JPH0955372A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH0955372A
JPH0955372A JP7227349A JP22734995A JPH0955372A JP H0955372 A JPH0955372 A JP H0955372A JP 7227349 A JP7227349 A JP 7227349A JP 22734995 A JP22734995 A JP 22734995A JP H0955372 A JPH0955372 A JP H0955372A
Authority
JP
Japan
Prior art keywords
plasma
tube
electrodes
inner tube
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7227349A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7227349A priority Critical patent/JPH0955372A/en
Publication of JPH0955372A publication Critical patent/JPH0955372A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a plasma treatment apparatus which restrains a semiconductor wafer form being damaged electrically by a method wherein, when the semiconductor wafer is treated with a plasma inside a reaction tube, an abnormal discharge inside an inside tube used to house the wafer and the leak of a plasma are suppressed. SOLUTION: A plasma treatment apparatus is provided with an inside tube 3 which is installed inside a reaction tube 2 so as to house a plurality of semiconductor wafers 6 and which comprises a plurality of hole parts 4 through which active-species radicals can be passed and with a plurality of ring disk-shaped plasma generation electrodes 7a, 7b which are stacked and arranged along the length direction between the reaction tube 2 and the inside tube 3 and whose electric field is the length direction with reference to the inside tube 3. A reaction gas is introduced from a gas introduction tube 10, high-frequency power is applied to the respective electrodes 7a, 7b by a high-frequency power supply 9, and a plasma P is generated between the respective electrodes 7a, 7b. Since electric-field directions E1 between the respective electrodes 7a, 7b do not have a component in a direction toward the center of the inside tube 3, the plasma P is confined between the electrodes 7a, 7b, and the wafers 6 are treated only with the active-species radicals which have passed the hole parts 4 in the inside tube 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体デバ
イスの製造工程におけるアッシング処理等に使用するの
に最適なプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus most suitable for use in, for example, an ashing process in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】一般に、半導体デバイスの製造工程の中
には、成膜工程、エッチング工程或いはアッシング工程
等、各種の処理工程が存在するが、上記各工程にプラズ
マを利用することが従来から行われている。このプラズ
マは、イオンと電子とが混在し、全体として電気的に中
性を保っているものであるが、このプラズマ中にはこれ
らと中性分子との衝突等によって生成される励起された
原子や分子からなる化学的に非常に活性な活性種ラジカ
ルが存在し、この活性種ラジカル及びイオンがエッチン
グ処理或いはアッシング処理に寄与する。この際、活性
種ラジカルによるエッチング処理或いはアッシング処理
は半導体ウエハに電気的なダメージを与えないが、イオ
ンによるエッチング処理或いはアッシング処理は半導体
ウエハに電気的なダメージを与えるため、プラズマと半
導体ウエハとを分離し、活性種ラジカルのみによって処
理を行う方法が提案されている。
2. Description of the Related Art Generally, there are various processing steps such as a film forming step, an etching step, an ashing step, etc. in a manufacturing process of a semiconductor device, but it has been conventionally practiced to use plasma for each of the above steps. It is being appreciated. This plasma is a mixture of ions and electrons, and maintains electrical neutrality as a whole, but in this plasma, excited atoms generated by collision of these with neutral molecules are generated. There are active species radicals that are chemically very active and consist of molecules and molecules, and these active species radicals and ions contribute to the etching process or ashing process. At this time, the etching process or ashing process using active species radicals does not cause electrical damage to the semiconductor wafer, but the etching process or ashing process using ions causes electrical damage to the semiconductor wafer. A method of separating and treating with only active species radicals has been proposed.

【0003】このような方法によって多数枚の半導体ウ
エハを一度に処理する低ダメージのプラズマ処理装置と
して、例えば特開平4−264715号公報には、図1
1に示すようなアッシング装置が記載されている。即
ち、反応管32内に複数の孔部34を有する内管33を
設けると共に、反応管32の外側に複数のリング状のプ
ラズマ発生電極37を設けることによって、反応管32
内に発生するプラズマPと内管33内に収容された半導
体ウエハ36とを分離するものである。なお、39は高
周波電源、40は反応ガス導入管、42は排気管であ
る。
A low-damage plasma processing apparatus for processing a large number of semiconductor wafers at a time by such a method is disclosed in, for example, Japanese Unexamined Patent Publication No. 4-264715 as shown in FIG.
An ashing device as shown in No. 1 is described. That is, by providing the inner tube 33 having the plurality of holes 34 in the reaction tube 32 and providing the plurality of ring-shaped plasma generating electrodes 37 on the outer side of the reaction tube 32,
The plasma P generated inside is separated from the semiconductor wafer 36 contained in the inner tube 33. In addition, 39 is a high frequency power supply, 40 is a reaction gas introduction pipe, and 42 is an exhaust pipe.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記公
報に記載されたような装置の場合、図11に示すよう
に、プラズマ発生電極37によってプラズマPは反応管
32の内側付近に発生するが、各電極37間における電
界方向E3 が反応管32の内側で各電極37間に渡る円
弧状であり、その電界方向E3 が内管33の中心へ向か
う方向の成分を持っている。このため、内管33内での
異常放電やプラズマPの漏れ等によって、処理された半
導体ウエハ36の電気的なダメージを完全に抑制するこ
とは難しいという問題があった。
However, in the case of the device described in the above publication, as shown in FIG. 11, the plasma P is generated by the plasma generating electrode 37 near the inside of the reaction tube 32. The electric field direction E 3 between the electrodes 37 is a circular arc extending between the electrodes 37 inside the reaction tube 32, and the electric field direction E 3 has a component in the direction toward the center of the inner tube 33. Therefore, there is a problem that it is difficult to completely suppress electrical damage to the processed semiconductor wafer 36 due to abnormal discharge in the inner tube 33, leakage of the plasma P, and the like.

