JPWO2020012007A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020012007A5
JPWO2020012007A5 JP2021512452A JP2021512452A JPWO2020012007A5 JP WO2020012007 A5 JPWO2020012007 A5 JP WO2020012007A5 JP 2021512452 A JP2021512452 A JP 2021512452A JP 2021512452 A JP2021512452 A JP 2021512452A JP WO2020012007 A5 JPWO2020012007 A5 JP WO2020012007A5
Authority
JP
Japan
Prior art keywords
reflector
feed array
afr
antenna assembly
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021512452A
Other languages
Japanese (ja)
Other versions
JP2021524723A (en
JP7110532B2 (en
Publication date
Priority claimed from GBGB1811459.5A external-priority patent/GB201811459D0/en
Application filed filed Critical
Publication of JP2021524723A publication Critical patent/JP2021524723A/en
Publication of JPWO2020012007A5 publication Critical patent/JPWO2020012007A5/ja
Application granted granted Critical
Publication of JP7110532B2 publication Critical patent/JP7110532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

段階S30で、決定されたフィードアレイ仕様が必要十分であるかが判定される。フィードアレイ仕様が(例えば、収容についてまたはヘリテージ要件と比較して)不十分であれば、S40において、必要な仕様に適合するように、フィードアレイ配置を調整可能にする(簡略化による)、最適な反射鏡プロファイルを決定する処理が実行される。フィードアレイが必要十分であれば、方法は段階S50に進む。 In step S30, it is determined whether the determined feed array specifications are necessary and sufficient. If the feed array specifications are inadequate (eg, for containment or compared to heritage requirements), then in S40, the feed array placement can be adjusted (by simplification) to meet the required specifications, optimally. The process of determining a suitable reflector profile is executed. If the feed array is necessary and sufficient, the method proceeds to step S50.

パラメータ化された成形最適化に、全アンテナ合成処理が組み込まれた、単一の処理にて、最適な反射鏡プロファイル決定が実施可能である。しかし、反射鏡形状合成方法を、二次計画法に基づいて決定された単一の反射鏡要素について決定されたビーム形状に適用することで、より早い技術となる。使用される周波数帯に典型的に依存する、反射鏡技術の物理的制限に関連する制約が、成形最適化処理に適用され得る。 Optimal reflector profile determination can be performed in a single process, with all antenna synthesis processing incorporated into the parameterized molding optimization. However, applying the reflector shape synthesis method to the beam shape determined for a single reflector element determined based on the quadratic programming will result in a faster technique. Constraints related to the physical limitations of the reflector technique, which are typically dependent on the frequency band used, can be applied to the molding optimization process.

システムは、最適な反射鏡プロファイルを決定するための最適化モジュール40と、最適なプロファイルを、成形機能を表す一連の作動信号55に変換する形状制御モジュール50とを備える。同機能は、反射鏡60に、それに応じて自身の表面のプロファイルを調整させるように適用される。 The system includes an optimization module 40 for determining the optimum reflector profile and a shape control module 50 for converting the optimum profile into a series of actuation signals 55 representing molding functions. The function is applied to cause the reflector 60 to adjust its surface profile accordingly.

最適化モジュール40は、反射鏡の利用可能なプロファイルを特定する情報により構成される。同情報は、その内から最適な選択がなされ得る一組の個別のプロファイルの形態をとり得、または特定の表面のプロファイルを生成するために実現可能な反射鏡の表面の要素への分割および隣接する要素の相対移動を指定し得る。このような情報は、AFRアンテナが取り付けられる衛星ペイロードに搭載された、または地上にある、各種メーカーおよびモデルについて反射鏡構成を規定するデータベース80から得られる。一例として、Ku帯放射に利用される反射鏡は、約2.5メートルの直径を有し得、30個×30個の制御可能要素のアレイを有し得る。 The optimization module 40 is composed of information that identifies the available profile of the reflector. The information can be in the form of a set of individual profiles from which the best choice can be made, or the splitting and adjoining elements of the reflector surface that are feasible to generate a particular surface profile . You can specify the relative movement of the elements to be done. Such information is obtained from Database 80, which defines reflector configurations for various manufacturers and models, mounted on satellite payloads to which AFR antennas are mounted, or on the ground. As an example, a reflector utilized for Ku band radiation may have a diameter of about 2.5 meters and may have an array of 30 x 30 controllable elements.

