JPWO2019244882A1 - Heat dissipation structure, manufacturing method of heat dissipation structure and battery - Google Patents

Heat dissipation structure, manufacturing method of heat dissipation structure and battery Download PDF

Info

Publication number
JPWO2019244882A1
JPWO2019244882A1 JP2020525744A JP2020525744A JPWO2019244882A1 JP WO2019244882 A1 JPWO2019244882 A1 JP WO2019244882A1 JP 2020525744 A JP2020525744 A JP 2020525744A JP 2020525744 A JP2020525744 A JP 2020525744A JP WO2019244882 A1 JPWO2019244882 A1 JP WO2019244882A1
Authority
JP
Japan
Prior art keywords
sheet
gear
heat
heat radiating
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020525744A
Other languages
Japanese (ja)
Other versions
JP7074851B2 (en
Inventor
清水 隆男
隆男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Publication of JPWO2019244882A1 publication Critical patent/JPWO2019244882A1/en
Application granted granted Critical
Publication of JP7074851B2 publication Critical patent/JP7074851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】熱源の表面の凹凸に依存しにくく、熱源との接触面積が高くて高い放熱効率を得られ、かつ放熱構造体の軽量化を図ることのできる放熱構造体、その製造方法、および当該放熱構造体を備えたバッテリー提供する。【解決手段】本発明は、熱源10から冷却部材25に熱を伝導させて熱源10からの放熱を可能とする放熱構造体1であって、金属、炭素若しくはセラミックスの少なくとも1つを含み、熱源10と冷却部材25との間に配置される第1シート2と、金属、炭素若しくはセラミックスの少なくとも1つを含み、第1シート2の熱源10側の面に固定され、所定方向に向かって連続した凹凸を繰り返す形状を有する第2シート3と、を備え、第2シート3は、第1シート2と凹凸との間に空間4が形成されるように設けられる。【選択図】図1APROBLEM TO BE SOLVED: To provide a heat radiating structure which is less dependent on the unevenness of the surface of the heat source, has a high contact area with the heat source, can obtain high heat radiating efficiency, and can reduce the weight of the heat radiating structure, a method for manufacturing the heat radiating structure, and the present invention. Provide a battery with a heat dissipation structure. The present invention is a heat dissipation structure 1 that conducts heat from a heat source 10 to a cooling member 25 to enable heat dissipation from the heat source 10, and includes at least one of metal, carbon, or ceramics, and is a heat source. A first sheet 2 arranged between the 10 and the cooling member 25 and at least one of metal, carbon or ceramics are included, fixed to the surface of the first sheet 2 on the heat source 10 side, and continuous in a predetermined direction. A second sheet 3 having a shape that repeats the unevenness is provided, and the second sheet 3 is provided so that a space 4 is formed between the first sheet 2 and the unevenness. [Selection diagram] FIG. 1A

Description

クロスリファレンスCross reference

本出願は、2018年6月20日に日本国において出願された特願2018−117108に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。 This application claims priority based on Japanese Patent Application No. 2018-117108 filed in Japan on June 20, 2018, and the contents of the application are incorporated herein by reference. In addition, the contents described in the patents, patent applications and documents cited in the present application are incorporated herein by reference.

本発明は、放熱構造体、放熱構造体の製造方法およびバッテリーに関する。 The present invention relates to a heat radiating structure, a method for manufacturing the heat radiating structure, and a battery.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, and household or commercial electronic devices are becoming more accurate and complex, and the density of small electronic components on circuit boards is increasing. .. As a result, it is strongly desired to solve the failure and shortening of the life of electronic components due to heat generation around the circuit board.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム、立方晶窒化ホウ素などから構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to realize quick heat dissipation from the circuit board, conventionally, the circuit board itself is made of a material having excellent heat dissipation, a heat sink is attached, or a cooling fan is driven by a single means or a combination of multiple means. It is done. Of these, a method in which the circuit board itself is made of a material having excellent heat dissipation, for example, diamond, aluminum nitride, cubic boron nitride, or the like, makes the cost of the circuit board extremely high. In addition, the arrangement of the cooling fan causes problems such as failure of the rotating device called the fan, maintenance necessity for preventing the failure, and difficulty in securing the installation space. On the other hand, the heat radiating fin is a simple one that can increase the surface area and further improve the heat radiating property by forming a large number of columnar or flat plate-shaped projecting portions using a metal having high thermal conductivity (for example, aluminum). Since it is a member, it is widely used as a heat-dissipating component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車が近年普及してきている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などの課題がある。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が必要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 By the way, at present, there are active movements around the world to gradually convert conventional gasoline-powered vehicles or diesel-powered vehicles to electric vehicles for the purpose of reducing the burden on the global environment. In particular, electric vehicles have become widespread in recent years in China as well as in European countries such as France, the Netherlands, and Germany. The spread of electric vehicles has issues such as the development of high-performance batteries and the installation of a large number of charging stations. In particular, it is necessary to develop technology to enhance the charge / discharge function of lithium-based automobile batteries. It is well known that the above-mentioned automobile battery cannot fully exert its charge / discharge function at a high temperature of 60 degrees Celsius or higher. For this reason, it is important to improve the heat dissipation of the battery as well as the circuit board described above.

特開2008−243999Japanese Patent Application Laid-Open No. 2008-24399

熱源からの放熱効率をより高めるには、熱源の表面の凹凸に依存しにくく、熱源との接触面積が高くなるような放熱構造体が求められている。また、放熱構造体の軽量化も重要なファクタとなる。 In order to further improve the heat dissipation efficiency from the heat source, there is a need for a heat dissipation structure that is less dependent on the unevenness of the surface of the heat source and has a large contact area with the heat source. In addition, weight reduction of the heat dissipation structure is also an important factor.

本発明は、上記課題を解決するべく、熱源の表面の凹凸に依存しにくく、熱源との接触面積が高くて高い放熱効率を得られ、かつ放熱構造体の軽量化を図ることのできる放熱構造体、その製造方法、および当該放熱構造体を備えたバッテリー提供することを目的とする。 In order to solve the above problems, the present invention has a heat dissipation structure that is less dependent on the unevenness of the surface of the heat source, has a high contact area with the heat source, can obtain high heat dissipation efficiency, and can reduce the weight of the heat dissipation structure. It is an object of the present invention to provide a body, a method for manufacturing the same, and a battery having the heat dissipation structure.

(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源から冷却部材に熱を伝導させて前記熱源からの放熱を可能とする放熱構造体であって、金属、炭素若しくはセラミックスの少なくとも1つを含み、前記熱源と前記冷却部材との間に配置される第1シートと、金属、炭素若しくはセラミックスの少なくとも1つを含み、前記第1シートの前記熱源側の面に固定され、所定方向に向かって連続した凹凸を繰り返す形状を有する第2シートと、を備え、前記第2シートは、前記第1シートと前記凹凸との間に空間が形成されるように設けられることを特徴とする放熱構造体。 (1) The heat radiating structure according to the embodiment for achieving the above object is a heat radiating structure capable of conducting heat from a heat source to a cooling member to dissipate heat from the heat source, and is made of metal, carbon, or the like. A first sheet containing at least one of ceramics and arranged between the heat source and the cooling member, and at least one of metal, carbon or ceramics, fixed to the surface of the first sheet on the heat source side. The second sheet is provided with a second sheet having a shape of repeating continuous unevenness in a predetermined direction, and the second sheet is provided so as to form a space between the first sheet and the unevenness. A heat dissipation structure characterized by.

(2)別の実施形態に係る放熱構造体において、好ましくは、前記第2シートは、前記空間を形成している部分に1以上の第1切り込みを備える。 (2) In the heat radiating structure according to another embodiment, preferably, the second sheet is provided with one or more first cuts in a portion forming the space.

(3)別の実施形態に係る放熱構造体は、好ましくは、前記空間に第1弾性部材を備える。 (3) The heat radiating structure according to another embodiment preferably includes a first elastic member in the space.

(4)別の実施形態に係る放熱構造体は、好ましくは、前記第2シートの前記凹凸と前記熱源との間に第2弾性部材を備える。 (4) The heat radiating structure according to another embodiment preferably includes a second elastic member between the unevenness of the second sheet and the heat source.

(5)別の実施形態に係る放熱構造体は、好ましくは、金属、炭素若しくはセラミックスの少なくとも1つを含み、前記第2シートのうち前記第1シートと反対側の面に固定される第3シートを備える。 (5) The heat radiating structure according to another embodiment preferably contains at least one of metal, carbon or ceramics, and is fixed to a surface of the second sheet opposite to the first sheet. Equipped with a seat.

(6)別の実施形態に係る放熱構造体は、好ましくは、前記第1シートおよび前記第3シートのうちの少なくとも前記第3シートの前記第2シートと反対側の面に、その面内の一方向若しくは複数の方向に1以上の第2切り込みを備える。 (6) The heat radiating structure according to another embodiment is preferably placed on a surface of at least the first sheet and the third sheet opposite to the second sheet in the first sheet and the third sheet. It has one or more second cuts in one or more directions.

(7)別の実施形態に係る放熱構造体において、好ましくは、前記空間は、一方向に長い形状であって、両端開放型の筒あるいは一端開放型のカップの形態を有する。 (7) In the heat radiating structure according to another embodiment, preferably, the space has a shape long in one direction and has the form of a cylinder having both ends open or a cup having one end open.

(8)一実施形態に係る放熱構造体の製造方法は、回転可能な第1歯車と、前記第1歯車と噛み合って回転する第2歯車と、前記第1歯車と前記第2歯車との接触位置より前記第2歯車の回転方向下流側に位置する接着剤塗布部と、前記接着剤塗布部より前記第2歯車の回転方向下流側に位置するシート送り部と、を備える装置を用いて前記いずれかの放熱構造体を製造する方法であって、前記第2シートを成形する前のプレシートを、前記接触位置に対して前記接着剤塗布部の反対側から前記接触位置に挿入するステップと、前記プレシートを前記第2歯車の歯形に成形しながら前記第2歯車の進行方向に送るステップと、前記歯形に成形された部分を前記接着剤塗布部に接触させて、前記第2シートの成形部分に接着剤を塗布するステップと、前記シート送り部から送られてきた第1シートの片面に、前記プレシートを成形した前記第2シートの前記接着剤を塗布した部分を接触させるステップと、を含む。 (8) The method for manufacturing a heat dissipation structure according to an embodiment is a contact between a rotatable first gear, a second gear that meshes with the first gear and rotates, and the first gear and the second gear. The device including an adhesive coating portion located on the downstream side in the rotation direction of the second gear from the position and a sheet feed portion located on the downstream side in the rotation direction of the second gear from the adhesive coating portion is used. A method of manufacturing any of the heat dissipation structures, wherein the presheet before molding the second sheet is inserted into the contact position from the opposite side of the adhesive application portion with respect to the contact position. The step of feeding the pre-sheet in the traveling direction of the second gear while forming the tooth profile of the second gear, and the portion formed into the tooth profile are brought into contact with the adhesive application portion to bring the molded portion of the second sheet into contact. Includes a step of applying an adhesive to the second sheet, and a step of bringing the adhesive-applied portion of the second sheet obtained by molding the pre-sheet into contact with one side of the first sheet sent from the sheet feed unit. ..

(9)一実施形態に係る放熱構造体の製造方法は、回転可能な第1歯車と、前記第1歯車と噛み合って回転する第2歯車と、前記第1歯車と前記第2歯車との接触位置より前記第2歯車の回転方向下流側に位置する接着剤塗布部と、前記接着剤塗布部より前記第2歯車の回転方向下流側に位置するシート送り部と、を備える装置を用いて前記いずれかの放熱構造体を製造する方法であって、前記第2シートを成形する前のプレシートを、前記接触位置に対して前記接着剤塗布部の反対側から前記接触位置に挿入するステップと、前記プレシートを前記第2歯車の歯形に成形しながら前記第2歯車の進行方向に送るステップと、前記第1シートの片面を前記接着剤塗布部に接触させて接着剤を塗布するステップと、前記シート送り部から送られてきた第1シートの片面に、前記プレシートを成形した前記第2シートを接触させるステップと、を含む。 (9) The method for manufacturing a heat dissipation structure according to an embodiment is a contact between a rotatable first gear, a second gear that meshes with the first gear and rotates, and the first gear and the second gear. The device including an adhesive coating portion located on the downstream side in the rotation direction of the second gear from the position and a sheet feed portion located on the downstream side in the rotation direction of the second gear from the adhesive coating portion is used. A method of manufacturing any of the heat dissipation structures, wherein the presheet before molding the second sheet is inserted into the contact position from the opposite side of the adhesive application portion with respect to the contact position. The step of feeding the pre-sheet in the traveling direction of the second gear while forming the tooth profile of the second gear, the step of bringing one side of the first sheet into contact with the adhesive application portion to apply the adhesive, and the above. The step includes a step of bringing the second sheet obtained by molding the pre-sheet into contact with one side of the first sheet sent from the sheet feed unit.

(10)一実施形態に係るバッテリーは、冷却部材を接触させる筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記いずれかの放熱構造体が、前記バッテリーセルと前記冷却部材との間に介在する。 (10) The battery according to the embodiment is a battery having one or two or more battery cells as heat sources in a housing with which the cooling member is in contact, and any of the heat dissipation structures is the battery cell. Intervenes between the cooling member and the cooling member.

