JPWO2019241405A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2019241405A5 JPWO2019241405A5 JP2020568979A JP2020568979A JPWO2019241405A5 JP WO2019241405 A5 JPWO2019241405 A5 JP WO2019241405A5 JP 2020568979 A JP2020568979 A JP 2020568979A JP 2020568979 A JP2020568979 A JP 2020568979A JP WO2019241405 A5 JPWO2019241405 A5 JP WO2019241405A5
- Authority
- JP
- Japan
- Prior art keywords
- plasma source
- gas
- plasma
- flow path
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
図1~図4及び図9に示されるように、少なくとも1つの熱調整デバイスがプラズマ源本体12に固定あるいは連結されていてもよい。一実施形態においては、少なくとも1つの熱調整デバイスは、プラズマ源本体12及びその様々な構成要素の少なくとも一部の温度を能動的に調整するように構成されていてもよい。図示された実施形態においては、第1の熱調整デバイス100及び少なくとも第2の熱調整デバイス104がプラズマ源本体12に着脱可能に連結されている。必要に応じて、任意の数の熱調整デバイスをプラズマ源10内で用いてもよい。図1及び図9に示されるように、熱調整デバイス100,104のうち少なくとも1つは、少なくとも1つの調整デバイス本体130を含み得る。図示された実施形態において、調整デバイス本体130には、1以上のアパーチャ、ポート、又は開口が形成されていてもよい。より具体的には、図示された実施形態においては、第1の熱調整デバイス100及び第2の熱調整デバイス104の調整デバイス本体130には、少なくとも1つの流入口106と少なくとも1つの流出口108とが形成されている。当業者であれば、任意の数の流入口及び/又は流出口を調整デバイス本体130に形成してもよいことを理解するであろう。一実施形態においては、流入口106及び流出口108は、使用中に1以上の流体又は材料を調整デバイス本体130に導入することができ、さらに/あるいは調整デバイス本体130から取り出すことができるように構成されている。例えば、図9は、第2の熱調整デバイス104の実施形態の上方斜視図を示しており、流入口106及び流出口108は、第2の熱調整デバイス104を構成する調整デバイス本体130と流体的に連絡している。このため、1以上の流体又は材料が、流入口106及び/又は流出口108のうち少なくとも1つを介して、調整デバイス本体130内に導入し、調整デバイス本体130から排出され得る。図9に示される実施形態においては、調整デバイス本体130には、少なくとも1つのアパーチャ又は流路132が形成されている。必要に応じて、当業者であれば、調整デバイス本体130がアパーチャ又は流路132を含んでいなくてもよいことを理解するであろう。一実施形態においては、第1の熱調整デバイス100及び第2の熱調整デバイス104のうち少なくとも1つは、高い熱伝導率を有する少なくとも1つの材料から製造され得る。例えば、第1の熱調整デバイス100及び第2の熱調整デバイス104のうち少なくとも1つは、銅、アルミニウム、様々な合金などから製造され得る。さらに、第1の熱調整デバイス100及び第2の熱調整デバイス104のうち少なくとも一方は、調整デバイス本体130上に形成された1以上のフィーチャであって、熱調整デバイス100,104の表面積を高める又は増加させることにより熱的性能を高めるように構成された1以上のフィーチャを含み得る。他の実施形態においては、熱調整デバイス100,104は、プラズマ源本体12の少なくとも一部に隣接して配置され、プラズマ源本体12の少なくとも一部に熱接触するコールドプレート、チラー、流体式冷却装置又はこれに類似する装置を含んでいる。 As shown in FIGS. 1 to 4 and 9, at least one heat conditioning device may be fixed or connected to the plasma source body 12. In one embodiment, the at least one thermal conditioning device may be configured to actively regulate the temperature of at least a portion of the plasma source body 12 and its various components. In the illustrated embodiment, the first heat conditioning device 100 and at least the second heat conditioning device 104 are detachably connected to the plasma source body 12. If desired, any number of thermal conditioning devices may be used within the plasma source 10. As shown in FIGS. 1 and 9, at least one of the thermal conditioning devices 100, 104 may include at least one conditioning device body 130. In the illustrated embodiment, the adjustment device body 130 may be formed with one or more apertures, ports, or openings. More specifically, in the illustrated embodiment, the conditioning device body 130 of the first heat conditioning device 100 and the second heat conditioning device 104 has at least one inlet 106 and at least one outlet 108. And are formed. Those skilled in the art will appreciate that any number of inlets and / or outlets may be formed in the conditioning device body 130. In one embodiment, the inlet 106 and outlet 