【0005】そこで本発明は、被処理基板を収容する内
管内での異常放電やプラズマの漏れ等を抑制し、被処理
基板の電気的なダメージを抑制することができるプラズ
マ処理装置を提供することを目的とする。
Therefore, the present invention provides a plasma processing apparatus capable of suppressing abnormal discharge, plasma leakage, etc. in an inner tube for accommodating a substrate to be processed and suppressing electrical damage to the substrate to be processed. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、反応管内に収容された複数の被処理基板
をプラズマを用いて処理するプラズマ処理装置におい
て、前記複数の被処理基板を収容すべく前記反応管内に
設けられ、活性種ラジカルが通過可能な複数の拡散孔部
を有する内管と、前記反応管と前記内管との間に設けら
れ、電界の方向が前記内管の接平面に対してほぼ平行で
ある少なくとも一対のプラズマ発生電極とを備えたこと
を特徴とする。
In order to achieve the above object, the present invention provides a plasma processing apparatus for processing a plurality of substrates to be processed housed in a reaction tube by using plasma. And an inner tube having a plurality of diffusion holes through which active species radicals can pass, the inner tube being provided between the reaction tube and the inner tube so that the direction of the electric field is the inner tube. And at least a pair of plasma generating electrodes that are substantially parallel to the tangent plane.

【0007】また、前記のプラズマ処理装置において、
前記電界の方向が前記内管に対するほぼ長手方向となる
ように、前記電極対が前記反応管と前記内管との間の長
手方向に沿って積層配置されていることを特徴とする。
また、前記のプラズマ処理装置において、前記電界の方
向が前記内管に対するほぼ周接線方向となるように、前
記電極対が前記反応管と前記内管との間の周方向に沿っ
て隣接配置されていることを特徴とする。さらに、この
場合に、前記電極対が周方向へ回転駆動されるように構
成されていることを特徴とする。
In the above plasma processing apparatus,
The electrode pair is laminated along the longitudinal direction between the reaction tube and the inner tube so that the direction of the electric field is substantially in the longitudinal direction with respect to the inner tube.
In the plasma processing apparatus, the electrode pairs are arranged adjacent to each other along the circumferential direction between the reaction tube and the inner tube so that the direction of the electric field is substantially the circumferential tangential direction to the inner tube. It is characterized by Further, in this case, the electrode pair is configured to be rotationally driven in the circumferential direction.

【0008】また、前記のプラズマ処理装置において、
前記反応管内に導入された反応ガスを流通させるための
複数の孔部が前記各電極に形成されていることを特徴と
する。また、前記のプラズマ処理装置において、前記反
応管内に反応ガスを導入するためのガス導入管が前記各
電極を貫通して配設され、前記ガス導入管のガス流出孔
が前記各電極の間に対応して設けられていることを特徴
とする。
In the above plasma processing apparatus,
A plurality of holes are formed in each of the electrodes for allowing the reaction gas introduced into the reaction tube to flow therethrough. Further, in the above plasma processing apparatus, a gas introduction pipe for introducing a reaction gas into the reaction pipe is disposed so as to penetrate the electrodes, and a gas outflow hole of the gas introduction pipe is provided between the electrodes. It is characterized in that it is provided correspondingly.

【0009】[0009]

【作用】上記のように構成された本発明においては、反
応管と内管との間に設けられた少なくとも一対のプラズ
マ発生電極に例えば高周波電力を印加し、反応管と内管
との間にプラズマを発生させる。ここで、電極間におけ
る電界の方向が内管の接平面に対してほぼ平行になって
おり、その電界方向が内管の中心へ向かう方向の成分を
持っていないため、プラズマは電極間に閉じ込められ
る。しかし、活性種ラジカルは電気的に中性であるため
電極間に閉じ込められることはなく、内管の拡散孔部を
通過し、活性種ラジカルのみによって被処理基板が処理
される。
In the present invention configured as described above, for example, high-frequency power is applied to at least one pair of plasma generating electrodes provided between the reaction tube and the inner tube so that the plasma is generated between the reaction tube and the inner tube. Generate plasma. Here, the direction of the electric field between the electrodes is almost parallel to the tangential plane of the inner tube, and since the electric field direction does not have a component toward the center of the inner tube, the plasma is confined between the electrodes. To be However, since the active species radicals are electrically neutral, they are not confined between the electrodes, pass through the diffusion holes of the inner tube, and the substrate to be processed is treated only by the active species radicals.

【0010】電極間の電界方向を内管の接平面に対して
ほぼ平行にする場合、電極対を反応管と内管との間の長
手方向に沿って積層配置すると、電界方向が内管に対す
るほぼ長手方向となり、また、電極対を反応管と内管と
の間の周方向に沿って隣接配置すると、電界方向が内管
に対するほぼ周接線方向となり、何れも電界方向は内管
の中心へ向かう方向の成分を持たない。なお、特に後者
の場合に電極対を周方向へ回転駆動させると、プラズマ
の発生域が周方向へ移動されるので、プラズマを実質的
に周方向の全域に発生させることが可能となる。
When the direction of the electric field between the electrodes is made substantially parallel to the tangential plane of the inner tube, when the electrode pair is laminated along the longitudinal direction between the reaction tube and the inner tube, the direction of the electric field is relative to the inner tube. When the electrode pairs are arranged adjacent to each other along the circumferential direction between the reaction tube and the inner tube, the direction of the electric field becomes substantially the tangential direction to the inner tube, and the electric field direction is toward the center of the inner tube. It has no component in the direction of travel. Particularly, in the latter case, when the electrode pair is rotationally driven in the circumferential direction, the plasma generation region is moved in the circumferential direction, so that the plasma can be generated substantially in the entire circumferential direction.

【0011】また、反応管内に導入された反応ガスを流
通させるための複数の孔部を各電極に形成すると、各電
極間の反応ガスが均一化されるので、各電極間を同等の
プラズマ状態にさせることができる。また、反応管内に
反応ガスを導入するためのガス導入管を各電極を貫通し
て配設し、ガス導入管のガス流出孔を各電極の間に対応
して設けると、反応ガスが各電極間に直接供給されるの
で、効率よくプラズマを発生させることが可能となる。
Further, when a plurality of holes for allowing the reaction gas introduced into the reaction tube to flow are formed in each electrode, the reaction gas between the electrodes is made uniform, so that an equal plasma state is maintained between the electrodes. You can In addition, if a gas introduction pipe for introducing a reaction gas into the reaction tube is provided so as to penetrate each electrode, and a gas outflow hole of the gas introduction pipe is provided correspondingly between the electrodes, the reaction gas will be applied to each electrode. Since it is directly supplied to the space, it is possible to efficiently generate plasma.