本発明によれば、熱源の表面の凹凸に依存しにくく、熱源との接触面積が高くて高い放熱効率を得られ、かつ放熱構造体の軽量化を図ることができる。 According to the present invention, it is difficult to depend on the unevenness of the surface of the heat source, the contact area with the heat source is high, high heat dissipation efficiency can be obtained, and the weight of the heat dissipation structure can be reduced.

図1Aは、第1実施形態に係る放熱構造体の一部の斜視図を示す。FIG. 1A shows a perspective view of a part of the heat radiating structure according to the first embodiment. 図1Bは、第1実施形態に係る放熱構造体を厚さ方向に圧縮した状態の斜視図を示す。FIG. 1B shows a perspective view of the heat radiating structure according to the first embodiment compressed in the thickness direction. 図2は、熱源としてバッテリーセルを用いた場合の放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。FIG. 2 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell when the battery cell is used as the heat source. 図3Aは、第1実施形態に係るバッテリーを組み立てる状況の縦断面図を示す。FIG. 3A shows a vertical cross-sectional view of a situation in which the battery according to the first embodiment is assembled. 図3Bは、第1実施形態に係るバッテリーを組み立てた後の状態の縦断面図を示す。FIG. 3B shows a vertical cross-sectional view of the state after assembling the battery according to the first embodiment. 図4は、第1実施形態に係る放熱構造体の製造方法の概略フロー図を示す。FIG. 4 shows a schematic flow chart of a method for manufacturing a heat radiating structure according to the first embodiment. 図5は、図4の製造方法に用いる装置の一例を示す。FIG. 5 shows an example of the apparatus used in the manufacturing method of FIG. 図6は、第2実施形態に係る放熱構造体の一部の斜視図を示す。FIG. 6 shows a perspective view of a part of the heat radiating structure according to the second embodiment. 図7は、熱源としてバッテリーセルを用いた場合における第3実施形態に係る放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。FIG. 7 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell according to the third embodiment when the battery cell is used as the heat source. 図8は、熱源としてバッテリーセルを用いた場合における第4実施形態に係る放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。FIG. 8 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell according to the fourth embodiment when the battery cell is used as the heat source. 図9は、第4実施形態に係る放熱構造体の製造方法の概略フロー図を示す。FIG. 9 shows a schematic flow chart of a method for manufacturing a heat radiating structure according to a fourth embodiment. 図10は、図9の製造方法に用いる装置の一例を示す。FIG. 10 shows an example of the apparatus used in the manufacturing method of FIG. 図11は、第1実施形態に係る放熱構造体の製造方法の変形例の概略フロー図を示す。FIG. 11 shows a schematic flow chart of a modified example of the method for manufacturing the heat radiating structure according to the first embodiment. 図12は、図11の製造方法に用いる装置の一例を示す。FIG. 12 shows an example of the apparatus used in the manufacturing method of FIG. 図13Aは、図12の装置の一部の変形例を示す。FIG. 13A shows a modified example of a part of the device of FIG. 図13Bは、図12の装置の一部の変形例を示す。FIG. 13B shows a modified example of a part of the device of FIG.

1,41,51,61・・・放熱構造体、2・・・第1シート、3・・・第2シート、3a・・・プレシート、4・・・空間、6・・・第1弾性部材、7・・・第2弾性部材、8・・・第3シート、9・・・第1切り込み、9a・・・第2切り込み、10・・・バッテリーセル(熱源)、20・・・バッテリー、21・・・筐体、25・・・冷却部材、30,80,90・・・装置、31・・・第1歯車、32・・・第2歯車、33・・・接着剤塗布部、34・・・シート送り部、36・・・接触位置。 1,41,51,61 ... Heat dissipation structure, 2 ... 1st sheet, 3 ... 2nd sheet, 3a ... Presheet, 4 ... Space, 6 ... 1st elastic member , 7 ... 2nd elastic member, 8 ... 3rd sheet, 9 ... 1st notch, 9a ... 2nd notch, 10 ... Battery cell (heat source), 20 ... Battery, 21 ... Housing, 25 ... Cooling member, 30, 80, 90 ... Device, 31 ... 1st gear, 32 ... 2nd gear, 33 ... Adhesive coating part, 34 ... Sheet feed section, 36 ... Contact position.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each of the embodiments described below does not limit the invention according to the claims, and all of the elements and combinations thereof described in each embodiment are the means for solving the present invention. Is not always required.

(第1実施形態)
図1Aは、第1実施形態に係る放熱構造体の一部の斜視図を示す。図1Bは、第1実施形態に係る放熱構造体を厚さ方向に圧縮した状態の斜視図を示す。
(First Embodiment)
FIG. 1A shows a perspective view of a part of the heat radiating structure according to the first embodiment. FIG. 1B shows a perspective view of the heat radiating structure according to the first embodiment compressed in the thickness direction.

放熱構造体1は、熱源と冷却部材25(図3A参照)との間にあって熱源から冷却部材25に熱を伝導させて熱源からの放熱を可能とする放熱構造体であって、金属、炭素若しくはセラミックスの少なくとも1つを含み、熱源と冷却部材25との間に配置可能な第1シート2と、金属、炭素若しくはセラミックスの少なくとも1つを含み、第1シート2の熱源側の面に固定され、所定方向に向かって連続した凹凸を繰り返す形状を有する第2シート3と、を備える。また、第2シート3は、第1シート2と凹凸との間に空間4が形成されるように設けられる。第1シート2は、この実施形態では、好ましくは、平板である。ただし、第1シート2は、一方向に峰と谷を繰り返す波形状の板であっても良い。第2シート3は、図1の紙面右方向に波形状に、線状の凹部と凸部を繰り返す蛇腹状のシートである。ただし、第2シート3は、複数の方向に向かって連続した凹凸を繰り返す形状を有していても良い。空間4は、この実施形態では、第2シート3の凹凸の凸部の数だけ存在する。ただし、空間4は、第2シート3の凸部の数だけ存在させるのではなく、凸部の2以上を連通させて凸部の数より少なく形成されていても良い。 The heat radiating structure 1 is a heat radiating structure located between the heat source and the cooling member 25 (see FIG. 3A) that conducts heat from the heat source to the cooling member 25 to enable heat dissipation from the heat source, and is made of metal, carbon, or the like. A first sheet 2 containing at least one of ceramics and capable of being arranged between the heat source and the cooling member 25, and at least one of metal, carbon or ceramics, which is fixed to the surface of the first sheet 2 on the heat source side. A second sheet 3 having a shape of repeating continuous unevenness in a predetermined direction is provided. Further, the second sheet 3 is provided so that a space 4 is formed between the first sheet 2 and the unevenness. The first sheet 2 is preferably a flat plate in this embodiment. However, the first sheet 2 may be a wavy plate that repeats peaks and valleys in one direction. The second sheet 3 is a bellows-shaped sheet that repeats linear concave portions and convex portions in a wavy shape to the right of the paper surface of FIG. However, the second sheet 3 may have a shape that repeats continuous unevenness in a plurality of directions. In this embodiment, the number of spaces 4 exists as many as the number of convex portions of the unevenness of the second sheet 3. However, the space 4 may be formed to be smaller than the number of convex portions by communicating two or more of the convex portions, instead of allowing the number of convex portions of the second sheet 3 to exist.

空間4は、一方向(図1Aの紙面奥に延びる方向)に長い形状であって、両端開放型の筒の形態を有する。ただし、空間4は、図1Aの紙面表側の面だけを開口し、紙面奥方向の端面を塞いだ、いわゆる一端開放型のカップの形態を有していても良い。さらには、空間4は、その長さ方向の両端を塞いだ形態を有していても良い。 The space 4 has a long shape in one direction (a direction extending to the back of the paper surface in FIG. 1A), and has the form of a cylinder with both ends open. However, the space 4 may have the form of a so-called open-ended cup in which only the front surface side of the paper surface of FIG. 1A is opened and the end surface in the back direction of the paper surface is closed. Further, the space 4 may have a form in which both ends in the length direction thereof are closed.

放熱構造体1は、第2シート3の凹凸と第1シート2との間に形成される空間4に第1弾性部材6を備える。第1弾性部材6は、この実施形態では、空間4内に挿入されている長尺状弾性部材である。ただし、第1弾性部材6は、空間4の形状に合わせて如何なる形状を有していても良い。また、第1弾性部材6の縦断面形状(図1Aの上下方向に切断した断面形状)は円に限定されず、例えば、多角形であっても良い。 The heat radiating structure 1 includes a first elastic member 6 in a space 4 formed between the unevenness of the second sheet 3 and the first sheet 2. In this embodiment, the first elastic member 6 is a long elastic member inserted in the space 4. However, the first elastic member 6 may have any shape according to the shape of the space 4. Further, the vertical cross-sectional shape of the first elastic member 6 (cross-sectional shape cut in the vertical direction in FIG. 1A) is not limited to a circle, and may be, for example, a polygon.

第2シート3は、凸部の開口端部(凹部の底部も含む)にて第1シート2と接続されている。接続方式は、接着、嵌め込み、融着等の如何なる方式でも良い。接着剤を用いて第2シート3を第1シート2に接続する場合には、耐熱性に優れた接着剤を用いるのが好ましい。接着剤は、熱伝導性に優れている方が好ましいが、熱伝導性の低いものでも良い。 The second sheet 3 is connected to the first sheet 2 at the open end of the convex portion (including the bottom of the concave portion). The connection method may be any method such as adhesion, fitting, and fusion. When connecting the second sheet 3 to the first sheet 2 using an adhesive, it is preferable to use an adhesive having excellent heat resistance. The adhesive preferably has excellent thermal conductivity, but may have low thermal conductivity.

第1シート2および第2シート3は、同一の材料から成るか否かを問わず、第1弾性部材6より熱伝導性の高い材料から構成されている。第1シート2および第2シート3は、好ましくは、炭素、金属および/またはセラミックスを含む若しくはこれらのいずれかの単体から成るシートである。第1シート2および/または第2シート3は、より好ましい形態としては、好ましくは炭素を含むシートであり、さらに好ましくは炭素フィラーと樹脂とを含むシートである。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、膨張黒鉛、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。第1シート2および/または第2シート3は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。また、第1シート2および/または第2シート3は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。また、第2シート3は、空間4を形成している部分に、第1弾性部材6の長手方向と直交する方向(紙面左右方向)に沿った1以上の第1切り込み9を複数備えても良い(図1A参照)。さらに、第1弾性部材6も、その長さ方向において第1切り込み9と同一若しくは近い位置に、その側面に沿ってハーフカットするように切り込みを備えても良い。また、第2シート3は、第1弾性部材6の長手方向(紙面奥行き方向)に沿った切り込みを複数備えても良い。また、第2シート3は、格子状に切り込みを備えても良い。第2シート3および/または第1弾性部材6に切り込みを入れることにより、熱源側および/または冷却部材側の各表面が凹凸を有していても第1シート2および第2シート3が当該各表面に対して、より接触しやすくなる。なお、上記の切り込みは、ライン状の切り込み、ドット状の切り込みといった如何なる形態の切り込みでも良い。 The first sheet 2 and the second sheet 3 are made of a material having higher thermal conductivity than the first elastic member 6, regardless of whether or not they are made of the same material. The first sheet 2 and the second sheet 3 are preferably sheets containing carbon, metal and / or ceramics, or a simple substance thereof. The first sheet 2 and / or the second sheet 3 is, in a more preferable form, preferably a sheet containing carbon, and more preferably a sheet containing a carbon filler and a resin. The term "carbon" as used in the present application includes any structure composed of carbon (element symbol: C) such as graphite, carbon black having lower crystallinity than graphite, expanded graphite, diamond, and diamond-like carbon having a structure similar to diamond. Is interpreted in a broad sense. In this embodiment, the first sheet 2 and / or the second sheet 3 can be a thin sheet obtained by curing a material obtained by blending and dispersing graphite fibers and carbon particles in a resin. Further, the first sheet 2 and / or the second sheet 3 may be carbon fibers knitted in a mesh shape, and may be blended or knitted. Further, the second sheet 3 may be provided with a plurality of one or more first notches 9 along the direction orthogonal to the longitudinal direction of the first elastic member 6 (left-right direction on the paper surface) in the portion forming the space 4. Good (see Figure 1A). Further, the first elastic member 6 may also be provided with a notch at the same position as or close to the first notch 9 in the length direction thereof so as to make a half cut along the side surface thereof. Further, the second sheet 3 may be provided with a plurality of cuts along the longitudinal direction (paper surface depth direction) of the first elastic member 6. Further, the second sheet 3 may be provided with notches in a grid pattern. By making a notch in the second sheet 3 and / or the first elastic member 6, even if each surface on the heat source side and / or the cooling member side has irregularities, the first sheet 2 and the second sheet 3 are said to be the same. It becomes easier to contact the surface. The above-mentioned cut may be any form of cut such as a line-shaped cut or a dot-shaped cut.