108 allow one or more fluids or materials to be introduced into and / or removed from the conditioning device body 130 during use. It is configured. For example, FIG. 9 shows an upward perspective view of an embodiment of the second heat conditioning device 104, in which the inlet 106 and the outlet 108 are the regulating device body 130 and the fluid constituting the second heat regulating device 104. I am in contact with you. Thus, one or more fluids or materials may be introduced into and discharged from the conditioning device body 130 via at least one of the inlet 106 and / or the outlet 108. In the embodiment shown in FIG. 9, the adjusting device body 130 is formed with at least one aperture or flow path 132. If necessary, one of ordinary skill in the art will appreciate that the conditioning device body 130 does not have to include the aperture or flow path 132. In one embodiment, at least one of the first heat conditioning device 100 and the second heat conditioning device 104 can be manufactured from at least one material having a high thermal conductivity. For example, at least one of the first heat conditioning device 100 and the second heat conditioning device 104 may be made of copper, aluminum, various alloys and the like. Further, at least one of the first thermal conditioning device 100 and the second thermal conditioning device 104 is one or more features formed on the conditioning device body 130 to increase the surface area of the thermal conditioning devices 100, 104. Alternatively, it may include one or more features configured to enhance thermal performance by increasing. In another embodiment, the thermal conditioning devices 100, 104 are placed adjacent to at least a portion of the plasma source body 12 and are in thermal contact with at least a portion of the plasma source body 12, such as a cold plate, chiller, or fluid cooling. Includes equipment or similar equipment.
図1及び図2を再び参照すると、プラズマ源10は、プラズマ源本体12上の様々な位置に配置された1以上の熱センサ62,66,70(図6~図8参照)を含み得る。これらの様々な熱センサは、1以上のセンサ導線(図10の導線64,68,72参照)を介して1以上のプロセッサ又はコントローラ(図10の処理制御システム170参照)と通信可能となっている。図示された実施形態においては、第1のセンサ導線64、第2のセンサ導線68、及び第3のセンサ導線72が、プラズマ源本体12に連結されているものとして示されている。当業者であれば、プラズマ源10が、第1のセンサ62と少なくとも第2のセンサ66とを含んでいてもよいことを理解するであろう。以下の段落では、第1のセンサ62、第2のセンサ66、及び任意的な追加のセンサ70をより詳細に説明する。
Referring again to FIGS. 1 and 2, the plasma source 10 may include one or more heat sensors 62, 66, 70 (see FIGS. 6-8) located at various locations on the plasma source body 12. These various thermal sensors can communicate with one or more processors or controllers (see processing control system 170 in FIG. 10) via one or more sensor leads (see leads 64, 68, 72 in FIG. 10). There is. In the illustrated embodiment, the first sensor conductor 64, the second sensor conductor 68, and the third sensor conductor 72 are shown as being connected to the plasma source body 12. Those skilled in the art will appreciate that the plasma source 10 may include a first sensor 62 and at least a second sensor 66. The following paragraphs describe in more detail the first sensor 62, the second sensor 66, and any additional sensor 70.
