JPWO2020018506A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020018506A5
JPWO2020018506A5 JP2021501337A JP2021501337A JPWO2020018506A5 JP WO2020018506 A5 JPWO2020018506 A5 JP WO2020018506A5 JP 2021501337 A JP2021501337 A JP 2021501337A JP 2021501337 A JP2021501337 A JP 2021501337A JP WO2020018506 A5 JPWO2020018506 A5 JP WO2020018506A5
Authority
JP
Japan
Prior art keywords
bacterial cell
steviol glycoside
glucose
ugt
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021501337A
Other languages
Japanese (ja)
Other versions
JP7305087B2 (en
JP2021530228A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/041957 external-priority patent/WO2020018506A2/en
Publication of JP2021530228A publication Critical patent/JP2021530228A/en
Publication of JPWO2020018506A5 publication Critical patent/JPWO2020018506A5/ja
Application granted granted Critical
Publication of JP7305087B2 publication Critical patent/JP7305087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (36)

ステビオールグリコシド中間体からステビオールグリコシド産物を産生するための方法であって、
1つ以上のUDP依存性グリコシルトランスフェラーゼ酵素(UGT酵素)を細胞内で発現する細菌細胞を提供することと、
前記細菌細胞ステビオールグリコシド中間体を含むステビア葉抽出物又はその画分とインキュベートし、UDP-グルコース補因子からの一つ以上のグリコシル基の酵素転移によって、前記ステビオールグリコシド中間体をステビオールグリコシド産物にグリコシル化することと、
前記ステビオールグリコシド産物を回収することと、
を含
前記UGT酵素は、ステビオール及びステビオールグリコシド基質をグリコシル化し、
前記細菌細胞は、次の遺伝子変異:
UDP-糖ヒドロラーゼ及び一つ以上のUDP-ガラクトース生合成酵素の欠失、不活性化、または減少した活性もしくは発現;
グルコース-6-リン酸イソメラーゼの欠失、不活性化、または減少した活性もしくは発現;及び
ホスホグルコムターゼおよびUTP-グルコース-1-リン酸ウリジリルトランスフェラーゼの過剰発現;
を含む、
方法。
A method for producing a steviol glycoside product from a steviol glycoside intermediate, comprising:
providing a bacterial cell that intracellularly expresses one or more UDP-dependent glycosyltransferase enzymes (UGT enzymes) ;
Incubating said bacterial cells with a stevia leaf extract or a fraction thereof containing steviol glycoside intermediates and converting said steviol glycoside intermediates into steviol glycoside products by enzymatic transfer of one or more glycosyl groups from the UDP-glucose cofactor. glycosylating; and
recovering the steviol glycoside product;
including
the UGT enzyme glycosylate steviol and steviol glycoside substrates;
Said bacterial cell has the following genetic mutation:
deletion, inactivation, or reduced activity or expression of UDP-sugar hydrolase and one or more UDP-galactose biosynthetic enzymes;
deletion, inactivation, or reduced activity or expression of glucose-6-phosphate isomerase; and
overexpression of phosphoglucomutase and UTP-glucose-1-phosphate uridylyltransferase;
including,
Method.