システムは、フィードアレイから特定の距離で、フィードアレイとともに特定の反射鏡プロファイルが利用されると実現可能なビーム形状をシミュレーション可能なビームモデラー90を備える。ビームモデラーは、フィードアレイとインタフェースするビームフォーミングネットワークについての知識を有する。これにより、ビームレット形状、カバレッジエリア、指向性、電力拡散などについての所望のミッション要求が実現可能となるように、フィードアレイを介して信号にビームフォーミングがいかに適用されるかが制御される。 The system comprises a beam modeler 90 capable of simulating a beam shape that is feasible when a particular reflector profile is utilized with the feed array at a particular distance from the feed array. The beam modeler has knowledge of beamforming networks that interface with feed arrays. This controls how beamforming is applied to the signal via the feed array so that the desired mission requirements for beamlet shape, coverage area, directivity, power diffusion, etc. can be achieved.

最適化モジュール40は、そもそも反射鏡の表面のプロファイルの調整が必要か、またはビームフォーミングネットワークへの調整により、ミッション要求を満たすことが可能かを判定するため、ビームモデラー90とインタフェースする。したがってこれは、信号処理、または機械的システム構成、あるいはこれら2つの技術の組合せにより、ミッション要求を実現するかを判定する機構である。例えば、比較的小さな調整が求められるような特定の状況では、特定の物理的構成を維持し、ビームフォーミングネットワークを制御したほうが、特定のビーム形状を実現するのに効率的であり得る。一方、別の状況では、必要な調整はビームフォーミングネットワークの制御で実現可能な範囲を超えるため、その代わりにAFRアンテナのフォーカス/デフォーカス、および/または形状調整が必要となる。 The optimization module 40 interfaces with the beam modeler 90 to determine if the profile of the surface of the reflector needs to be adjusted in the first place or if it can be adjusted to the beamforming network to meet the mission requirements. Therefore, this is a mechanism for determining whether the mission requirement is realized by signal processing, mechanical system configuration, or a combination of these two techniques. For example, in certain situations where relatively small adjustments are required, it may be more efficient to maintain a particular physical configuration and control the beamforming network to achieve a particular beam shape. On the other hand, in other situations, the required adjustments are beyond the feasible range of control of the beamforming network and instead require focus / defocus and / or shape adjustments for the AFR antenna.

決定された最適な反射鏡プロファイルに基づいて、形状制御モジュール50は必要な駆動信号55を、それに応じて反射鏡の表面を成形するため、反射鏡の表面の形状に関連付けられた1または複数のアクチュエータに適用する。 Based on the determined optimal reflector profile , the shape control module 50 is associated with the shape of the surface of the reflector to form the required drive signal 55 and the surface of the reflector accordingly. Applies to actuators.

上述のように、本発明の実施形態は、異なるフォーカス構成間、ならびに高および低倍率モード間の切り替えを容易にし得る。いずれの場合でも、フォーカス構成または倍率モード間で、動作範囲について特定の反射鏡の表面のプロファイルが選択されると、全動作範囲にわたる性能と、所望のアンテナ特性との間の最良の折衷を実現するように、特定の成形機能が反射鏡に適用されることが好ましい。

As mentioned above, embodiments of the present invention may facilitate switching between different focus configurations as well as between high and low magnification modes. In either case, when a particular reflector surface profile is selected for operating range between focus configurations or magnification modes, the best compromise between performance over the entire operating range and desired antenna characteristics is achieved. As such, it is preferred that a particular molding function be applied to the reflector.

