JP5883730B2 - Optical line monitoring device - Google Patents

Optical line monitoring device Download PDF

Info

Publication number
JP5883730B2
JP5883730B2 JP2012144670A JP2012144670A JP5883730B2 JP 5883730 B2 JP5883730 B2 JP 5883730B2 JP 2012144670 A JP2012144670 A JP 2012144670A JP 2012144670 A JP2012144670 A JP 2012144670A JP 5883730 B2 JP5883730 B2 JP 5883730B2
Authority
JP
Japan
Prior art keywords
optical line
monitored
change
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012144670A
Other languages
Japanese (ja)
Other versions
JP2014009962A (en
Inventor
遠藤 潤
潤 遠藤
伊藤 敏夫
敏夫 伊藤
浅香 航太
航太 浅香
幹夫 米山
幹夫 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012144670A priority Critical patent/JP5883730B2/en
Publication of JP2014009962A publication Critical patent/JP2014009962A/en
Application granted granted Critical
Publication of JP5883730B2 publication Critical patent/JP5883730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光線路監視装置に関し、特に、光ファイバによって構成される光線路内に存在する破断位置、光線路周辺のひずみ、および温度変化を監視する光線路監視装置に関する。   The present invention relates to an optical line monitoring apparatus, and more particularly, to an optical line monitoring apparatus that monitors a break position, distortion around an optical line, and temperature change existing in an optical line constituted by optical fibers.

これまで、光線路内に発生する損失や破断点を検出するために、OTDR(Optical time domain Reflectometer)が使用されてきた(特許文献1)。特許文献1に開示されている方式は、光パルスを光線路内に出力し、破断点や接続点で発生する反射戻り光強度と伝搬時間を計測し反射位置を観測する方式である。   Until now, OTDR (Optical time domain Reflectometer) has been used in order to detect a loss and a break point generated in an optical line (Patent Document 1). The method disclosed in Patent Document 1 is a method in which an optical pulse is output into an optical line, the reflected return light intensity generated at a break point or a connection point and the propagation time are measured, and the reflection position is observed.

従来の汎用的なパルス式OTDRの概略を図7に示す。パルス式OTDR100から出力された出力光パルスは、被監視光線路200内を伝播し、反射点P1およびP2において反射された後、後方へ伝播し、OTDR100に戻り光として入射する。OTDR100と反射点P1、およびOTDR100と反射点P2の間の距離は、OTDR100から出力光パルスが出力されOTDR100に戻り光として入射するまでの時間と、被監視光線路200の実行屈折率とから計算される。   An outline of a conventional general-purpose pulse OTDR is shown in FIG. The output light pulse output from the pulsed OTDR 100 propagates through the monitored optical line 200, is reflected at the reflection points P1 and P2, propagates backward, and enters the OTDR 100 as return light. The distances between the OTDR 100 and the reflection point P1 and between the OTDR 100 and the reflection point P2 are calculated from the time until the output light pulse is output from the OTDR 100 and incident on the OTDR 100 as the return light, and the effective refractive index of the monitored optical line 200 Is done.

この様な光パルス方式(図7)では、空間分解能はパルス幅や後方散乱光の影響度に依存し、光線路内に複数の反射点が存在し、これらの反射点とパルス源との距離差が小さい場合は、高精度に反射位置を識別することが困難である。反射位置を高精度に測定するために、反射点間に存在する共振モードの周波数スペクトルを計測し、それから反射点間距離を算出する方法が提案されている。   In such an optical pulse method (FIG. 7), the spatial resolution depends on the pulse width and the influence of backscattered light, and there are a plurality of reflection points in the optical line, and the distance between these reflection points and the pulse source. When the difference is small, it is difficult to identify the reflection position with high accuracy. In order to measure the reflection position with high accuracy, a method has been proposed in which the frequency spectrum of the resonance mode existing between the reflection points is measured and the distance between the reflection points is calculated therefrom.

特開平07−174666号公報Japanese Patent Laid-Open No. 07-174666

光線路内の共振周波数スペクトルから反射位置を高精度に測定するとともに、反射位置が既知である光線路において、その周波数スペクトルから該当位置に発生するひずみや温度変化を計測する。   The reflection position is measured with high accuracy from the resonance frequency spectrum in the optical line, and in the optical line whose reflection position is known, strain and temperature change generated at the corresponding position are measured from the frequency spectrum.