【0012】[0012]

【発明の実施の形態】以下、本発明に係るプラズマ処理
装置を縦型バッチ式のアッシング装置に適用した好まし
い実施の形態について、図1〜図10を参照しつつ詳述
する。まず、図1は第1の実施の形態における装置の概
略縦断面図、図2は図1のA−A線矢視による装置の概
略横断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments in which the plasma processing apparatus according to the present invention is applied to a vertical batch type ashing apparatus will be described in detail below with reference to FIGS. First, FIG. 1 is a schematic vertical cross-sectional view of the device according to the first embodiment, and FIG. 2 is a schematic cross-sectional view of the device taken along the line AA of FIG.

【0013】このアッシング装置1は、装置基台1a上
に鉛直方向に立設された反応管2と、この反応管2内に
設けられた内管3とを備えている。これら反応管2及び
内管3は共に、耐熱材料例えば石英により円筒状に形成
され、上端は閉塞されている。そして、反応管2と内管
3とは所定間隔だけ離間されて同心状に設置されてお
り、全体として二重管構造に構成されている。また、内
管3の側壁には活性種ラジカルが通過可能な複数の孔部
4が一面に設けられており、内管3の外部と内部とは孔
部4を除いて気密が保たれている。孔部4の内径は内管
3の板厚と圧力との関係によって決定される。そして、
内管3内には例えば石英からなるウエハボート5が配置
され、このウエハボート5に被処理基板として複数の半
導体ウエハ6が鉛直方向に所定のピッチで離間積層され
て収容されている。なお、ウエハボート5は、図示しな
いウエハエレベータのような昇降手段によって昇降自在
であると共に、図示しないモータ等からなる回転駆動機
構によって回転されるように構成されている。
The ashing device 1 is provided with a reaction tube 2 which is erected vertically on an apparatus base 1a, and an inner tube 3 which is provided in the reaction tube 2. Both the reaction tube 2 and the inner tube 3 are formed of a heat-resistant material such as quartz into a cylindrical shape, and the upper ends thereof are closed. The reaction tube 2 and the inner tube 3 are concentrically arranged with a predetermined gap therebetween, and have a double tube structure as a whole. Further, a plurality of holes 4 through which active species radicals can pass are provided on one side surface of the inner pipe 3, and the inside and outside of the inner pipe 3 are kept airtight except for the holes 4. . The inner diameter of the hole 4 is determined by the relationship between the plate thickness of the inner tube 3 and the pressure. And
A wafer boat 5 made of, for example, quartz is arranged in the inner tube 3, and a plurality of semiconductor wafers 6 as substrates to be processed are accommodated in the wafer boat 5 while being vertically stacked at a predetermined pitch. The wafer boat 5 can be raised and lowered by a raising and lowering means such as a wafer elevator (not shown), and is rotated by a rotation drive mechanism including a motor and the like (not shown).

【0014】そして、反応管2と内管3との間の空間に
は、複数のリング円盤状のプラズマ発生電極7a及び7
bが鉛直方向に所定のピッチで離間されて積層配置され
ている。これらプラズマ発生電極7a及び7bは一つ置
きにグループ化されており、互いに隣接する電極7a及
び7bにより電極対が複数組構成され、これらの電極対
7a及び7bに高周波電源9から高周波電力が印加され
る。このように配置された各電極7a及び7b間におけ
る電界方向E1 は、反応管2と内管3との間の鉛直方向
(長手方向)になり、内管3の中心へ向かう方向の成分
を持たないことになる。また、反応管2と内管3との間
の空間には、例えば石英からなる反応ガス導入管10が
各電極7a及び7bを貫通して延設され、このガス導入
管10には長手方向に沿って複数のガス流出孔11が設
けられている。なお、ガス流出孔11は各電極7a及び
7bの間に対応して少なくとも一つ以上設けられるのが
好ましい。また、内管3の下方には反応管2内を真空排
気するための排気管12が設けられ、この排気管12に
は図示しない真空排気ポンプが接続されている。なお、
図2に示すように、各電極7a及び7bには反応ガスが
流通可能な複数の孔部8が一面に設けられている。
In the space between the reaction tube 2 and the inner tube 3, a plurality of ring disk-shaped plasma generating electrodes 7a and 7 are formed.
b are stacked and arranged in the vertical direction with a predetermined pitch therebetween. The plasma generating electrodes 7a and 7b are grouped every other group, and a plurality of electrode pairs are formed by the electrodes 7a and 7b adjacent to each other, and high frequency power is applied from the high frequency power source 9 to these electrode pairs 7a and 7b. To be done. The electric field direction E 1 between the respective electrodes 7a and 7b arranged in this way is the vertical direction (longitudinal direction) between the reaction tube 2 and the inner tube 3, and the component in the direction toward the center of the inner tube 3 is I will not have it. In the space between the reaction tube 2 and the inner tube 3, a reaction gas introduction tube 10 made of, for example, quartz is provided so as to penetrate through the electrodes 7a and 7b, and the gas introduction tube 10 extends in the longitudinal direction. A plurality of gas outflow holes 11 are provided along the line. It is preferable that at least one gas outflow hole 11 is provided between the electrodes 7a and 7b. Further, below the inner pipe 3, an exhaust pipe 12 for evacuating the reaction pipe 2 is provided, and a vacuum exhaust pump (not shown) is connected to the exhaust pipe 12. In addition,
As shown in FIG. 2, each of the electrodes 7a and 7b is provided with a plurality of holes 8 through which a reaction gas can flow.

