JPWO2020008464A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020008464A5
JPWO2020008464A5 JP2020569076A JP2020569076A JPWO2020008464A5 JP WO2020008464 A5 JPWO2020008464 A5 JP WO2020008464A5 JP 2020569076 A JP2020569076 A JP 2020569076A JP 2020569076 A JP2020569076 A JP 2020569076A JP WO2020008464 A5 JPWO2020008464 A5 JP WO2020008464A5
Authority
JP
Japan
Prior art keywords
modulation
grating
perturbation
phase shift
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020569076A
Other languages
Japanese (ja)
Other versions
JP7383644B2 (en
JP2021529300A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IL2019/050742 external-priority patent/WO2020008464A1/en
Publication of JP2021529300A publication Critical patent/JP2021529300A/en
Publication of JPWO2020008464A5 publication Critical patent/JPWO2020008464A5/ja
Application granted granted Critical
Publication of JP7383644B2 publication Critical patent/JP7383644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

光ファイバに形成されたグレーティングの摂動を決定する方法であって、光ビームを変調し、及び前記光ファイバを通して伝送することと、前記グレーティングに反射された光の変調における、少なくとも1つの位相シフトを測定することと、前記少なくとも1つの位相シフトに基づいて、前記グレーティングの前記摂動を決定することと、を含む方法。 A method of determining the perturbation of a grating formed on an optical fiber, in which the light beam is modulated and transmitted through the grating and at least one phase shift in the modulation of the light reflected by the grating. A method comprising measuring and determining the perturbation of the grating based on the at least one phase shift. 前記変調することが、前記伝送することの前に実行される、請求項1に記載の方法。 The method of claim 1, wherein the modulation is performed prior to the transmission. 前記変調することが、前記光ビームが前記グレーティングに反射された後に実行される、請求項1又は2に記載の方法。 The method of claim 1 or 2 , wherein the modulation is performed after the light beam is reflected by the grating. 前記光ファイバが、複数のグレーティングを有して形成され、前記複数のグレーティングの少なくとも2つが、異なるブラッグ波長によって特徴付けられる、請求項1~3の何れか一項に記載の方法。 The method according to any one of claims 1 to 3 , wherein the optical fiber is formed with a plurality of gratings, and at least two of the plurality of gratings are characterized by different Bragg wavelengths. 前記少なくとも1つの位相シフトの前記測定に先立って、前記異なるブラッグ波長にそれぞれ対応する、少なくとも2つのチャネル内へと前記反射された光ビームを逆多重化することをさらに含む、請求項4に記載の方法。 4. The fourth aspect further comprises demultiplexing the reflected light beam into at least two channels corresponding to the different Bragg wavelengths, respectively, prior to the measurement of the at least one phase shift. the method of. 前記変調することが、複数の変調周波数にわたり、前記変調の周波数を走査することを含み、前記方法が、変調周波数ごとに、前記少なくとも2つのグレーティングに反射された光の変調位相シフト及び変調の大きさを測定することと、前記測定された変調位相シフト及び前記測定された変調の大きさに基づいて、前記少なくとも2つのグレーティングのそれぞれに関する、個々の光波長シフト又は光周波数シフトを決定することと、を含む、請求項4に記載の方法。 The modulation involves scanning the modulation frequencies over a plurality of modulation frequencies, wherein the method modifies the modulation phase shift and the magnitude of the modulation of the light reflected by the at least two gratings for each modulation frequency. To determine the individual optical wavelength shift or optical frequency shift for each of the at least two gratings, based on the measured modulation phase shift and the measured modulation magnitude. , The method according to claim 4 . 前記少なくとも1つの位相シフトの前記測定に先立って、前記反射された光ビームを分散させることをさらに含む、請求項2~6の何れか一項に記載の方法。 The method of any one of claims 2-6 , further comprising dispersing the reflected light beam prior to the measurement of at least one phase shift. 前記少なくとも1つの位相シフトの前記測定が、所定の位相分解能によって特徴付けられ、前記分散させることが、単位波長当たりのパルスの広がりを表す所定の分散パラメー
タによって特徴付けられ、前記変調することの周波数が、少なくとも、前記位相分解能と、前記分散パラメータに所定のスペクトル分解能閾値を乗算したものとの比である、請求項7に記載の方法。
The measurement of the at least one phase shift is characterized by a predetermined phase resolution, and the dispersion represents a predetermined dispersion parameter representing the spread of the pulse per unit wavelength.
The method of claim 7 , wherein the frequency of the modulation is at least the ratio of the phase resolution to the dispersion parameter multiplied by a predetermined spectral resolution threshold.
前記分散させることが、分散係数によって特徴付けられ、前記方法が、複数の分散係数値にわたり、前記係数の値を変動させることと、前記分散係数の値ごとに、前記グレーティングに反射された光の変調位相シフト及び変調の大きさを測定することと、前記測定された変調位相シフト及び前記測定された変調の大きさに基づいて、前記少なくとも2つのグレーティングのそれぞれに関して、個々の光波長シフト又は光周波数シフトを決定することと、を含む、請求項7に記載の方法。 The dispersion is characterized by a dispersion coefficient, wherein the method fluctuates the value of the coefficient over a plurality of dispersion coefficient values, and for each value of the dispersion coefficient, the light reflected on the grating. Individual optical wavelength shifts or light for each of the at least two gratings based on the measurement of the modulation phase shift and the magnitude of the modulation and the measured modulation phase shift and the magnitude of the measurement. 7. The method of claim 7 , comprising determining a frequency shift. 前記グレーティングの前記摂動の前記決定が、前記反射された光ビームの光パワーに関するものではない、請求項1~9の何れか一項に記載の方法。 The method of any one of claims 1-9, wherein the determination of the perturbation of the grating is not relating to the optical power of the reflected light beam. 前記反射された光ビームの光パワーを決定することなく実行される、請求項1~9の何れか一項に記載の方法。 The method according to any one of claims 1 to 9, which is carried out without determining the light power of the reflected light beam. 前記グレーティングの前記摂動の前記決定が、前記グレーティングを特徴付けるブラッグ波長のシフトとして前記摂動を表現することを含む、請求項1~11の何れか一項に記載の方法。 The method of any one of claims 1-11, wherein the determination of the perturbation of the grating comprises expressing the perturbation as a Bragg wavelength shift characteristic of the grating. 前記グレーティングの前記摂動の前記決定が、前記グレーティングの前記摂動を生じさせる少なくとも1つの物理量として、前記摂動を表現することを含む、請求項1に記載の方法。 The method of claim 1, wherein the determination of the perturbation of the grating comprises expressing the perturbation as at least one physical quantity that causes the perturbation of the grating. 前記少なくとも1つの物理量が、周囲温度、前記ファイバに付与される圧力、前記ファイバのひずみ、及び前記ファイバの加速的運動から成る群から選択される、請求項13に記載の方法。 13. The method of claim 13 , wherein the at least one physical quantity is selected from the group consisting of ambient temperature, pressure applied to the fiber, strain of the fiber, and accelerated motion of the fiber. 光ファイバに形成されたグレーティングの摂動を決定するためのシステムであって、
光ビームを変調するための光変調システムと、
前記光ビームを前記光ファイバ内に結合させ、前記グレーティングに反射された光を受け取るための光結合器と、
前記グレーティングに反射された光の変調における、少なくとも1つの位相シフトを測定し、前記少なくとも1つの位相シフトに基づいて、前記グレーティングの前記摂動を決定するように構成された光学的及び電気的解析システムと、
を含む、システム。