上記目的を達成するために、本発明の光線路監視装置は、被監視光線路内の1または複数の所定の位置を算出し、かつ1または複数の所定の位置において発生するひずみや温度変化を測定する光線路監視装置であって、任意の発振波長を選択可能な半導体レーザと、半導体レーザの出力光を伝搬する第一の光線路と、第二の光線路と、第三の光線路と、第一の光線路の伝搬光を、被監視光線路と第二の光線路とに分波し、被監視光線路の伝搬光を第一の光線路と第三の光線路に分波する光分波器と、第一の光線路と被監視光線路と、これらを結ぶ光路内の任意の位置に設けられた偏波制御器と、第の光線路の伝搬光を電気信号に変換する受光器と、電気信号の周波数スペクトラムを出力する電気スペクトラムアナライザと、第三の光線路の伝搬光の周波数スペクトラムを出力する光スペクトラムアナライザとから構成され、被監視光線路の1または複数の所定の位置のそれぞれに、所定の間隔で周期的な屈折率変化が形成されていることを特徴とする。 In order to achieve the above object, the optical line monitoring apparatus of the present invention calculates one or a plurality of predetermined positions in the monitored optical line, and generates strains and temperature changes generated at the one or more predetermined positions. An optical line monitoring apparatus for measuring, a semiconductor laser capable of selecting an arbitrary oscillation wavelength, a first optical line for propagating output light of the semiconductor laser, a second optical line, and a third optical line, The propagation light of the first optical line is demultiplexed into the monitored optical line and the second optical line, and the propagation light of the monitored optical line is demultiplexed into the first optical line and the third optical line. Optical demultiplexer, first optical line and monitored optical line, polarization controller provided at an arbitrary position in the optical path connecting these, and the propagation light of the second optical line is converted into an electrical signal Receiver, an electrical spectrum analyzer that outputs the frequency spectrum of the electrical signal, and a third optical line And an optical spectrum analyzer that outputs a frequency spectrum of the carried light, wherein a periodic refractive index change is formed at predetermined intervals in each of one or more predetermined positions of the monitored optical line. And

以上説明したように、本発明の光線路監視装置は、光線路内の共振周波数スペクトルから反射位置を高精度に測定するとともに、反射位置が既知である光線路において、その周波数スペクトルから該当位置に発生するひずみや温度変化を計測することができる。   As described above, the optical line monitoring apparatus of the present invention measures the reflection position with high accuracy from the resonance frequency spectrum in the optical line, and in the optical line whose reflection position is known, the frequency spectrum is changed to the corresponding position. Strain and temperature changes that occur can be measured.

本発明にかかる光路線監視装置の構成図である。It is a block diagram of the optical path monitoring apparatus concerning this invention. ファイバブラッググレーティング(FBG)の原理を示す図である。It is a figure which shows the principle of a fiber Bragg grating (FBG). ブラッグ波長とグレーティング周期の関係を示すグラフである。It is a graph which shows the relationship between a Bragg wavelength and a grating period. FBG反射帯域幅と屈折率変化の関係を示すグラフである。It is a graph which shows the relationship between a FBG reflection bandwidth and a refractive index change. 被監視光線路のグレーティング構成例を示す図である。It is a figure which shows the grating structural example of a to-be-monitored optical path. FBG反射スペクトルの例を示すグラフである。It is a graph which shows the example of a FBG reflection spectrum. 従来の光線路監視装置であるパルス型OTDRの概略図である。It is the schematic of pulse type OTDR which is the conventional optical-line monitoring apparatus.