Claims (21)
少なくとも1つのガスを供給するように構成される少なくとも1つのガス源と、
前記少なくとも1つのガス源及び少なくとも1つのガス流出口と流体的に連絡している少なくとも1つのガス流入口を規定するプラズマ源本体であって、前記プラズマ源は、前記プラズマ源本体内に形成される少なくとも1つの流路面を有する少なくとも1つの流路を有し、前記少なくとも1つの流路は、前記少なくとも1つのガス流入口及び前記少なくとも1つのガス流出口と流体的に連絡しており、その内部に少なくとも1つのプラズマ領域が形成されるように構成される、プラズマ源本体と、
前記少なくとも1つの流路の前記少なくとも1つの流路面の近傍の前記プラズマ源本体内に形成される第1の熱センサレシーバと、
前記第1の熱センサレシーバ内に位置する第1の熱センサであって、第1の位置で前記少なくとも1つの流路の少なくとも1つの流路面の第1の温度を測定するように構成される第1の熱センサと、
前記少なくとも1つの流路の前記少なくとも1つの流路面の近傍の前記プラズマ源本体内に形成される第2の熱センサレシーバであって、前記少なくとも1つのガス流出口の近傍の前記プラズマ源本体内に形成される第2の熱センサレシーバと、
前記第2の熱センサレシーバ内に位置する第2の熱センサであって、第2の位置で前記少なくとも1つの流路の前記少なくとも1つの流路面の第2の温度を測定するように構成される第2の熱センサと
を備える、プラズマ源。 A plasma source for processing systems
With at least one gas source configured to supply at least one gas,
A plasma source body that defines at least one gas inlet and at least one gas inlet that is in fluid contact with the at least one gas source and the at least one gas outlet, wherein the plasma source is formed within the plasma source body. It has at least one flow path having at least one flow path surface, and the at least one flow path is in fluid communication with the at least one gas inlet and the at least one gas outlet thereof. A plasma source body configured to form at least one plasma region inside,
A first thermal sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path.
A first heat sensor located within the first heat sensor receiver, configured to measure the first temperature of at least one flow path surface of the at least one flow path at the first position. The first heat sensor and
A second heat sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path, and in the plasma source body in the vicinity of the at least one gas outlet. The second heat sensor receiver formed in
A second heat sensor located within the second heat sensor receiver, configured to measure the second temperature of the at least one flow path surface of the at least one flow path at the second position. A plasma source with a second thermal sensor.
前記少なくとも1つの任意的な熱センサレシーバ内に位置する少なくとも1つの任意的な熱センサであって、前記プラズマ源本体内の位置で前記少なくとも1つの流路の前記少なくとも1つの流路面の温度を測定するように構成される少なくとも1つの任意的な熱センサと、
をさらに備える、請求項1に記載のプラズマ源。 The plasma in the vicinity of the at least one gas outlet of at least one optional thermal sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path. With at least one optional thermal sensor receiver formed within the source body,
At least one optional thermal sensor located within the at least one optional thermal sensor receiver, the temperature of the at least one channel surface of the at least one channel at a position within the plasma source body. With at least one optional thermal sensor configured to measure,
The plasma source according to claim 1, further comprising.
少なくとも1つのガスを供給するように構成される少なくとも1つのガス源と、
前記少なくとも1つのガス源及び少なくとも1つのガス流出口と流体的に連絡している少なくとも1つのガス流入口を規定するプラズマ源本体であって、前記プラズマ源は、前記プラズマ源本体内に形成された少なくとも1つの流路面を有する少なくとも1つの流路を有し、前記少なくとも1つの流路は、前記少なくとも1つのガス流入口及び前記少なくとも1つのガス流出口と流体的に連絡している、プラズマ源本体と、
前記プラズマ源本体の少なくとも一部を取り囲み、少なくとも1つの電源に連絡しており、前記プラズマ源本体内に少なくとも1つのプラズマ領域を生成するように構成される少なくとも1つの電力源であって、前記少なくとも1つのプラズマ領域は、前記流路内を流れる前記少なくとも1つのガスを解離して少なくとも1つの解離ガスを形成するように構成され、前記少なくとも1つの電力源と、前記少なくとも1つの解離ガスは、前記少なくとも1つの流出口を介してプラズマ源本体から排出される、少なくとも1つの電力源と、
前記少なくとも1つの流路の前記少なくとも1つの流路面の近傍の前記プラズマ源本体内に形成される第1の熱センサレシーバと、
前記第1の熱センサレシーバ内に位置する第1の熱センサであって、第1の位置で前記少なくとも1つの流路の少なくとも1つの流路面の第1の温度を測定するように構成される第1の熱センサと、
前記少なくとも1つの流路の前記少なくとも1つの流路面の近傍の前記プラズマ源本体内に形成される第2の熱センサレシーバであって、前記少なくとも1つのガス流出口の近傍の前記プラズマ源本体内に形成される第2の熱センサレシーバと、
前記第2の熱センサレシーバ内に位置する第2の熱センサであって、第2の位置で前記少なくとも1つの流路の前記少なくとも1つの流路面の第2の温度を測定するように構成される第2の熱センサと、
前記プラズマ源本体に連結される少なくとも1つの熱調整デバイスと
を備える、プラズマ源。 A plasma source for processing systems
With at least one gas source configured to supply at least one gas,
A plasma source body that defines at least one gas inlet and at least one gas inlet that is in fluid contact with the at least one gas source and the at least one gas outlet, wherein the plasma source is formed within the plasma source body. A plasma having at least one flow path having at least one flow path surface, wherein the at least one flow path is in fluid contact with the at least one gas inlet and the at least one gas outlet. With the source body,
The at least one power source that surrounds at least a portion of the plasma source body, communicates with at least one power source, and is configured to generate at least one plasma region within the plasma source body. The at least one plasma region is configured to dissociate the at least one gas flowing in the flow path to form at least one dissociated gas, the at least one power source and the at least one dissociated gas. With at least one power source ejected from the plasma source body through the at least one outlet.