A system for determining the perturbation of a grating formed on an optical fiber.
An optical modulation system for modulating the optical beam,
An optical coupler for coupling the light beam into the optical fiber and receiving the light reflected by the grating.
An optical and electrical analysis system configured to measure at least one phase shift in the modulation of light reflected by the grating and to determine the perturbation of the grating based on the at least one phase shift. When,
Including the system.

JP2020569076A 2018-07-04 2019-07-04 Method and system for determining perturbation of a grating by modulated light Active JP7383644B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862693941P 2018-07-04 2018-07-04
US62/693,941 2018-07-04
PCT/IL2019/050742 WO2020008464A1 (en) 2018-07-04 2019-07-04 Method and system for determining grating perturbation by modulated light

Publications (3)

Publication Number Publication Date
JP2021529300A JP2021529300A (en) 2021-10-28
JPWO2020008464A5 true JPWO2020008464A5 (en) 2022-05-09
JP7383644B2 JP7383644B2 (en) 2023-11-20

Family

ID=69060799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020569076A Active JP7383644B2 (en) 2018-07-04 2019-07-04 Method and system for determining perturbation of a grating by modulated light

Country Status (7)

Country Link
US (1) US11698277B2 (en)
EP (2) EP3818331B1 (en)
JP (1) JP7383644B2 (en)
CN (1) CN112469958A (en)
DK (1) DK3818331T3 (en)
IL (1) IL279954B (en)
WO (1) WO2020008464A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383644B2 (en) 2018-07-04 2023-11-20 アリエル サイエンティフィック イノベーションズ リミテッド Method and system for determining perturbation of a grating by modulated light
CN114137273B (en) * 2021-11-30 2023-11-28 哈尔滨理工大学 Temperature-sensitive current eliminating sensing device of FBG cascade optical fiber composite structure