Claims (8)

アレイ給電反射鏡(AFR)アンテナアセンブリであって、
フィードアレイおよび反射鏡を有するAFRアンテナと、
前記反射鏡の焦点領域が、前記フィードアレイの位置に対して移動可能となるように、前記反射鏡の位置を、前記フィードアレイの前記位置に対して移動させる機構と、
を備え、
前記反射鏡の表面のプロファイルは、前記AFRアンテナがマルチビームカバレッジを持つよう、前記フィードアレイの各々のフィードが複数のビームを生成するようなものであり、
前記機構は、前記複数のビームの各々が、フルフォーカス、フルデフォーカス、または、部分デフォーカスとなるように、前記反射鏡の前記位置を、前記フィードアレイの前記位置に対して移動させるように構成される、AFRアンテナアセンブリ。
Array-fed reflector (AFR) antenna assembly
With an AFR antenna with a feed array and reflector,
A mechanism for moving the position of the reflector with respect to the position of the feed array so that the focal region of the reflector can be moved with respect to the position of the feed array.
Equipped with
The profile of the surface of the reflector is such that each feed of the feed array produces multiple beams so that the AFR antenna has multi-beam coverage.
The mechanism moves the position of the reflector with respect to the position of the feed array such that each of the plurality of beams is fully focused, fully defocused, or partially defocused. Constructed , AFR antenna assembly.
前記機構は、前記反射鏡が前記フィードアレイに対してズーム可能となるように、前記反射鏡をフィードアレイ取り付け部に結合させる伸縮アームを含む、請求項1に記載のAFRアンテナアセンブリ。 The AFR antenna assembly of claim 1, wherein the mechanism comprises a telescopic arm that couples the reflector to a feed array mount so that the reflector is zoomable with respect to the feed array. 前記反射鏡は、前記伸縮アームにより提供される、前記反射鏡と、前記フィードアレイとの間の最大距離に基づいて構成されるサイズを有する、請求項2に記載のAFRアンテナアセンブリ。 The AFR antenna assembly of claim 2, wherein the reflector has a size configured based on the maximum distance between the reflector and the feed array provided by the telescopic arm. 前記機構は、前記反射鏡の向きを、前記フィードアレイの向きに対して傾斜させる手段を含む、請求項1から3のいずれか一項に記載のAFRアンテナアセンブリ。 The AFR antenna assembly according to any one of claims 1 to 3, wherein the mechanism includes means for tilting the direction of the reflector with respect to the direction of the feed array. 前記反射鏡の表面に成形機能を適用する手段を備え、
前記成形機能を適用する手段は、前記反射鏡の表面の、1または複数の可動部に結合される、1または複数のアクチュエータを含む、請求項1から4のいずれか一項に記載のAFRアンテナアセンブリ。
A means for applying a molding function to the surface of the reflector is provided.
The AFR antenna according to any one of claims 1 to 4, wherein the means for applying the molding function includes one or a plurality of actuators coupled to one or a plurality of movable parts on the surface of the reflector. assembly.
請求項1から4のいずれか一項に記載のAFRアンテナアセンブリと、
前記機構の駆動を制御するために地上局から信号を受信する制御手段と、
を備えるシステム。
The AFR antenna assembly according to any one of claims 1 to 4 .
A control means that receives a signal from a ground station to control the drive of the mechanism, and
A system equipped with.
請求項5に記載のAFRアンテナアセンブリと、The AFR antenna assembly according to claim 5 and
前記機構の駆動を制御するために地上局から信号を受信する制御手段と、A control means that receives a signal from a ground station to control the drive of the mechanism, and
を備えるシステム。A system equipped with.
前記反射鏡と、前記フィードアレイとの相対位置に基づいて、前記反射鏡の前記表面に対する最適な成形機能を決定する最適化手段をさらに備える、請求項7に記載のシステム。 The system according to claim 7 , further comprising an optimization means for determining the optimum molding function of the reflector with respect to the surface based on the relative position of the reflector and the feed array.
JP2021512452A 2018-07-12 2019-07-12 Array-fed reflector antenna Active JP7110532B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1811459.5A GB201811459D0 (en) 2018-07-12 2018-07-12 Reconfigurable active array-fed reflector antenna
GB1811459.5 2018-07-12
EP18290107.4A EP3595088A1 (en) 2018-07-12 2018-09-25 Array-fed reflector antenna
EP18290107.4 2018-09-25
PCT/EP2019/068880 WO2020012007A1 (en) 2018-07-12 2019-07-12 Array-fed reflector antenna