A first thermal sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path.
A first heat sensor located within the first heat sensor receiver, configured to measure the first temperature of at least one flow path surface of the at least one flow path at the first position. The first heat sensor and
A second heat sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path, and in the plasma source body in the vicinity of the at least one gas outlet. The second heat sensor receiver formed in
A second heat sensor located within the second heat sensor receiver, configured to measure the second temperature of the at least one flow path surface of the at least one flow path at the second position. The second heat sensor and
A plasma source comprising at least one heat conditioning device coupled to the plasma source body.
前記少なくとも1つの任意的な熱センサレシーバ内に位置する少なくとも1つの任意的な熱センサであって、前記プラズマ源本体内の位置で前記少なくとも1つの流路の前記少なくとも1つの流路面の温度を測定するように構成される少なくとも1つの任意的な熱センサと、
をさらに備える、請求項10に記載のプラズマ源。 The plasma in the vicinity of the at least one gas outlet of at least one optional thermal sensor receiver formed in the plasma source body in the vicinity of the at least one flow path surface of the at least one flow path. With at least one optional thermal sensor receiver formed within the source body,
At least one optional thermal sensor located within the at least one optional thermal sensor receiver, the temperature of the at least one channel surface of the at least one channel at a position within the plasma source body. With at least one optional thermal sensor configured to measure,
10. The plasma source of claim 10.
少なくとも1つのガス源及び少なくとも1つのガス流出口と流体的に連絡している少なくとも1つのガス流入口を規定するプラズマ源本体を用意し、前記プラズマ源は、前記プラズマ源本体内に形成された少なくとも1つの流路面により規定される少なくとも1つの流路を有し、前記少なくとも1つの流路は、前記少なくとも1つのガス流入口及び前記少なくとも1つのガス流出口と流体的に連絡しており、
前記少なくとも1つのガス源から前記少なくとも1つの流入口を介して前記少なくとも1つの流路の内部に少なくとも1つの入力ガスを流し、
少なくとも1つの電力源を用いて前記プラズマ源本体内に少なくとも1つのプラズマ領域を形成し、
前記少なくとも1つの流路を通って流れる前記少なくとも1つの入力ガスの少なくとも一部を解離して少なくとも1つの解離ガスを形成し、
前記少なくとも1つのプラズマ領域の近傍に位置する少なくとも第1のセンサを用いて前記少なくとも1つの解離ガスの再結合から得られる第1の温度を測定し、
前記少なくとも1つのプラズマ領域から離れて配置される少なくとも第2のセンサを用いて少なくとも1つの再解離ガスの少なくとも第2の温度を測定し、
前記少なくとも1つの第1のセンサにより測定された前記解離ガスの結合の前記第1の温度を、前記少なくとも1つの第2のセンサにより測定された前記少なくとも1つの再解離ガスの前記第2の温度と比較することにより、前記プラズマ源の前記ラジカル出力をモニタリングする、
方法。 A method of monitoring radical output from a plasma source,
A plasma source body is provided that defines at least one gas source and at least one gas inlet that is in fluid contact with the at least one gas outlet, the plasma source being formed within the plasma source body. It has at least one flow path defined by at least one flow path surface, the at least one flow path being in fluid contact with the at least one gas inlet and the at least one gas outlet.