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743678A1 (en) 1987-12-23 1989-07-06 Philips Patentverwaltung OPTICAL BACKFLOW MEASURING DEVICE
US5426297A (en) * 1993-09-27 1995-06-20 United Technologies Corporation Multiplexed Bragg grating sensors
US5675674A (en) * 1995-08-24 1997-10-07 Rockbit International Optical fiber modulation and demodulation system
US5748312A (en) * 1995-09-19 1998-05-05 United States Of American As Represented By The Secretary Of The Navy Sensing apparatus and method for detecting strain between fiber bragg grating sensors inscribed into an optical fiber
US5680489A (en) * 1996-06-28 1997-10-21 The United States Of America As Represented By The Secretary Of The Navy Optical sensor system utilizing bragg grating sensors
KR100496554B1 (en) * 1996-06-28 2005-11-08 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 Optical sensor system using Bragg grating sensor
DE19821616B4 (en) 1998-05-15 2009-05-14 Institut Für Photonische Technologien E.V. Arrangement for determining absolute physical state variables, in particular temperature and strain, of an optical fiber
US6285806B1 (en) * 1998-05-31 2001-09-04 The United States Of America As Represented By The Secretary Of The Navy Coherent reflectometric fiber Bragg grating sensor array
AU2001283043A1 (en) * 2000-08-01 2002-02-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Optical sensing device containing fiber bragg gratings
US6785004B2 (en) 2000-11-29 2004-08-31 Weatherford/Lamb, Inc. Method and apparatus for interrogating fiber optic sensors
US6836578B2 (en) * 2003-04-14 2004-12-28 Lake Shore Cryotronics, Inc. System and method for measuring physical stimuli using vertical cavity surface emitting lasers with integrated tuning means
GB0415881D0 (en) * 2004-07-15 2004-08-18 Univ Southampton Multiwavelength optical sensors
WO2006113507A2 (en) 2005-04-14 2006-10-26 Cornell Research Foundation, Inc. Chirped pulse fiber amplifier
JP2008020342A (en) * 2006-07-13 2008-01-31 Yokogawa Denshikiki Co Ltd External force detecting apparatus
JP4698746B2 (en) * 2009-04-23 2011-06-08 富士通株式会社 Chromatic dispersion compensator
US9025157B2 (en) 2010-09-08 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations using a slow-light fiber Bragg grating sensor
WO2012033718A1 (en) 2010-09-08 2012-03-15 The Board Of Trustees Of The Leland Stanford Junior University Slow-light fiber bragg grating sensor
GB2508376A (en) 2012-11-29 2014-06-04 Ibm Optical spectrometer comprising an adjustably strained photodiode
CN103344194B (en) * 2013-07-17 2015-07-15 中国科学院半导体研究所 Phase-shifting fiber Bragg grating strain sensing system based on photoelectric oscillator
US9583796B2 (en) 2014-04-01 2017-02-28 Palo Alto Research Center Incorporated Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes
FR3031590B1 (en) 2015-01-09 2017-01-13 Thales Sa FIBER OPTIC SENSOR
CN105333815B (en) * 2015-11-05 2018-04-10 北京交通大学 A kind of super online interferometer measuration system of lateral resolution surface three dimension based on the scanning of spectrum colour loose wire
EP3371546A4 (en) * 2015-11-06 2019-05-08 AP Robotics, LLC Interferometric distance measurement based on compression of chirped interferogram from cross-chirped interference
CN106100748B (en) * 2016-05-27 2018-10-16 西安电子科技大学 The method for generating microwave waveform using phase-modulator and adjustable chromatic dispersion device
CN107947867B (en) * 2017-12-05 2019-12-13 安徽工程大学 Single-sideband spectrum generation device and method based on multi-frequency phase modulation
CA3093169A1 (en) 2018-03-09 2019-09-12 Universite Laval Optical phase modulator and optical modulator
JP7383644B2 (en) 2018-07-04 2023-11-20 アリエル サイエンティフィック イノベーションズ リミテッド Method and system for determining perturbation of a grating by modulated light
US20220381644A1 (en) 2019-12-20 2022-12-01 Ariel Scientific Innovations Ltd. Method and system for extracting information from an optical signal

Similar Documents

Publication Publication Date Title
EP3494423B1 (en) Optical fiber evaluation method and optical fiber evaluation device
CN100507455C (en) Intensity modulation type optical fiber sensor multiplexing method
JP5168700B2 (en) Wavelength detection type optical fiber sensor system
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
JP7247446B2 (en) Multi-core optical fiber sensing system
JP7383644B2 (en) Method and system for determining perturbation of a grating by modulated light
JPWO2020008464A5 (en)
US12068779B2 (en) Fibre-optic measurement system, method of adaptation of the communication optical fibre into a measurement system, and fibre-optic measurement and communication system
JP7497780B2 (en) Optical fiber testing method and optical fiber testing device
CN108267160A (en) Time-multiplexed fiber Bragg grating sensor
EP1229318A2 (en) Chromatic dispersion distribution measurement apparatus, method and storage medium for the same
Liu et al. Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal
Braunfelds et al. Unified multi-channel spectrum-sliced WDM-PON transmission system with embedded FBG sensors network
CN111257283A (en) Refractive index sensing measurement device and method
WO2022029995A1 (en) Electric field distribution fluctuation cycle measuring method and electric field distribution fluctuation cycle measuring device
WO2022091401A1 (en) Frequency modulation amount measurement device and method
Von der Weid et al. Return loss measurements of WDM filters with tunable coherent optical frequency-domain reflectometry
JP5883730B2 (en) Optical line monitoring device
Sousa et al. OSNR monitoring using Hi-Bi FBG for 10 Gbit/s optical networks
JPWO2020261207A5 (en)
Sousa et al. OSNR Monitoring Technique Using Bragg Gratings Imprinted in High Birefringent Fibers
Kato et al. Simple tunable pulsed laser system for quasi-distributed sensors