクル回路以外からの外部熱源によって冷媒配管内を流通する冷媒を冷却する。冷却装置11は、たとえば複数のペルチェ素子を使用し、ペルチェ素子の吸熱面を冷媒配管に密着させた構造である。冷却装置11は、制御装置6からの指令で複数のペルチェ素子のうち必要な数だけ電力供給され、補助冷却能力が変化できる。なお、冷却装置11は、外部熱源によって冷媒配管内を流通する冷媒を冷却するものであればペルチェ素子でなくても良い。 The air conditioner 100 includes a cooling device 11. The cooling device 11 is provided in the refrigerant pipe between the outdoor heat exchanger 4 functioning as a condenser and the expansion valve 12, and cools the refrigerant flowing in the refrigerant pipe by an external heat source other than the refrigeration cycle circuit. The cooling device 11 has a structure in which, for example, a plurality of Peltier elements are used and the endothermic surface of the Peltier elements is brought into close contact with the refrigerant pipe. The cooling device 11 is supplied with power by a command from the control device 6 by a required number of the plurality of Peltier elements, and the auxiliary cooling capacity can be changed. The cooling device 11 does not have to be a Peltier element as long as it cools the refrigerant flowing in the refrigerant pipe by an external heat source.

<制御装置6>
図2は、本発明の実施の形態1に係る制御装置6を示すブロック図である。空気調和装置100は、制御装置6を備える。制御装置6は、圧縮機2、送風機5、膨張弁12及び冷却装置11を含むアクチュエータの駆動などの制御を担う。
<Control device 6>
FIG. 2 is a block diagram showing a control device 6 according to the first embodiment of the present invention. The air conditioner 100 includes a control device 6. The control device 6 is responsible for controlling the operation of the actuator including the compressor 2, the blower 5, the expansion valve 12, and the cooling device 11.

図2に示すように、制御装置6は、CPU、ROM及びRAMなどのメモリ並びにI/Oポートなどの入出力装置を備えたマイコンを有した処理回路である。 As shown in FIG. 2, the control device 6 is a processing circuit including a microcomputer including a memory such as a CPU, ROM and RAM, and an input / output device such as an I / O port.

制御装置6は、冷媒圧力センサ7と冷媒温度センサ8とによって検出された冷媒圧力及び冷媒温度から凝縮器として機能する室外熱交換器4の出口の過冷却度を計算し、所定の目標値に一致するようにアクチュエータを駆動する。低外気温時の冷房運転のように過冷却度が付き難い条件では、アクチュエータの駆動範囲内にて目標値どおりの過冷却度に達しない場合がある。この場合には、冷却装置11による補助冷却が有効に機能する。 The control device 6 calculates the degree of supercooling at the outlet of the outdoor heat exchanger 4 that functions as a condenser from the refrigerant pressure and the refrigerant temperature detected by the refrigerant pressure sensor 7 and the refrigerant temperature sensor 8, and sets the target value at a predetermined value. Drive the actuator to match. Under conditions where it is difficult to obtain a degree of supercooling, such as in cooling operation at low outside temperatures, the degree of supercooling may not reach the target value within the drive range of the actuator. In this case, the auxiliary cooling by the cooling device 11 functions effectively.

制御装置6は、外気温度センサ9によって検出した外気温度T1に応じて冷却装置11に電力供給を行う。つまり、冷却装置11は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から膨張弁12に冷媒を流通させる場合に、ここでは外気温度T1に基づく冷媒状態を反映した条件に応じて、冷却装置11の冷却能力を変更する。特に、制御装置6は、ここでは外気温度T1である冷媒状態を反映した条件に応じて、冷却装置11の冷却能力の出力P1の大きさを切り替える。具体的には、制御装置6は、冷却装置11への電力供給として、外気温度T1が低いほど冷却能力が大きくなるように所定の外気温度の判定閾値1及び判定閾値2と冷却装置11の冷却能力の出力P1との関係に従った指令を出す。 The control device 6 supplies electric power to the cooling device 11 according to the outside air temperature T1 detected by the outside air temperature sensor 9. That is, when the cooling device 11 causes the outdoor heat exchanger 4 to function as a condenser for the refrigeration cycle circuit to perform cooling operation, and the refrigerant is circulated from the condenser to the expansion valve 12, here, it is based on the outside air temperature T1. The cooling capacity of the cooling device 11 is changed according to the conditions reflecting the refrigerant state. In particular, the control device 6 switches the magnitude of the output P1 of the cooling capacity of the cooling device 11 according to the condition reflecting the refrigerant state which is the outside air temperature T1 here. Specifically, the control device 6 cools the predetermined outside air temperature determination threshold value 1 and determination threshold value 2 and the cooling device 11 so that the cooling capacity increases as the outside air temperature T1 decreases as the power supply to the cooling device 11. Issue a command according to the relationship with the output P1 of the ability.

これにより、冷却装置11への電力供給が必要な分だけ消費され、膨張弁12の手前の冷媒の液相状態が確保され、冷媒の不快な流通音の品質不具合が回避できる。また、アクチュエータの駆動範囲に余裕が生まれ、過冷却度以外の全体の制御対象である蒸発温度及び吐出温度などを早く安定させられる。 As a result, the power supply to the cooling device 11 is consumed as much as necessary, the liquid phase state of the refrigerant in front of the expansion valve 12 is ensured, and the quality defect of the unpleasant flow sound of the refrigerant can be avoided. In addition, a margin is created in the drive range of the actuator, and the evaporation temperature and the discharge temperature, which are the overall control targets other than the supercooling degree, can be quickly stabilized.

<冷却装置11の制御1>
図3は、本発明の実施の形態1に係る外気温度T1に応じて冷却装置出力P1を調整する制御1を示すフローチャート図である。図4は、本発明の実施の形態1に係る外気温度T1と冷却装置出力P1との関係を示す図である。図3に示す制御ルーチンは、所定期間ごとに繰り返し実行される。
<Control 1 of cooling device 11>
FIG. 3 is a flowchart showing a control 1 for adjusting the cooling device output P1 according to the outside air temperature T1 according to the first embodiment of the present invention. FIG. 4 is a diagram showing the relationship between the outside air temperature T1 and the cooling device output P1 according to the first embodiment of the present invention. The control routine shown in FIG. 3 is repeatedly executed at predetermined intervals.

図3に示すように、制御装置6は、本ルーチンを開始すると、ステップS1にて、外気温度センサ9が検出する外気温度T1が判定閾値1よりも低いか否かを判断する。外気温度T1が判定閾値1よりも低い場合には、ステップS2に移行する。外気温度T1が判定閾値1以上である場合には、ステップS3に移行する。 As shown in FIG. 3, when this routine is started, the control device 6 determines in step S1 whether or not the outside air temperature T1 detected by the outside air temperature sensor 9 is lower than the determination threshold value 1. If the outside air temperature T1 is lower than the determination threshold value 1, the process proceeds to step S2. If the outside air temperature T1 is equal to or higher than the determination threshold value 1, the process proceeds to step S3.