At least one input gas is flowed from the at least one gas source to the inside of the at least one flow path through the at least one inlet.
At least one power source is used to form at least one plasma region within the plasma source body.
At least a part of the at least one input gas flowing through the at least one flow path is dissociated to form at least one dissociated gas.
The first temperature obtained from the recombination of the at least one dissociated gas is measured using at least the first sensor located in the vicinity of the at least one plasma region.
At least a second temperature of at least one re-dissociation gas is measured using at least a second sensor located away from the at least one plasma region.
The first temperature of the coupling of the dissociated gas measured by the at least one first sensor is the second temperature of the at least one redissociation gas measured by the at least one second sensor. To monitor the radical output of the plasma source by comparison with,
Method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862684820P | 2018-06-14 | 2018-06-14 | |
US62/684,820 | 2018-06-14 | ||
PCT/US2019/036796 WO2019241405A1 (en) | 2018-06-14 | 2019-06-12 | Radical output monitor for a remote plasma source and method of use |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021530076A JP2021530076A (en) | 2021-11-04 |
JPWO2019241405A5 true JPWO2019241405A5 (en) | 2022-06-27 |
JP7301075B2 JP7301075B2 (en) | 2023-06-30 |
Family
ID=68840258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020568979A Active JP7301075B2 (en) | 2018-06-14 | 2019-06-12 | Radical power monitor for remote plasma source and method of use |
Country Status (8)
Country | Link |
---|---|
US (1) | US11114287B2 (en) |
EP (1) | EP3785494A4 (en) |
JP (1) | JP7301075B2 (en) |
KR (1) | KR102697703B1 (en) |
CN (1) | CN112335342B (en) |
SG (1) | SG11202011069RA (en) |
TW (1) | TWI809122B (en) |
WO (1) | WO2019241405A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102421625B1 (en) | 2017-06-27 | 2022-07-19 | 캐논 아네르바 가부시키가이샤 | Plasma processing device |
WO2019003312A1 (en) | 2017-06-27 | 2019-01-03 | キヤノンアネルバ株式会社 | Plasma treatment device |
PL3648551T3 (en) | 2017-06-27 | 2021-12-06 | Canon Anelva Corporation | Plasma treatment device |
WO2019004188A1 (en) | 2017-06-27 | 2019-01-03 | キヤノンアネルバ株式会社 | Plasma treatment device |
SG11202009122YA (en) * | 2018-06-26 | 2020-10-29 | Canon Anelva Corp | Plasma processing apparatus, plasma processing method, program, and memory medium |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4918031A (en) | 1988-12-28 | 1990-04-17 | American Telephone And Telegraph Company,At&T Bell Laboratories | Processes depending on plasma generation using a helical resonator |
US5429070A (en) | 1989-06-13 | 1995-07-04 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
US5122251A (en) | 1989-06-13 | 1992-06-16 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
JP3381916B2 (en) | 1990-01-04 | 2003-03-04 | マトソン テクノロジー,インコーポレイテッド | Low frequency induction type high frequency plasma reactor |
JP2635267B2 (en) | 1991-06-27 | 1997-07-30 | アプライド マテリアルズ インコーポレイテッド | RF plasma processing equipment |
US6024826A (en) * | 1996-05-13 | 2000-02-15 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US5349154A (en) | 1991-10-16 | 1994-09-20 | Rockwell International Corporation | Diamond growth by microwave generated plasma flame |
JPH07254496A (en) | 1994-03-17 | 1995-10-03 | Fuji Electric Co Ltd | Induction plasma generating device |