【0015】次に、上記のように構成された第1実施形
態のアッシング装置1の動作について説明する。まず、
複数の半導体ウエハ6をウエハボート5に収容し、昇降
手段により内管3内にロードする。そして、反応管2内
を密閉すると共に回転駆動機構によりウエハボート5を
回転させる。次に、真空排気ポンプを作動させて排気管
12から反応管2内の雰囲気を排気すると共に、ガス導
入管10から反応ガスとして例えばO2 を200SCCMの
流量で反応管2内へ導入し、処理期間中の圧力を例えば
1Torrに維持する。このとき、反応管2と内管3との間
でかつ各プラズマ発生電極7a及び7b間に供給された
反応ガスO2 は、孔部4を通して内管3内に入り排気管
12から排出される。そして、この操作と同時に、各電
極7a及び7bに高周波電源9により高周波電力を印加
し、各電極7a及び7b間にプラズマPを発生させる。
Next, the operation of the ashing apparatus 1 of the first embodiment configured as described above will be described. First,
A plurality of semiconductor wafers 6 are accommodated in the wafer boat 5 and loaded into the inner tube 3 by the elevating means. Then, the inside of the reaction tube 2 is sealed and the wafer boat 5 is rotated by the rotation drive mechanism. Next, the vacuum exhaust pump is operated to exhaust the atmosphere in the reaction tube 2 from the exhaust tube 12, and, for example, O 2 as a reaction gas is introduced from the gas introduction tube 10 into the reaction tube 2 at a flow rate of 200 SCCM to perform the treatment. The pressure during the period is maintained at 1 Torr, for example. At this time, the reaction gas O 2 supplied between the reaction tube 2 and the inner tube 3 and between the plasma generating electrodes 7a and 7b enters the inner tube 3 through the hole 4 and is exhausted from the exhaust tube 12. . At the same time as this operation, high frequency power is applied to the electrodes 7a and 7b by the high frequency power source 9 to generate plasma P between the electrodes 7a and 7b.

【0016】このとき、供給された反応ガスO2 はプラ
ズマP中で解離し、発生した活性種ラジカルO* が半導
体ウエハ6上のフォトレジストと反応し、これをアッシ
ングする。この際、プラズマP中にはイオンが発生する
が、各電極7a及び7b間における電界方向E1 が内管
3の中心へ向かう方向の成分を持たないため、プラズマ
Pが各電極7a及び7b間から漏れ難く、半導体ウエハ
6上にイオンが直接到達することが阻止され、半導体ウ
エハ6に電気的なダメージを与えることはない。そし
て、内管3内には活性種ラジカルO* のみが孔部4を通
過して流通してくることになり、半導体ウエハ6の電気
的なダメージを抑制しつつアッシング処理を行うことが
できる。
At this time, the supplied reaction gas O 2 is dissociated in the plasma P, and the generated active species radical O * reacts with the photoresist on the semiconductor wafer 6 to ash it. At this time, ions are generated in the plasma P, but since the electric field direction E 1 between the electrodes 7a and 7b has no component in the direction toward the center of the inner tube 3, the plasma P is generated between the electrodes 7a and 7b. It is difficult to leak from the semiconductor wafer, ions are prevented from directly reaching the semiconductor wafer 6, and the semiconductor wafer 6 is not electrically damaged. Then, only the active species radical O * flows into the inner tube 3 through the hole portion 4, so that the ashing process can be performed while suppressing the electrical damage of the semiconductor wafer 6.

【0017】なお、各電極7a及び7bが反応管2と内
管3との間に配置されることによって、各電極7a及び
7bの対向面の全体が電極面として機能するので、プラ
ズマPの発生効率を向上させることができる。また、ガ
ス導入管10が各電極7a及び7bを貫通して配設さ
れ、そのガス流出孔11が各電極7a及び7bの間に対
応して設けられていることによって、反応ガスO2 が各
電極7a及び7b間に直接供給されるので、効率よくプ
ラズマPを発生させることができる。さらに、各電極7
a及び7bに形成された複数の孔部8によって、各電極
7a及び7b間の反応ガスO2 が均一化されるので、各
電極7a及び7b間を同等のプラズマ状態にすることが
できる。
Since the electrodes 7a and 7b are arranged between the reaction tube 2 and the inner tube 3, the entire facing surfaces of the electrodes 7a and 7b function as electrode surfaces, so that the plasma P is generated. The efficiency can be improved. In addition, the gas introduction pipe 10 is provided so as to penetrate through the electrodes 7a and 7b, and the gas outflow hole 11 is provided correspondingly between the electrodes 7a and 7b, so that the reaction gas O 2 is Since it is directly supplied between the electrodes 7a and 7b, the plasma P can be efficiently generated. Furthermore, each electrode 7
Since the reaction gas O 2 between the electrodes 7a and 7b is made uniform by the plurality of holes 8 formed in the electrodes a and 7b, it is possible to establish an equivalent plasma state between the electrodes 7a and 7b.

【0018】ところで、プラズマ発生のための電界方向
を内管3の接平面に対してほぼ平行にする例として、上
述の第1実施形態では、リング円盤状の複数のプラズマ
発生電極7a及び7bを鉛直方向に積層配置することに
よって、内管3に対する長手方向の電界方向E1 を形成
したが、内管3に対する周接線方向の電界方向を形成す
るようにしても、同様の作用効果が得られる。
By the way, as an example in which the direction of the electric field for plasma generation is made substantially parallel to the tangential plane of the inner tube 3, in the above-described first embodiment, a plurality of ring disk-shaped plasma generation electrodes 7a and 7b are provided. Although the electric field direction E 1 in the longitudinal direction with respect to the inner tube 3 is formed by stacking the layers in the vertical direction, the same effect can be obtained even if the electric field direction in the circumferential tangential direction with respect to the inner tube 3 is formed. .