制御装置6は、ステップS2にて、冷却装置11の出力P1を大の度合いで出力させる。これにより、外気温度T1が大幅に低く、室外熱交換器4での熱交換が十分でなくても、膨張弁12の手前の冷媒の液相状態が確保できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S2, the control device 6 outputs the output P1 of the cooling device 11 to a large degree. As a result, even if the outside air temperature T1 is significantly low and the heat exchange in the outdoor heat exchanger 4 is not sufficient, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS3にて、外気温度センサ9が検出する外気温度T1が判定閾値2よりも低いか否かを判断する。図4に示すように、判定閾値2は、判定閾値1よりも高温に設定されている。外気温度T1が判定閾値2よりも低い場合には、ステップS4に移行する。外気温度T1が判定閾値2以上である場合には、ステップS5に移行する。 In step S3, the control device 6 determines whether or not the outside air temperature T1 detected by the outside air temperature sensor 9 is lower than the determination threshold value 2. As shown in FIG. 4, the determination threshold value 2 is set to a higher temperature than the determination threshold value 1. If the outside air temperature T1 is lower than the determination threshold value 2, the process proceeds to step S4. If the outside air temperature T1 is equal to or higher than the determination threshold value 2, the process proceeds to step S5.

制御装置6は、ステップS4にて、冷却装置11の出力P1を小の度合いで出力させる。これにより、外気温度T1がある程度低く、室外熱交換器4での熱交換が満足でなくても、膨張弁12の手前の冷媒の液相状態が確保できる。そのため、冷却装置11への電力供給が必要な分だけ消費できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S4, the control device 6 outputs the output P1 of the cooling device 11 to a small degree. As a result, even if the outside air temperature T1 is low to some extent and the heat exchange in the outdoor heat exchanger 4 is not satisfactory, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured. Therefore, it is possible to consume as much power as necessary for supplying power to the cooling device 11. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS5にて、冷却装置11の出力P1を0の度合い、つまり出力させない。これにより、外気温度T1が確保でき、室外熱交換器4での熱交換が満足できる場合には、冷却装置11での冷却が無くても膨張弁12の手前の冷媒の液相状態が確保できる。そのため、冷却装置11への電力供給が不必要なので削減できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S5, the control device 6 does not output the output P1 of the cooling device 11 to a degree of 0, that is, does not output. As a result, when the outside air temperature T1 can be secured and the heat exchange in the outdoor heat exchanger 4 is satisfactory, the liquid phase state of the refrigerant in front of the expansion valve 12 can be secured even without cooling by the cooling device 11. .. Therefore, the power supply to the cooling device 11 is unnecessary and can be reduced. After the processing of this step, this routine is temporarily stopped.

図4に示すように、外気温度T1と冷却装置出力P1との関係は、外気温度センサ9が検出する外気温度T1が低いほど、冷却装置11の冷却能力を大きな出力に切り替える相関関係となっている。これにより、冷却装置11への電力供給が必要な分だけ消費され、膨張弁12の手前の冷媒の液相状態が確保され、冷媒の不快な流通音の品質不具合が回避できる。 As shown in FIG. 4, the relationship between the outside air temperature T1 and the cooling device output P1 becomes a correlation in which the lower the outside air temperature T1 detected by the outside air temperature sensor 9, the larger the cooling capacity of the cooling device 11 is switched to. There is. As a result, the power supply to the cooling device 11 is consumed as much as necessary, the liquid phase state of the refrigerant in front of the expansion valve 12 is secured, and the quality defect of the unpleasant flow sound of the refrigerant can be avoided.

<実施の形態1の効果>
実施の形態1によれば、空気調和装置100は、圧縮機2と室外熱交換器4と膨張弁12と室内熱交換器13とを冷媒配管で順次接続した冷凍サイクル回路を備える。空気調和装置100は、室外熱交換器4と膨張弁12との間の冷媒配管に配置され、外部熱源によって冷媒配管を流通する冷媒を冷却する冷却装置11を備える。空気調和装置100は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から膨張弁12に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、冷却装置11の冷却能力を変更するように構成された制御装置6を備える。
<Effect of Embodiment 1>
According to the first embodiment, the air conditioner 100 includes a refrigeration cycle circuit in which the compressor 2, the outdoor heat exchanger 4, the expansion valve 12, and the indoor heat exchanger 13 are sequentially connected by a refrigerant pipe. The air conditioner 100 is arranged in the refrigerant pipe between the outdoor heat exchanger 4 and the expansion valve 12, and includes a cooling device 11 that cools the refrigerant flowing through the refrigerant pipe by an external heat source. In the air conditioner 100, when the outdoor heat exchanger 4 functions as a condenser for the refrigeration cycle circuit to perform the cooling operation and the refrigerant is circulated from the condenser to the expansion valve 12, the air conditioner 100 responds to the conditions reflecting the refrigerant state. A control device 6 configured to change the cooling capacity of the cooling device 11 is provided.

この構成によれば、冷却装置11の出力が適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって十分な過冷却度が確保できる。これにより、膨張弁12に気液二相状態の冷媒が通過することによる冷媒の不快な流通音の発生が防止できる。さらに、過冷却度の調整範囲が拡大して蒸発器の入口での冷媒状態が細かく制御できる。このように、冷却装置11の消費エネルギーが適切に抑制できるとともに、膨張弁12を流通する際の冷媒の流通音が抑制されて品質が向上できる。 According to this configuration, the output of the cooling device 11 can be appropriately changed, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even when the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the situation, the cooling device 11 can secure a sufficient degree of supercooling. As a result, it is possible to prevent the generation of an unpleasant flow noise of the refrigerant due to the passage of the refrigerant in the gas-liquid two-phase state through the expansion valve 12. Further, the adjustment range of the degree of supercooling is expanded, and the state of the refrigerant at the inlet of the evaporator can be finely controlled. In this way, the energy consumption of the cooling device 11 can be appropriately suppressed, and the flow noise of the refrigerant when flowing through the expansion valve 12 is suppressed, so that the quality can be improved.

実施の形態1によれば、制御装置6は、冷媒状態を反映した条件に応じて、冷却装置11の冷却能力の出力の大きさを切り替えるように構成されている。 According to the first embodiment, the control device 6 is configured to switch the magnitude of the output of the cooling capacity of the cooling device 11 according to the conditions reflecting the refrigerant state.

この構成によれば、冷却装置11の出力が冷媒状態を反映した条件に応じて適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって冷媒状態を反映した条件に応じて十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately changed according to the conditions reflecting the refrigerant state, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the cooling device 11 is sufficient according to the condition reflecting the refrigerant state. The degree of supercooling can be secured.

実施の形態1によれば、空気調和装置100は、室外熱交換器4が熱交換する外気の温度を検出する外気温度センサ9を備える。冷媒状態を反映した条件は、外気温度センサ9が検出する外気温度T1である。 According to the first embodiment, the air conditioner 100 includes an outside air temperature sensor 9 that detects the temperature of the outside air that the outdoor heat exchanger 4 exchanges heat with. The condition that reflects the refrigerant state is the outside air temperature T1 detected by the outside air temperature sensor 9.

この構成によれば、冷却装置11の出力が外気温度センサ9の検出する外気温度T1に応じて適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって外気温度センサ9の検出する外気温度T1に応じて十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately changed according to the outside air temperature T1 detected by the outside air temperature sensor 9, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the outside air temperature T1 detected by the outside air temperature sensor 9 by the cooling device 11 is set. A sufficient degree of supercooling can be ensured accordingly.

実施の形態1によれば、制御装置6は、外気温度センサ9が検出する外気温度T1が低いほど、冷却装置11の冷却能力を大きな出力に切り替えるように構成されている。 According to the first embodiment, the control device 6 is configured to switch the cooling capacity of the cooling device 11 to a larger output as the outside air temperature T1 detected by the outside air temperature sensor 9 is lower.