US5587207A (en) | 1994-11-14 | 1996-12-24 | Gorokhovsky; Vladimir I. | Arc assisted CVD coating and sintering method |
US5478608A (en) | 1994-11-14 | 1995-12-26 | Gorokhovsky; Vladimir I. | Arc assisted CVD coating method and apparatus |
JPH0955372A (en) | 1995-08-11 | 1997-02-25 | Nippon Steel Corp | Plasma treatment apparatus |
JPH10134996A (en) | 1996-10-31 | 1998-05-22 | Nec Corp | Plasma treatment equipment |
JP3598717B2 (en) | 1997-03-19 | 2004-12-08 | 株式会社日立製作所 | Plasma processing equipment |
JP2868120B2 (en) | 1997-06-11 | 1999-03-10 | 川崎重工業株式会社 | Electron beam excited plasma generator |
US6388226B1 (en) | 1997-06-26 | 2002-05-14 | Applied Science And Technology, Inc. | Toroidal low-field reactive gas source |
US6815633B1 (en) * | 1997-06-26 | 2004-11-09 | Applied Science & Technology, Inc. | Inductively-coupled toroidal plasma source |
US6150628A (en) | 1997-06-26 | 2000-11-21 | Applied Science And Technology, Inc. | Toroidal low-field reactive gas source |
US5937541A (en) * | 1997-09-15 | 1999-08-17 | Siemens Aktiengesellschaft | Semiconductor wafer temperature measurement and control thereof using gas temperature measurement |
US6352049B1 (en) | 1998-02-09 | 2002-03-05 | Applied Materials, Inc. | Plasma assisted processing chamber with separate control of species density |
US6635578B1 (en) | 1998-02-09 | 2003-10-21 | Applied Materials, Inc | Method of operating a dual chamber reactor with neutral density decoupled from ion density |
US6450116B1 (en) * | 1999-04-22 | 2002-09-17 | Applied Materials, Inc. | Apparatus for exposing a substrate to plasma radicals |
JP2003506888A (en) | 1999-08-06 | 2003-02-18 | アドバンスト・エナジー・インダストリーズ・インコーポレイテッド | Inductively coupled annular plasma source apparatus and method for processing gases and materials |
JP2001274148A (en) * | 2000-03-24 | 2001-10-05 | Tokyo Electron Ltd | System and method for plasma processing |
US6679981B1 (en) | 2000-05-11 | 2004-01-20 | Applied Materials, Inc. | Inductive plasma loop enhancing magnetron sputtering |
EP1156511A1 (en) * | 2000-05-19 | 2001-11-21 | Applied Materials, Inc. | Remote plasma CVD apparatus |
US6418874B1 (en) | 2000-05-25 | 2002-07-16 | Applied Materials, Inc. | Toroidal plasma source for plasma processing |
EP1162646A3 (en) | 2000-06-06 | 2004-10-13 | Matsushita Electric Works, Ltd. | Plasma treatment apparatus and method |
RU2209532C2 (en) | 2001-10-10 | 2003-07-27 | Сорокин Игорь Борисович | Plasma accelerator with closed electron drift |
US6855906B2 (en) | 2001-10-16 | 2005-02-15 | Adam Alexander Brailove | Induction plasma reactor |
US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
US20030164143A1 (en) | 2002-01-10 | 2003-09-04 | Hitachi Kokusai Electric Inc. | Batch-type remote plasma processing apparatus |
JP2004047192A (en) | 2002-07-10 | 2004-02-12 | Adtec Plasma Technology Co Ltd | Transformer discharge type plasma generating device by magnet-permeating core |
NO20024248D0 (en) | 2002-09-05 | 2002-09-05 | Seppo Konkola | Method and equipment for accelerating flowing plasma gas combinations |
JP4472372B2 (en) | 2003-02-03 | 2010-06-02 | 株式会社オクテック | Plasma processing apparatus and electrode plate for plasma processing apparatus |
KR100520979B1 (en) | 2003-03-07 | 2005-10-12 | 위순임 | Vacuum process chamber remote plasma generator |
US6872909B2 (en) | 2003-04-16 | 2005-03-29 | Applied Science And Technology, Inc. | Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel |
US8053700B2 (en) | 2003-04-16 | 2011-11-08 | Mks Instruments, Inc. | Applicators and cooling systems for a plasma device |
