JPWO2020026212A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020026212A5
JPWO2020026212A5 JP2021529544A JP2021529544A JPWO2020026212A5 JP WO2020026212 A5 JPWO2020026212 A5 JP WO2020026212A5 JP 2021529544 A JP2021529544 A JP 2021529544A JP 2021529544 A JP2021529544 A JP 2021529544A JP WO2020026212 A5 JPWO2020026212 A5 JP WO2020026212A5
Authority
JP
Japan
Prior art keywords
whole blood
blood sample
fgf
growth factor
tubular scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021529544A
Other languages
Japanese (ja)
Other versions
JP2021532962A (en
JP7208393B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2019/056621 external-priority patent/WO2020026212A2/en
Publication of JP2021532962A publication Critical patent/JP2021532962A/en
Publication of JPWO2020026212A5 publication Critical patent/JPWO2020026212A5/ja
Priority to JP2023000388A priority Critical patent/JP7303952B2/en
Application granted granted Critical
Publication of JP7208393B2 publication Critical patent/JP7208393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (20)

個別化された血管を作製する方法であって、無細胞性管状足場の表面を、前記個別化された血管を必要とする対象からの全血サンプルを含む懸濁液と接触させることを含み、この全血サンプルは生理学的溶液の中で希釈されており、かつこの接触操作を3~14日間にわたって実施する方法。 1. A method of making personalized blood vessels, comprising contacting a surface of an acellular tubular scaffold with a suspension comprising a whole blood sample from a subject in need of said personalized blood vessels, A method wherein the whole blood sample is diluted in a physiological solution and the contacting procedure is performed for 3-14 days . 前記全血サンプル内の細胞の集団が前記無細胞性管状足場に定着する、請求項1に記載の方法。 2. The method of claim 1 , wherein a population of cells within said whole blood sample colonize said acellular tubular scaffold. 前記全血サンプルが1つ以上の非細胞性因子を含み、前記全血の1つ以上の非血管性因子が前記足場に定着し、これら非血管性因子が、無細胞性管状足場の細胞化と、移植時の血管の宿主適合性を促進する、請求項1に記載の方法。 The whole blood sample contains one or more non-cellular factors, one or more non-vascular factors of the whole blood colonize the scaffold, and these non-vascular factors cause cellularization of the acellular tubular scaffold. and promoting host compatibility of the vessel upon transplantation . 前記血サンプルを含む懸濁液が抗血栓因子をさらに含む、請求項1に記載の方法。 2. The method of claim 1 , wherein the suspension comprising the whole blood sample further comprises an antithrombotic factor. 前記抗血栓因子が抗凝固剤を含む、請求項4に記載の方法。 5. The method of claim 4 , wherein said antithrombotic factor comprises an anticoagulant. 前記抗凝固剤がヘパリンまたはデキストランを含む、請求項5に記載の方法。 6. The method of claim 5 , wherein said anticoagulant comprises heparin or dextran. 前記無細胞性管状足場の接触操作を開始するとき、前記ヘパリンが、前記全血サンプルを含む懸濁液の中に約0.5 IU/ml~約150 IU/mlの濃度で存在する、請求項6に記載の方法。 6. The heparin is present in a suspension containing the whole blood sample at a concentration of about 0.5 IU/ml to about 150 IU/ml when the contacting operation of the acellular tubular scaffold is initiated. The method described in . 前記無細胞性管状足場の接触操作を開始するとき、前記ヘパリンが、前記全血サンプルを含む懸濁液の中に約6.7 IU/mlの濃度で存在する、請求項7に記載の方法。 8. The method of claim 7 , wherein the heparin is present in a suspension containing the whole blood sample at a concentration of about 6.7 IU/ml when the contacting operation of the acellular tubular scaffold is initiated. 前記デキストランがデキストラン-40である、請求項6に記載の方法。 7. The method of claim 6 , wherein said dextran is dextran-40. 前記無細胞性管状足場の接触操作を開始するとき、前記デキストランが、前記全血サンプルを含む懸濁液の中に約1 g/L~約55 g/Lの濃度で存在する、請求項6に記載の方法。 6. The dextran is present in a suspension containing the whole blood sample at a concentration of about 1 g/L to about 55 g/L when the contacting operation of the acellular tubular scaffold is initiated. The method described in . 前記抗血栓剤がアスコルビン酸を含む、請求項4に記載の方法。 5. The method of claim 4 , wherein said antithrombotic agent comprises ascorbic acid. 前記無細胞性管状足場の接触操作を開始するとき、前記アスコルビン酸が、前記全血サンプルを含む懸濁液の中に約0.2μg/ml~約200μg /mlの濃度で存在する、請求項11に記載の方法。 Claim 11 , wherein the ascorbic acid is present in a suspension containing the whole blood sample at a concentration of about 0.2 µg/ml to about 200 µg/ml when the contacting operation of the acellular tubular scaffold is initiated. The method described in . 