【0019】即ち、図3は第2の実施の形態における装
置の概略縦断面図、図4は図3のB−B線矢視による装
置の概略横断面図である。複数の円弧ブロック状のプラ
ズマ発生電極17a及び17bが、反応管2と内管3と
の間の周方向に沿って隣接配置されている。互いに隣接
して電極対を構成する各電極17a及び17bの対向面
は、所定の間隔で平行となっている。また、この形態に
おいては、各電極17a及び17bの対向面間にそれぞ
れガス導入管10が延設され、排気管12も複数設けら
れている。このように配置された各電極17a及び17
bに高周波電源9により高周波電力を印加すると、各電
極17a及び17b間における電界方向E2 は、反応管
2と内管3との間の周接線方向になり、内管3の中心へ
向かう方向の成分を持たないことになる。そして、ガス
導入管10から反応ガスを供給し、各電極17a及び1
7b間にプラズマPを発生させる。
That is, FIG. 3 is a schematic vertical sectional view of the apparatus according to the second embodiment, and FIG. 4 is a schematic transverse sectional view of the apparatus taken along the line BB of FIG. A plurality of arc-shaped block-shaped plasma generating electrodes 17 a and 17 b are arranged adjacent to each other along the circumferential direction between the reaction tube 2 and the inner tube 3. The facing surfaces of the electrodes 17a and 17b that are adjacent to each other and form an electrode pair are parallel to each other at a predetermined interval. Further, in this embodiment, the gas introduction pipe 10 is extended between the facing surfaces of the electrodes 17a and 17b, and a plurality of exhaust pipes 12 are also provided. The electrodes 17a and 17 arranged in this way
When high-frequency power is applied to the b by the high-frequency power source 9, the electric field direction E 2 between the electrodes 17a and 17b becomes the circumferential tangential direction between the reaction tube 2 and the inner tube 3, and is the direction toward the center of the inner tube 3. Will have no ingredients. Then, a reaction gas is supplied from the gas introduction pipe 10 to supply the electrodes 17a and 1
Plasma P is generated between 7b.

【0020】なお、前述の第1実施形態においては、鉛
直方向に積層配置されたリング円盤状の各電極7a及び
7bによって、プラズマPが反応管2と内管3との間の
周方向において全域に発生することになるが、上述の第
2実施形態においては、周方向に隣接配置された円弧ブ
ロック状の各電極17a及び17bによって、プラズマ
Pが反応管2と内管3との間の周方向において部分的
(この形態では4箇所)に発生することになる。従っ
て、この第2実施形態のような場合、周方向に沿った各
電極17a及び17bの配置数を増加させれば、プラズ
マPの発生域を増加させることができる。
In the first embodiment described above, the plasma P is entirely distributed in the circumferential direction between the reaction tube 2 and the inner tube 3 by the ring disk-shaped electrodes 7a and 7b which are vertically stacked. However, in the above-described second embodiment, the plasma P is generated between the reaction tube 2 and the inner tube 3 by the arc block-shaped electrodes 17a and 17b that are adjacently arranged in the circumferential direction. It will occur partially (four points in this embodiment) in the direction. Therefore, in the case of the second embodiment, the generation area of the plasma P can be increased by increasing the number of the electrodes 17a and 17b arranged in the circumferential direction.

【0021】次に、図5は第3の実施の形態における装
置の概略縦断面図、図6は図5のC−C線矢視による装
置の概略横断面図、図7は図5のD−D線矢視による装
置の概略横断面図である。この第3実施形態は、上記第
2実施形態のように配置された複数のプラズマ発生電極
を、周方向へ回転駆動させるように構成したものであ
る。即ち、複数のプラズマ発生電極27a及び27bの
上端が電極ホルダー13に固定され、この電極ホルダー
13の中心軸部13aが内管3の上面部を貫通してウエ
ハボート5の上端部に連結可能となっている。各電極2
7a及び27bの電気的接続は電極ホルダー13側から
ウエハボート5に沿って行われ、図4と同様な高周波電
源9からの通電は例えばウエハボート5に設けたブラシ
給電機構14等により行われる。また、この形態におい
ては、各電極27a及び27bが下方へ延長され、その
下端が例えばボールベアリング15等の滑り機構を介し
て装置基台1a上に安定に支持されている。なお、この
構造に伴って、内管3の下端は装置基台1a上まで延長
されると共に、複数の孔部4も増設されている。そし
て、複数のガス導入管10は、反応管2と各電極27a
及び27bとの間の周方向に沿って配列されている。
Next, FIG. 5 is a schematic vertical sectional view of the apparatus according to the third embodiment, FIG. 6 is a schematic horizontal sectional view of the apparatus taken along the line CC of FIG. 5, and FIG. 7 is a sectional view of FIG. FIG. 3 is a schematic cross-sectional view of the device taken along the line D. The third embodiment is configured such that the plurality of plasma generating electrodes arranged as in the second embodiment are rotationally driven in the circumferential direction. That is, the upper ends of the plurality of plasma generating electrodes 27a and 27b are fixed to the electrode holder 13, and the central shaft portion 13a of the electrode holder 13 can penetrate the upper surface portion of the inner tube 3 and be connected to the upper end portion of the wafer boat 5. Has become. Each electrode 2
Electrical connection between 7a and 27b is made from the electrode holder 13 side along the wafer boat 5, and energization from the high frequency power source 9 similar to that shown in FIG. 4 is made by, for example, the brush feeding mechanism 14 provided in the wafer boat 5. Further, in this embodiment, the electrodes 27a and 27b are extended downward, and the lower ends thereof are stably supported on the apparatus base 1a via a sliding mechanism such as the ball bearing 15 or the like. With this structure, the lower end of the inner pipe 3 is extended to above the apparatus base 1a, and a plurality of holes 4 are also added. The plurality of gas introduction tubes 10 are composed of the reaction tube 2 and each electrode 27a.
And 27b are arranged along the circumferential direction.