US8409400B2 (en) | 2003-05-07 | 2013-04-02 | Gen Co., Ltd. | Inductive plasma chamber having multi discharge tube bridge |
US6902646B2 (en) | 2003-08-14 | 2005-06-07 | Advanced Energy Industries, Inc. | Sensor array for measuring plasma characteristics in plasma processing environments |
US7071118B2 (en) | 2003-11-12 | 2006-07-04 | Veeco Instruments, Inc. | Method and apparatus for fabricating a conformal thin film on a substrate |
US7268084B2 (en) | 2004-09-30 | 2007-09-11 | Tokyo Electron Limited | Method for treating a substrate |
US7396431B2 (en) | 2004-09-30 | 2008-07-08 | Tokyo Electron Limited | Plasma processing system for treating a substrate |
GB2442990A (en) | 2004-10-04 | 2008-04-23 | C Tech Innovation Ltd | Microwave plasma apparatus |
US20060118240A1 (en) | 2004-12-03 | 2006-06-08 | Applied Science And Technology, Inc. | Methods and apparatus for downstream dissociation of gases |
JP5536981B2 (en) | 2004-12-20 | 2014-07-02 | パーサー、ケネス、エイチ. | Improved beam neutralization in low energy / high current ribbon beam implanters |
KR100720989B1 (en) | 2005-07-15 | 2007-05-28 | 주식회사 뉴파워 프라즈마 | Multi chamber plasma process system |
US7550381B2 (en) | 2005-07-18 | 2009-06-23 | Applied Materials, Inc. | Contact clean by remote plasma and repair of silicide surface |
US7850779B2 (en) | 2005-11-04 | 2010-12-14 | Applied Materisals, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
KR100799175B1 (en) | 2006-04-21 | 2008-02-01 | 주식회사 뉴파워 프라즈마 | Plasma processing system and control method therefor |
JP5257917B2 (en) | 2006-04-24 | 2013-08-07 | 株式会社ニューパワープラズマ | Inductively coupled plasma reactor with multiple magnetic cores |
CN101466445A (en) * | 2006-06-12 | 2009-06-24 | 山米奎普公司 | Vapor delivery to devices under vacuum |
US7837826B2 (en) | 2006-07-18 | 2010-11-23 | Lam Research Corporation | Hybrid RF capacitively and inductively coupled plasma source using multifrequency RF powers and methods of use thereof |
KR101595686B1 (en) | 2007-10-19 | 2016-02-18 | 엠케이에스 인스트루먼츠, 인코포레이티드 | Toroidal plasma chamber for high gas flow rate process |
JP5423205B2 (en) * | 2008-08-29 | 2014-02-19 | 東京エレクトロン株式会社 | Deposition equipment |
WO2010089670A1 (en) | 2009-02-04 | 2010-08-12 | General Fusion, Inc. | Systems and methods for compressing plasma |
EP2471087A1 (en) | 2009-08-27 | 2012-07-04 | Mosaic Crystals Ltd. | Penetrating plasma generating apparatus for high vacuum chambers |
JP5469991B2 (en) | 2009-10-19 | 2014-04-16 | 株式会社アルバック | Analysis equipment |
US9190289B2 (en) * | 2010-02-26 | 2015-11-17 | Lam Research Corporation | System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas |
JP5618766B2 (en) | 2010-10-27 | 2014-11-05 | 株式会社アルバック | Radical measuring device and radical measuring tube |
US8723423B2 (en) | 2011-01-25 | 2014-05-13 | Advanced Energy Industries, Inc. | Electrostatic remote plasma source |
TWI659674B (en) * | 2011-10-05 | 2019-05-11 | 應用材料股份有限公司 | Plasma processing apparatus and lid assembly |
US9035553B2 (en) | 2011-11-09 | 2015-05-19 | Dae-Kyu Choi | Hybrid plasma reactor |
US20130118589A1 (en) | 2011-11-15 | 2013-05-16 | Mks Instruments, Inc. | Toroidal Plasma Channel with Varying Cross-Section Areas Along the Channel |
WO2014007472A1 (en) | 2012-07-03 | 2014-01-09 | Plasmart Inc. | Plasma generation apparatus and plasma generation method |
US10316409B2 (en) * | 2012-12-21 | 2019-06-11 | Novellus Systems, Inc. | Radical source design for remote plasma atomic layer deposition |
US9653266B2 (en) * | 2014-03-27 | 2017-05-16 | Mks Instruments, Inc. | Microwave plasma applicator with improved power uniformity |