前記ステビオールグリコシド中間体が、ステビオシド、ステビオ-ルビオシド、レバウジオシドA、ズルコシドA、ズルコシドB、レバウジオシドC、及びレバウジオシドFのうちの1つ以上を含む、請求項に記載の方法。 2. The method of claim 1 , wherein the steviol glycoside intermediate comprises one or more of stevioside, steviol-rubioside, rebaudioside A, dulcoside A, dulcoside B, rebaudioside C, and rebaudioside F. 前記抽出物が、顕著な成分として、ステビオシド、ステビオ-ルビオシド、及びレバウジオシドAを含む、請求項に記載の方法。 3. The method of claim 2 , wherein the extract contains stevioside, steviol-rubioside, and rebaudioside A as prominent components. 前記ステビオールグリコシド産物がRebMを含む、請求項に記載の方法。 4. The method of claim 3 , wherein said steviol glycoside product comprises RebM. 前記ステビオールグリコシド産物が、RebK、RebC+1、及び/またはRebC+2を含む、請求項に記載の方法。 3. The method of claim 2 , wherein said steviol glycoside products comprise RebK, RebC+1, and/or RebC+2. 前記細菌細胞が、Escherichia属、Bacillus属、Rhodobacter属、Zymomonas属、またはPseudomonas属である、請求項に記載の方法。 2. The method of claim 1 , wherein the bacterial cell is of the genera Escherichia, Bacillus, Rhodobacter, Zymomonas, or Pseudomonas. 前記細菌細胞が、Escherichia coli、Bacillus subtilis、Rhodobacter capsulatus、Rhodobacter sphaeroides、Zymomonas mobilis、またはPseudomonas putidaである、請求項に記載の方法。 7. The method of claim 6 , wherein the bacterial cell is Escherichia coli, Bacillus subtilis, Rhodobacter capsulatus, Rhodobacter sphaeroides, Zymomonas mobilis, or Pseudomonas putida. 前記細菌細胞がE.coliである、請求項に記載の方法。 Said bacterial cell is E. 8. The method of claim 7 , which is E. coli. 前記細菌細胞が、以下の遺伝子修飾:ushA及びgalETKMが欠失すること、pgiが欠失すること、ならびにpgm及びgalUが過剰発現すること、を含む、請求項に記載の方法。 9. The method of claim 8 , wherein the bacterial cell comprises the following genetic modifications: deletion of ushA and galETKM, deletion of pgi, and overexpression of pgm and galU. 前記細菌細胞が、1-3’グリコシル化UGT酵素を発現する、請求項に記載の方法。 2. The method of claim 1 , wherein said bacterial cell expresses a 1-3' glycosylated UGT enzyme. 前記1-3’グリコシル化UGT酵素が、配列番号15、配列番号16、または配列番号17のアミノ酸配列と少なくとも0%同一であるアミノ酸配列を含む、請求項10に記載の方法。 11. The method of claim 10 , wherein said 1-3' glycosylating UGT enzyme comprises an amino acid sequence that is at least 90 % identical to the amino acid sequence of SEQ ID NO:15, SEQ ID NO:16, or SEQ ID NO:17. 前記細菌細胞が、1-2’グリコシル化UGT酵素を発現する、請求項に記載の方法。 2. The method of claim 1 , wherein said bacterial cell expresses a 1-2' glycosylated UGT enzyme. 前記細菌細胞が、ステビオール又はステビオールグリコシド基質のC13 ヒドロキシルをグリコシル化するUGT酵素を発現する、請求項に記載の方法。 2. The method of claim 1 , wherein the bacterial cell expresses a UGT enzyme that glycosylate the C13 hydroxyl of steviol or steviol glycoside substrates . 前記細菌細胞が、ステビオール又はステビオールグリコシド基質のC19ヒドロキシルをグリコシル化するUGT酵素を発現する、請求項1に記載の方法。 2. The method of claim 1, wherein the bacterial cell expresses a UGT enzyme that glycosylate the C19 hydroxyl of steviol or steviol glycoside substrates. 前記細菌細胞が、1-3’グリコシル化UGT酵素及び1-2’グリコシル化UGT酵素を発現する、請求項に記載の方法。 2. The method of claim 1 , wherein said bacterial cell expresses 1-3' glycosylated UGT enzymes and 1-2' glycosylated UGT enzymes . 前記細菌細胞が、1-3’グリコシル化UGT酵素、1-2’グリコシル化UGT酵素、C19 O-グリコシル化UGT酵素、及びC13 O-グリコシル化UGT酵素を発現する、請求項15に記載の方法。 16. The method of claim 15 , wherein said bacterial cell expresses 1-3'glycosylated UGT enzymes, 1-2'glycosylated UGT enzymes, C19 O-glycosylated UGT enzymes, and C13 O-glycosylated UGT enzymes. . 