第1シート2および/または第2シート3に樹脂を含む場合には、当該樹脂がシートの全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、第1シート2および/または第2シート3は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミド(PA)、ポリアミドイミド(PAI)等を好適に挙げることができる。樹脂は、第1シート2および/または第2シート3の成形前の状態において、炭素フィラーの隙間に、例えば粒子状に分散している。第1シート2および/または第2シート3は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。 When the first sheet 2 and / or the second sheet 3 contains a resin, the resin may exceed 50% by mass or 50% by mass or less with respect to the total mass of the sheets. That is, it does not matter whether or not the first sheet 2 and / or the second sheet 3 uses resin as the main material as long as there is no significant hindrance to heat conduction. As the resin, for example, a thermoplastic resin can be preferably used. As the thermoplastic resin, a resin having a high melting point that does not melt when conducting heat from a heat source is preferable, and for example, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyamide (PA), and polyamideimide. (PAI) and the like can be preferably mentioned. The resin is dispersed in the gaps between the carbon fillers, for example, in the form of particles in the state before molding of the first sheet 2 and / or the second sheet 3. In addition to the carbon filler and the resin, AlN or diamond may be dispersed in the first sheet 2 and / or the second sheet 3 as a filler for further enhancing heat conduction. Further, instead of the resin, an elastomer that is more flexible than the resin may be used.

第1シート2および/または第2シート3は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 The first sheet 2 and / or the second sheet 3 can also be a sheet containing metals and / or ceramics in place of or with carbon as described above. As the metal, those having relatively high thermal conductivity such as aluminum, copper, and alloys containing at least one of them can be selected. Further, as the ceramics, ceramics having relatively high thermal conductivity such as AlN, cBN, and hBN can be selected.

第1シート2および/または第2シート3は、導電性に優れるか否かは問わない。当該シート2,3の熱伝導率は、好ましくは10W/mK以上である。第1シートを炭素含有シートとした場合、第2シート3は、金属製のシートとすることもできる。好ましい第2シート3は、アルミニウム、アルミニウム合金、銅あるいはステンレススチール製のシートである。第2シート3は、湾曲(若しくは屈曲)しやすいシートであるのが好ましく、その厚さに制約はないが、0.05〜5mmが好ましく、0.065〜0.5mmがより好ましい。 It does not matter whether the first sheet 2 and / or the second sheet 3 is excellent in conductivity. The thermal conductivity of the sheets 2 and 3 is preferably 10 W / mK or more. When the first sheet is a carbon-containing sheet, the second sheet 3 can also be a metal sheet. The preferred second sheet 3 is a sheet made of aluminum, aluminum alloy, copper or stainless steel. The second sheet 3 is preferably a sheet that is easily curved (or bent), and its thickness is not limited, but is preferably 0.05 to 5 mm, more preferably 0.065 to 0.5 mm.

第1弾性部材6は、貫通路61を備える筒状弾性部材である。第1弾性部材6は、複数の熱源の下端部が凹凸を有していても、第2シート3と当該下端部との接触を良好にする。さらに、貫通路61は、第1弾性部材6の変形を容易にするのに寄与し、第2シート3と熱源の下端部との接触を高める機能を有する。第1弾性部材6は、熱源と底部22との間にあってクッション性を発揮させる機能の他に、第2シート3に加わる荷重によって第2シート3が破損等しないようにする保護部材としての機能も有する。この実施形態では、第1弾性部材6は、第1シート2および/または第2シート3に比べて低熱伝導性の部材である。 The first elastic member 6 is a tubular elastic member provided with a gangway 61. The first elastic member 6 improves the contact between the second sheet 3 and the lower end portion even if the lower end portions of the plurality of heat sources have irregularities. Further, the gangway 61 has a function of contributing to facilitating the deformation of the first elastic member 6 and enhancing the contact between the second sheet 3 and the lower end portion of the heat source. The first elastic member 6 has a function of exerting a cushioning property between the heat source and the bottom portion 22, and also has a function of a protective member for preventing the second sheet 3 from being damaged by a load applied to the second sheet 3. Have. In this embodiment, the first elastic member 6 is a member having a lower thermal conductivity than the first sheet 2 and / or the second sheet 3.

第1弾性部材6は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。第1弾性部材6は、第1シート2および第2シート3を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、第1弾性部材6は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。第1弾性部材6は、その熱伝導性を少しでも高めるために、ゴム中にAlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。第1弾性部材6は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「弾性部材」は、柔軟性に富み、弾性的に圧縮と伸張を繰り返すことのできる部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。 The first elastic member 6 is preferably a thermoplastic elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); It is configured to contain thermoplastic elastomers such as urethane-based, ester-based, styrene-based, olefin-based, butadiene-based, and fluorine-based, or composites thereof. The first elastic member 6 is preferably made of a material having high heat resistance that can maintain its shape without being melted or decomposed by the heat transmitted through the first sheet 2 and the second sheet 3. In this embodiment, the first elastic member 6 is more preferably composed of a urethane-based elastomer impregnated with silicone or silicone rubber. The first elastic member 6 may be configured by dispersing fillers typified by AlN, cBN, hBN, diamond particles, etc. in rubber in order to increase its thermal conductivity as much as possible. The first elastic member 6 may contain air bubbles or may not contain air bubbles. Further, the "elastic member" means a member having high flexibility and capable of elastically repeating compression and expansion, and in this sense, it can be read as "rubber-like elastic body".

放熱構造体1は、第2シート3から第1シート2に至る厚さ方向に圧縮力を受けると、図1Bに示す状態になる。すなわち、第2シート3の凹凸構造が潰れて、空間4内の第1弾性部材6が扁平状になる。第2シート3は、凹凸を繰り返す形状を有し、凸部がその隣の凹部側に倒れるように変形できる。放熱構造体1の厚さ方向に圧縮力を加えられていないときには、第1シート2は、第2シート3の開口端部のみで接触している。しかし、当該圧縮力を受けると、第1シート2は、第2シート3の開口端部以外の部分にも接触する状態になる。これによって、第1シート2と第2シート3との間の熱伝導性がより高くなる。空間4内の第1弾性部材6は、熱源の表面が凹凸を有していても第1シート2および第2シート3に熱源を接触しやすいようにする役割を持つ。 When the heat radiating structure 1 receives a compressive force in the thickness direction from the second sheet 3 to the first sheet 2, the heat radiating structure 1 is in the state shown in FIG. 1B. That is, the uneven structure of the second sheet 3 is crushed, and the first elastic member 6 in the space 4 becomes flat. The second sheet 3 has a shape that repeats unevenness, and can be deformed so that the convex portion falls toward the concave portion next to the convex portion. When no compressive force is applied in the thickness direction of the heat radiating structure 1, the first sheet 2 is in contact with the second sheet 3 only at the open end. However, when the compressive force is applied, the first sheet 2 comes into contact with a portion other than the open end of the second sheet 3. As a result, the thermal conductivity between the first sheet 2 and the second sheet 3 becomes higher. The first elastic member 6 in the space 4 has a role of making it easy for the heat source to come into contact with the first sheet 2 and the second sheet 3 even if the surface of the heat source has irregularities.

図2は、熱源としてバッテリーセルを用いた場合の放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。 FIG. 2 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell when the battery cell is used as the heat source.

図2に示すように、放熱構造体1の第1シート2は、熱源の一例としてのバッテリーセル10を配置する筐体の底部に接する。第2シート3は、複数個のバッテリーセル10の電極11,12と反対側に位置する下端部と接触する。放熱構造体1は、バッテリーセル10を第2シート3側に配置すると、圧縮されて、図1Bに示す状態になる。なお、図2では、図の複雑化を避けるため、バッテリーセル10は8個のみ図示されている。しかし、バッテリーの仕様や必要な電力に応じて、バッテリーセル10の数を8個より多くすることができる。放熱構造体1の大きさも、バッテリーセル10の個数に応じて、任意に変えることができる。 As shown in FIG. 2, the first sheet 2 of the heat dissipation structure 1 is in contact with the bottom of the housing in which the battery cell 10 as an example of the heat source is arranged. The second sheet 3 comes into contact with the lower end portion of the plurality of battery cells 10 located on the opposite side of the electrodes 11 and 12. When the battery cell 10 is arranged on the second sheet 3 side, the heat radiating structure 1 is compressed and is in the state shown in FIG. 1B. In FIG. 2, only eight battery cells 10 are shown in order to avoid complication of the figure. However, the number of battery cells 10 can be increased to more than eight depending on the specifications of the battery and the required power. The size of the heat radiating structure 1 can also be arbitrarily changed according to the number of battery cells 10.

図3Aは、第1実施形態に係るバッテリーを組み立てる状況の縦断面図を示す。図3Bは、第1実施形態に係るバッテリーを組み立てた後の状態の縦断面図示す。なお、本願では、「断面」あるいは「縦断面」とは、バッテリー20の筐体21の内部24における上方開口面から底部22へと垂直に切断する方向の断面を意味する。 FIG. 3A shows a vertical cross-sectional view of a situation in which the battery according to the first embodiment is assembled. FIG. 3B shows a vertical cross-sectional view of the state after assembling the battery according to the first embodiment. In the present application, the "cross section" or "vertical cross section" means a cross section in the inner 24 of the housing 21 of the battery 20 in the direction of vertically cutting from the upper opening surface to the bottom portion 22.

この実施形態において、バッテリー20は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル10を備える。バッテリー20は、一方に開口する有底型の筐体21を備える。筐体21は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル10は、筐体21の内部24に配置される。バッテリーセル10の上方には、電極が突出して設けられている。複数のバッテリーセル10は、好ましくは、筐体21内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体21の底部22には、冷却部材25の一例である冷却水を流すために、1または複数の水冷パイプ26が備えられている。バッテリーセル10は、底部22との間に、放熱構造体1を挟むようにして筐体21内に配置される。 In this embodiment, the battery 20 is, for example, a battery for an electric vehicle and includes a large number of battery cells 10. The battery 20 includes a bottomed housing 21 that opens to one side. The housing 21 is preferably made of aluminum or an aluminum-based alloy. The battery cell 10 is arranged inside 24 of the housing 21. An electrode is provided above the battery cell 10 so as to project. The plurality of battery cells 10 are preferably brought into close contact with each other in the housing 21 by applying a force in the direction of compression from both sides thereof using screws or the like (not shown). The bottom 22 of the housing 21 is provided with one or more water cooling pipes 26 for flowing cooling water, which is an example of the cooling member 25. The battery cell 10 is arranged in the housing 21 so as to sandwich the heat radiating structure 1 with the bottom portion 22.

バッテリー20は、冷却部材25を流す構造を持つ筐体21内に、1または2以上の熱源としてのバッテリーセル10を備える。放熱構造体1は、バッテリーセル10と冷却部材25との間に介在する。放熱構造体1は、この実施形態では、好ましくは、第1シート2を冷却部材25側に、第2シート3をバッテリーセル10側にそれぞれ対向させて配置される。このような構造のバッテリー20では、バッテリーセル10は、放熱構造体1を通じて筐体21に伝熱して、水冷によって効果的に除熱される。なお、冷却部材25は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材25は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。 The battery 20 includes a battery cell 10 as one or more heat sources in a housing 21 having a structure for flowing a cooling member 25. The heat radiating structure 1 is interposed between the battery cell 10 and the cooling member 25. In this embodiment, the heat radiating structure 1 is preferably arranged with the first sheet 2 facing the cooling member 25 side and the second sheet 3 facing the battery cell 10 side. In the battery 20 having such a structure, the battery cell 10 transfers heat to the housing 21 through the heat radiating structure 1 and is effectively removed by water cooling. The cooling member 25 is not limited to cooling water, but is interpreted to include an organic solvent such as liquid nitrogen and ethanol. The cooling member 25 is not limited to a liquid under the conditions used for cooling, and may be a gas or a solid.

バッテリーセル10を筐体21内にセットした状態では(図3Bを参照)、放熱構造体1は、バッテリーセル10と、水冷パイプ26を備える底部22との間において、放熱構造体1の厚さ方向に圧縮される(図1Bを参照)。第2シート3は第1弾性部材6を有する空間4を倒し、若しくは空間4を潰す形態で第1シート2に接触する。この結果、バッテリーセル10からの熱は、第2シート3、第1シート2、底部22、水冷パイプ26、冷却部材25へと伝わりやすくなる。第1弾性部材6は、バッテリーセル10同士に段差があっても、バッテリーセル10が第2シート3および第1シート2に接触させやすくするのに寄与する。 When the battery cell 10 is set in the housing 21 (see FIG. 3B), the heat radiation structure 1 has a thickness of the heat radiation structure 1 between the battery cell 10 and the bottom portion 22 provided with the water cooling pipe 26. Compressed in the direction (see FIG. 1B). The second sheet 3 comes into contact with the first sheet 2 in the form of tilting the space 4 having the first elastic member 6 or crushing the space 4. As a result, the heat from the battery cell 10 is easily transferred to the second sheet 3, the first sheet 2, the bottom 22, the water cooling pipe 26, and the cooling member 25. The first elastic member 6 contributes to making it easier for the battery cell 10 to come into contact with the second sheet 3 and the first sheet 2 even if there is a step between the battery cells 10.

図4は、第1実施形態に係る放熱構造体の製造方法の概略フロー図を示す。図5は、図4の製造方法に用いる装置の一例を示す。 FIG. 4 shows a schematic flow chart of a method for manufacturing a heat radiating structure according to the first embodiment. FIG. 5 shows an example of the apparatus used in the manufacturing method of FIG.