【0022】この第3実施形態においては、ウエハボー
ト5の回転と共に電極ホルダー13が回転され、各電極
27a及び27bが周方向へ回転駆動される。これによ
って、各電極27a及び27b間の部分的なプラズマP
の発生域が周方向へ移動されるので、プラズマPを実質
的に周方向の全域に発生させることができる。なお、こ
の形態においては、ウエハボート5の回転を利用するの
で、各電極27a及び27bの特別な回転駆動機構が不
要になるが、ウエハボート5と各電極27a及び27b
との回転方向及び回転速度は同一である。そこで、反転
機構や差動機構等を設けて、両方の回転方向を互いに逆
にしてもよく、また回転速度を異ならせてもよい。これ
らの適宜な設定によって半導体ウエハ6に対する最適な
処理を行うことができる。また、複数のガス導入管10
から反応ガスを供給するが、特に、回転移動する各電極
27a及び27b間のプラズマ発生域に対応してガス導
入管10からガスを順次供給すると、ガスの供給量を効
率よく削減することができる。
In the third embodiment, the electrode holder 13 is rotated as the wafer boat 5 is rotated, and the electrodes 27a and 27b are rotationally driven in the circumferential direction. As a result, the partial plasma P between the electrodes 27a and 27b is
Since the generation area of is moved in the circumferential direction, the plasma P can be generated substantially in the entire area in the circumferential direction. In this embodiment, since the rotation of the wafer boat 5 is used, a special rotation drive mechanism for the electrodes 27a and 27b is unnecessary, but the wafer boat 5 and the electrodes 27a and 27b are not necessary.
The rotation direction and rotation speed of and are the same. Therefore, a reversing mechanism, a differential mechanism, or the like may be provided so that both rotation directions are opposite to each other, or the rotation speeds may be different. Optimal processing can be performed on the semiconductor wafer 6 by these appropriate settings. In addition, a plurality of gas introduction pipes 10
The reaction gas is supplied from the gas introduction tube 10. However, particularly when the gas is sequentially supplied from the gas introduction pipe 10 in correspondence with the plasma generation region between the electrodes 27a and 27b that rotate and move, the gas supply amount can be efficiently reduced. .

【0023】次に、図8は第4の実施の形態における装
置の概略縦断面図、図9は図8のE−E線矢視による装
置の概略横断面図、図10は内管の概略斜視図である。
この第4実施形態においては、上記第3実施形態と同様
な回転式の各電極27a及び27bの上部27a′及び
27b′が、内管3の上方を覆うように屈曲されてい
る。これに対応して、内管3の上面部に複数の孔部4′
が増設されていると共に、反応管2の上方から延設され
た複数のガス導入管10にそれぞれ複数のガス流出孔1
1′が増設されている。
Next, FIG. 8 is a schematic vertical cross-sectional view of the device according to the fourth embodiment, FIG. 9 is a schematic cross-sectional view of the device taken along the line EE of FIG. 8, and FIG. It is a perspective view.
In the fourth embodiment, the upper portions 27a 'and 27b' of the rotary electrodes 27a and 27b similar to those in the third embodiment are bent so as to cover the upper portion of the inner pipe 3. Corresponding to this, a plurality of holes 4'on the upper surface of the inner tube 3
And a plurality of gas outflow holes 1 are respectively provided in the plurality of gas introduction pipes 10 extending from above the reaction pipe 2.
1'is added.

【0024】この第4実施形態によれば、内管3の上方
においても、各電極上部27a′及び27b′により有
効な電界方向E2 を形成することによって、プラズマP
を発生させることが可能となる。従って、内管3の上方
からも活性種ラジカルが孔部4′を通過して内管3内に
進入するので、半導体ウエハ6の処理効率をさらに向上
させることができる。
According to the fourth embodiment, even in the upper part of the inner tube 3, the effective electric field direction E 2 is formed by the electrode upper parts 27a 'and 27b', so that the plasma P
Can be generated. Therefore, the active species radicals also pass through the holes 4 ′ and enter the inner tube 3 from above the inner tube 3, so that the processing efficiency of the semiconductor wafer 6 can be further improved.

【0025】なお、上述した第2〜第4の実施の形態に
おいて、各電極17a及び17b(27a及び27b)
は鉛直方向に一体的に長い形状としたが、各電極を鉛直
方向に複数段に設置してもよい。また、これら各実施形
態の各電極にガス流通用の複数の孔部を設けてもよい。
Incidentally, in the above-mentioned second to fourth embodiments, each electrode 17a and 17b (27a and 27b).
Has a shape that is integrally long in the vertical direction, but each electrode may be installed in multiple stages in the vertical direction. Further, each electrode of each of these embodiments may be provided with a plurality of holes for gas circulation.

【0026】以上、本発明の実施の形態について説明し
たが、本発明は上記の実施の形態に限定されることな
く、本発明の技術的思想に基づいて各種の有効な変更並
びに応用が可能である。例えば、実施の形態ではアッシ
ング装置について説明したが、本発明はプラズマを利用
するエッチング装置やCVD装置等の各種のプラズマ処
理装置に適用可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various effective modifications and applications can be made based on the technical idea of the present invention. is there. For example, although the ashing apparatus has been described in the embodiment, the present invention can be applied to various plasma processing apparatuses such as an etching apparatus and a CVD apparatus that use plasma.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
電界方向が内管の接平面に対してほぼ平行となるよう
に、反応管と内管との間に少なくとも一対のプラズマ発
生電極を配置することによって、被処理基板を収容する
内管内での異常放電やプラズマの漏れ等を抑制できるの
で、被処理基板を活性種ラジカルのみ反応させて、イオ
ンによる電気的なダメージの少ない処理を行うことがで
きる。また、電極対を反応管と内管との間に配置するこ
とによって、各電極の対向面の全体が有効な電極面とな
るので、プラズマの発生効率の向上が可能となり、処理
の高能率化及び省電力化を図ることができる。
As described above, according to the present invention,
By arranging at least a pair of plasma generating electrodes between the reaction tube and the inner tube so that the electric field direction is substantially parallel to the tangential plane of the inner tube, an abnormality occurs in the inner tube that accommodates the substrate to be processed. Since discharge and leakage of plasma can be suppressed, it is possible to cause the substrate to be processed to react only with the active species radicals and perform a process with less electrical damage due to ions. Also, by arranging the electrode pair between the reaction tube and the inner tube, the entire opposing surface of each electrode becomes an effective electrode surface, so that the plasma generation efficiency can be improved and the processing efficiency can be improved. And power saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態におけるアッシング
装置の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of an ashing device according to a first embodiment of the present invention.