前記細菌細胞が、SrUGT85C2(配列番号1)またはそれと少なくとも90%の配列同一性を有するその誘導体;MbUGT1,2(配列番号9)またはそれと少なくとも90%の配列同一性を有するその誘導体;SrUGT74G1(配列番号2)またはそれと少なくとも90%の配列同一性を有するその誘導体;ならびにSrUGT76G1(配列番号3)またはそれと少なくとも90%の配列同一性を有するその誘導体、MbUGT1-3_1(配列番号15)またはそれと少なくとも90%の配列同一性を有するその誘導体、MbUGT1-3_1.5(配列番号16)またはそれと少なくとも90%の配列同一性を有するその誘導体、及びMbUGT1-3_2(配列番号17)またはそれと少なくとも90%の配列同一性を有するその誘導体から選択される酵素を発現する、請求項6に記載の方法。 SrUGT85C2 (SEQ ID NO: 1) or a derivative thereof with at least 90% sequence identity ; MbUGT1,2 ( SEQ ID NO: 9) or a derivative thereof with at least 90% sequence identity ; No. 2) or a derivative thereof having at least 90% sequence identity therewith; and SrUGT76G1 (SEQ ID NO.3) or a derivative thereof having at least 90% sequence identity therewith, MbUGT1-3_1 (SEQ ID NO.15) or at least 90% thereof. % sequence identity , MbUGT1-3_1.5 (SEQ ID NO: 16) or derivatives thereof with at least 90% sequence identity , and MbUGT1-3_2 (SEQ ID NO: 17) or at least 90% sequence with it. 17. The method of claim 16, expressing an enzyme selected from derivatives thereof with identity . 前記UGT酵素が、前記細菌細胞の染色体に組み込まれている、または染色体外で発現されている、請求項に記載の方法。 2. The method of claim 1 , wherein the UGT enzyme is integrated into the chromosome of the bacterial cell or expressed extrachromosomally. galETKM遺伝子が、不活性化される、欠失する、または発現において減少する、請求項に記載の方法。 2. The method of claim 1 , wherein the galETKM gene is inactivated, deleted, or reduced in expression. 前記細菌細胞が、トレハロース-6-リン酸シンターゼの欠失、不活性化、または減少した活性もしくは発現を有する、請求項1に記載の方法。 2. The method of claim 1, wherein said bacterial cell has deletion, inactivation, or reduced activity or expression of trehalose -6-phosphate synthase . 前記細菌細胞が、UDP-グルコース6-デヒドロゲナーゼの欠失、不活性化、または減少した活性もしくは発現を有する、請求項1に記載の方法。 2. The method of claim 1, wherein said bacterial cell has deletion , inactivation, or reduced activity or expression of UDP-glucose 6- dehydrogenase . 前記細菌細胞が、ycjU(β-ホスホグルコムターゼ)及びBifidobacterium bifidum ugpAの過剰発現または増加した活性もしくは発現を有する、請求項に記載の方法。 2. The method of claim 1 , wherein said bacterial cell has overexpression or increased activity or expression of ycjU (β-phosphoglucomutase) and Bifidobacterium bifidum ugpA . 前記細菌細胞が、E. coli zwfの過剰発現である、ペントースリン酸経路(PPP)への流動を増加させる1つ以上の遺伝子修飾を有する、請求項に記載の方法。 Said bacterial cells are E. 2. The method of claim 1 , having one or more genetic modifications that increase flux into the pentose phosphate pathway (PPP), which is overexpression of E. coli zw f . 前記細菌細胞が、E.coli pyrH(UMPキナーゼ)、E.coli cmk(シチジル酸キナーゼ)、E.coli adk(アデニル酸キナーゼ)、及びE.coli ndk(ヌクレオシド二リン酸キナーゼ)の増加した発現または活性から選択される、UTP産生及びリサイクルを増加させる1つ以上の遺伝子修飾を有する、請求項に記載の方法。 Said bacterial cell is E . coli pyrH (UMP kinase), E. coli cmk (cytidylate kinase), E. coli adk (adenylate kinase), and E. 2. The method of claim 1 , having one or more genetic modifications that increase UTP production and recycling selected from increased expression or activity of E. coli ndk (nucleoside diphosphate kinase) . 前記細菌細胞が、upp(ウラシルホスホリボシルトランスフェラーゼ)、pyrH(UMPキナーゼ)、及びcmk(シチジルレートキナーゼ);dctA(C4ジカルボキシレート/オロレート:H+シンポーター)、pyrE(オロレートホスホリボシルトランスフェラーゼ)、pyrH(UMPキナーゼ)、及びcmk(シチジルレートキナーゼ)過剰発現もしくは増加した活性から選択される、UDP産生を増加させる1つ以上の遺伝子修飾を有する、請求項1に記載の方法。 