Publications (3)

Publication Number Publication Date
JP2021524723A JP2021524723A (en) 2021-09-13
JPWO2020012007A5 true JPWO2020012007A5 (en) 2022-04-18
JP7110532B2 JP7110532B2 (en) 2022-08-02

Family

ID=63272973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021512452A Active JP7110532B2 (en) 2018-07-12 2019-07-12 Array-fed reflector antenna

Country Status (8)

Country Link
US (2) US11831075B2 (en)
EP (2) EP3595088A1 (en)
JP (1) JP7110532B2 (en)
CN (1) CN112470341A (en)
AU (1) AU2019301232B2 (en)
ES (1) ES2874538T3 (en)
GB (1) GB201811459D0 (en)
WO (1) WO2020012007A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658869B2 (en) * 2021-04-09 2023-05-23 Huawei Technologies Co., Ltd. Method and apparatus for configuring a communication network using a connectivity metric
FR3122410A1 (en) 2021-04-30 2022-11-04 Airbus Defence And Space Sas Reflector satellite and satellite assembly comprising such a satellite
US11606285B2 (en) 2021-05-07 2023-03-14 Huawei Technologies Co., Ltd. Method and apparatus for configuring a communication network using a distance metric
CN113815909B (en) * 2021-09-09 2023-10-27 中国人民解放军63920部队 Uplink determining method and device for peer-to-peer mode combination configuration spacecraft
US11705630B1 (en) 2022-04-05 2023-07-18 Maxar Space Llc Antenna with movable feed

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517626A1 (en) 1981-12-04 1983-06-10 Europ Agence Spatiale ORBITAL SPACE ENGINE, IN PARTICULAR SATELLITE, WITH MULTIPLE MISSIONS
JP2626840B2 (en) 1991-03-14 1997-07-02 本田技研工業株式会社 In-vehicle radar device
JP3311028B2 (en) 1992-07-14 2002-08-05 株式会社東芝 Surface shape adjustment system
JPH0832346A (en) 1994-07-13 1996-02-02 Nec Corp Antenna for k band and method for expanding acquisition range therefor
US6031502A (en) * 1996-11-27 2000-02-29 Hughes Electronics Corporation On-orbit reconfigurability of a shaped reflector with feed/reflector defocusing and reflector gimballing
US5945960A (en) 1996-12-02 1999-08-31 Space Systems/Loral, Inc. Method and apparatus for reconfiguring antenna radiation patterns
US5949370A (en) * 1997-11-07 1999-09-07 Space Systems/Loral, Inc. Positionable satellite antenna with reconfigurable beam
US6198455B1 (en) 2000-03-21 2001-03-06 Space Systems/Loral, Inc. Variable beamwidth antenna systems
US6577282B1 (en) * 2000-07-19 2003-06-10 Hughes Electronics Corporation Method and apparatus for zooming and reconfiguring circular beams for satellite communications
US6580399B1 (en) 2002-01-11 2003-06-17 Northrop Grumman Corporation Antenna system having positioning mechanism for reflector
US7110716B2 (en) * 2002-01-30 2006-09-19 The Boeing Company Dual-band multiple beam antenna system for communication satellites
AU2002951799A0 (en) * 2002-10-01 2002-10-17 Commonwealth Scientific And Industrial Research Organisation Shaped-reflector multibeam antennas
US6943745B2 (en) * 2003-03-31 2005-09-13 The Boeing Company Beam reconfiguration method and apparatus for satellite antennas
US7183990B2 (en) * 2004-02-04 2007-02-27 Ems Technologies Canada Ltd Aperture illumination control membrane
JP4275645B2 (en) 2005-04-25 2009-06-10 三菱電機株式会社 Beam scanning reflector antenna
US7737903B1 (en) * 2005-06-27 2010-06-15 Lockheed Martin Corporation Stepped-reflector antenna for satellite communication payloads
FR2888674B1 (en) 2005-07-13 2009-10-23 Alcatel Sa NETWORK ANTENNA WITH REFLECTOR (S) CONFORMING (S), HAVING HIGH RECONFIGURABILITY IN ORBIT
US8860627B2 (en) * 2007-09-24 2014-10-14 Agence Spatiale Europeenne Reconfigurable reflector for electromagnetic waves
FR2947103B1 (en) 2009-06-19 2012-05-18 Thales Sa MISSION FLEXIBILITY ANTENNA, SATELLITE COMPRISING SUCH ANTENNA, AND METHOD FOR CONTROLLING THE MISSION CHANGE OF SUCH ANTENNA
FR2956927B1 (en) 2010-02-26 2012-04-20 Thales Sa DEFORMABLE REFLECTING MEMBRANE FOR RECONFIGURABLE REFLECTOR, RECONFIGURABLE ANTENNA REFLECTOR, AND ANTENNA COMPRISING SUCH A MEMBRANE
US8373589B2 (en) * 2010-05-26 2013-02-12 Detect, Inc. Rotational parabolic antenna with various feed configurations
US10020576B2 (en) * 2013-03-15 2018-07-10 Orbital Sciences Corporation Systems and methods for reconfigurable faceted reflector antennas
US9093754B2 (en) * 2013-05-10 2015-07-28 Google Inc. Dynamically adjusting width of beam based on altitude
US10122085B2 (en) * 2014-12-15 2018-11-06 The Boeing Company Feed re-pointing technique for multiple shaped beams reflector antennas
EP3335273B1 (en) * 2015-12-11 2021-02-17 Raytheon Company Method of tracking steerable antennas on platforms to form an rf communication link
US10461435B2 (en) * 2016-12-29 2019-10-29 Tionesta, Llc Multiple tuned Fresnel zone plate reflector antenna
PE20200277A1 (en) 2017-04-10 2020-02-04 Viasat Inc ADJUSTING THE COVERAGE AREA TO ADAPT SATELLITE COMMUNICATIONS
US10587055B1 (en) * 2019-07-08 2020-03-10 Northrop Grumman Systems Corporation Imaging reflector antenna system and method
EP4072039A1 (en) * 2021-04-07 2022-10-12 The Boeing Company Reconfigurable feed array fed confocal antenna system that can adjust the radiation pattern beam size and the gain performance on-orbit