【図2】図1のA−A線矢視による装置の概略横断面図
である。
FIG. 2 is a schematic cross-sectional view of the device taken along the line AA of FIG.

【図3】本発明の第2の実施の形態におけるアッシング
装置の概略縦断面図である。
FIG. 3 is a schematic vertical cross-sectional view of an ashing device according to a second embodiment of the present invention.

【図4】図3のB−B線矢視による装置の概略横断面図
である。
4 is a schematic cross-sectional view of the device taken along the line BB of FIG.

【図5】本発明の第3の実施の形態におけるアッシング
装置の概略縦断面図である。
FIG. 5 is a schematic vertical sectional view of an ashing device according to a third embodiment of the present invention.

【図6】図5のC−C線矢視による装置の概略横断面図
である。
6 is a schematic cross-sectional view of the device taken along the line CC of FIG.

【図7】図5のD−D線矢視による装置の概略横断面図
である。
7 is a schematic cross-sectional view of the device taken along the line DD in FIG.

【図8】本発明の第4の実施の形態におけるアッシング
装置の概略縦断面図である。
FIG. 8 is a schematic vertical cross-sectional view of an ashing device according to a fourth embodiment of the present invention.

【図9】図8のE−E線矢視による装置の概略横断面図
である。
9 is a schematic cross-sectional view of the device taken along the line EE of FIG.

【図10】上記第4の実施の形態における内管の概略斜
視図である。
FIG. 10 is a schematic perspective view of an inner pipe according to the fourth embodiment.

【図11】従来のアッシング装置の概略縦断面図であ
る。
FIG. 11 is a schematic vertical sectional view of a conventional ashing device.

【符号の説明】[Explanation of symbols]

1 アッシング装置 2 反応管 3 内管 4 内管側壁の孔部 5 ウエハボート 6 被処理基板(半導体ウエハ) 7a、7b プラズマ発生電極 8 電極のガス流通用孔部 9 高周波電源 10 反応ガス導入管 11 ガス流出孔 12 排気管 13 電極ホルダー 14 ブラシ給電機構 15 ボールベアリング 17a、17b プラズマ発生電極 27a、27b プラズマ発生電極 1 Ashing Device 2 Reaction Tube 3 Inner Tube 4 Holes in Side Wall of Inner Tube 5 Wafer Boat 6 Substrates (Semiconductor Wafers) 7a, 7b Plasma Generation Electrode 8 Electrode Gas Flow Hole 9 High Frequency Power Supply 10 Reaction Gas Introducing Pipe 11 Gas outflow hole 12 Exhaust pipe 13 Electrode holder 14 Brush feeding mechanism 15 Ball bearings 17a, 17b Plasma generating electrodes 27a, 27b Plasma generating electrodes

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応管内に収容された複数の被処理基板
をプラズマを用いて処理するプラズマ処理装置におい
て、 前記複数の被処理基板を収容すべく前記反応管内に設け
られ、活性種ラジカルが通過可能な複数の拡散孔部を有
する内管と、前記反応管と前記内管との間に設けられ、
電界の方向が前記内管の接平面に対してほぼ平行である
少なくとも一対のプラズマ発生電極とを備えたことを特
徴とするプラズマ処理装置。
1. A plasma processing apparatus for processing a plurality of substrates to be processed contained in a reaction tube by using plasma, wherein the reaction tube is provided in the reaction tube to contain the plurality of substrates to be processed, and active species radicals pass therethrough. An inner tube having a plurality of possible diffusion holes, and provided between the reaction tube and the inner tube,
A plasma processing apparatus comprising: at least a pair of plasma generating electrodes whose electric field direction is substantially parallel to a tangential plane of the inner tube.
【請求項2】 前記電界の方向が前記内管に対するほぼ
長手方向となるように、前記電極対が前記反応管と前記
内管との間の長手方向に沿って積層配置されていること
を特徴とする請求項1記載のプラズマ処理装置。
2. The electrode pair is laminated along the longitudinal direction between the reaction tube and the inner tube so that the direction of the electric field is substantially in the longitudinal direction with respect to the inner tube. The plasma processing apparatus according to claim 1.
【請求項3】 前記電界の方向が前記内管に対するほぼ
周接線方向となるように、前記電極対が前記反応管と前
記内管との間の周方向に沿って隣接配置されていること
を特徴とする請求項1記載のプラズマ処理装置。
3. The electrode pairs are arranged adjacent to each other along the circumferential direction between the reaction tube and the inner tube so that the direction of the electric field is substantially the circumferential tangential direction to the inner tube. The plasma processing apparatus according to claim 1, which is characterized in that.
【請求項4】 前記電極対が周方向へ回転駆動されるよ
うに構成されていることを特徴とする請求項3記載のプ
ラズマ処理装置。
4. The plasma processing apparatus according to claim 3, wherein the electrode pair is configured to be rotationally driven in the circumferential direction.
【請求項5】 前記反応管内に導入された反応ガスを流
通させるための複数の孔部が前記各電極に形成されてい
ることを特徴とする請求項1記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein a plurality of holes for allowing the reaction gas introduced into the reaction tube to flow therethrough are formed in each of the electrodes.
【請求項6】 前記反応管内に反応ガスを導入するため
のガス導入管が前記各電極を貫通して配設され、前記ガ
ス導入管のガス流出孔が前記各電極の間に対応して設け
られていることを特徴とする請求項1記載のプラズマ処
理装置。
6. A gas introduction pipe for introducing a reaction gas into the reaction pipe is provided so as to penetrate through each of the electrodes, and a gas outflow hole of the gas introduction pipe is provided correspondingly between the electrodes. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is provided.
JP7227349A 1995-08-11 1995-08-11 Plasma treatment apparatus Withdrawn JPH0955372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227349A JPH0955372A (en) 1995-08-11 1995-08-11 Plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227349A JPH0955372A (en) 1995-08-11 1995-08-11 Plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0955372A true JPH0955372A (en) 1997-02-25