The bacterial cell contains upp (uracil phosphoribosyltransferase), pyrH (UMP kinase), and cmk (cytidyllate kinase ); dctA (C4 dicarboxylate/oleate:H+ symporter), pyrE (olelate 2. The method of claim 1, having one or more genetic modifications that increase UDP production selected from overexpression or increased activity of pyrH (UMP kinase), pyrH (UMP kinase), and cmk (cytidyl rate kinase). Method. 前記細菌細胞が、sgrS小制御RNAの欠失、不活性化、または減少した発現を含む、グルコース取り込みの除去または調節を減少させるための1つ以上の遺伝子修飾を有する、請求項に記載の方法。 2. The bacterial cell of claim 1 , wherein said bacterial cell has one or more genetic modifications to ablate or reduce regulation of glucose uptake, including deletion, inactivation, or reduced expression of the sgrS minor regulatory RNA. the method of. 前記細菌細胞が、dTDP-グルコースピロホスホリラーゼ遺伝子の1つ以上の欠失、不活性化、または減少した発現もしくは活性を含む、グルコース-1-リン酸のTDP-グルコースへの変換を減少させる1つ以上の遺伝子修飾を有する、請求項に記載の方法。 said bacterial cell has reduced conversion of glucose-1-phosphate to TDP-glucose comprising deletion, inactivation, or reduced expression or activity of one or more of the d TDP-glucose pyrophosphorylase genes 2. The method of claim 1 , having one or more genetic modifications that cause 前記細菌細胞が、グルコース-1-リン酸アデニルトランスフェラーゼの欠失、不活性化、または減少した発現もしくは活性を含む、グルコース-1-リン酸のADP-グルコースへの変換を減少させる1つ以上の遺伝子修飾を有する、請求項に記載の方法。 wherein said bacterial cell has reduced conversion of glucose-1-phosphate to ADP-glucose comprising deletion, inactivation, or reduced expression or activity of glucose -1-phosphate adenyltransferase 2. The method of claim 1 , having the above genetic modifications. 前記方法が、ステビオールグリコシド中間体からステビオールグリコシド産物への少なくとも40重量%の変換をもたらす、請求項1に記載の方法。 2. The method of claim 1, wherein the method results in at least 40% by weight conversion of steviol glycoside intermediates to steviol glycoside products. 前記方法が、ステビオールグリコシド中間体からステビオールグリコシド産物への少なくとも50重量%の変換をもたらす、請求項29に記載の方法。 30. The method of claim 29 , wherein the method provides at least 50% by weight conversion of steviol glycoside intermediates to steviol glycoside products. 前記方法が、ステビオールグリコシド中間体からステビオールグリコシド産物への少なくとも75重量%の変換をもたらす、請求項に記載の方法。 2. The method of claim 1 , wherein the method provides at least 75% by weight conversion of steviol glycoside intermediates to steviol glycoside products. 少なくとも5:1のRebM対RebDの比が、前記グリコシル化産物として回収される、請求項に記載の方法。 2. The method of claim 1 , wherein a RebM to RebD ratio of at least 5:1 is recovered as said glycosylated product. 前記方法が、バッチ発酵、連続発酵、または半連続発酵によって行われる、請求項に記載の方法。 2. The method of claim 1 , wherein the method is performed by batch fermentation, continuous fermentation, or semi-continuous fermentation. 前記方法が、フィードバッチ発酵によって行われる、請求項33に記載の方法。 34. The method of claim 33 , wherein the method is performed by feed-batch fermentation. 前記ステビオールグリコシド中間体が、前記細菌細胞と約72時間以下インキュベートされる、請求項34に記載の方法。 35. The method of claim 34 , wherein said steviol glycoside intermediate is incubated with said bacterial cell for no more than about 72 hours. 前記ステビオールグリコシド産物がRebD、RebE、RebI又はRebBを含む、請求項2に記載の方法。3. The method of claim 2, wherein said steviol glycoside product comprises RebD, RebE, RebI or RebB.