この構成によれば、冷却装置11の出力が、外気温度センサ9の検出する外気温度T1が低いほど大きな冷却能力に適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって外気温度センサ9の検出する外気温度T1が低いほど大きな冷却能力に適切に変更され、十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately changed to a larger cooling capacity as the outside air temperature T1 detected by the outside air temperature sensor 9 is lower, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even when the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the outside air temperature T1 detected by the outside air temperature sensor 9 by the cooling device 11 is set. The lower it is, the larger the cooling capacity is appropriately changed, and a sufficient degree of supercooling can be ensured.

実施の形態1によれば、冷却装置11には、ペルチェ素子が用いられている。 According to the first embodiment, a Peltier element is used in the cooling device 11.

この構成によれば、外部熱源として電力を用いるペルチェ素子の冷却装置11によって、冷却装置11の消費電力が適切に抑制できるとともに、膨張弁12を流通する際の冷媒の流通音が抑制されて品質が向上できる。 According to this configuration, the cooling device 11 of the Peltier element that uses electric power as an external heat source can appropriately suppress the power consumption of the cooling device 11 and suppress the flow noise of the refrigerant when flowing through the expansion valve 12, so that the quality is improved. Can be improved.

実施の形態2.
実施の形態2では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
Embodiment 2.
In the second embodiment, the description of the same items as those in the above embodiment will be omitted, and only the characteristic portion thereof will be described.

制御装置6は、冷凍サイクル回路の冷媒の過冷却度SC1に応じて冷却装置11に電力供給を行う。つまり、冷却装置11は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から膨張弁12に冷媒を流通させる場合に、ここでは過冷却度SC1である冷媒状態を反映した条件に応じて、冷却装置11の冷却能力を変更する。特に、制御装置6は、ここでは過冷却度SC1である冷媒状態を反映した条件に応じて、冷却装置11の冷却能力の出力P1の大きさを切り替える。具体的には、制御装置6は、過冷却度の不足量が大きいほど冷却能力が大きくなるように所定の過冷却度の判定閾値3及び判定閾値4と冷却能力の出力P1との関係に従った指令を出す。これにより、上記実施の形態と同様の効果を奏する。 The control device 6 supplies electric power to the cooling device 11 according to the degree of supercooling SC1 of the refrigerant in the refrigerating cycle circuit. That is, when the cooling device 11 causes the outdoor heat exchanger 4 to function as a condenser for the refrigeration cycle circuit to perform cooling operation, and the refrigerant is circulated from the condenser to the expansion valve 12, the supercooling degree SC1 is used here. The cooling capacity of the cooling device 11 is changed according to the conditions reflecting a certain refrigerant state. In particular, the control device 6 switches the magnitude of the output P1 of the cooling capacity of the cooling device 11 according to the condition reflecting the refrigerant state, which is the supercooling degree SC1 here. Specifically, the control device 6 follows the relationship between the predetermined supercooling degree determination threshold value 3 and determination threshold value 4 and the cooling capacity output P1 so that the cooling capacity increases as the amount of supercooling degree deficiency increases. Issue a command. As a result, the same effect as that of the above-described embodiment is obtained.

<冷却装置11の制御2>
図5は、本発明の実施の形態2に係る過冷却度SC1に応じて冷却装置出力P1を調整する制御2を示すフローチャート図である。図6は、本発明の実施の形態2に係る過冷却度SC1と冷却装置出力P1との関係を示す図である。図5に示す制御ルーチンは、所定期間ごとに繰り返し実行される。
<Control 2 of cooling device 11>
FIG. 5 is a flowchart showing control 2 for adjusting the cooling device output P1 according to the degree of supercooling SC1 according to the second embodiment of the present invention. FIG. 6 is a diagram showing the relationship between the supercooling degree SC1 and the cooling device output P1 according to the second embodiment of the present invention. The control routine shown in FIG. 5 is repeatedly executed at predetermined intervals.

図5に示すように、制御装置6は、本ルーチンを開始すると、ステップS11にて、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1が判定閾値3よりも低いか否かを判断する。過冷却度SC1が判定閾値3よりも低い場合には、ステップS12に移行する。過冷却度SC1が判定閾値3以上である場合には、ステップS13に移行する。 As shown in FIG. 5, when the control device 6 starts this routine, the refrigerant calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor 8 and the pressure of the refrigerant detected by the refrigerant pressure sensor 7 in step S11. It is determined whether or not the degree of supercooling SC1 of is lower than the determination threshold value 3. If the degree of supercooling SC1 is lower than the determination threshold value 3, the process proceeds to step S12. If the supercooling degree SC1 is equal to or higher than the determination threshold value 3, the process proceeds to step S13.

制御装置6は、ステップS12にて、冷却装置11の出力P1を大の度合いで出力させる。これにより、過冷却度SC1が大幅に低く、室外熱交換器4での熱交換が十分でなくても、膨張弁12の手前の冷媒の液相状態が確保できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S12, the control device 6 outputs the output P1 of the cooling device 11 to a large degree. As a result, the degree of supercooling SC1 is significantly low, and even if the heat exchange in the outdoor heat exchanger 4 is not sufficient, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS13にて、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1が判定閾値4よりも低いか否かを判断する。図6に示すように、判定閾値4は、判定閾値3よりも高い過冷却度である。過冷却度SC1が判定閾値4よりも低い場合には、ステップS14に移行する。過冷却度SC1が判定閾値4以上である場合には、ステップS15に移行する。 In step S13, the control device 6 has the refrigerant supercooling degree SC1 calculated from the refrigerant temperature detected by the refrigerant temperature sensor 8 and the refrigerant pressure detected by the refrigerant pressure sensor 7 lower than the determination threshold value 4. Judge whether or not. As shown in FIG. 6, the determination threshold value 4 is a degree of supercooling higher than the determination threshold value 3. If the degree of supercooling SC1 is lower than the determination threshold value 4, the process proceeds to step S14. If the supercooling degree SC1 is equal to or higher than the determination threshold value 4, the process proceeds to step S15.

制御装置6は、ステップS14にて、冷却装置11の出力P1を小の度合いで出力させる。これにより、過冷却度SC1がある程度低く、室外熱交換器4での熱交換が満足でなくても、膨張弁12の手前の冷媒の液相状態が確保できる。そのため、冷却装置11への電力供給が必要な分だけ消費できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S14, the control device 6 outputs the output P1 of the cooling device 11 to a small degree. As a result, even if the supercooling degree SC1 is low to some extent and the heat exchange in the outdoor heat exchanger 4 is not satisfactory, the liquid phase state of the refrigerant in front of the expansion valve 12 can be secured. Therefore, it is possible to consume as much power as necessary for supplying power to the cooling device 11. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS15にて、冷却装置11の出力P1を0の度合い、つまり出力させない。これにより、過冷却度SC1が確保でき、室外熱交換器4での熱交換が満足できる場合には、冷却装置11での冷却が無くても膨張弁12の手前の冷媒の液相状態が確保できる。そのため、冷却装置11への電力供給が不必要なので削減できる。本ステップの処理の後、本ルーチンを一旦停止する。 In step S15, the control device 6 does not output the output P1 of the cooling device 11 to a degree of 0, that is, does not output. As a result, when the supercooling degree SC1 can be secured and the heat exchange in the outdoor heat exchanger 4 is satisfactory, the liquid phase state of the refrigerant in front of the expansion valve 12 is secured even without cooling by the cooling device 11. it can. Therefore, the power supply to the cooling device 11 is unnecessary and can be reduced. After the processing of this step, this routine is temporarily stopped.