[実施例]
図1に、本発明の本実施例にかかる光線路監視装置を示す。本発明の光線路監視装置は、任意の発振波長を選択可能な半導体レーザ1、偏波制御器2、光分波器3、受光器5、電気スペクトルアナライザ(ESA)6、光スペクトルアナライザ(OSA)7、およびファイバブラッググレーティング(FBG1、FBG2)8、9から構成される。本実施例では、半導体レーザとして波長可変半導体レーザダイオード(TLD)1を、光分波器として光カップラ3を、受光器としてPIN-フォトダイオード(PD)5を用いた。光部品間は、シングルモードファイバで接続し、電気部品間は、同軸線路で接続する。光カップラ3は1:1の入出力分波比を有し、port1は偏波制御器2、port2はOSA7、port3はPD5、port4は被監視光線路4に各々接続されている。ファイバブラッググレーティング8、9は、被監視光線路4の所定の位置に形成されている。
[Example]
FIG. 1 shows an optical line monitoring apparatus according to this embodiment of the present invention. The optical line monitoring apparatus of the present invention includes a semiconductor laser 1, a polarization controller 2, an optical demultiplexer 3, a light receiver 5, an electric spectrum analyzer (ESA) 6, an optical spectrum analyzer (OSA) that can select an arbitrary oscillation wavelength. ) 7 and fiber Bragg gratings (FBG1, FBG2) 8 and 9. In this embodiment, a wavelength tunable semiconductor laser diode (TLD) 1 is used as a semiconductor laser, an optical coupler 3 is used as an optical demultiplexer, and a PIN-photodiode (PD) 5 is used as a light receiver. The optical components are connected by a single mode fiber, and the electrical components are connected by a coaxial line. The optical coupler 3 has an input / output demultiplexing ratio of 1: 1, the port 1 is connected to the polarization controller 2, the port 2 is connected to the OSA 7, the port 3 is connected to the PD 5, and the port 4 is connected to the monitored optical line 4. The fiber Bragg gratings 8 and 9 are formed at predetermined positions of the monitored optical line 4.

被監視光線路内の所定の位置に発生するひずみや温度変化を測定する原理を説明する。被監視光線路は、決められた間隔で周期的な屈折率変化が形成されているファイバとする。本実施例では、屈折率変化が、ファイバブラッググレーティング(FBG)で与えられる場合を説明する。図2に、FBGの原理を示す。グレーティングの周期をΔ、ファイバの実効屈折率をneff、グレーティング長をLgとする。FBGは、入射光に対して、Δに比例したブラッグ波長と呼ばれる特定の波長のみを反射する性質をもつ。ブラッグ波長λは、一般的に、式1.1で表わされる。図3は、λとΔの関係を示すグラフである(neff=1.45)。 The principle of measuring strain and temperature change occurring at a predetermined position in the monitored optical line will be described. The monitored optical line is a fiber in which a periodic refractive index change is formed at a predetermined interval. In this embodiment, the case where the refractive index change is given by a fiber Bragg grating (FBG) will be described. FIG. 2 shows the principle of FBG. Assume that the grating period is Δ, the effective refractive index of the fiber is neff, and the grating length is Lg. FBG has a property of reflecting only a specific wavelength called a Bragg wavelength proportional to Δ with respect to incident light. The Bragg wavelength λ b is generally expressed by the formula 1.1. Figure 3 is a graph showing a relationship between lambda b and Δ (neff = 1.45).

Figure 0005883730
Figure 0005883730

FBG反射スペクトルの帯域幅Δλは、ファイバコア屈折率からの増加量ΔnとLgに依存する。Δλ は、一般的に、式1.2で表わされる(n: ファイバコア屈折率、α:伝搬光割合係数)。 The bandwidth Δλ b of the FBG reflection spectrum depends on the increments Δn and Lg from the fiber core refractive index. Δλ b is generally expressed by Expression 1.2 (n: fiber core refractive index, α: propagation light ratio coefficient).

図4は、ΔλとΔnの関係を示す(Lg=3.5, λ=1.55, neff=1.45, α=1.0)。 FIG. 4 shows the relationship between Δλ b and Δn (Lg = 3.5, λ b = 1.55, neff = 1.45, α = 1.0).