JP2021501337A 2018-07-16 2019-07-16 Production of steviol glycosides by whole-cell biotransformation Active JP7305087B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862698617P 2018-07-16 2018-07-16
US62/698,617 2018-07-16
PCT/US2019/041957 WO2020018506A2 (en) 2018-07-16 2019-07-16 Production of steviol glycosides through whole cell biotransformation

Publications (3)

Publication Number Publication Date
JP2021530228A JP2021530228A (en) 2021-11-11
JPWO2020018506A5 true JPWO2020018506A5 (en) 2022-07-26
JP7305087B2 JP7305087B2 (en) 2023-07-10

Family

ID=69164862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501337A Active JP7305087B2 (en) 2018-07-16 2019-07-16 Production of steviol glycosides by whole-cell biotransformation

Country Status (12)

Country Link
US (2) US11230724B2 (en)
EP (1) EP3824093A4 (en)
JP (1) JP7305087B2 (en)
KR (1) KR102532079B1 (en)
CN (1) CN112867799A (en)
AU (1) AU2019304965A1 (en)
BR (1) BR112021000876A2 (en)
CA (1) CA3106633A1 (en)
IL (1) IL280151A (en)
MX (1) MX2021000605A (en)
SG (1) SG11202100450TA (en)
WO (1) WO2020018506A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868252A (en) * 2018-03-12 2020-10-30 科纳根公司 Biosynthetic production of steviol glycosides rebaudioside J and rebaudioside N
CA3106633A1 (en) * 2018-07-16 2020-01-23 Manus Bio, Inc. Production of steviol glycosides through whole cell biotransformation
CN109295087B (en) * 2018-11-09 2021-08-24 沈阳农业大学 Method for expression preparation of UDP-glucose-hexose-1-phosphate uridyltransferase
CN109402152B (en) * 2018-11-09 2021-08-13 沈阳农业大学 Method for expression preparation of UDP-glucose-4-epimerase
KR20220034793A (en) 2019-06-25 2022-03-18 마누스 바이오, 인크. Uridine diphosphate-dependent glycosyltransferase enzyme
CN110699373B (en) * 2019-10-16 2023-05-26 中国药科大学 Uridine diphosphate glucose high-yield strain and application thereof
CN111518825B (en) * 2020-04-30 2022-10-11 浙江工业大学 Method for preparing cordyceps militaris polysaccharide through polygene combined expression
CA3177183A1 (en) * 2020-05-13 2021-11-18 Ginkgo Bioworks, Inc. Biosynthesis of mogrosides
WO2022139522A1 (en) * 2020-12-23 2022-06-30 주식회사 삼양사 Glycosyltransferase and steviol glucoside preparation method using same
WO2023000243A1 (en) * 2021-07-22 2023-01-26 深圳先进技术研究院 Method for producing glucose by recombinant yeast biotransformation
WO2023121427A1 (en) * 2021-12-24 2023-06-29 주식회사 삼양사 Glycosyltransferase variant, and method of preparing steviol glycosides using same
CN114540396A (en) * 2022-02-24 2022-05-27 天津大学 Construction method of glucose metabolic pathway in Shewanella strain
CN114561310B (en) * 2022-03-17 2022-12-02 江南大学 Saccharomyces cerevisiae for producing rubusoside and application thereof
WO2024121721A1 (en) * 2022-12-05 2024-06-13 Tate & Lyle Solutions Usa Llc Methods for obtaining steviol glycosides

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586214B1 (en) * 1999-09-15 2003-07-01 Degussa Ag Method for increasing the metabolic flux through the pentose phosphate cycle in coryneform bacteria by regulation of the phosphoglucose isomerase (pgi gene)
MX349121B (en) * 2010-06-02 2017-07-12 Evolva Inc Recombinant Production of Steviol Glycosides.