WO2016039940A1 (en) | 2014-09-12 | 2016-03-17 | Applied Materials, Inc. | Controller for treatment of semiconductor processing equipment effluent |
CN107429717B (en) | 2015-03-11 | 2020-06-05 | 全面熔合有限公司 | Modular compression chamber |
KR102376982B1 (en) * | 2015-04-14 | 2022-03-21 | 삼성전자주식회사 | Remote plasma generator for reducing particles by using ceramic |
KR102125028B1 (en) * | 2015-04-30 | 2020-06-19 | (주) 엔피홀딩스 | Cooling kit and a plasma reactor having the same magnetic core for cooling |
KR102194085B1 (en) * | 2016-04-26 | 2020-12-22 | 어플라이드 머티어리얼스, 인코포레이티드 | Temperature-controlled remote plasma cleaning to remove exhaust sediment |
US11837479B2 (en) * | 2016-05-05 | 2023-12-05 | Applied Materials, Inc. | Advanced temperature control for wafer carrier in plasma processing chamber |
US20190006154A1 (en) | 2017-06-28 | 2019-01-03 | Chaolin Hu | Toroidal Plasma Chamber |
US10329976B2 (en) * | 2017-08-11 | 2019-06-25 | Gm Global Technology Operations Llc. | Non-thermal plasma/ozone-assisted catalytic system and use in exhaust systems |
-
2019
- 2019-06-12 JP JP2020568979A patent/JP7301075B2/en active Active
- 2019-06-12 EP EP19818618.1A patent/EP3785494A4/en active Pending
- 2019-06-12 CN CN201980038899.7A patent/CN112335342B/en active Active
- 2019-06-12 KR KR1020217001013A patent/KR102697703B1/en active IP Right Grant
- 2019-06-12 US US16/438,827 patent/US11114287B2/en active Active
- 2019-06-12 SG SG11202011069RA patent/SG11202011069RA/en unknown
- 2019-06-12 WO PCT/US2019/036796 patent/WO2019241405A1/en unknown
- 2019-06-13 TW TW108120410A patent/TWI809122B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7360582B2 (en) | Flow distributing unit and cooling unit having bypass flow | |
JP4995915B2 (en) | High chamber temperature process and chamber design for photoresist strip and post-metal etch passivation | |
KR100706582B1 (en) | Integrated temperature controlled exhaust and cold trap assembly | |
US6026896A (en) | Temperature control system for semiconductor processing facilities | |
US20060201172A1 (en) | Temperature control system and substrate processing apparatus | |
CN112335342B (en) | Radical output monitor for remote plasma source and method of use | |
JP2000502516A (en) | Cold plate with uniform pressure drop and uniform flow | |
KR101039085B1 (en) | Plasma processing apparatus and plasma processing method | |
CN115161617B (en) | Gas distribution structure and vapor deposition equipment | |
WO2019119757A1 (en) | Mass flow controller | |
JPWO2019241405A5 (en) | ||
TW201727158A (en) | Air conditioner | |
US6472643B1 (en) | Substrate thermal management system | |
KR101848151B1 (en) | Small heatsink | |
JP7458156B2 (en) | Mounting table and plasma processing equipment | |
CN115167574B (en) | Valve temperature control device and vapor deposition equipment | |
US20140105586A1 (en) | Cooling device for near instantaneous water heater for kitchen or bath products | |
JP7166972B2 (en) | Flow control unit for temperature adjustment | |
JP2007003107A (en) | Air conditioning system for accurately performing temperature control in local space | |
JP3485538B2 (en) | Plasma processing equipment | |
US10548238B1 (en) | Duct design for airflow cooling systems | |
CN115161619B (en) | Valve and vapor deposition equipment | |
US20240153793A1 (en) | Plate gas heater | |
JP2004311911A (en) | Water cooling heat sink and water cooling unit | |
TWI764089B (en) | Gas mixing system for semiconductor fabrication and method for mixing gases |