第1実施形態に係る放熱構造体1の製造方法は、プレシートの挿入ステップ(S100)、プレシートの成形ステップ(S110)、接着剤の塗布ステップ(S120)、第1シート2と第2シート3との接触ステップ(S130)の順に工程を行う方法である。当該製造方法に用いられる装置30としては、種々の装置を採用可能であるが、シングルフェーサを用いることが好ましい。より詳細には、装置30は、回転可能な第1歯車31と、第1歯車31と噛み合って回転する第2歯車32と、第1歯車31と第2歯車32との接触位置36より第2歯車32の回転方向下流側に位置する接着剤塗布部33と、接着剤塗布部33より第2歯車32の回転方向下流側に位置するシート送り部34と、を備える。ここで、「下流」とは、接触位置36における第2歯車32の回転方向を意味すると共に、プレシート3aを送る方向の下流側を意味する。以後の「下流」も同様である。シート送り部34は、第1シート2をその表面に沿って搬送する手段である。シート送り部34は、例えば、第1シート2を点線矢印の方向に駆動するベルトを有するベルト搬送部、あるいは何らの駆動手段を有さずに第2歯車32の回転によって第1シート2を点線矢印の方向に移動させる無駆動搬送部であっても良い。また、シート送り部34は、ローラによって第1シート2を搬送する手段であっても良い。以下、各工程を、図5を参照しながら説明する。 The method for manufacturing the heat radiating structure 1 according to the first embodiment includes a pre-sheet insertion step (S100), a pre-sheet molding step (S110), an adhesive application step (S120), and first sheet 2 and second sheet 3. This is a method in which the steps are performed in the order of the contact step (S130). As the apparatus 30 used in the manufacturing method, various apparatus can be adopted, but it is preferable to use a single facer. More specifically, the device 30 is second from the contact position 36 between the rotatable first gear 31, the second gear 32 that meshes with the first gear 31 and rotates, and the first gear 31 and the second gear 32. An adhesive coating portion 33 located on the downstream side in the rotation direction of the gear 32 and a sheet feed portion 34 located on the downstream side in the rotation direction of the second gear 32 from the adhesive coating portion 33 are provided. Here, the “downstream” means the rotation direction of the second gear 32 at the contact position 36 and the downstream side in the direction of feeding the presheet 3a. The same applies to the subsequent "downstream". The sheet feed unit 34 is a means for transporting the first sheet 2 along the surface thereof. The sheet feed unit 34 has, for example, a belt transport unit having a belt that drives the first sheet 2 in the direction of the dotted arrow, or a dotted line on the first sheet 2 by rotation of the second gear 32 without any driving means. It may be a non-driven transport unit that moves in the direction of the arrow. Further, the sheet feeding unit 34 may be a means for transporting the first sheet 2 by a roller. Hereinafter, each step will be described with reference to FIG.

(1)プレシートの挿入ステップ(S100)
当該挿入ステップは、第2シート3を成形する前のプレシート3aを、接触位置36に対して接着剤塗布部33の反対側から接触位置36に挿入するステップである(矢印Aの方向に挿入)。第1歯車31はモータ等の駆動手段によって自転している(第1歯車31における実線矢印の方向に自転)。第2歯車32は、第1歯車31と噛み合って、第1歯車31に従動する(第2歯車32における実線矢印の方向に従動)。
(1) Pre-sheet insertion step (S100)
The insertion step is a step of inserting the pre-sheet 3a before molding the second sheet 3 into the contact position 36 from the opposite side of the adhesive application portion 33 with respect to the contact position 36 (insertion in the direction of arrow A). .. The first gear 31 rotates by a driving means such as a motor (rotates in the direction of the solid arrow in the first gear 31). The second gear 32 meshes with the first gear 31 and is driven by the first gear 31 (following the direction of the solid arrow in the second gear 32).

(2)プレシートの成形ステップ(S110)
当該成形ステップは、プレシート3aを第2歯車32の歯形に成形しながら第2歯車32の進行方向に送るステップである。より詳しくは、プレシート3aは、第1歯車31と第2歯車32とで挟まれて成形され、第2歯車32の表面に付着しながら接着剤塗布部33へと向かう。プレシート3aは、接着剤塗布部33の前段階で、接触位置36において第2歯車32の歯形を転写するように成形される。これによって、プレシート3aは、第2シート3に成形される。
(2) Presheet molding step (S110)
The molding step is a step of feeding the presheet 3a in the traveling direction of the second gear 32 while forming the tooth profile of the second gear 32. More specifically, the presheet 3a is formed by being sandwiched between the first gear 31 and the second gear 32, and heads toward the adhesive application portion 33 while adhering to the surface of the second gear 32. The presheet 3a is formed so as to transfer the tooth profile of the second gear 32 at the contact position 36 in the pre-stage of the adhesive application portion 33. As a result, the pre-sheet 3a is formed into the second sheet 3.

(3)接着剤の塗布ステップ(S120)
当該塗布ステップは、第2シート3における歯形に成形された部分を接着剤塗布部33に接触させて、第2シート3の成形部分に接着剤を塗布するステップである。接着剤塗布部33は、好ましくは、ローラの形状を有しており、モータ等の駆動手段によって自転するか、若しくは第2歯車32等の他の回転部材に従動する(接着剤塗布部33における実線矢印の方向に自転)。接着剤塗布部33は、好ましくは、その表面に接着剤を保持した接着剤保持部35を備える。第2歯車32と接着剤塗布部33との隙間37は、成形された第2シート3が接着剤を付着した状態で通過できる幅を有する。なお、接着剤塗布部33は、ローラの形状を有する部材に限定されず、例えば、接着剤を保持した平板、接着剤を蓄えた容器、あるいは接着剤を保持した刷毛であっても良い。
(3) Adhesive application step (S120)
The coating step is a step of bringing the tooth-shaped portion of the second sheet 3 into contact with the adhesive coating portion 33 and applying the adhesive to the molded portion of the second sheet 3. The adhesive coating portion 33 preferably has the shape of a roller and rotates on its axis by a driving means such as a motor or is driven by another rotating member such as the second gear 32 (in the adhesive coating portion 33). Rotate in the direction of the solid arrow). The adhesive application portion 33 preferably includes an adhesive holding portion 35 that holds an adhesive on its surface. The gap 37 between the second gear 32 and the adhesive application portion 33 has a width that allows the molded second sheet 3 to pass through with the adhesive attached. The adhesive application portion 33 is not limited to a member having the shape of a roller, and may be, for example, a flat plate holding an adhesive, a container storing the adhesive, or a brush holding the adhesive.

(4)第1シートと第2シートとの接触ステップ(S130)
第1シートと第2シートとの接触ステップは、シート送り部34から送られてきた第1シート2(矢印Bの方向に搬送)の片面に、プレシート3aを成形した第2シート3の接着剤を塗布した部分を接触させるステップである。「接触」は、接合あるいは接着と読み替えても良い。以後の「接触」も同様である。第1シート2は、シート送り部34の表面38に沿って搬送される(表面38近傍の点線矢印の方向に搬送)。シート送り部34は、表面38と第2歯車32との間に隙間39を隔てて配置されている。表面38は、第1シート2を滑らかに搬送可能な面である。隙間39は、第1シート2に第2シート3を接着させた状態で通過可能な幅で形成されている。
(4) Contact step between the first sheet and the second sheet (S130)
The contact step between the first sheet and the second sheet is an adhesive of the second sheet 3 obtained by molding the pre-sheet 3a on one side of the first sheet 2 (conveyed in the direction of arrow B) sent from the sheet feed unit 34. This is the step of bringing the coated parts into contact with each other. "Contact" may be read as joining or bonding. The same applies to the subsequent "contact". The first sheet 2 is conveyed along the surface 38 of the sheet feeding portion 34 (in the direction of the dotted arrow near the surface 38). The sheet feed portion 34 is arranged with a gap 39 between the surface 38 and the second gear 32. The surface 38 is a surface on which the first sheet 2 can be smoothly conveyed. The gap 39 is formed with a width that allows the first sheet 2 to pass through with the second sheet 3 adhered to the first sheet 2.

シート送り部34と第2歯車32とで挟持されて下流に搬送されたプレ放熱構造体1aは、第1弾性部材6を備えていない点、および、第1切り込み9を備えていない点を除き、放熱構造体1と同様の形態を備えている。その後、空間4内に第1弾性部材6を配置し、第1弾性部材6の長手方向と直交する方向(紙面左右方向)に沿ってハーフカットするように第1切り込み9を入れると、放熱構造体1が完成する。 The pre-heat dissipation structure 1a sandwiched between the sheet feed portion 34 and the second gear 32 and conveyed downstream does not include the first elastic member 6 and does not include the first notch 9. , It has the same form as the heat dissipation structure 1. After that, when the first elastic member 6 is arranged in the space 4 and the first notch 9 is made so as to make a half cut along the direction orthogonal to the longitudinal direction of the first elastic member 6 (the left-right direction on the paper surface), the heat dissipation structure is formed. Body 1 is completed.

なお、接着剤塗布部33は、シート送り部34の近傍に配置されていても良い。この場合、接着剤は、第1シート2の片面に塗布される。その場合、接着剤の塗布ステップ(S120)は、第1シート2の片面を接着剤塗布部33に接触させて接着剤を塗布するステップとなる。また、第1シートと第2シートとの接触ステップ(S130)は、シート送り部34から送られてきた第1シート2の片面(すなわち、接着剤の塗布された面)に、プレシートを成形した第2シートを接触させるステップとなる。 The adhesive application portion 33 may be arranged in the vicinity of the sheet feed portion 34. In this case, the adhesive is applied to one side of the first sheet 2. In that case, the adhesive application step (S120) is a step of bringing one side of the first sheet 2 into contact with the adhesive application portion 33 to apply the adhesive. Further, in the contact step (S130) between the first sheet and the second sheet, a pre-sheet is formed on one side (that is, the surface to which the adhesive is applied) of the first sheet 2 sent from the sheet feed unit 34. This is the step of bringing the second sheet into contact.

また、プレシート3aは、図5の紙面左右方向に沿った第1切り込み9が、紙面左右方向及び紙面奥行き方向にそれぞれ所定間隔離れて設けられたシートであっても良い。かかる場合、装置30で製造されたプレ放熱構造体1aは、第1弾性部材6を備えていない点を除き、放熱構造体1と同様の形態を備える。その後、空間4内に第1弾性部材6を配置すると、放熱構造体1が完成する。 Further, the pre-sheet 3a may be a sheet in which the first notches 9 along the left-right direction of the paper surface of FIG. 5 are provided at predetermined intervals in the left-right direction of the paper surface and the depth direction of the paper surface, respectively. In such a case, the pre-heat dissipation structure 1a manufactured by the device 30 has the same form as the heat dissipation structure 1 except that the first elastic member 6 is not provided. After that, when the first elastic member 6 is arranged in the space 4, the heat radiation structure 1 is completed.

(第2実施形態)
次に、本発明の第2実施形態について説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second Embodiment)
Next, the second embodiment of the present invention will be described. The same reference numerals are given to the parts common to the first embodiment, and duplicate description will be omitted.

図6は、第2実施形態に係る放熱構造体の一部の斜視図を示す。 FIG. 6 shows a perspective view of a part of the heat radiating structure according to the second embodiment.

第2実施形態に係る放熱構造体41は、空間4に第1弾性部材6を備えていない点、および、第1切り込み9を備えていない点において、第1実施形態に係る放熱構造体1と異なり、それら以外を共通とする。 The heat radiating structure 41 according to the second embodiment is different from the heat radiating structure 1 according to the first embodiment in that the space 4 is not provided with the first elastic member 6 and the first notch 9 is not provided. Different, other than those are common.

第1実施形態と同様に、バッテリーセル10を筐体21内にセットした状態では、放熱構造体41は、バッテリーセル10と、水冷パイプ26を備える底部22との間において、放熱構造体41の厚さ方向に圧縮される(図3B)を参照)。第2シート3は空間4を倒し、若しくは空間4を潰す形態で第1シート2に接触する。この結果、バッテリーセル10からの熱は、第2シート3、第1シート2、底部22、水冷パイプ26、冷却部材25へと伝わりやすくなる。第2実施形態に係る放熱構造体41は、第1弾性部材6を有さないため、放熱構造体の更なる軽量化を実現することができる。表面の凹凸が比較的小さい熱源に対しては、第2実施形態に係る放熱構造体41により熱源の表面の凹凸を十分に吸収できる。このため、熱源との接触面積が高くなり、高い放熱効率を得られ、かつ放熱構造体の軽量化を図ることができる。 Similar to the first embodiment, when the battery cell 10 is set in the housing 21, the heat radiating structure 41 is a heat radiating structure 41 between the battery cell 10 and the bottom portion 22 provided with the water cooling pipe 26. It is compressed in the thickness direction (see FIG. 3B). The second sheet 3 comes into contact with the first sheet 2 in a form in which the space 4 is knocked down or the space 4 is crushed. As a result, the heat from the battery cell 10 is easily transferred to the second sheet 3, the first sheet 2, the bottom 22, the water cooling pipe 26, and the cooling member 25. Since the heat radiating structure 41 according to the second embodiment does not have the first elastic member 6, the heat radiating structure can be further reduced in weight. For a heat source having relatively small surface irregularities, the heat dissipation structure 41 according to the second embodiment can sufficiently absorb the surface irregularities of the heat source. Therefore, the contact area with the heat source is increased, high heat dissipation efficiency can be obtained, and the weight of the heat dissipation structure can be reduced.

また、第2実施形態において、第2シート3は、第1実施形態と同様に、紙面左右方向または紙面奥行き方向に沿った切り込みを複数備えても良い(図1A参照)。また、第2シート3は、格子状に切り込みを備えても良い。 Further, in the second embodiment, the second sheet 3 may be provided with a plurality of cuts along the left-right direction of the paper surface or the depth direction of the paper surface as in the first embodiment (see FIG. 1A). Further, the second sheet 3 may be provided with notches in a grid pattern.