WO2013022989A2 (en) * 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
JP6346174B2 (en) * 2012-05-22 2018-06-20 ピュアサークル スンディリアン ブルハド High purity steviol glycoside
CN103397064B (en) * 2013-08-14 2015-04-15 苏州汉酶生物技术有限公司 Method for preparing rebaudioside M through enzyme method
US10463062B2 (en) 2014-11-05 2019-11-05 Manus Bio Inc. Microbial production of steviol glycosides
EP3274448B1 (en) * 2015-03-23 2021-08-11 DSM IP Assets B.V. Udp-glycosyltransferases from solanum lycopersicum
KR101669041B1 (en) 2015-03-31 2016-10-25 아주대학교산학협력단 Recombinant microoganisms for producing stevioside and method for stevioside using the same
WO2017193010A1 (en) 2016-05-06 2017-11-09 University Of Georgia Research Foundation, Inc. Microbial platform for production of glycosylated compounds
WO2018144679A2 (en) * 2017-02-03 2018-08-09 Codexis, Inc. Engineered glycosyltransferases and steviol glycoside glucosylation methods
CA3106633A1 (en) * 2018-07-16 2020-01-23 Manus Bio, Inc. Production of steviol glycosides through whole cell biotransformation
KR20220034793A (en) * 2019-06-25 2022-03-18 마누스 바이오, 인크. Uridine diphosphate-dependent glycosyltransferase enzyme

Similar Documents

Publication Publication Date Title
AU2018296557B2 (en) Fucosyltransferases and their use in producing fucosylated oligosaccharides
US10570430B2 (en) Metabolically engineered organisms for the production of added value bio-products
JP7305087B2 (en) Production of steviol glycosides by whole-cell biotransformation
JPWO2020018506A5 (en)
US10364449B2 (en) Fermentative production of oligosaccharides
US20210363557A1 (en) Use of glycosidases in the production of oligosaccharides
US20210198709A1 (en) Fermentative production of sialylated saccharides
CN114480240B (en) Genetic engineering bacterium for producing fucosyllactose and production method thereof
JP2015532832A (en) Monosaccharide production method
WO2022253282A1 (en) Glycosyltransferase and application thereof
CN115449514B (en) Beta-1, 2-glycosyltransferase and application thereof
CN115678867B (en) Sucrose synthase and application thereof
KR101997597B1 (en) Synthesis method of stevioside glucosides using modified Leuconostoc and Novel stevioside glucosides made by the same
CN115418358B (en) Glycosyltransferase and application thereof
US20150133647A1 (en) Method for Producing Oligosaccharides and Oligosaccharide Glycosides by Fermentation
CN113832092A (en) Genetic engineering bacterium for improving yield of lactoyl-N-fucopentaose and production method thereof
CN115725528B (en) Glycosyltransferase and application thereof
CN115478060B (en) Glycosyltransferase and application thereof
KR101480748B1 (en) Engineered Esherichia coli expressing uridine-diphosphate(UDP)-dependent glycosyltransferase and Synthesis of quercetin 3-O-glucoside-7-O-rhamnoside using the same
KR101392988B1 (en) Engineered Esherichia coli expressing uridine-diphosphate(UDP)-dependent glycosyltransferase and Synthesis of quercetin 3,7-di-O-rhamnoside from the same
Pressley et al. Recent Advances in the Microbial Production of Human Milk Oligosaccharides
WO2024046994A1 (en) Fermentative production of oligosaccharides by microbial cells utilizing glycerol
Li et al. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle
CN116426501A (en) GDP-D-mannose hydrolase mutant and application thereof
CN116334162A (en) Preparation method and application of rebaudioside I