Similar Documents

Publication Publication Date Title
JP7110532B2 (en) Array-fed reflector antenna
US6268835B1 (en) Deployable phased array of reflectors and method of operation
US6366256B1 (en) Multi-beam reflector antenna system with a simple beamforming network
US20100207833A1 (en) Multibeam Active Discrete Lens Antenna
EP2485328A1 (en) Antenna system for low-earth-orbit satellites
JP3089088B2 (en) Effective load architecture in space.
US6310583B1 (en) Steerable offset reflector antenna
US4855751A (en) High-efficiency multibeam antenna
CN111817017B (en) Reflector antenna based on arrayed micro displacement control
EP4072039A1 (en) Reconfigurable feed array fed confocal antenna system that can adjust the radiation pattern beam size and the gain performance on-orbit
Jung et al. Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications
JPWO2020012007A5 (en)
Martinez-Lorenzo et al. Zooming and scanning Gregorian confocal dual reflector antennas
US20180013206A1 (en) System and method for fine-tuning electromagnetic beams
JP4745686B2 (en) Directional error compensation method and apparatus for array-fed reflector multi-beam antenna
EP1303888B1 (en) Method and apparatus for zooming and reconfiguring circular beams for satellite communications
AU2020406407B2 (en) Multibeam antenna
Doucet et al. Comparison of optimization procedures for the design of continuous parallel plate waveguide multiple beam lens antennas
EP0164466B1 (en) High-efficiency multibeam antenna
Kausar et al. Challenges for antenna design at mm-waves
Legay et al. Analysis, design and measurements on an active focal array fed reflector
Teng et al. Dual reflector zoom antenna based on optical imaging theory for satellites in elliptical orbits
Tokunaga et al. Design optimization of phased-array-fed reflector antennas for mobile communication satellites
JP6818787B2 (en) Antenna device, communication satellite, and antenna device mounting method
Clemente et al. Hybrid Analog-Digital Beamforming System with Quad-Steerable Beams based on Programmable Transmitarray