(第3実施形態)
次に、本発明の第3実施形態について説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Third Embodiment)
Next, a third embodiment of the present invention will be described. The same reference numerals are given to the parts common to the first embodiment, and duplicate description will be omitted.

図7は、熱源としてバッテリーセルを用いた場合における第3実施形態に係る放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。 FIG. 7 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell according to the third embodiment when the battery cell is used as the heat source.

第3実施形態に係る放熱構造体51は、空間4に第1弾性部材6を備えていない点、第2シート3の凹部5に第2弾性部材7を備える点、および、第2シート3に第1切り込み9を備えていない点において、第1実施形態に係る放熱構造体1と異なり、それら以外を共通とする。 The heat radiating structure 51 according to the third embodiment has a point that the space 4 does not have the first elastic member 6, a point that the recess 5 of the second sheet 3 has a second elastic member 7, and a second sheet 3. Unlike the heat radiating structure 1 according to the first embodiment, the heat radiating structure 1 according to the first embodiment is common in that the first notch 9 is not provided.

図7に示すように、放熱構造体51は、第2シート3の凹部5に第2弾性部材7を備える。第2弾性部材7は、貫通路71を備える筒状弾性部材である。熱源としてバッテリーセルを用いた場合、放熱構造体51は、第1実施形態と同様に、第1シート2がバッテリーセル10を配置する筐体の底部に接し、第2シート3が複数個のバッテリーセル10の電極11,12と反対側に位置する下端部と接触する。凹部5は、第2シート3の凹凸とバッテリーセル10との間に形成される空間である。第2弾性部材7は、第1弾性部材6と同様に構成される弾性部材である。 As shown in FIG. 7, the heat radiating structure 51 includes a second elastic member 7 in the recess 5 of the second sheet 3. The second elastic member 7 is a tubular elastic member provided with a gangway 71. When a battery cell is used as the heat source, in the heat radiating structure 51, the first sheet 2 is in contact with the bottom of the housing in which the battery cell 10 is arranged, and the second sheet 3 is a plurality of batteries, as in the first embodiment. It comes into contact with the lower end of the cell 10 located on the opposite side of the electrodes 11 and 12. The recess 5 is a space formed between the unevenness of the second sheet 3 and the battery cell 10. The second elastic member 7 is an elastic member configured in the same manner as the first elastic member 6.

放熱構造体51は、第2シート3から第1シート2に至る厚さ方向に圧縮力を受けると、第1実施形態と同様に、第2シート3の凹凸構造が潰れるとともに、第2弾性部材7が扁平状になる。第2シート3は、凹凸を繰り返す形状を有し、凸部がその隣の凹部5側に倒れるように変形できる。放熱構造体51の厚さ方向に圧縮力を加えられていないときには、第1シート2は、第2シート3の開口端部のみで接触している。しかし、当該圧縮力を受けると、第1シート2は、第2シート3の開口端部以外の部分にも接触する状態になる。これによって、第1シート2と第2シート3との間の熱伝導性がより高くなる。凹部5内の第2弾性部材7は、熱源の表面が凹凸を有していても第1シート2および第2シート3に熱源を接触しやすいようにする役割を持つ。 When the heat radiating structure 51 receives a compressive force in the thickness direction from the second sheet 3 to the first sheet 2, the uneven structure of the second sheet 3 is crushed and the second elastic member is crushed as in the first embodiment. 7 becomes flat. The second sheet 3 has a shape that repeats unevenness, and can be deformed so that the convex portion falls toward the concave portion 5 next to the convex portion. When no compressive force is applied in the thickness direction of the heat radiating structure 51, the first sheet 2 is in contact with the second sheet 3 only at the open end. However, when the compressive force is applied, the first sheet 2 comes into contact with a portion other than the open end of the second sheet 3. As a result, the thermal conductivity between the first sheet 2 and the second sheet 3 becomes higher. The second elastic member 7 in the recess 5 has a role of making it easier for the heat source to come into contact with the first sheet 2 and the second sheet 3 even if the surface of the heat source has irregularities.

第3実施形態に係る放熱構造体51は、第1実施形態と同様の方法でプレ放熱構造体1a(図4、5参照)を製造し、プレ放熱構造体1aの第2シート3の凹部5に第2弾性部材7を配置することにより完成する。 The heat radiating structure 51 according to the third embodiment manufactures the pre-heat radiating structure 1a (see FIGS. 4 and 5) in the same manner as in the first embodiment, and the recess 5 of the second sheet 3 of the pre-heat radiating structure 1a. It is completed by arranging the second elastic member 7 in the.

また、第3実施形態において、第2シート3は、第1実施形態と同様に、第2弾性部材7の長手方向と直交する方向(紙面左右方向)に沿った切り込みを複数備えても良い。さらに、第2弾性部材7も、その長さ方向において第2シート3の切り込みと同一若しくは近い位置に、その側面に沿ってハーフカットするように切り込みを備えても良い。また、第2シート3は、第2弾性部材7の長手方向(紙面奥行き方向)に沿った切り込みを複数備えても良い。また、第2シート3は、格子状に切り込みを備えても良い。 Further, in the third embodiment, the second sheet 3 may be provided with a plurality of cuts along a direction (left-right direction on the paper surface) orthogonal to the longitudinal direction of the second elastic member 7, as in the first embodiment. Further, the second elastic member 7 may also be provided with a notch at the same position as or close to the notch of the second sheet 3 in the length direction thereof so as to make a half cut along the side surface thereof. Further, the second sheet 3 may be provided with a plurality of cuts along the longitudinal direction (paper surface depth direction) of the second elastic member 7. Further, the second sheet 3 may be provided with notches in a grid pattern.

(第4実施形態)
次に、本発明の第4実施形態について説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fourth Embodiment)
Next, a fourth embodiment of the present invention will be described. The same reference numerals are given to the parts common to the first embodiment, and duplicate description will be omitted.

図8は、熱源としてバッテリーセルを用いた場合における第4実施形態に係る放熱構造体とバッテリーセルとの位置関係を斜視図にて示す。 FIG. 8 is a perspective view showing the positional relationship between the heat radiating structure and the battery cell according to the fourth embodiment when the battery cell is used as the heat source.

第4実施形態に係る放熱構造体61は、空間4に第1弾性部材6を備えていない点、および、第2シート3のうち第1シート2と反対側の面に固定される第3シート8を備える点において、第1実施形態に係る放熱構造体1と異なり、それら以外を共通とする。 The heat radiating structure 61 according to the fourth embodiment is not provided with the first elastic member 6 in the space 4, and the third sheet is fixed to the surface of the second sheet 3 opposite to the first sheet 2. In that it is provided with 8, unlike the heat radiating structure 1 according to the first embodiment, the other parts are common.

第3シート8は、第1シート2および/または第2シート3と同様に構成された、金属、炭素若しくはセラミックスの少なくとも1つを含むシートである。熱源としてバッテリーセルを用いた場合、放熱構造体61は、第1実施形態と同様に、第1シート2がバッテリーセル10を配置する筐体の底部に接し、第3シート8が複数個のバッテリーセル10の電極11,12と反対側に位置する下端部と接触する。また、第3シート8は、好ましくは、第2シート3と反対側の面に、面内の一方向若しくは複数の方向に1以上の第2切り込み9aを備える。図8では、第2切り込み9aは、格子状にハーフカットするように備えられている(図8の実線部分)。また、第3シート8は、紙面左右方向または紙面奥行き方向に沿ってハーフカットするように1または複数の切り込みを備えても良い。第3シート8に切り込みを入れることにより、熱源側および/または冷却部材側の各表面が凹凸を有していても、第1シート2、第2シート3、および第3シート8は、当該各表面に対して、より接触しやすくなる。また、第2シート3は、第1実施形態と同様に、紙面左右方向または紙面奥行き方向に沿った第1切り込み9を複数備えても良い(図1A参照)。また、第2シート3は、格子状に切り込みを備えても良い。さらに、第1シート2のうち第2シート3と反対側の面(図8では下方の面)に、第3シート8と同様に、第2切り込み9aを備えても良い。ただし、第3シート8は、第1シート2より優先的に第2切り込み9aを備えられる。放熱構造体61は、熱源との接触面積を大きくする方が、冷却部材との接触面積を大きくするよりも優先されるからである。なお、上記の切り込みは、ライン状の切り込み、ドット状の切り込みといった如何なる形態の切り込みでも良い。 The third sheet 8 is a sheet containing at least one of metal, carbon, or ceramics, which is configured similarly to the first sheet 2 and / or the second sheet 3. When a battery cell is used as the heat source, in the heat radiating structure 61, the first sheet 2 is in contact with the bottom of the housing in which the battery cell 10 is arranged, and the third sheet 8 is a plurality of batteries, as in the first embodiment. It comes into contact with the lower end of the cell 10 located on the opposite side of the electrodes 11 and 12. Further, the third sheet 8 preferably has one or more second notches 9a in one direction or a plurality of in-plane directions on the surface opposite to the second sheet 3. In FIG. 8, the second notch 9a is provided so as to make a half cut in a grid pattern (solid line portion in FIG. 8). Further, the third sheet 8 may be provided with one or a plurality of cuts so as to make a half cut along the left-right direction of the paper surface or the depth direction of the paper surface. By making a notch in the third sheet 8, even if each surface on the heat source side and / or the cooling member side has irregularities, the first sheet 2, the second sheet 3, and the third sheet 8 are each said. It becomes easier to contact the surface. Further, the second sheet 3 may be provided with a plurality of first notches 9 along the left-right direction of the paper surface or the depth direction of the paper surface, as in the first embodiment (see FIG. 1A). Further, the second sheet 3 may be provided with notches in a grid pattern. Further, the surface of the first sheet 2 opposite to the second sheet 3 (lower surface in FIG. 8) may be provided with the second notch 9a as in the third sheet 8. However, the third sheet 8 is provided with the second notch 9a in preference to the first sheet 2. This is because increasing the contact area of the heat radiating structure 61 with the heat source has priority over increasing the contact area with the cooling member. The above-mentioned cut may be any form of cut such as a line-shaped cut or a dot-shaped cut.

放熱構造体61は、第1実施形態と同様に、第3シート8から第1シート2に至る厚さ方向に圧縮力を受けると、第2シート3の凹凸構造が潰れる。第2シート3は、凹凸を繰り返す形状を有し、凸部がその隣の凹部5側に倒れるように変形できる。放熱構造体61の厚さ方向に圧縮力を加えられていないときには、第1シート2および第3シート8は、それぞれ第2シート3の開口端部のみで接触している。しかし、当該圧縮力を受けると、第1シート2および第3シート8は、第2シート3の開口端部以外の部分にも接触する状態になる。これによって、第3シート8と第2シート3との間の熱伝導性、および、第1シート2と第2シート3との間の熱伝導性がより高くなる。 Similar to the first embodiment, when the heat radiating structure 61 receives a compressive force in the thickness direction from the third sheet 8 to the first sheet 2, the uneven structure of the second sheet 3 is crushed. The second sheet 3 has a shape that repeats unevenness, and can be deformed so that the convex portion falls toward the concave portion 5 next to the convex portion. When no compressive force is applied in the thickness direction of the heat radiating structure 61, the first sheet 2 and the third sheet 8 are in contact with each other only at the open end of the second sheet 3. However, when the compressive force is applied, the first sheet 2 and the third sheet 8 come into contact with a portion other than the open end portion of the second sheet 3. As a result, the thermal conductivity between the third sheet 8 and the second sheet 3 and the thermal conductivity between the first sheet 2 and the second sheet 3 become higher.

第1実施形態と同様に、バッテリーセル10を筐体21内にセットした状態では、放熱構造体61は、バッテリーセル10と、水冷パイプ26を備える底部22との間において、放熱構造体1の厚さ方向に圧縮される(図3Bを参照)。第2シート3は空間4を倒し、若しくは空間4を潰す形態で第1シート2および第3シート8に接触する。この結果、バッテリーセル10からの熱は、第3シート8、第2シート3、第1シート2、底部22、水冷パイプ26、冷却部材25へと伝わりやすくなる。 Similar to the first embodiment, when the battery cell 10 is set in the housing 21, the heat radiating structure 61 is a heat radiating structure 1 between the battery cell 10 and the bottom portion 22 provided with the water cooling pipe 26. It is compressed in the thickness direction (see FIG. 3B). The second sheet 3 comes into contact with the first sheet 2 and the third sheet 8 in the form of tilting the space 4 or crushing the space 4. As a result, the heat from the battery cell 10 is easily transferred to the third sheet 8, the second sheet 3, the first sheet 2, the bottom portion 22, the water cooling pipe 26, and the cooling member 25.

図9は、第4実施形態に係る放熱構造体の製造方法の概略フロー図を示す。図10は、図9の製造方法に用いる装置の一例を示す。 FIG. 9 shows a schematic flow chart of a method for manufacturing a heat radiating structure according to a fourth embodiment. FIG. 10 shows an example of the apparatus used in the manufacturing method of FIG.