前記無細胞性管状足場の接触操作を開始するとき、前記アスコルビン酸が、前記全血サンプルを含む懸濁液の中に約5μg/mlの濃度で存在する、請求項11に記載の方法。 12. The method of claim 11 , wherein the ascorbic acid is present in a suspension containing the whole blood sample at a concentration of about 5 [mu]g/ml when the acellular tubular scaffold contacting operation is initiated. 前記抗血栓因子がアセチルサリチル酸を含む、請求項4に記載の方法。 5. The method of claim 4 , wherein said antithrombotic agent comprises acetylsalicylic acid. 前記無細胞性管状足場の接触操作を開始するとき、前記アセチルサリチル酸が、前記全血サンプルを含む懸濁液の中に約0.2μg/ml~約200μg /mlの濃度で存在する、請求項14に記載の方法。 15. The acetylsalicylic acid is present in a suspension containing the whole blood sample at a concentration of about 0.2 μg/ml to about 200 μg/ml when the contacting operation of the acellular tubular scaffold is initiated. The method described in . 前記無細胞性管状足場の接触操作を開始するとき、前記アセチルサリチル酸が、前記全血サンプルを含む懸濁液の中に約5μg/mlの濃度で存在する、請求項14に記載の方法。 15. The method of claim 14 , wherein the acetylsalicylic acid is present in a suspension containing the whole blood sample at a concentration of about 5 [mu]g/ml when initiating the contacting operation of the acellular tubular scaffold. 前記血サンプルを含む懸濁液が、集団平均生理学的レベルと等しいかそれよりも高いレベルの増殖因子をさらに含み、この増殖因子の選択が、顆粒球マクロファージ-コロニー刺激因子(GM-CSF)、インターロイキン(IL)-3、IL-4、ニュートロフィン(NT)-6、プレイオトロフィン(HB-GAM)、ミッドカイン(MK)、インターフェロン誘導タンパク質-10(IP-10)、血小板因子(PF)-4、単球走化性タンパク質-1(MCP-1)、RANTES(CCL-5、ケモカイン(C-Cモチーフ)リガンド5)、IL-8、IGF、線維芽細胞増殖因子(FGF)-l、FGF-2、FGF-3、FGF-4、FGF-5、FGF-6、FGF-7、FGF-8、FGF-9、トランスフォーミング増殖因子(TGF)-β、VEGF、血小板由来増殖因子(PDGF)-A、PDGF-B、HB-EGF、肝細胞増殖因子(HGF)、腫瘍壊死因子(TNF)-α、インスリン様増殖因子(IGF)-1と、これらの任意の組み合わせからなされる、請求項1に記載の方法。 The suspension comprising said whole blood sample further comprises a growth factor at a level equal to or greater than the population mean physiological level, the choice of growth factor being granulocyte-macrophage-colony stimulating factor (GM-CSF). , interleukin (IL)-3, IL-4, neurotrophin (NT)-6, pleiotrophin (HB-GAM), midkine (MK), interferon-inducible protein-10 (IP-10), platelet factor ( PF)-4, monocyte chemoattractant protein-1 (MCP-1), RANTES (CCL-5, chemokine (CC motif) ligand 5), IL-8, IGF, fibroblast growth factor (FGF)-l , FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, transforming growth factor (TGF)-β, VEGF, platelet-derived growth factor ( PDGF)-A, PDGF-B, HB-EGF, hepatocyte growth factor (HGF), tumor necrosis factor (TNF)-alpha, insulin-like growth factor (IGF)-1 and any combination thereof; The method of Claim 1 . 前記増殖因子が線維芽細胞増殖因子(FGF)-2である、請求項17に記載の方法。 18. The method of claim 17 , wherein said growth factor is fibroblast growth factor (FGF)-2. 前記接触操作を3~9日間にわたって実施する、請求項1に記載の方法。 2. The method of claim 1, wherein said contacting operation is carried out for 3-9 days. 前記接触操作を4~9日間にわたって実施する、請求項19に記載の方法。 20. The method of claim 19, wherein said contacting operation is carried out for 4-9 days.
JP2021529544A 2018-08-03 2019-08-02 Methods of making individualized blood vessels Active JP7208393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023000388A JP7303952B2 (en) 2018-08-03 2023-01-05 Methods of making individualized blood vessels

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862714200P 2018-08-03 2018-08-03
US62/714,200 2018-08-03
PCT/IB2019/056621 WO2020026212A2 (en) 2018-08-03 2019-08-02 Methods of preparing personalized blood vessels

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023000388A Division JP7303952B2 (en) 2018-08-03 2023-01-05 Methods of making individualized blood vessels

Publications (3)

Publication Number Publication Date
JP2021532962A JP2021532962A (en) 2021-12-02
JPWO2020026212A5 true JPWO2020026212A5 (en) 2022-08-03
JP7208393B2 JP7208393B2 (en) 2023-01-18

Family

ID=68104680

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021529544A Active JP7208393B2 (en) 2018-08-03 2019-08-02 Methods of making individualized blood vessels
JP2023000388A Active JP7303952B2 (en) 2018-08-03 2023-01-05 Methods of making individualized blood vessels