図6に示すように、過冷却度SC1と冷却装置出力P1との関係は、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1が低いほど、冷却装置11の冷却能力を大きな出力P1に切り替える相関関係となっている。これにより、冷却装置11への電力供給が必要な分だけ消費され、膨張弁12の手前の冷媒の液相状態が確保され、冷媒の不快な流通音の品質不具合が回避できる。 As shown in FIG. 6, the relationship between the degree of supercooling SC1 and the cooling device output P1 is calculated from the refrigerant excess detected by the refrigerant temperature sensor 8 and the refrigerant pressure detected by the refrigerant pressure sensor 7. The lower the degree of cooling SC1, the higher the correlation is such that the cooling capacity of the cooling device 11 is switched to the larger output P1. As a result, the power supply to the cooling device 11 is consumed as much as necessary, the liquid phase state of the refrigerant in front of the expansion valve 12 is secured, and the quality defect of the unpleasant flow sound of the refrigerant can be avoided.

<実施の形態2の効果>
実施の形態2によれば、空気調和装置100は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させる場合に、当該凝縮器の出口にて冷媒配管を流通する冷媒の温度を検出する冷媒温度センサ8を備える。空気調和装置100は、圧縮機2から吐出される冷媒の圧力を検出する冷媒圧力センサ7を備える。冷媒状態を反映した条件は、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1である。
<Effect of Embodiment 2>
According to the second embodiment, in the air conditioner 100, when the outdoor heat exchanger 4 functions as a condenser for the refrigerating cycle circuit to operate in cooling, the refrigerant flowing through the refrigerant pipe at the outlet of the condenser The refrigerant temperature sensor 8 for detecting the temperature of the above is provided. The air conditioner 100 includes a refrigerant pressure sensor 7 that detects the pressure of the refrigerant discharged from the compressor 2. The condition that reflects the refrigerant state is the degree of refrigerant supercooling SC1 calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor 8 and the pressure of the refrigerant detected by the refrigerant pressure sensor 7.

この構成によれば、冷却装置11の出力が冷媒の過冷却度SC1に応じて適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって冷媒の過冷却度SC1に応じて十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately changed according to the degree of supercooling SC1 of the refrigerant, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the cooling device 11 is sufficient according to the supercooling degree SC1 of the refrigerant. The degree of supercooling can be secured.

実施の形態2によれば、制御装置6は、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1が低いほど、冷却装置11の冷却能力を大きな出力に切り替えるように構成されている。 According to the second embodiment, the control device 6 is cooled as the degree of cooling SC1 of the refrigerant calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor 8 and the pressure of the refrigerant detected by the refrigerant pressure sensor 7 is lower. It is configured to switch the cooling capacity of the device 11 to a large output.

この構成によれば、冷却装置11の出力が、冷媒の過冷却度SC1が低いほど大きな冷却能力に適切に変更され、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11によって冷媒の過冷却度SC1が低いほど大きな冷却能力に適切に変更され、十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately changed to a larger cooling capacity as the degree of supercooling SC1 of the refrigerant is lower, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the lower the supercooling degree SC1 of the refrigerant by the cooling device 11, the greater the cooling. Appropriately changed to capacity, sufficient supercooling degree can be secured.

実施の形態3.
実施の形態3では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
Embodiment 3.
In the third embodiment, the description of the same matters as those in the above embodiment will be omitted, and only the characteristic portion thereof will be described.

制御装置6は、外気温度T1が所定の判定閾値5、たとえば10℃よりも低い場合に冷却装置11に電力を供給する。または、過冷却度SC1が所定の判定閾値6、たとえば3℃よりも低い場合に冷却装置11に電力を供給する。つまり、制御装置6は、外気温度T1又は過冷却度SC1である冷媒状態を反映した条件によって、冷却装置11の冷却能力を出力状態と停止状態とに切り替える。この場合には、膨張弁12の手前の冷媒の液相状態を確保し、冷媒の不快な流通音の品質不具合が回避できるとともに、制御が簡単にできる。また、冷却装置11への電力供給は、冷却補助が必要な場合のみに限られ、常時通電する場合に比べて消費電力が少ない。 The control device 6 supplies electric power to the cooling device 11 when the outside air temperature T1 is lower than a predetermined determination threshold value 5, for example, 10 ° C. Alternatively, power is supplied to the cooling device 11 when the degree of supercooling SC1 is lower than a predetermined determination threshold value 6, for example, 3 ° C. That is, the control device 6 switches the cooling capacity of the cooling device 11 between the output state and the stopped state according to the conditions reflecting the outside air temperature T1 or the refrigerant state having the supercooling degree SC1. In this case, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured, the quality defect of the unpleasant flow noise of the refrigerant can be avoided, and the control can be easily performed. Further, the power supply to the cooling device 11 is limited to the case where the cooling assistance is required, and the power consumption is smaller than that in the case where the power is always energized.

<冷却装置11の制御3>
図7は、本発明の実施の形態3に係る外気温度T1及び過冷却度SC1に応じて冷却装置出力P1を調整する制御3を示すフローチャート図である。図8は、本発明の実施の形態3に係る外気温度T1及び過冷却度SC1と冷却装置出力P1との関係を示す図である。
<Control 3 of cooling device 11>
FIG. 7 is a flowchart showing a control 3 for adjusting the cooling device output P1 according to the outside air temperature T1 and the supercooling degree SC1 according to the third embodiment of the present invention. FIG. 8 is a diagram showing the relationship between the outside air temperature T1 and the supercooling degree SC1 and the cooling device output P1 according to the third embodiment of the present invention.

図7に示すように、制御装置6は、本ルーチンを開始すると、ステップS21にて、外気温度センサ9が検出する外気温度T1が判定閾値5よりも低いか否かを判断する。外気温度T1が判定閾値5よりも低い場合には、ステップS22に移行する。外気温度T1が判定閾値5以上である場合には、ステップS23に移行する。 As shown in FIG. 7, when this routine is started, the control device 6 determines in step S21 whether or not the outside air temperature T1 detected by the outside air temperature sensor 9 is lower than the determination threshold value 5. If the outside air temperature T1 is lower than the determination threshold value 5, the process proceeds to step S22. If the outside air temperature T1 is equal to or higher than the determination threshold value 5, the process proceeds to step S23.

制御装置6は、ステップS22にて、冷却装置11を出力させる。これにより、外気温度T1が低く、室外熱交換器4での熱交換が十分でない場合に、膨張弁12の手前の冷媒の液相状態が確保できる。本ステップの処理の後、本ルーチンを一旦停止する。 The control device 6 outputs the cooling device 11 in step S22. As a result, when the outside air temperature T1 is low and the heat exchange in the outdoor heat exchanger 4 is insufficient, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS23にて、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから冷媒の過冷却度SC1を算出する。本ステップの処理の後、ステップS24に移行する。 In step S23, the control device 6 calculates the degree of refrigerant supercooling SC1 from the temperature of the refrigerant detected by the refrigerant temperature sensor 8 and the pressure of the refrigerant detected by the refrigerant pressure sensor 7. After the processing of this step, the process proceeds to step S24.