Family

ID=16859417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227349A Withdrawn JPH0955372A (en) 1995-08-11 1995-08-11 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0955372A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286980A1 (en) * 2005-03-01 2008-11-20 Hitachi Kokusai Electric Inc. Substrate Processing Apparatus and Semiconductor Device Producing Method
US20090223448A1 (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US20100206847A1 (en) * 2007-10-19 2010-08-19 Xing Chen Toroidal plasma chamber for high gas flow rate process
US7861668B2 (en) 2002-01-10 2011-01-04 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US7900580B2 (en) * 2002-04-05 2011-03-08 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction container
US8176871B2 (en) * 2006-03-28 2012-05-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US20130098293A1 (en) * 2011-10-20 2013-04-25 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
TWI415206B (en) * 2008-01-31 2013-11-11 Hitachi Int Electric Inc A substrate processing apparatus, and a method of manufacturing the semiconductor device
US20140123897A1 (en) * 2011-09-08 2014-05-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Plasma generation apparatus, cvd apparatus, and plasma-treated particle generation apparatus
US20140174359A1 (en) * 2011-09-09 2014-06-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Plasma generator and cvd device
US9175395B2 (en) 2010-10-26 2015-11-03 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device manufacturing method
US10998171B2 (en) * 2016-08-02 2021-05-04 Beijing Naura Microelectronics Equipment Co., Ltd. Plasma source and semiconductor processing apparatus
US11114287B2 (en) 2018-06-14 2021-09-07 Mks Instruments, Inc. Radical output monitor for a remote plasma source and method of use

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020514B2 (en) 2002-01-10 2011-09-20 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US9373499B2 (en) 2002-01-10 2016-06-21 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US9039912B2 (en) 2002-01-10 2015-05-26 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US7861668B2 (en) 2002-01-10 2011-01-04 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US8544411B2 (en) 2002-01-10 2013-10-01 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US8028652B2 (en) * 2002-01-10 2011-10-04 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
US8047158B2 (en) * 2002-04-05 2011-11-01 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction container
CN101985747A (en) * 2002-04-05 2011-03-16 株式会社日立国际电气 Substrate processing apparatus
US7900580B2 (en) * 2002-04-05 2011-03-08 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction container
US8261692B2 (en) 2002-04-05 2012-09-11 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction container
US8251012B2 (en) 2005-03-01 2012-08-28 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
US20080286980A1 (en) * 2005-03-01 2008-11-20 Hitachi Kokusai Electric Inc. Substrate Processing Apparatus and Semiconductor Device Producing Method
US8176871B2 (en) * 2006-03-28 2012-05-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US9275839B2 (en) * 2007-10-19 2016-03-01 Mks Instruments, Inc. Toroidal plasma chamber for high gas flow rate process
US20100206847A1 (en) * 2007-10-19 2010-08-19 Xing Chen Toroidal plasma chamber for high gas flow rate process
US8461062B2 (en) 2008-01-31 2013-06-11 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US20120122318A1 (en) * 2008-01-31 2012-05-17 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US20090223448A1 (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
TWI415206B (en) * 2008-01-31 2013-11-11 Hitachi Int Electric Inc A substrate processing apparatus, and a method of manufacturing the semiconductor device
US8828141B2 (en) * 2008-01-31 2014-09-09 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US9175395B2 (en) 2010-10-26 2015-11-03 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device manufacturing method
US9593422B2 (en) 2010-10-26 2017-03-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device manufacturing method
US9963785B2 (en) 2010-10-26 2018-05-08 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device manufacturing method
US20140123897A1 (en) * 2011-09-08 2014-05-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Plasma generation apparatus, cvd apparatus, and plasma-treated particle generation apparatus
US10297423B2 (en) * 2011-09-08 2019-05-21 Toshiba Mitsubishi—Electric Industrial Systems Corporation Plasma generation apparatus, CVD apparatus, and plasma-treated particle generation apparatus
US20140174359A1 (en) * 2011-09-09 2014-06-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Plasma generator and cvd device
US20130098293A1 (en) * 2011-10-20 2013-04-25 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
US9410247B2 (en) * 2011-10-20 2016-08-09 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
US10998171B2 (en) * 2016-08-02 2021-05-04 Beijing Naura Microelectronics Equipment Co., Ltd. Plasma source and semiconductor processing apparatus
US11114287B2 (en) 2018-06-14 2021-09-07 Mks Instruments, Inc. Radical output monitor for a remote plasma source and method of use

Similar Documents

Publication Publication Date Title
JP3115015B2 (en) Vertical batch processing equipment
KR100246105B1 (en) Sending apparatus foe semiconductor wafer
JP3144664B2 (en) Processing device and processing method
EP0420958B1 (en) Gas etching of wafers to remove oxide layers
JPH05251391A (en) Plasma processing device for semiconductor wafer
US5417826A (en) Removal of carbon-based polymer residues with ozone, useful in the cleaning of plasma reactors
JPH0955372A (en) Plasma treatment apparatus
CN101023201B (en) Apparatus for the optimization of atmospheric plasma in a plasma processing system
US5591268A (en) Plasma process with radicals
JP2007227375A (en) Long-distance plasma generator
KR20120063484A (en) Plasma processing apparatus and gas supply mechanism for plasma processing apparatus
KR20030013303A (en) Substrate processing apparatus
JP2009038155A (en) Plasma processing device
US20030213561A1 (en) Atmospheric pressure plasma processing reactor
TW201028804A (en) Substrate processing method
JP4126517B2 (en) Vapor processing equipment
JP2004327767A (en) Plasma processing apparatus
JP3266567B2 (en) Vacuum processing equipment
JP2000082698A (en) Plasma processing apparatus
JP2000306851A (en) Single-wafer treatment apparatus
JPH1050681A (en) Plasma etching apparatus
JPH09129611A (en) Etching
WO2022181598A1 (en) Substrate processing device and substrate processing method
WO2022044756A1 (en) Substrate processing device
JPH051072Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105