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023000388A Active JP7303952B2 (en) 2018-08-03 2023-01-05 Methods of making individualized blood vessels

Country Status (22)

Country Link
US (3) US11471567B2 (en)
EP (2) EP3830243B1 (en)
JP (2) JP7208393B2 (en)
KR (1) KR102530336B1 (en)
CN (1) CN112805364A (en)
AU (1) AU2019315049A1 (en)
BR (1) BR112021001541B1 (en)
CA (1) CA3107918A1 (en)
DK (1) DK3830243T3 (en)
ES (1) ES2953744T3 (en)
FI (1) FI3830243T3 (en)
HR (1) HRP20230834T1 (en)
HU (1) HUE062715T2 (en)
LT (1) LT3830243T (en)
MX (1) MX2021001184A (en)
PL (1) PL3830243T3 (en)
PT (1) PT3830243T (en)
RS (1) RS64381B1 (en)
SG (2) SG10202112210SA (en)
SI (1) SI3830243T1 (en)
WO (1) WO2020026212A2 (en)
ZA (1) ZA202100888B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855859A (en) * 2021-05-28 2021-12-31 首都医科大学宣武医院 Small-caliber tissue engineering blood vessel constructed by acellular vascular matrix and capable of promoting rapid endothelialization

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274244A (en) * 1989-04-14 1990-11-08 Yasunori Morohoshi Artificial blood vessel and its manufacture
US6376244B1 (en) 1999-12-29 2002-04-23 Children's Medical Center Corporation Methods and compositions for organ decellularization
DE60133377T2 (en) 2000-04-28 2009-01-02 Baylor College Of Medicine, Houston DEZELLULARIZED VASCULAR TRESES
AU2002214443B2 (en) 2000-11-03 2005-12-15 Vitrolife Ab Evaluation and preservation solution
SG158172A1 (en) 2004-12-24 2010-01-29 Celxcel Pty Ltd An implantable biomaterial and a method of producing same
US20130323708A1 (en) 2009-07-01 2013-12-05 Massachusetts Institute Of Technology Isolated adult cells, artificial organs, rehabilitated organs, research tools, organ encasements, organ perfusion systems, and methods for preparing and utilizing the same
EP2782995B1 (en) 2012-03-16 2016-11-09 Novahep AB Bioengineered allogeneic blood vessel
JP6520706B2 (en) 2014-02-12 2019-05-29 東レ株式会社 Artificial blood vessel
JP2016524954A (en) 2014-05-27 2016-08-22 ノーバヘップ アーベー Allogeneic valves produced by biotechnology
CN107106727B (en) 2014-10-31 2021-04-02 富士胶片株式会社 Tubular structure, device for manufacturing tubular structure, and method for manufacturing tubular structure
SG11201704989WA (en) 2014-12-19 2017-07-28 Angiocrine Bioscience Inc Biocompatible implants comprising engineered endothelial cells
KR102539584B1 (en) 2016-06-15 2023-06-02 더 제너럴 하스피탈 코포레이션 Metabolic Labeling and Molecular Enhancement of Biological Substances Using Bioorthogonal Reactions

Similar Documents

Publication Publication Date Title
JP2002506008A5 (en)
Risau Angiogenic growth factors
CA2322559A1 (en) Compositions and methods for modulating vascularization
JP2008537942A5 (en)
EP2506867B1 (en) Pharmaceutical compositions for the stimulation of stem cells.
Martins-Green et al. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus
EP1890721B1 (en) Compositions and methods for treating cardiac conditions
Luttun et al. Vascular progenitors: from biology to treatment
Yao et al. Chemotaxis by a CNS macrophage, the microglia
US8603462B2 (en) Stem-cell, precursor cell, or target cell-based treatment of multi-organ failure and renal dysfunction
US20130251683A1 (en) Prolonged delivery of heparin-binding growth factors from heparin-derivatized collagen
RU2011145370A (en) PHARMACEUTICAL COMPOSITION FOR TREATMENT OF HEART DISEASES
RU2012120834A (en) PHARMACEUTICAL COMPOSITIONS FOR STIMULATION OF STEM CELLS
US20130309304A1 (en) Compounds and methods
JP2012527432A5 (en)
JPWO2020026212A5 (en)
US20180296641A1 (en) Method to induce neovascular formation and tissue regeneration
JP2014521391A (en) Method for treating anemia in hemodialysis patients
Vaseenon et al. The possible role of basic fibroblast growth factor in dental pulp
RU2021101791A (en) METHODS FOR MANUFACTURING A CUSTOMIZED BLOOD VESSEL
AU772857B2 (en) Method of inducing angiogenesis
Mogan et al. Rationale of platelet gel to augment adaptive remodeling of the injured heart
FI3830243T3 (en) Methods of preparing personalized blood vessels
JP2002534476A (en) Compositions and methods for improving fetal kidney graft function
US20210338741A1 (en) Tissue healing agent