Figure 0005883730
Figure 0005883730

Δ、Lg、Δnは、グレーティング周囲の応力や温度に応じて変化する。すなわち、Δに依存するλ、および、Δ、Lg、Δnに依存するΔλはグレーティング周囲の応力や温度に応じて変化する。λのシフト量やΔλの変化を解析することにより、グレーティング周囲の歪みや温度変化を計測することができる。 Δ, Lg, and Δn vary according to the stress and temperature around the grating. That is, λ b depending on Δ and Δλ b depending on Δ, Lg, and Δn vary depending on the stress and temperature around the grating. By analyzing the change in the lambda b of the shift amount and [Delta] [lambda] b, it is possible to measure the strain and temperature changes in ambient grating.

図5は、被監視光線路のグレーティング構成例を示す。被監視光線路上には、予め決められた位置に、決められたグレーティング周期のFBGが複数形成されている。図5に示す例では、TLDとFBG間の距離をそれぞれ、L1、L2、グレーティング周期をΔ1、Δ2とし、TLDは、各ブラッグ波長λ1、λ2で選択的に発振可能とする。また、ファイバの歪みや温度変化とΔλ bの関係は既知であるとする。TLDの発振波長をλ1とすると、位置L1からのFBG反射光スペクトルがOSAで観測される。図6に、FBG反射光スペクトルの例を示す。FBG反射スペクトル変化を解析することで、位置L1周辺の歪みや温度変化を計測できる。位置L2に対しては、TLDの発振波長をλ2とすれば、同様に計測可能である。 FIG. 5 shows a grating configuration example of the monitored optical line. On the monitored optical line, a plurality of FBGs having a determined grating period are formed at predetermined positions. In the example shown in FIG. 5, the distances between the TLD and the FBG are L1 and L2, the grating periods are Δ1 and Δ2, respectively, and the TLD can selectively oscillate at the Bragg wavelengths λ b 1 and λ b 2. It is assumed that the relationship between Δλ b and the strain or temperature change of the fiber is already known. When the oscillation wavelength of the TLD is λ b 1, the FBG reflected light spectrum from the position L1 is observed by OSA. FIG. 6 shows an example of the FBG reflected light spectrum. By analyzing the FBG reflection spectrum change, distortion and temperature change around the position L1 can be measured. The position L2 can be measured in the same way if the oscillation wavelength of the TLD is λ b 2.

尚、FBGとTLD反射端の間には共振器が形成され、共振スペクトルをESAで観測することができる。そのスペクトルの周波数間隔から、共振器長、すなわちFBGとTLD反射端の間の長さを算出することができる。関係式は、一般的に式1.3で表わされる。(Δf:共振スペクトルの周波数間隔、L:共振器長、neff:被監視光線路の実効屈折率、c:真空中の光速度)   A resonator is formed between the FBG and the TLD reflection end, and the resonance spectrum can be observed by ESA. From the frequency interval of the spectrum, the resonator length, that is, the length between the FBG and the TLD reflection end can be calculated. The relational expression is generally represented by Expression 1.3. (Δf: frequency interval of resonance spectrum, L: resonator length, neff: effective refractive index of monitored optical line, c: speed of light in vacuum)

Figure 0005883730
Figure 0005883730

共振スペクトル強度は、偏波制御器によって調整する。 The resonance spectrum intensity is adjusted by the polarization controller.

1 波長可変半導体レーザ
2 偏波制御器
3 光カップラ
4、200 被監視光線路
5 PIN-フォトダイオード
6 電気スペクトルアナライザ
7 光スペクトルアナライザ
8、9 ファイバブラッググレーティング
100 パルス型OTDR
DESCRIPTION OF SYMBOLS 1 Wavelength variable semiconductor laser 2 Polarization controller 3 Optical coupler 4,200 Monitored optical line 5 PIN-photodiode 6 Electric spectrum analyzer 7 Optical spectrum analyzer 8, 9 Fiber Bragg grating 100 Pulse type OTDR

Claims (4)