制御装置6は、ステップS24にて、ステップS23にて算出された過冷却度SC1が判定閾値6よりも低いか否かを判断する。過冷却度SC1が判定閾値6よりも低い場合には、ステップS22に移行する。過冷却度SC1が判定閾値6以上である場合には、ステップS25に移行する。 In step S24, the control device 6 determines whether or not the supercooling degree SC1 calculated in step S23 is lower than the determination threshold value 6. If the degree of supercooling SC1 is lower than the determination threshold value 6, the process proceeds to step S22. If the supercooling degree SC1 is equal to or higher than the determination threshold value 6, the process proceeds to step S25.

制御装置6は、ステップS24からステップS22に移行した場合には、冷却装置11を出力させる。これにより、過冷却度SC1が低く、室外熱交換器4での熱交換が十分でない場合に、膨張弁12の手前の冷媒の液相状態が確保できる。本ステップの処理の後、本ルーチンを一旦停止する。 When the control device 6 shifts from step S24 to step S22, the control device 6 outputs the cooling device 11. As a result, when the degree of supercooling SC1 is low and the heat exchange in the outdoor heat exchanger 4 is insufficient, the liquid phase state of the refrigerant in front of the expansion valve 12 can be ensured. After the processing of this step, this routine is temporarily stopped.

制御装置6は、ステップS25にて、冷却装置11を出力させない。これにより、過冷却度SC1が確保でき、室外熱交換器4での熱交換が満足できる場合には、冷却装置11での冷却が無くても膨張弁12の手前の冷媒の液相状態が確保できる。そのため、冷却装置11への電力供給が不必要なので削減できる。本ステップの処理の後、本ルーチンを一旦停止する。 The control device 6 does not output the cooling device 11 in step S25. As a result, when the supercooling degree SC1 can be secured and the heat exchange in the outdoor heat exchanger 4 is satisfactory, the liquid phase state of the refrigerant in front of the expansion valve 12 is secured even without cooling by the cooling device 11. it can. Therefore, the power supply to the cooling device 11 is unnecessary and can be reduced. After the processing of this step, this routine is temporarily stopped.

図8に示すように、外気温度T1及び過冷却度SC1と冷却装置出力P1との関係は、外気温度T1又は過冷却度SC1が低い場合に、冷却装置11の冷却能力が発揮される相関関係となっている。ここでは、外気温度T1の判定閾値5よりも過冷却度SC1の判定閾値6の方が過冷却度に大きく反映される度合いで閾値が設定されている。しかし、これに限られない。過冷却度SC1の判定閾値6よりも外気温度T1の判定閾値5の方が過冷却度に大きく反映される度合いで閾値が設定されても良い。また、外気温度T1あるいは冷媒の過冷却度SC1が低いほど、冷却装置11の冷却能力を大きな出力に切り替える相関関係としても良い。これにより、冷却装置11への電力供給が必要な分だけ消費され、膨張弁12の手前の冷媒の液相状態が確保され、冷媒の不快な流通音の品質不具合が回避できる。 As shown in FIG. 8, the relationship between the outside air temperature T1 and the supercooling degree SC1 and the cooling device output P1 is a correlation in which the cooling capacity of the cooling device 11 is exhibited when the outside air temperature T1 or the supercooling degree SC1 is low. It has become. Here, the threshold value is set to the extent that the determination threshold value 6 of the supercooling degree SC1 is more reflected in the supercooling degree than the determination threshold value 5 of the outside air temperature T1. However, it is not limited to this. The threshold value may be set to the extent that the determination threshold value 5 of the outside air temperature T1 is more reflected in the supercooling degree than the determination threshold value 6 of the supercooling degree SC1. Further, as the outside air temperature T1 or the supercooling degree SC1 of the refrigerant is lower, the correlation may be such that the cooling capacity of the cooling device 11 is switched to a larger output. As a result, the power supply to the cooling device 11 is consumed as much as necessary, the liquid phase state of the refrigerant in front of the expansion valve 12 is secured, and the quality defect of the unpleasant flow sound of the refrigerant can be avoided.

<実施の形態3の効果>
実施の形態3によれば、制御装置6は、冷媒状態を反映した条件によって、冷却装置11の冷却能力を出力状態と停止状態とに切り替えるように構成されている。
<Effect of Embodiment 3>
According to the third embodiment, the control device 6 is configured to switch the cooling capacity of the cooling device 11 between the output state and the stopped state depending on the conditions reflecting the refrigerant state.

この構成によれば、冷却装置11の出力が冷媒状態を反映した条件によって出力状態と停止状態とに適切に切り替えられ、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11が冷媒状態を反映した条件によって出力状態と停止状態とに適切に切り替えられ、十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 can be appropriately switched between the output state and the stopped state depending on the condition reflecting the refrigerant state, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment of the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the cooling device 11 stops the output state and stops depending on the condition reflecting the refrigerant state. It can be appropriately switched to the state and a sufficient degree of supercooling can be secured.

実施の形態3によれば、制御装置6は、外気温度センサ9が検出する外気温度T1が設定温度よりも低い場合に、冷却装置11の冷却能力を出力状態に切り替えるように構成されている。ここで、実施の形態3では、判定閾値5が設定温度に相当する。 According to the third embodiment, the control device 6 is configured to switch the cooling capacity of the cooling device 11 to the output state when the outside air temperature T1 detected by the outside air temperature sensor 9 is lower than the set temperature. Here, in the third embodiment, the determination threshold value 5 corresponds to the set temperature.

この構成によれば、冷却装置11の出力が外気温度センサ9の検出する外気温度T1によって出力状態と停止状態とに適切に切り替えられ、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11が外気温度センサ9の検出する外気温度T1によって出力状態と停止状態とに適切に切り替えられ、十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 is appropriately switched between the output state and the stopped state by the outside air temperature T1 detected by the outside air temperature sensor 9, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even when the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the cooling device 11 uses the outside air temperature T1 detected by the outside air temperature sensor 9. It can be appropriately switched between the output state and the stopped state, and a sufficient degree of supercooling can be secured.

実施の形態3によれば、制御装置6は、冷媒温度センサ8が検出する冷媒の温度と冷媒圧力センサ7が検出する冷媒の圧力とから算出される冷媒の過冷却度SC1が設定過冷却度よりも低い場合に、冷却装置11の冷却能力を出力状態に切り替えるように構成されている。ここで、実施の形態3では、判定閾値6が設定過冷却度に相当する。 According to the third embodiment, the control device 6 is set by the refrigerant supercooling degree SC1 calculated from the refrigerant temperature detected by the refrigerant temperature sensor 8 and the refrigerant pressure detected by the refrigerant pressure sensor 7. When it is lower than, the cooling capacity of the cooling device 11 is configured to be switched to the output state. Here, in the third embodiment, the determination threshold value 6 corresponds to the set supercooling degree.

この構成によれば、冷却装置11の出力が冷媒の過冷却度SC1によって出力状態と停止状態とに適切に切り替えられ、冷却装置11の消費エネルギーが適切に抑制できる。また、圧縮機2、送風機5及び膨張弁12などの冷凍サイクル回路上の構成要素の出力での調整では対処しきれない場合においても、冷却装置11が冷媒の過冷却度SC1によって出力状態と停止状態とに適切に切り替えられ、十分な過冷却度が確保できる。 According to this configuration, the output of the cooling device 11 can be appropriately switched between the output state and the stopped state by the supercooling degree SC1 of the refrigerant, and the energy consumption of the cooling device 11 can be appropriately suppressed. Further, even if the adjustment by the output of the components on the refrigeration cycle circuit such as the compressor 2, the blower 5, and the expansion valve 12 cannot cope with the problem, the cooling device 11 is stopped and the output state is caused by the supercooling degree SC1 of the refrigerant. It can be appropriately switched to the state and a sufficient degree of supercooling can be secured.

実施の形態4.
図9は、本発明の実施の形態4に係る空気調和装置100を示す冷媒回路図である。実施の形態4では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
Embodiment 4.
FIG. 9 is a refrigerant circuit diagram showing the air conditioner 100 according to the fourth embodiment of the present invention. In the fourth embodiment, the description of the same matters as those in the above embodiment will be omitted, and only the characteristic portion thereof will be described.

図9に示すように、空気調和装置100は、室内機10a及び室内機10bといった複数台の室内機を接続したマルチ型空調システムである。室内機10aは、膨張弁12a、室内熱交換器13a及び送風機14aを有する。室内機10bは、膨張弁12b、室内熱交換器13b及び送風機14bを有する。 As shown in FIG. 9, the air conditioner 100 is a multi-type air conditioning system in which a plurality of indoor units such as the indoor unit 10a and the indoor unit 10b are connected. The indoor unit 10a includes an expansion valve 12a, an indoor heat exchanger 13a, and a blower 14a. The indoor unit 10b includes an expansion valve 12b, an indoor heat exchanger 13b, and a blower 14b.

このようなマルチ型空調システムの空気調和装置100では、室内機10a及び室内機10bごとに冷媒配管長あるいは高低差などの設置条件が異なる。このため、室外熱交換器4が凝縮器として機能する場合に、当該凝縮器となる室外熱交換器4から各室内機10a又は室内機10bの膨張弁12a又は膨張弁12bまでの間の冷媒配管の長さL1又は長さL2の圧力損失によって膨張弁12a又は膨張弁12bの手前の過冷却度が保てない場合がある。ここでは、冷媒配管の長さL2が長さL1より長く、室内機10bの冷媒配管において圧力損失が大きく発生すると仮定する。このような凝縮器から膨張弁12までの冷媒配管の距離が長い場合に、長さL2の冷媒配管の途中に外部熱源による冷却装置11を設ける。または、凝縮器から膨張弁12までの冷媒配管の高低差が大きい経路に対し、外部熱源による冷却装置11を設けても良い。冷却装置11は、長さL2の冷媒配管を流通する冷媒の冷却を補助し、膨張弁12に気液二相状態の冷媒が流入せず、膨張弁12に液相状態の冷媒を流入させ、冷媒の不快な流通音発生の不具合が回避できる。なお、実施の形態4では、冷却装置11が長さL2の冷媒配管にのみ設けられるため、冷却装置11が室内機10bに設置されている。 In the air conditioner 100 of such a multi-type air conditioning system, the installation conditions such as the length of the refrigerant pipe and the height difference are different for each of the indoor unit 10a and the indoor unit 10b. Therefore, when the outdoor heat exchanger 4 functions as a condenser, the refrigerant pipe between the outdoor heat exchanger 4 serving as the condenser and the expansion valve 12a or the expansion valve 12b of each indoor unit 10a or the indoor unit 10b. The degree of supercooling in front of the expansion valve 12a or the expansion valve 12b may not be maintained due to the pressure loss of the length L1 or the length L2. Here, it is assumed that the length L2 of the refrigerant pipe is longer than the length L1 and a large pressure loss occurs in the refrigerant pipe of the indoor unit 10b. When the distance of the refrigerant pipe from the condenser to the expansion valve 12 is long, a cooling device 11 using an external heat source is provided in the middle of the refrigerant pipe having a length L2. Alternatively, a cooling device 11 using an external heat source may be provided for a path having a large height difference in the refrigerant piping from the condenser to the expansion valve 12. The cooling device 11 assists in cooling the refrigerant flowing through the refrigerant pipe of length L2, so that the gas-liquid two-phase state refrigerant does not flow into the expansion valve 12 and the liquid-phase state refrigerant flows into the expansion valve 12. It is possible to avoid the problem of generating an unpleasant flow noise of the refrigerant. In the fourth embodiment, since the cooling device 11 is provided only in the refrigerant pipe having a length L2, the cooling device 11 is installed in the indoor unit 10b.

<実施の形態4の効果>
実施の形態4によれば、空気調和装置100は、室内熱交換器13b及び膨張弁12bを有する室内機10bを備える。空気調和装置100は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から前記膨張弁12に冷媒を流通させる場合に、凝縮器から膨張弁12までの距離が設定距離よりも長い経路を有する経路に冷却装置11を備える。
<Effect of Embodiment 4>
According to the fourth embodiment, the air conditioner 100 includes an indoor unit 10b having an indoor heat exchanger 13b and an expansion valve 12b. The air conditioner 100 causes the outdoor heat exchanger 4 to function as a condenser for the refrigeration cycle circuit to perform cooling operation, and when the refrigerant is circulated from the condenser to the expansion valve 12, from the condenser to the expansion valve 12. The cooling device 11 is provided in a path having a path whose distance is longer than the set distance.

この構成によれば、室内機10bと室外機1の間の距離が長く凝縮器の出口から膨張弁12までの冷媒配管に圧力損失が大きく生じる場合においても、冷却装置11によって十分な過冷却度が確保できる。これにより、膨張弁12に気液二相状態の冷媒が通過することによる冷媒の不快な流通音の発生が防止できる。 According to this configuration, even when the distance between the indoor unit 10b and the outdoor unit 1 is long and a large pressure loss occurs in the refrigerant pipe from the outlet of the condenser to the expansion valve 12, the cooling device 11 has a sufficient degree of supercooling. Can be secured. As a result, it is possible to prevent the generation of an unpleasant flow noise of the refrigerant due to the passage of the refrigerant in the gas-liquid two-phase state through the expansion valve 12.

実施の形態4によれば、空気調和装置100は、室内熱交換器13a又は室内熱交換器13b及び膨張弁12a又は膨張弁12bをそれぞれ有する室内機10a又は室内機10bを複数備える。空気調和装置100は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から膨張弁12に冷媒を流通させる場合に、複数の室内機10a及び室内機10bのうち、凝縮器から膨張弁12までの距離が他の室内機10aよりも長い経路を有する室内機10bに冷却装置11を備える。 According to the fourth embodiment, the air conditioner 100 includes a plurality of indoor units 10a or 10b having an indoor heat exchanger 13a or an indoor heat exchanger 13b and an expansion valve 12a or an expansion valve 12b, respectively. The air conditioner 100 causes the outdoor heat exchanger 4 to function as a condenser for the refrigeration cycle circuit to perform cooling operation, and when the refrigerant is circulated from the condenser to the expansion valve 12, the plurality of indoor units 10a and the indoor unit Of the 10b, the indoor unit 10b having a path in which the distance from the condenser to the expansion valve 12 is longer than that of the other indoor units 10a is provided with the cooling device 11.

この構成によれば、複数の室内機10a又は室内機10bのうち、室外機1との間の距離が長く凝縮器の出口から膨張弁12までの冷媒配管に圧力損失が大きく生じる室内機10bが存在する場合においても、冷却装置11によって十分な過冷却度が確保できる。これにより、膨張弁12に気液二相状態の冷媒が通過することによる冷媒の不快な流通音の発生が防止できる。 According to this configuration, among the plurality of indoor units 10a or 10b, the indoor unit 10b has a long distance from the outdoor unit 1 and causes a large pressure loss in the refrigerant pipe from the outlet of the condenser to the expansion valve 12. Even if it exists, a sufficient degree of supercooling can be ensured by the cooling device 11. As a result, it is possible to prevent the generation of an unpleasant flow noise of the refrigerant due to the passage of the refrigerant in the gas-liquid two-phase state through the expansion valve 12.

実施の形態4によれば、空気調和装置100は、室内熱交換器13b及び膨張弁12bを有する室内機10bを備える。空気調和装置100は、冷凍サイクル回路が冷房運転するために室外熱交換器4を凝縮器として機能させ、当該凝縮器から膨張弁12bに冷媒を流通させる場合に、凝縮器から膨張弁12bまでの冷媒配管に高低差が設定差分よりも大きな差を有する経路に冷却装置11を備える。 According to the fourth embodiment, the air conditioner 100 includes an indoor unit 10b having an indoor heat exchanger 13b and an expansion valve 12b. The air conditioner 100 causes the outdoor heat exchanger 4 to function as a condenser for the refrigeration cycle circuit to perform cooling operation, and when the refrigerant is circulated from the condenser to the expansion valve 12b, from the condenser to the expansion valve 12b. The cooling device 11 is provided in a path in which the height difference of the refrigerant pipe is larger than the set difference.

この構成によれば、室内機10bと室外機1の間の高低差が大きく凝縮器の出口から膨張弁12bまでの冷媒配管に圧力損失が大きく生じる場合においても、冷却装置11によって十分な過冷却度が確保できる。これにより、膨張弁12bに気液二相状態の冷媒が通過することによる冷媒の不快な流通音の発生が防止できる。 According to this configuration, even when the height difference between the indoor unit 10b and the outdoor unit 1 is large and a large pressure loss occurs in the refrigerant pipe from the outlet of the condenser to the expansion valve 12b, the cooling device 11 is sufficient for supercooling. The degree can be secured. As a result, it is possible to prevent the generation of an unpleasant flow noise of the refrigerant due to the passage of the refrigerant in the gas-liquid two-phase state through the expansion valve 12b.

なお、本発明の実施の形態1〜4を組み合わせてもよいし、他の部分に適用してもよい。 In addition, embodiments 1 to 4 of the present invention may be combined, or may be applied to other parts.

1 室外機、2 圧縮機、3 四方弁、4 室外熱交換器、5 送風機、6 制御装置、7 冷媒圧力センサ、8 冷媒温度センサ、9 外気温度センサ、10、10a、10b 室内機、11 冷却装置、12、12a、12b 膨張弁、13、13a、13b 室内熱交換器、14、14a、14b 送風機、100 空気調和装置。 1 outdoor unit, 2 compressor, 3 four-way valve, 4 outdoor heat exchanger, 5 blower, 6 controller, 7 refrigerant pressure sensor, 8 refrigerant temperature sensor, 9 outside air temperature sensor, 10, 10a, 10b indoor unit, 11 cooling Equipment, 12, 12a, 12b expansion valve, 13, 13a, 13b indoor heat exchanger, 14, 14a, 14b blower, 100 air conditioner.

本発明に係る空気調和装置は、圧縮機と室外熱交換器と膨張弁と室内熱交換器とを冷媒配管で順次接続した冷凍サイクル回路と、前記室外熱交換器と前記膨張弁との間の前記冷媒配管に配置され、外部熱源によって前記冷媒配管を流通する冷媒を冷却する冷却装置と、前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、前記冷却装置の冷却能力を変更するように構成された制御装置と、前記室外熱交換器が熱交換する外気の温度を検出する外気温度センサと、を備え、前記冷媒状態を反映した条件は、前記外気温度センサが検出する外気温度であり、前記制御装置は、前記外気温度センサが検出する外気温度が設定温度よりも低い場合に、前記冷却装置の冷却能力を出力状態に切り替えるように構成されたものである。 The air conditioner according to the present invention is a refrigeration cycle circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, and between the outdoor heat exchanger and the expansion valve. A cooling device arranged in the refrigerant pipe and cooling the refrigerant flowing through the refrigerant pipe by an external heat source and the outdoor heat exchanger functioning as a condenser for the refrigeration cycle circuit to perform cooling operation are performed from the condenser. When the refrigerant is circulated through the expansion valve, the control device configured to change the cooling capacity of the cooling device according to the conditions reflecting the state of the refrigerant and the outside air exchanged with heat by the outdoor heat exchanger. The outside air temperature sensor for detecting the temperature is provided , and the condition reflecting the cooling state is the outside air temperature detected by the outside air temperature sensor, and the control device has the outside air temperature detected by the outside air temperature sensor as the set temperature. When it is lower than, it is configured to switch the cooling capacity of the cooling device to the output state .

Claims (13)

圧縮機と室外熱交換器と膨張弁と室内熱交換器とを冷媒配管で順次接続した冷凍サイクル回路と、
前記室外熱交換器と前記膨張弁との間の前記冷媒配管に配置され、外部熱源によって前記冷媒配管を流通する冷媒を冷却する冷却装置と、
前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、冷媒状態を反映した条件に応じて、前記冷却装置の冷却能力を変更するように構成された制御装置と、
を備える空気調和装置。
A refrigeration cycle circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe.
A cooling device arranged in the refrigerant pipe between the outdoor heat exchanger and the expansion valve and cooling the refrigerant flowing through the refrigerant pipe by an external heat source.
When the outdoor heat exchanger functions as a condenser for the refrigeration cycle circuit to perform cooling operation and the refrigerant is circulated from the condenser to the expansion valve, the cooling device depends on the conditions reflecting the refrigerant state. With a controller configured to change the cooling capacity of
An air conditioner equipped with.
前記制御装置は、前記冷媒状態を反映した条件によって、前記冷却装置の冷却能力を出力状態と停止状態とに切り替えるように構成された請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the control device is configured to switch the cooling capacity of the cooling device between an output state and a stopped state according to a condition reflecting the refrigerant state. 前記制御装置は、前記冷媒状態を反映した条件に応じて、前記冷却装置の冷却能力の出力の大きさを切り替えるように構成された請求項1又は請求項2に記載の空気調和装置。 The air conditioner according to claim 1 or 2, wherein the control device is configured to switch the magnitude of the output of the cooling capacity of the cooling device according to a condition reflecting the refrigerant state. 前記室外熱交換器が熱交換する外気の温度を検出する外気温度センサを備え、
前記冷媒状態を反映した条件は、前記外気温度センサが検出する外気温度である請求項1〜請求項3のいずれか1項に記載の空気調和装置。
The outdoor heat exchanger is provided with an outside air temperature sensor that detects the temperature of the outside air that exchanges heat.
The air conditioner according to any one of claims 1 to 3, wherein the condition reflecting the refrigerant state is the outside air temperature detected by the outside air temperature sensor.
前記制御装置は、前記外気温度センサが検出する外気温度が設定温度よりも低い場合に、前記冷却装置の冷却能力を出力状態に切り替えるように構成された請求項4に記載の空気調和装置。 The air conditioner according to claim 4, wherein the control device is configured to switch the cooling capacity of the cooling device to an output state when the outside air temperature detected by the outside air temperature sensor is lower than the set temperature. 前記制御装置は、前記外気温度センサが検出する外気温度が低いほど、前記冷却装置の冷却能力を大きな出力に切り替えるように構成された請求項4又は請求項5に記載の空気調和装置。 The air conditioner according to claim 4 or 5, wherein the control device is configured to switch the cooling capacity of the cooling device to a larger output as the outside air temperature detected by the outside air temperature sensor is lower. 前記凝縮器の出口にて前記冷媒配管を流通する冷媒の温度を検出する冷媒温度センサと、
前記圧縮機から吐出される冷媒の圧力を検出する圧力センサと、
を備え、
前記冷媒状態を反映した条件は、前記冷媒温度センサが検出する冷媒の温度と前記圧力センサが検出する冷媒の圧力とから算出される冷媒の過冷却度である請求項1〜請求項6のいずれか1項に記載の空気調和装置。
A refrigerant temperature sensor that detects the temperature of the refrigerant flowing through the refrigerant pipe at the outlet of the condenser, and
A pressure sensor that detects the pressure of the refrigerant discharged from the compressor,
With
The condition that reflects the refrigerant state is any of claims 1 to 6, which is the degree of refrigerant supercooling calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor and the pressure of the refrigerant detected by the pressure sensor. The air conditioner according to item 1.
前記制御装置は、前記冷媒温度センサが検出する冷媒の温度と前記圧力センサが検出する冷媒の圧力とから算出される冷媒の過冷却度が設定過冷却度よりも低い場合に、前記冷却装置の冷却能力を出力状態に切り替えるように構成された請求項7に記載の空気調和装置。 The control device is used for the cooling device when the degree of refrigerant supercooling calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor and the pressure of the refrigerant detected by the pressure sensor is lower than the set degree of supercooling. The air conditioner according to claim 7, wherein the cooling capacity is configured to switch to an output state. 前記制御装置は、前記冷媒温度センサが検出する冷媒の温度と前記圧力センサが検出する冷媒の圧力とから算出される冷媒の過冷却度が低いほど、前記冷却装置の冷却能力を大きな出力に切り替えるように構成された請求項7又は請求項8に記載の空気調和装置。 The control device switches the cooling capacity of the cooling device to a larger output as the degree of refrigerant supercooling calculated from the temperature of the refrigerant detected by the refrigerant temperature sensor and the pressure of the refrigerant detected by the pressure sensor is lower. The air conditioner according to claim 7 or 8, which is configured as described above. 前記室内熱交換器及び前記膨張弁を有する室内機を備え、
前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、前記凝縮器から前記膨張弁までの距離が設定距離よりも長い経路を有する経路に前記冷却装置を備える請求項1〜請求項9のいずれか1項に記載の空気調和装置。
The indoor heat exchanger and the indoor unit having the expansion valve are provided.
When the outdoor heat exchanger functions as a condenser for the refrigeration cycle circuit to perform cooling operation and the refrigerant is circulated from the condenser to the expansion valve, the distance from the condenser to the expansion valve is a set distance. The air conditioner according to any one of claims 1 to 9, wherein the cooling device is provided in a path having a longer path.
前記室内熱交換器及び前記膨張弁をそれぞれ有する室内機を複数備え、
前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、複数の前記室内機のうち、前記凝縮器から前記膨張弁までの距離が他の前記室内機よりも長い経路を有する前記室内機に前記冷却装置を備える請求項1〜請求項10のいずれか1項に記載の空気調和装置。
A plurality of indoor units each having the indoor heat exchanger and the expansion valve are provided.
When the outdoor heat exchanger functions as a condenser for the refrigeration cycle circuit to perform cooling operation and the refrigerant is circulated from the condenser to the expansion valve, the condenser is used among the plurality of indoor units. The air conditioner according to any one of claims 1 to 10, wherein the indoor unit having a path in which the distance to the expansion valve is longer than that of the other indoor unit is provided with the cooling device.
前記室内熱交換器及び前記膨張弁を有する室内機を備え、
前記冷凍サイクル回路が冷房運転するために前記室外熱交換器を凝縮器として機能させ、当該凝縮器から前記膨張弁に冷媒を流通させる場合に、前記凝縮器から前記膨張弁までの冷媒配管に高低差が設定差分よりも大きな差を有する経路に前記冷却装置を備える請求項1〜請求項11のいずれか1項に記載の空気調和装置。
The indoor heat exchanger and the indoor unit having the expansion valve are provided.
When the outdoor heat exchanger functions as a condenser for the refrigeration cycle circuit to perform cooling operation and the refrigerant is circulated from the condenser to the expansion valve, the height of the refrigerant pipe from the condenser to the expansion valve is high or low. The air conditioner according to any one of claims 1 to 11, wherein the cooling device is provided in a path in which the difference is larger than the set difference.
前記冷却装置には、ペルチェ素子が用いられる請求項1〜請求項12のいずれか1項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 12, wherein a Peltier element is used as the cooling device.
JP2020533966A 2018-08-01 2018-08-01 Air conditioner Active JP6991338B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028813 WO2020026374A1 (en) 2018-08-01 2018-08-01 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2020026374A1 true JPWO2020026374A1 (en) 2021-04-30
JP6991338B2 JP6991338B2 (en) 2022-02-03

Family

ID=69230655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533966A Active JP6991338B2 (en) 2018-08-01 2018-08-01 Air conditioner

Country Status (2)

Country Link
JP (1) JP6991338B2 (en)
WO (1) WO2020026374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035270A (en) * 1996-07-19 1998-02-10 Zexel Corp Air conditioner and control method therefor
JP2007064510A (en) * 2005-08-29 2007-03-15 Daikin Ind Ltd Air conditioner
JP2007132632A (en) * 2005-11-14 2007-05-31 Takasago Thermal Eng Co Ltd Operating method of air conditioner
JP2007225259A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
WO2014141375A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161253U (en) * 1980-04-28 1981-12-01
JP3824008B2 (en) * 2004-06-11 2006-09-20 ダイキン工業株式会社 Supercooling device
JP3963190B2 (en) * 2005-04-07 2007-08-22 ダイキン工業株式会社 Refrigerant amount determination system for air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035270A (en) * 1996-07-19 1998-02-10 Zexel Corp Air conditioner and control method therefor
JP2007064510A (en) * 2005-08-29 2007-03-15 Daikin Ind Ltd Air conditioner
JP2007132632A (en) * 2005-11-14 2007-05-31 Takasago Thermal Eng Co Ltd Operating method of air conditioner
JP2007225259A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
WO2014141375A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
WO2020026374A1 (en) 2020-02-06
JP6991338B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
EP2270405B1 (en) Refrigerating device
US10527330B2 (en) Refrigeration cycle device
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP6538290B1 (en) Air conditioner
JP5343618B2 (en) Refrigeration cycle equipment
WO2017221287A1 (en) Cooling device
JP2010249452A (en) Air conditioner
KR20190005445A (en) Method for controlling multi-type air conditioner
JP5481838B2 (en) Heat pump cycle equipment
WO2017068631A1 (en) Heat source system
JP2011007482A (en) Air conditioner
JP2005180815A (en) Cooling device
JP6991338B2 (en) Air conditioner
JPH10185333A (en) Air conditioning equipment
US20180187938A1 (en) Refrigerator system
JP6526398B2 (en) Heat pump system
JP5150300B2 (en) Heat pump type water heater
KR102558826B1 (en) Air conditioner system and control method
WO2016084174A1 (en) Refrigeration cycle device
JP6573723B2 (en) Air conditioner
JPWO2019215878A1 (en) Air conditioner
JP6407410B2 (en) Refrigeration air conditioner
JP2007298218A (en) Refrigerating device
JP6518467B2 (en) Refrigeration system
JP2011174686A (en) Refrigerating machine for transportation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150