第4実施形態に係る放熱構造体61の製造方法は、プレシートの挿入ステップ(S100)、プレシートの成形ステップ(S110)、接着剤の塗布ステップ(S120)、第1シート2と第2シート3との接触ステップ(S130)、プレ放熱構造体1aに対する接着剤の塗布ステップ(S140)、プレ放熱構造体1aと第3シート8との接触ステップ(S150)の順に工程を行う方法である。当該製造方法に用いられる装置80は、図5の装置30の各構成要素に加え、シート送り部34と第2歯車32との間から搬送されてきたプレ放熱構造体1aの下流方向に、接着剤塗布部33と、接着剤塗布部33と対向するバネ板83と、を備える。また、装置80は、接着剤塗布部33とバネ板83との間から搬送されてきたプレ放熱構造体1aの下流方向に、構造体送り部84と、構造体送り部84と隙間を隔てて対向する熱盤86と、を備える。また、装置80は、シート送り部34と第2歯車32との間から搬送されてきたプレ放熱構造体1aの下流方向に、第3シート送り部88を備える。構造体送り部84は、第2シート3側の面に接着剤が塗布されたプレ放熱構造体1aを加圧しながら搬送する手段である。構造体送り部84は、例えば、プレ放熱構造体1aを点線矢印の方向に駆動するベルトを有するベルト搬送部であっても良い。また、構造体送り部84は、ローラによってプレ放熱構造体1aを搬送する手段であっても良い。熱盤86は、内部に高温蒸気が供給されて高温に保持された部材である。第3シート送り部88は、第3シート8を構造体送り部84へ搬送する手段である。第3シート送り部88は、好ましくは、ローラの形状を有しており、モータ等の駆動手段によって自転するか、若しくは歯車等の他の回転部材に従動する(第3シート送り部88における実線矢印の方向に自転)。以下、各工程を、図10を参照しながら説明する。なお、プレ放熱構造体1aを製造する装置30および各ステップ(S100〜S130)は、第1実施形態と同様であるため、説明を省略する。 The method for manufacturing the heat radiating structure 61 according to the fourth embodiment includes a pre-sheet insertion step (S100), a pre-sheet molding step (S110), an adhesive application step (S120), and first sheet 2 and second sheet 3. This is a method in which the steps are performed in the order of the contact step (S130), the adhesive application step (S140) to the pre-radiation structure 1a, and the contact step (S150) between the pre-radiation structure 1a and the third sheet 8. The device 80 used in the manufacturing method is adhered to each component of the device 30 of FIG. 5 in the downstream direction of the pre-radiation structure 1a conveyed from between the sheet feed unit 34 and the second gear 32. The agent coating portion 33 and the spring plate 83 facing the adhesive coating portion 33 are provided. Further, the device 80 is separated from the structure feed portion 84 and the structure feed portion 84 in the downstream direction of the pre-heat dissipation structure 1a conveyed from between the adhesive coating portion 33 and the spring plate 83. It is provided with a heating plate 86 that faces the surface. Further, the device 80 includes a third sheet feed unit 88 in the downstream direction of the pre-heat dissipation structure 1a conveyed from between the seat feed unit 34 and the second gear 32. The structure feed portion 84 is a means for transporting the pre-heat dissipation structure 1a to which the adhesive is applied to the surface on the side of the second sheet 3 while applying pressure. The structure feed unit 84 may be, for example, a belt transport unit having a belt that drives the pre-heat dissipation structure 1a in the direction of the dotted arrow. Further, the structure feed portion 84 may be a means for transporting the pre-heat dissipation structure 1a by a roller. The hot plate 86 is a member to which high-temperature steam is supplied to the inside and kept at a high temperature. The third sheet feed unit 88 is a means for transporting the third sheet 8 to the structure feed unit 84. The third sheet feed unit 88 preferably has the shape of a roller and rotates on its axis by a driving means such as a motor or is driven by another rotating member such as a gear (solid line in the third sheet feed unit 88). Rotate in the direction of the arrow). Hereinafter, each step will be described with reference to FIG. Since the apparatus 30 for manufacturing the pre-heat dissipation structure 1a and each step (S100 to S130) are the same as those in the first embodiment, the description thereof will be omitted.

プレ放熱構造体1aに対する接着剤の塗布ステップ(S140)は、プレ放熱構造体1aの第2シート3側の面を接着剤塗布部33に接触させて、第2シート3側の面に接着剤を塗布するステップである。接着剤塗布部33の構成は、第1実施形態と同様であるため、説明を省略する。また、装置80は、接着剤塗布部33に対向してバネ板83を備える。バネ板83は、接着剤塗布部33に搬送されたプレ放熱構造体1aを上から押さえつけるものである。プレ放熱構造体1aは、バネ板83により押さえつけられながら接着剤塗布部33に接触することにより、第2シート3側の面に確実に接着剤を塗布することができる。なお、接着剤の塗布方法は、ローラの形状を有する部材の代わりに、接着剤を保持した平板、接着剤を蓄えた容器、あるいは接着剤を保持した刷毛を用いて塗布する方法を採用しても良い。 In the step (S140) of applying the adhesive to the pre-heat dissipation structure 1a, the surface of the pre-heat dissipation structure 1a on the second sheet 3 side is brought into contact with the adhesive application portion 33, and the adhesive is applied to the surface on the second sheet 3 side. Is the step of applying. Since the structure of the adhesive coating portion 33 is the same as that of the first embodiment, the description thereof will be omitted. Further, the device 80 includes a spring plate 83 facing the adhesive application portion 33. The spring plate 83 presses the pre-heat dissipation structure 1a conveyed to the adhesive coating portion 33 from above. The pre-heat dissipation structure 1a comes into contact with the adhesive application portion 33 while being pressed by the spring plate 83, so that the adhesive can be reliably applied to the surface on the second sheet 3 side. As the method of applying the adhesive, instead of the member having the shape of a roller, a flat plate holding the adhesive, a container storing the adhesive, or a brush holding the adhesive is used for application. Is also good.

プレ放熱構造体1aと第3シート8との接触ステップ(S150)は、第3シート送り部88から送られてきた第3シート8(矢印Cの方向に搬送)の片面に、接着剤が塗布されたプレ放熱構造体1aの第2シート3側の面を接触させるステップである。接着剤が塗布されたプレ放熱構造体1a及び第3シート8は、構造体送り部84及び熱盤86で加圧されながら加熱されることにより、互いに貼り合わされる。これにより、第4実施形態に係る放熱構造体61が完成する。 In the contact step (S150) between the pre-heat dissipation structure 1a and the third sheet 8, an adhesive is applied to one side of the third sheet 8 (conveyed in the direction of arrow C) sent from the third sheet feed unit 88. This is a step of bringing the surfaces of the pre-heat dissipation structure 1a on the second sheet 3 side into contact with each other. The pre-heat dissipation structure 1a and the third sheet 8 coated with the adhesive are bonded to each other by being heated while being pressurized by the structure feed portion 84 and the heating plate 86. As a result, the heat radiating structure 61 according to the fourth embodiment is completed.

なお、プレ放熱構造体1aに対する接着剤の塗布ステップ(S140)に代えて、第3シート8に接着剤を塗布するステップとしても良い。かかる場合、プレ放熱構造体1aと第3シート8との接触ステップ(S150)は、接着剤が塗布された第3シート8の片面に、プレ放熱構造体1aの第2シート3側の面を接触させるステップとなる。 Instead of the step (S140) of applying the adhesive to the pre-heat dissipation structure 1a, the step of applying the adhesive to the third sheet 8 may be used. In such a case, in the contact step (S150) between the pre-heat dissipation structure 1a and the third sheet 8, the surface of the pre-heat dissipation structure 1a on the second sheet 3 side is formed on one surface of the third sheet 8 coated with the adhesive. It is a step to make contact.

(各実施形態の作用・効果)
以上説明したように、放熱構造体1,41,51,61は、バッテリーセル10と冷却部材25との間にあってバッテリーセル10から冷却部材25に熱を伝導させてバッテリーセル10からの放熱を可能とする放熱構造体であって、金属、炭素若しくはセラミックスの少なくとも1つを含み、バッテリーセル10と冷却部材25との間に配置可能な第1シート2と、金属、炭素若しくはセラミックスの少なくとも1つを含み、第1シート2のバッテリーセル10側の面に固定され、所定方向に向かって連続した凹凸を繰り返す形状を有する第2シート3と、を備える。また、第2シート3は、第1シート2と凹凸との間に空間4が形成されるように設けられる。
(Action / effect of each embodiment)
As described above, the heat radiating structures 1, 41, 51, 61 are located between the battery cell 10 and the cooling member 25, and can conduct heat from the battery cell 10 to the cooling member 25 to dissipate heat from the battery cell 10. A first sheet 2 containing at least one of metal, carbon or ceramics, which can be arranged between the battery cell 10 and the cooling member 25, and at least one of metal, carbon or ceramics. The second sheet 3 is fixed to the surface of the first sheet 2 on the battery cell 10 side and has a shape of repeating continuous unevenness in a predetermined direction. Further, the second sheet 3 is provided so that a space 4 is formed between the first sheet 2 and the unevenness.

このため、従来のような金属性の放熱フィン等に比べて、放熱構造体の軽量化を図ることができる。また、放熱構造体1,41,51,61がバッテリーセル10と冷却部材25との間で圧縮されることにより、第2シート3が空間4を倒し、若しくは空間4を潰す形態で第1シート2に接触するため、バッテリーセルの表面の凹凸に依存しにくく、熱源との接触面積が高くて高い放熱効率を得ることができる。 Therefore, the weight of the heat radiating structure can be reduced as compared with the conventional metal heat radiating fins and the like. Further, the heat radiating structures 1, 41, 51, 61 are compressed between the battery cell 10 and the cooling member 25, so that the second sheet 3 collapses the space 4 or crushes the space 4. Since it comes into contact with 2, it is less likely to depend on the unevenness of the surface of the battery cell, and the contact area with the heat source is high, so that high heat dissipation efficiency can be obtained.

また、第2シート3は、空間4を形成している部分に1以上の第1切り込み9を備えることにより、バッテリーセルの表面の凹凸にさらに依存しにくくなり、高い放熱効率を得ることができる。 Further, the second sheet 3 is provided with one or more first notches 9 in the portion forming the space 4, so that the second sheet 3 is less dependent on the unevenness of the surface of the battery cell, and high heat dissipation efficiency can be obtained. ..

また、放熱構造体1は、空間4に第1弾性部材6を備えることにより、バッテリーセルの表面の凹凸にさらに依存しにくくなり、高い放熱効率を得ることができる。 Further, since the heat radiating structure 1 is provided with the first elastic member 6 in the space 4, it becomes less dependent on the unevenness of the surface of the battery cell, and high heat radiating efficiency can be obtained.

また、放熱構造体51は、第2シート3の凹部5、すなわち、第2シート3の凹凸とバッテリーセル10との間に第2弾性部材7を備える。これにより、放熱構造体51は、バッテリーセルの表面の凹凸にさらに依存しにくくなり、高い放熱効率を得ることができる。 Further, the heat radiating structure 51 includes a second elastic member 7 between the concave portion 5 of the second sheet 3, that is, the unevenness of the second sheet 3 and the battery cell 10. As a result, the heat radiating structure 51 becomes less dependent on the unevenness of the surface of the battery cell, and high heat radiating efficiency can be obtained.

また、放熱構造体61は、第1シート2および第3シート8のうち、少なくとも第3シート8の第2シート3と反対側の面に、その面内の一方向若しくは複数の方向に1以上の第2切り込み9aを備えることにより、バッテリーセルの表面の凹凸にさらに依存しにくくなり、高い放熱効率を得ることができる。 Further, the heat radiating structure 61 is one or more on the surface of the first sheet 2 and the third sheet 8 opposite to the second sheet 3 of the third sheet 8 in one direction or a plurality of directions in the surface. By providing the second notch 9a of the above, it becomes less dependent on the unevenness of the surface of the battery cell, and high heat dissipation efficiency can be obtained.

また、空間4が一方向に長い形状であって、両端開放型の筒あるいは一端開放型のカップの形態を有することにより、空間4の変形容易性が高められ、複数のバッテリーセル10表面の凹凸にさらに依存しにくくなり、高い放熱効率を得ることができる。また、放熱構造体1,41,51,61は空間4に起因してより軽量となる。 Further, since the space 4 has a shape long in one direction and has the form of a cylinder with both ends open or a cup with one end open, the deformability of the space 4 is enhanced, and the surface irregularities of the plurality of battery cells 10 are increased. It becomes less dependent on, and high heat dissipation efficiency can be obtained. Further, the heat radiating structures 1, 41, 51, 61 are lighter due to the space 4.

(その他の実施形態)
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
(Other embodiments)
As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these, and can be implemented in various modifications.

図11は、第1実施形態に係る放熱構造体の製造方法の変形例の概略フロー図を示す。図12は、図11の製造方法に用いる装置の一例を示す。 FIG. 11 shows a schematic flow chart of a modified example of the method for manufacturing the heat radiating structure according to the first embodiment. FIG. 12 shows an example of the apparatus used in the manufacturing method of FIG.

第1実施形態において、上述の製造方法は、図4の製造方法によりプレ放熱構造体1aを製造した後、空間4に第1弾性部材6を配置し、第1切り込み9を入れて放熱構造体1を完成させたが、接着剤の塗布ステップ(S120)と第1シートと第2シートとの接触ステップ(S130)との間に第1弾性部材の装填ステップ(S125)を行うことにより放熱構造体1を製造しても良い(図11参照)。 In the first embodiment, in the above-mentioned manufacturing method, after manufacturing the pre-radiation structure 1a by the manufacturing method of FIG. 4, the first elastic member 6 is arranged in the space 4, and the first notch 9 is made to make the heat dissipation structure. Although No. 1 was completed, the heat dissipation structure was formed by performing the first elastic member loading step (S125) between the adhesive application step (S120) and the contact step (S130) between the first sheet and the second sheet. Body 1 may be manufactured (see FIG. 11).

ここで用いられる装置90は、図5の装置30の各構成要素に加え、接着剤塗布部33より第2歯車32の回転方向下流側に位置する弾性部材装填部91を備える。第1弾性部材の装填ステップ(S125)は、接着剤の塗布ステップ(S120)により接着剤が塗布された第2シート3の窪みに第1弾性部材6を装填するステップである。弾性部材装填部91は、弾性部材供給部92と、弾性部材配置部93とを備える。弾性部材供給部92は、第1弾性部材6を弾性部材配置部93に供給するための部材であり、好ましくは、可塑性を有する筒状の金属部材である。弾性部材配置部93は、好ましくは、第1弾性部材6を溝96に取り込み可能なローラ94と、ローラ94と係合可能なスプロケット95とを備える。ローラ94は、モータ等の駆動手段によって自転するか、若しくは歯車等の他の回転部材に従動する(ローラ94における実線矢印の方向に自転)。また、スプロケット95は、ローラ94の回転に追従して回転する。弾性部材供給部92により供給された第1弾性部材6は、ローラ94の溝96に取り込まれた状態で回転してスプロケット95との係合位置まで移動し、スプロケット95の切り欠き部に脱落する。そして、スプロケット95の切り欠き部に脱落した第1弾性部材6は、スプロケット95の回転に応じて、第2歯車32により搬送される第2シート3の窪みに装填される。 The device 90 used here includes, in addition to each component of the device 30 of FIG. 5, an elastic member loading unit 91 located on the downstream side of the second gear 32 in the rotational direction from the adhesive application unit 33. The loading step (S125) of the first elastic member is a step of loading the first elastic member 6 into the recess of the second sheet 3 to which the adhesive has been applied by the adhesive application step (S120). The elastic member loading unit 91 includes an elastic member supply unit 92 and an elastic member arranging unit 93. The elastic member supply unit 92 is a member for supplying the first elastic member 6 to the elastic member arrangement unit 93, and is preferably a tubular metal member having plasticity. The elastic member arranging portion 93 preferably includes a roller 94 capable of incorporating the first elastic member 6 into the groove 96, and a sprocket 95 capable of engaging with the roller 94. The roller 94 rotates by a driving means such as a motor, or is driven by another rotating member such as a gear (rotates in the direction of the solid arrow on the roller 94). Further, the sprocket 95 rotates following the rotation of the roller 94. The first elastic member 6 supplied by the elastic member supply unit 92 rotates while being taken into the groove 96 of the roller 94, moves to the engagement position with the sprocket 95, and falls off into the notch portion of the sprocket 95. .. Then, the first elastic member 6 that has fallen off into the notch portion of the sprocket 95 is loaded into the recess of the second sheet 3 conveyed by the second gear 32 in accordance with the rotation of the sprocket 95.

そして、第1シートと第2シートとの接触ステップ(S130)により、シート送り部34から送られてきた第1シート2の片面に、第1弾性部材6が装填された第2シート3の接着剤を塗布した部分を接触させ、プレ放熱構造体1bが完成する。なお、第1弾性部材の装填ステップ(S125)は、第1シートと第2シートとの接触ステップ(S130)の後に行うステップでも良い。その場合、第1弾性部材6は、好ましくは、既に構成されている空間4の開口側から挿入される。 Then, by the contact step (S130) between the first sheet and the second sheet, the second sheet 3 in which the first elastic member 6 is loaded is adhered to one side of the first sheet 2 sent from the sheet feed unit 34. The pre-radiation structure 1b is completed by bringing the parts coated with the agent into contact with each other. The loading step (S125) of the first elastic member may be a step performed after the contact step (S130) between the first sheet and the second sheet. In that case, the first elastic member 6 is preferably inserted from the opening side of the already formed space 4.

そして、シート送り部34と第2歯車32とで挟持されて下流に搬送されたプレ放熱構造体1bに、第1弾性部材6の長手方向と直交する方向(紙面左右方向)に沿ってハーフカットするように第1切り込み9を入れると、放熱構造体1が完成する。 Then, the pre-radiation structure 1b sandwiched between the sheet feed portion 34 and the second gear 32 and conveyed downstream is half-cut along a direction orthogonal to the longitudinal direction of the first elastic member 6 (left-right direction on the paper surface). When the first notch 9 is made so as to do so, the heat dissipation structure 1 is completed.

また、プレシート3aは、図12の紙面左右方向に沿った第1切り込み9を、紙面左右方向及び紙面奥行き方向にそれぞれ所定間隔離れて備えたシートであっても良い。また、第1弾性部材6も、その長さ方向において第1切り込み9と同一若しくは近い位置に、その側面に沿ってハーフカットするように切り込みを備えても良い。かかる場合、放熱構造体1は、装置90を用いて、図11の製造方法の各工程(S100〜S130)を順に行うことにより完成される。 Further, the pre-sheet 3a may be a sheet provided with first cuts 9 along the left-right direction of the paper surface in FIG. 12 at predetermined intervals in the left-right direction of the paper surface and the depth direction of the paper surface, respectively. Further, the first elastic member 6 may also be provided with a notch at the same position as or close to the first notch 9 in the length direction thereof so as to make a half cut along the side surface thereof. In such a case, the heat radiating structure 1 is completed by sequentially performing each step (S100 to S130) of the manufacturing method of FIG. 11 using the device 90.

図13Aおよび図13Bは、図12の装置の一部の変形例を示す。 13A and 13B show some modifications of the device of FIG.

装置90は、図12に示す弾性部材装填部91の代わりに、図13Aに示す弾性部材装填部91aを備えても良い。弾性部材装填部91aは、好ましくは、ローラの形状を有しており、モータ等の駆動手段によって自転するか、若しくは歯車等の他の回転部材に従動する(弾性部材装填部91aにおける実線矢印の方向に自転)。また、弾性部材装填部91aは、空気を吸引および吐出する機構を有しており、この機構により、第1弾性部材6をローラ表面に吸着させたり、ローラ表面から脱落させたりすることが可能である。この場合、第1弾性部材の装填ステップ(S125)は、接着剤の塗布ステップ(S120)により接着剤が塗布された第2シート3をシート送り部34へ搬送しながら、弾性部材装填部51aの表面に吸着されている第1弾性部材7を所定間隔で脱落させることにより、第2シート3の窪みに第1弾性部材7を装填するステップとなる。 The device 90 may include the elastic member loading portion 91a shown in FIG. 13A instead of the elastic member loading portion 91 shown in FIG. The elastic member loading portion 91a preferably has the shape of a roller and rotates on its axis by a driving means such as a motor or is driven by another rotating member such as a gear (the solid arrow in the elastic member loading portion 91a). Rotate in the direction). Further, the elastic member loading unit 91a has a mechanism for sucking and discharging air, and by this mechanism, the first elastic member 6 can be adsorbed on the roller surface or dropped from the roller surface. be. In this case, in the loading step (S125) of the first elastic member, the second sheet 3 coated with the adhesive by the adhesive application step (S120) is conveyed to the sheet feeding portion 34, and the elastic member loading portion 51a By dropping the first elastic member 7 adsorbed on the surface at predetermined intervals, the step of loading the first elastic member 7 into the recess of the second sheet 3 is performed.

また、装置90は、図12に示す弾性部材装填部91の代わりに、図13Bに示すような弾性部材装填部91bを備えても良い。弾性部材装填部91bは、弾性部材配置部93を有さず、弾性部材供給部92bを第2シート3の上方に設ける。弾性部材供給部92bは、複数の第1弾性部材6が充填された筒状の金属部材であり、第1弾性部材6を落下させない仕切り板98を備える。仕切り板98は、モータ等の駆動手段によって紙面左右方向に摺動可能な金属性の板である。この場合、第1弾性部材の装填ステップ(S125)は、接着剤の塗布ステップ(S120)により接着剤が塗布された第2シート3をシート送り部34へ搬送しながら、所定時間おきに仕切り板58を開閉駆動して、第2シート3の窪みに第1弾性部材6を装填するステップとなる。 Further, the device 90 may include an elastic member loading portion 91b as shown in FIG. 13B instead of the elastic member loading portion 91 shown in FIG. The elastic member loading portion 91b does not have the elastic member arranging portion 93, and the elastic member supply portion 92b is provided above the second sheet 3. The elastic member supply unit 92b is a tubular metal member filled with a plurality of first elastic members 6, and includes a partition plate 98 that prevents the first elastic member 6 from falling. The partition plate 98 is a metallic plate that can be slid in the left-right direction of the paper surface by a driving means such as a motor. In this case, the loading step (S125) of the first elastic member is a partition plate at predetermined time intervals while transporting the second sheet 3 coated with the adhesive by the adhesive application step (S120) to the sheet feed unit 34. This is a step of driving the opening and closing of 58 to load the first elastic member 6 into the recess of the second sheet 3.

第3実施形態に係る放熱構造体51は、第1実施形態と同様に、空間4に第1弾性部材6を備えても良い。すなわち、第3実施形態に係る放熱構造体51は、空間4に第1弾性部材6を備え、第2シート3の凹凸とバッテリーセル10との間に第2弾性部材7を備えていても良い。この構成により、熱源の表面の凹凸により依存しにくく、熱源との接触面積が高くて高い放熱効率を得ることができる。 The heat radiating structure 51 according to the third embodiment may include the first elastic member 6 in the space 4 as in the first embodiment. That is, the heat radiating structure 51 according to the third embodiment may include the first elastic member 6 in the space 4 and the second elastic member 7 between the unevenness of the second sheet 3 and the battery cell 10. .. With this configuration, it is less dependent on the unevenness of the surface of the heat source, the contact area with the heat source is high, and high heat dissipation efficiency can be obtained.

第4実施形態に係る放熱構造体61は、図9の製造方法に限定されず、例えば、接着剤の塗布ステップ(S120)は、歯形に成形された第2シート3の両面に接着剤を塗布するステップとしてもよい。かかる場合、以降の各ステップ(S130〜S150)に代えて、両面に接着剤が塗布された第2シート3の一方の面に第1シート2の片面を接触させ、第2シート3の他方の面に第3シート8の片面を接触させても良い。 The heat radiating structure 61 according to the fourth embodiment is not limited to the manufacturing method of FIG. 9. For example, in the adhesive application step (S120), the adhesive is applied to both surfaces of the second sheet 3 formed into a tooth profile. It may be a step to do. In such a case, instead of each subsequent step (S130 to S150), one side of the first sheet 2 is brought into contact with one side of the second sheet 3 coated with an adhesive on both sides, and the other side of the second sheet 3 is brought into contact with the other. One side of the third sheet 8 may be brought into contact with the surface.

第4実施形態に係る放熱構造体61は、第1実施形態と同様に、空間4に第1弾性部材6を備えても良い。また、放熱構造体61は、第3実施形態と同様に、凹部5に第2弾性部材7を備えても良い。また、放熱構造体61は、空間4に第1弾性部材6を備えるとともに、凹部5に第2弾性部材7を備えても良い。第1弾性部材6および/または第2弾性部材7は、バッテリーセル10などの熱源の表面が凹凸を有していても、第1シート2、第2シート3、および、第3シート8に熱源を接触しやすくするのに寄与する。 The heat radiating structure 61 according to the fourth embodiment may include the first elastic member 6 in the space 4 as in the first embodiment. Further, the heat radiating structure 61 may be provided with the second elastic member 7 in the recess 5 as in the third embodiment. Further, the heat radiating structure 61 may include a first elastic member 6 in the space 4 and a second elastic member 7 in the recess 5. The first elastic member 6 and / or the second elastic member 7 has heat sources on the first sheet 2, the second sheet 3, and the third sheet 8 even if the surface of the heat source such as the battery cell 10 has irregularities. Contributes to making it easier to contact.

かかる場合、図9の製造方法を用いて放熱構造体61を製造した後に、空間4内への第1弾性部材6の配置、および/または、凹部5内への第2弾性部材7の配置を行えば良い。また、第1実施形態と同様に、接着剤の塗布ステップ(S120)と第1シートと第2シートとの接触ステップ(S130)との間若しくは当該接触ステップ(S130)の後に第1弾性部材の装填ステップ(S125)を行っても良い(図11参照)。また、プレ放熱構造体に対する接着剤の塗布ステップ(S140)とプレ放熱構造体と第3シートとの接触ステップ(S150)との間若しくは当該接触ステップ(S130)の後に、第2弾性部材7を凹部5に装填しても良い。 In such a case, after the heat radiating structure 61 is manufactured by the manufacturing method of FIG. 9, the first elastic member 6 is arranged in the space 4 and / or the second elastic member 7 is arranged in the recess 5. Just go. Further, as in the first embodiment, the first elastic member is formed between the adhesive application step (S120) and the contact step (S130) between the first sheet and the second sheet, or after the contact step (S130). The loading step (S125) may be performed (see FIG. 11). Further, the second elastic member 7 is attached between the step (S140) of applying the adhesive to the pre-heat dissipation structure and the contact step (S150) between the pre-heat dissipation structure and the third sheet, or after the contact step (S130). It may be loaded in the recess 5.

第1弾性部材6および第2弾性部材7は、貫通路61,71に代えて、その長さ方向に窪みを有する棒状弾性部材としても良い。第1弾性部材6および第2弾性部材7は、その長さ方向における窪みが大きいほど、第1弾性部材6および第2弾性部材7の変形容易性が高められる。このため、第1弾性部材6および第2弾性部材7は、貫通路61,71の一方の開口部分を塞いだ窪みを有することがより好ましい。 The first elastic member 6 and the second elastic member 7 may be rod-shaped elastic members having recesses in the length direction thereof, instead of the through-passages 61 and 71. The larger the depression in the length direction of the first elastic member 6 and the second elastic member 7, the higher the deformability of the first elastic member 6 and the second elastic member 7. Therefore, it is more preferable that the first elastic member 6 and the second elastic member 7 have a recess that closes one opening portion of the through-passages 61 and 71.

熱源は、バッテリーセル10のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、キャパシタおよびICチップ等の電子部品であっても良い。同様に、冷却部材25は、冷却用の水のみならず、有機溶剤、液体窒素、冷却用の気体であっても良い。また、放熱構造体1,41,51,61は、バッテリー20以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。 The heat source includes not only the battery cell 10, but also all objects that generate heat, such as a circuit board and an electronic device main body. For example, the heat source may be an electronic component such as a capacitor and an IC chip. Similarly, the cooling member 25 may be not only cooling water but also an organic solvent, liquid nitrogen, or a cooling gas. Further, the heat radiating structures 1, 41, 51, 61 may be arranged in a structure other than the battery 20, for example, an electronic device, a home appliance, a power generation device, or the like.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。 Further, the plurality of components of each of the above-described embodiments can be freely combined except when they cannot be combined with each other.

本発明に係る放熱構造体は、例えば、自動車用バッテリーの他、自動車、工業用ロボット、発電装置、PC、家庭用電化製品などの各種電子機器にも利用することができる。また、本発明に係るバッテリーは、自動車用のバッテリー以外に、家庭用の充放電可能なバッテリー、PC等の電子機器用のバッテリーにも利用できる。 The heat dissipation structure according to the present invention can be used not only for automobile batteries but also for various electronic devices such as automobiles, industrial robots, power generation devices, PCs, and household electric appliances. Further, the battery according to the present invention can be used not only as a battery for automobiles but also as a rechargeable battery for home use and a battery for electronic devices such as PCs.

Claims (10)

熱源から冷却部材に熱を伝導させて前記熱源からの放熱を可能とする放熱構造体であって、
金属、炭素若しくはセラミックスの少なくとも1つを含み、前記熱源と前記冷却部材との間に配置される第1シートと、
金属、炭素若しくはセラミックスの少なくとも1つを含み、前記第1シートの前記熱源側の面に固定され、所定方向に向かって連続した凹凸を繰り返す形状を有する第2シートと、
を備え、
前記第2シートは、前記第1シートと前記凹凸との間に空間が形成されるように設けられることを特徴とする放熱構造体。
A heat dissipation structure that conducts heat from a heat source to a cooling member to enable heat dissipation from the heat source.
A first sheet containing at least one of metal, carbon or ceramics and disposed between the heat source and the cooling member.
A second sheet containing at least one of metal, carbon, or ceramics, fixed to the surface of the first sheet on the heat source side, and having a shape of repeating continuous unevenness in a predetermined direction.
With
The second sheet is a heat radiating structure characterized in that a space is formed between the first sheet and the unevenness.
前記第2シートは、前記空間を形成している部分に1以上の第1切り込みを備える請求項1に記載の放熱構造体。 The heat radiating structure according to claim 1, wherein the second sheet is provided with one or more first cuts in a portion forming the space. 前記空間に第1弾性部材を備えることを特徴とする請求項1または2に記載の放熱構造体。 The heat radiating structure according to claim 1 or 2, wherein the space is provided with a first elastic member. 前記第2シートの前記凹凸と前記熱源との間に第2弾性部材を備えることを特徴とする請求項1から3のいずれか1項に記載の放熱構造体。 The heat radiating structure according to any one of claims 1 to 3, wherein a second elastic member is provided between the unevenness of the second sheet and the heat source. 金属、炭素若しくはセラミックスの少なくとも1つを含み、前記第2シートのうち前記第1シートと反対側の面に固定される第3シートを備えることを特徴とする請求項1から4のいずれか1項に記載の放熱構造体。 Any one of claims 1 to 4, which comprises at least one of metal, carbon or ceramics and includes a third sheet of the second sheet fixed to a surface opposite to the first sheet. The heat dissipation structure described in the section. 前記第1シートおよび前記第3シートのうちの少なくとも前記第3シートの前記第2シートと反対側の面に、その面内の一方向若しくは複数の方向に1以上の第2切り込みを備えることを特徴とする請求項5に記載の放熱構造体。 At least one of the first sheet and the third sheet, which is opposite to the second sheet of the third sheet, is provided with one or more second cuts in one direction or a plurality of directions in the surface. The heat-dissipating structure according to claim 5. 前記空間は、一方向に長い形状であって、両端開放型の筒あるいは一端開放型のカップの形態を有する請求項1から6のいずれか1項に記載の放熱構造体。 The heat radiating structure according to any one of claims 1 to 6, wherein the space has a shape long in one direction and has the form of a cylinder having both ends open or a cup having one end open. 回転可能な第1歯車と、
前記第1歯車と噛み合って回転する第2歯車と、
前記第1歯車と前記第2歯車との接触位置より前記第2歯車の回転方向下流側に位置する接着剤塗布部と、
前記接着剤塗布部より前記第2歯車の回転方向下流側に位置するシート送り部と、
を備える装置を用いて請求項1から7のいずれか1項に記載の放熱構造体を製造する方法であって、
前記第2シートを成形する前のプレシートを、前記接触位置に対して前記接着剤塗布部の反対側から前記接触位置に挿入するステップと、
前記プレシートを前記第2歯車の歯形に成形しながら前記第2歯車の進行方向に送るステップと、
前記歯形に成形された部分を前記接着剤塗布部に接触させて、前記第2シートの成形部分に接着剤を塗布するステップと、
前記シート送り部から送られてきた第1シートの片面に、前記プレシートを成形した前記第2シートの前記接着剤を塗布した部分を接触させるステップと、
を含む放熱構造体の製造方法。
The first rotatable gear and
A second gear that meshes with the first gear and rotates,
An adhesive coating portion located downstream of the contact position between the first gear and the second gear in the rotational direction of the second gear.
A sheet feed portion located on the downstream side in the rotation direction of the second gear from the adhesive coating portion,
A method for manufacturing a heat radiating structure according to any one of claims 1 to 7, using an apparatus comprising the above.
A step of inserting the presheet before molding the second sheet into the contact position from the opposite side of the adhesive application portion with respect to the contact position.
A step of feeding the presheet in the traveling direction of the second gear while forming the tooth profile of the second gear, and
A step of bringing the portion molded into the tooth profile into contact with the adhesive coating portion and applying the adhesive to the molded portion of the second sheet.
A step of bringing the adhesive-coated portion of the second sheet obtained by molding the pre-sheet into contact with one side of the first sheet sent from the sheet feed portion.
Method of manufacturing a heat dissipation structure including.
回転可能な第1歯車と、
前記第1歯車と噛み合って回転する第2歯車と、
前記第1歯車と前記第2歯車との接触位置より前記第2歯車の回転方向下流側に位置する接着剤塗布部と、
前記接着剤塗布部より前記第2歯車の回転方向下流側に位置するシート送り部と、
を備える装置を用いて請求項1から7のいずれか1項に記載の放熱構造体を製造する方法であって、
前記第2シートを成形する前のプレシートを、前記接触位置に対して前記接着剤塗布部の反対側から前記接触位置に挿入するステップと、
前記プレシートを前記第2歯車の歯形に成形しながら前記第2歯車の進行方向に送るステップと、
前記第1シートの片面を前記接着剤塗布部に接触させて接着剤を塗布するステップと、
前記シート送り部から送られてきた第1シートの片面に、前記プレシートを成形した前記第2シートを接触させるステップと、
を含む放熱構造体の製造方法。
The first rotatable gear and
A second gear that meshes with the first gear and rotates,
An adhesive coating portion located downstream of the contact position between the first gear and the second gear in the rotational direction of the second gear.
A sheet feed portion located on the downstream side in the rotation direction of the second gear from the adhesive coating portion,
A method for manufacturing a heat radiating structure according to any one of claims 1 to 7, using an apparatus comprising the above.
A step of inserting the presheet before molding the second sheet into the contact position from the opposite side of the adhesive application portion with respect to the contact position.
A step of feeding the presheet in the traveling direction of the second gear while forming the tooth profile of the second gear, and
The step of applying the adhesive by bringing one side of the first sheet into contact with the adhesive application portion,
A step of bringing the second sheet obtained by molding the pre-sheet into contact with one side of the first sheet sent from the sheet feed unit.
Method of manufacturing a heat dissipation structure including.
冷却部材を接触させる筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、
請求項1から7のいずれか1項に記載の放熱構造体が、前記バッテリーセルと前記冷却部材との間に介在するバッテリー。


A battery having one or more battery cells as heat sources in a housing that contacts the cooling member.
A battery in which the heat radiating structure according to any one of claims 1 to 7 is interposed between the battery cell and the cooling member.


JP2020525744A 2018-06-20 2019-06-18 Heat dissipation structure, manufacturing method of heat dissipation structure and battery Active JP7074851B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018117108 2018-06-20
JP2018117108 2018-06-20
PCT/JP2019/024082 WO2019244882A1 (en) 2018-06-20 2019-06-18 Heat dissipation structure, heat dissipation structure production method, and battery

Publications (2)

Publication Number Publication Date
JPWO2019244882A1 true JPWO2019244882A1 (en) 2021-07-26
JP7074851B2 JP7074851B2 (en) 2022-05-24

Family

ID=68982937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020525744A Active JP7074851B2 (en) 2018-06-20 2019-06-18 Heat dissipation structure, manufacturing method of heat dissipation structure and battery

Country Status (2)

Country Link
JP (1) JP7074851B2 (en)
WO (1) WO2019244882A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402705B2 (en) * 2020-02-07 2023-12-21 信越ポリマー株式会社 Thermal conductive structure and battery equipped with the same
JP7421959B2 (en) 2020-03-03 2024-01-25 信越ポリマー株式会社 Heat dissipation structure, method for manufacturing heat dissipation structure, and battery
DE102020005582A1 (en) * 2020-09-11 2022-03-17 Daimler Ag Cooling arrangement and battery arrangement with a multiply folded heat-conducting foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236050A (en) * 1999-02-12 2000-08-29 Sony Corp Heat radiator, electronic apparatus and spacer for heat radiator
WO2013084938A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Battery cooling structure
WO2014185271A1 (en) * 2013-05-16 2014-11-20 株式会社トヨックス Radiation element and heat conduction member
JP2017195018A (en) * 2016-04-18 2017-10-26 株式会社豊田自動織機 Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236050A (en) * 1999-02-12 2000-08-29 Sony Corp Heat radiator, electronic apparatus and spacer for heat radiator
WO2013084938A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Battery cooling structure
WO2014185271A1 (en) * 2013-05-16 2014-11-20 株式会社トヨックス Radiation element and heat conduction member
JP2017195018A (en) * 2016-04-18 2017-10-26 株式会社豊田自動織機 Battery pack

Also Published As

Publication number Publication date
WO2019244882A1 (en) 2019-12-26
JP7074851B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6871183B2 (en) Heat dissipation structure and battery with it
JP7074851B2 (en) Heat dissipation structure, manufacturing method of heat dissipation structure and battery
WO2019181481A1 (en) Heat dissipating structure and battery provided with same
JP6944588B2 (en) Heat dissipation structure and battery equipped with it
JP6929464B2 (en) Heat dissipation structure and battery with it
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2019207759A (en) Heat dissipation structure and battery
JP2020191171A (en) Heat dissipation structure and battery including the same
JP6994122B2 (en) Heat dissipation structure and battery with it
JP7144514B2 (en) Heat dissipation structure, method for manufacturing heat dissipation structure, and battery
JPWO2019230107A1 (en) Heat dissipation structure and battery
JP7190311B2 (en) Thermal structure and battery
JP2021170497A (en) Heat dissipation structure and battery comprising the same
JP2020187885A (en) Heat dissipation structure and battery including the same
JP2021141015A (en) Heat dissipation structure and battery having the same
WO2022239221A1 (en) Thermally conductive member, manufacturing method of thermally conductive member, and battery
JP2021005582A (en) Heat dissipation structure and battery including the same
WO2022201769A1 (en) Thermal conduction member and battery provided therewith
JP7174674B2 (en) Heat dissipation structure, method for manufacturing heat dissipation structure, heat dissipation unit, method for manufacturing heat dissipation unit, and battery
JP7254661B2 (en) Heat dissipation structure and battery with same
WO2020184109A1 (en) Heat-dissipating structure sheet and method for manufacturing heat-dissipating structure
WO2022034759A1 (en) Heat dissipation member, heat dissipation structure, and battery
JP7402705B2 (en) Thermal conductive structure and battery equipped with the same
JP2021141014A (en) Heat dissipation structure and battery having the same
JP2021153005A (en) Heat dissipation structure and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350