被監視光線路内の1または複数の所定の位置を算出し、かつ前記1または複数の所定の位置において発生するひずみや温度変化を測定する光線路監視装置であって、
任意の発振波長を選択可能な半導体レーザと、
前記半導体レーザの出力光を伝搬する第一の光線路と、
第二の光線路と、
第三の光線路と、
前記第一の光線路の伝搬光を、前記被監視光線路と前記第二の光線路とに分波し、前記被監視光線路の伝搬光を前記第一の光線路と前記第三の光線路に分波する光分波器と、
前記第一の光線路と前記被監視光線路と、これらを結ぶ光路内の任意の位置に設けられた偏波制御器と、
前記第の光線路の伝搬光を電気信号に変換する受光器と、
前記電気信号の周波数スペクトラムを出力する電気スペクトラムアナライザと、
前記第三の光線路の伝搬光の周波数スペクトラムを出力する光スペクトラムアナライザと
から構成され、前記被監視光線路の前記1または複数の所定の位置のそれぞれに、所定の間隔で周期的な屈折率変化が形成されていることを特徴とする光線路監視装置。
An optical line monitoring device that calculates one or a plurality of predetermined positions in a monitored optical line, and measures strain or temperature change that occurs at the one or more predetermined positions,
A semiconductor laser capable of selecting an arbitrary oscillation wavelength; and
A first optical line for propagating output light of the semiconductor laser;
A second optical line,
A third optical line,
The propagation light of the first optical line is split into the monitored optical line and the second optical line, and the propagation light of the monitored optical line is divided into the first optical line and the third light beam. An optical demultiplexer that demultiplexes the road,
A polarization controller provided at an arbitrary position in the optical path connecting the first optical line and the monitored optical line;
A light receiver that converts the propagation light of the second optical line into an electrical signal;
An electrical spectrum analyzer that outputs the frequency spectrum of the electrical signal;
An optical spectrum analyzer that outputs a frequency spectrum of the propagation light of the third optical line, and each of the one or more predetermined positions of the monitored optical line has a periodic refractive index at predetermined intervals. An optical line monitoring device characterized in that a change is formed.
前記屈折率変化が、ファイバブラッググレーティング(FBG)で与えられることを特徴とする請求項1に記載の光線路監視装置。   The optical line monitoring apparatus according to claim 1, wherein the refractive index change is given by a fiber Bragg grating (FBG). 被監視光線路内のh個の所定の位置を算出し、かつ前記h個の所定の位置において発生するひずみや温度変化を測定する被監視光線路の監視方法であって、
前記被監視光線路の前記h個の所定の位置のそれぞれに、所定の間隔Δi(1≦i≦h)で周期的な屈折率変化を形成するステップと、
任意の発振波長を選択可能な半導体レーザから、前記被監視光線路内に、波長λiの入力光を入力するステップであって、前記波長λiはλi=2neff・Δiを満たす(neffは前記被監視光線路の実行屈折率)ステップと、
前記半導体レーザと、i番目の前記h個の所定の位置との間に形成される共振器の共振スペクトルの周波数間隔Δfiを測定し、Δfiと共振器長Liの関係
Figure 0005883730
からi番目の前記h個の所定の位置を算出するステップと、
i番目の前記h個の所定の位置からの反射スペクトルの帯域幅Δλiを測定し、Δλiの変化からi番目の前記h個の所定の位置における周囲の応力変化および/または温度変化を算出するステップと
を含むことを特徴とする被監視光線路の監視方法。
A monitoring method for a monitored optical line that calculates h predetermined positions in the monitored optical line, and measures strain and temperature changes generated at the h predetermined positions,
Forming a periodic refractive index change at a predetermined interval Δ i (1 ≦ i ≦ h) in each of the h predetermined positions of the monitored optical line;
A step of inputting an input light having a wavelength λ i from a semiconductor laser capable of selecting an arbitrary oscillation wavelength into the monitored optical line, wherein the wavelength λ i satisfies λ i = 2neff · Δ i (neff Is the effective refractive index of the monitored optical line) step;
The frequency interval Δf i of the resonance spectrum of the resonator formed between the semiconductor laser and the i th predetermined position is measured, and the relationship between Δf i and the resonator length L i is measured.
Figure 0005883730
Calculating the i th predetermined position from
The bandwidth Δλ i of the reflection spectrum from the i th predetermined position is measured, and the surrounding stress change and / or temperature change at the i th predetermined position is calculated from the change in Δλ i. A monitoring method for a monitored optical line, comprising the steps of:
前記屈折率変化が、ファイバブラッググレーティング(FBG)で与えられることを特徴とする請求項3に記載の被監視光線路の監視方法。   The monitoring method for a monitored optical line according to claim 3, wherein the refractive index change is given by a fiber Bragg grating (FBG).
JP2012144670A 2012-06-27 2012-06-27 Optical line monitoring device Expired - Fee Related JP5883730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144670A JP5883730B2 (en) 2012-06-27 2012-06-27 Optical line monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144670A JP5883730B2 (en) 2012-06-27 2012-06-27 Optical line monitoring device

Publications (2)

Publication Number Publication Date
JP2014009962A JP2014009962A (en) 2014-01-20
JP5883730B2 true JP5883730B2 (en) 2016-03-15

Family

ID=50106811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144670A Expired - Fee Related JP5883730B2 (en) 2012-06-27 2012-06-27 Optical line monitoring device

Country Status (1)

Country Link
JP (1) JP5883730B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496873B2 (en) * 1999-06-10 2004-02-16 日本電信電話株式会社 Optical fiber sensor system
JP4486278B2 (en) * 2001-07-03 2010-06-23 坂田電機株式会社 Vibration / shock detector using optical fiber loop interferometer
JP4243159B2 (en) * 2003-09-17 2009-03-25 京セラ株式会社 FBG sensing system
JP2006049785A (en) * 2004-06-29 2006-02-16 Anritsu Corp Wavelength variable light source, and distortion measurement equipment using the same
JP4032124B2 (en) * 2005-03-23 2008-01-16 国立大学法人福井大学 Optical fiber sensor device
CN101680781B (en) * 2008-02-29 2011-11-23 株式会社藤仓 Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device
JP5171371B2 (en) * 2008-04-18 2013-03-27 アンリツ株式会社 Physical quantity measurement system
US8339590B2 (en) * 2009-03-04 2012-12-25 The Boeing Company Fiber cable distortion detection system and method
CN103392136B (en) * 2010-12-02 2018-02-02 Ofs飞泰尔公司 DFB optical-fiber lasers bend sensor and optical heterodyne microphone

Also Published As

Publication number Publication date
JP2014009962A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
US10234346B2 (en) Serial weak FBG interrogator using pulses of differing wavelengths
JP2015172579A (en) Optical device and method for using fiber bragg grating
KR20140135196A (en) Sensing systems and few-mode optical fiber for use in such systems
JP5894993B2 (en) Slow light fiber Bragg grating sensor
Liu et al. A static axial strain fiber ring cavity laser sensor based on multi-modal interference
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
JP6290798B2 (en) OFDR device
Dong et al. Temperature-independent fiber bending sensor based on a superimposed grating
JP5945120B2 (en) Optical fiber sensor and method for simultaneous measurement of strain and temperature using the same
CN105092085A (en) Single-mode core-dislocated fiber temperature measurement method based on dual-coupling structure having correction function
JP2009229134A (en) Optical sensor system
JP2007240294A (en) Apparatus for measuring optical fiber distortion
JP5883730B2 (en) Optical line monitoring device
Morozov et al. Smart Photonic Carbon Brush: FBG Length as Sensing Parameter
RU2413259C1 (en) Method of detecting signals of measuring transducers based on bragg gratings, recorded in single fibre optical guide
Yu A novel scheme for hundred-hertz linewidth measurements with the self-heterodyne method
WO2009087635A1 (en) Optical sensor and method based on the propagation of bragg solitons in non-uniform one-dimensional photonic crystals
KR100885408B1 (en) OSNR measuring apparatus
Rajan et al. Effect of polarisation-dependent loss on the performance accuracy of a ratiometric wavelength measurement system
JP2013083558A (en) Fbg strain sensor and strain amount measuring system
KR100803488B1 (en) Chromatic dispersion measurement system for higher-order modes in a multimode fiber by use of an interferometer
Saitoh et al. Fiber Bragg grating sensor system using single-mode wavelength swept light source
Shin et al. Temperature-Insensitive Refractive Index Fiber Laser Sensors Formed by PCF-Based Mach-Zehnder Interferometers
Chehura et al. Simultaneous independent measurement of temperature and strain using a tilted fibre Bragg grating
Han Long-distance Remote sensors for simultaneous measurement of strain and temperature based on multiwavelength fiber lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees