JPWO2019216235A1 - Angle detector - Google Patents

Angle detector Download PDF

Info

Publication number
JPWO2019216235A1
JPWO2019216235A1 JP2020518258A JP2020518258A JPWO2019216235A1 JP WO2019216235 A1 JPWO2019216235 A1 JP WO2019216235A1 JP 2020518258 A JP2020518258 A JP 2020518258A JP 2020518258 A JP2020518258 A JP 2020518258A JP WO2019216235 A1 JPWO2019216235 A1 JP WO2019216235A1
Authority
JP
Japan
Prior art keywords
scale
angle
sensors
component
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020518258A
Other languages
Japanese (ja)
Other versions
JP7240387B2 (en
JPWO2019216235A5 (en
Inventor
一久 勝又
一久 勝又
直幸 高橋
直幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Manufacturing Co Ltd
Original Assignee
Sankyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Manufacturing Co Ltd filed Critical Sankyo Manufacturing Co Ltd
Publication of JPWO2019216235A1 publication Critical patent/JPWO2019216235A1/en
Publication of JPWO2019216235A5 publication Critical patent/JPWO2019216235A5/ja
Application granted granted Critical
Publication of JP7240387B2 publication Critical patent/JP7240387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction

Abstract

本発明は、回転体の回転による角度変化量を検出する角度検出器を提供する。該角度検出器101は、回転軸線を中心に回転する回転体105と、回転体の回転方向に対する一周に沿って複数の目盛103を有する目盛スケール102と、一周に沿って配置された複数のセンサ201a、201bとを備え、各センサ201a、201bは、複数の目盛103に基づいて角度変化量に応じた信号を出力し、出力信号は、複数の目盛103のうちの1目盛分を1周期1次とする基本波成分と、基本波成分の2以上の整数倍を次数とする高調波成分とを含み、出力信号から算出された角度変位量は、高調波成分に起因して、1目盛分を1周期1次としてその整数倍の次数成分を有する角度誤差成分を含み、複数のセンサ201a、201bの個数は、目盛スケールの目盛数及び角度誤差成分の次数成分に基づいて決定されている。The present invention provides an angle detector that detects an amount of angle change due to rotation of a rotating body. The angle detector 101 includes a rotating body 105 that rotates about a rotation axis, a scale scale 102 having a plurality of scales 103 along the circumference of the rotating body in the rotation direction, and a plurality of sensors arranged along the circumference. Each sensor 201a and 201b includes 201a and 201b, and each sensor 201a and 201b outputs a signal according to the amount of angle change based on the plurality of scales 103, and the output signal is one scale of the plurality of scales 103 in one cycle 1 The amount of angular displacement calculated from the output signal, which includes the following fundamental wave component and the harmonic component whose order is an integral multiple of 2 or more of the fundamental wave component, is one scale due to the harmonic component. The number of the plurality of sensors 201a and 201b is determined based on the scale number of the scale scale and the order component of the angle error component.

Description

本発明は、回転体の回転運動による角度変化量を検出するための角度検出器に関するものである。 The present invention relates to an angle detector for detecting an amount of change in an angle due to a rotational motion of a rotating body.

回転体の回転運動による角度変化量を検出するために、エンコーダ、レゾルバ、インダクトシン、等の角度検出器が使用される。角度検出器は、複数の目盛が配置された目盛スケールと、その複数の目盛を読み取るセンサと、センサからの読み取り情報を回転体の角度変化量に変換する制御部とを備える。目盛スケール又はセンサの何れか一方が回転体に取り付けられている。回転体の角度変化量をより高分解能に読み取るためには、目盛スケールの1目盛の角度間隔を狭めればよいが、目盛は、例えば加工により刻まれるために、無限に細かくすることはできない。より詳細に回転体の角度変化量を測定するために、センサからの読み取り情報に基づく出力信号を制御部で数値演算し、1目盛を細かく分割する方法がある。角度検出器に使用されるセンサからの出力信号は、通常、矩形波若しくは正弦波の形であって、1目盛を1周期360°とし、位相が90°異なる2相の信号である場合が多い。センサからの出力信号が正弦波信号の場合には、2相信号は1目盛を1周期としたcosθ、sinθの形状となる。1目盛を分割する方法として、例えば2相信号を逆正接演算する手法が上げられる(すなわち、θ=tan−1(sinθ/cosθ))。この手法ではセンサからの出力信号の振幅の検出分解能に応じ、角度分解能を向上させることができる。しかし、センサからの出力信号には、理想的な1目盛1周期の正弦波信号とは別に、高調波成分の歪が含まれているために、回転体の真の角度変化量だけでなく、高調波成分の歪に応じて、真の角度変化量とは無関係な量も含まれて測定される。すなわち、指令に基づく回転体の回転による真の角度変化量とセンサからの出力信号を制御部によって変換して得られた測定による角度変化量との間には、高調波成分の影響による真の角度変化量とは無関係な誤差(角度誤差)が生じる。真の角度変化量及び角度誤差を測定するためには、センサからの出力信号に含まれる高調波成分の歪を除去する必要がある。Angle detectors such as encoders, resolvers, and induct thins are used to detect the amount of angle change due to the rotational movement of the rotating body. The angle detector includes a scale scale on which a plurality of scales are arranged, a sensor that reads the plurality of scales, and a control unit that converts information read from the sensor into an amount of change in the angle of a rotating body. Either the scale scale or the sensor is attached to the rotating body. In order to read the amount of change in the angle of the rotating body with higher resolution, the angle interval of one scale on the scale scale may be narrowed, but the scale cannot be made infinitely fine because it is carved by processing, for example. In order to measure the amount of change in the angle of the rotating body in more detail, there is a method in which the output signal based on the information read from the sensor is numerically calculated by the control unit and one scale is finely divided. The output signal from the sensor used in the angle detector is usually in the form of a square wave or a sine wave, and is often a two-phase signal having one scale of 360 ° per period and a phase difference of 90 °. .. When the output signal from the sensor is a sine wave signal, the two-phase signal has the shape of cosθ and sinθ with one scale as one cycle. As a method of dividing one scale, for example, a method of performing an inverse tangent operation on a two-phase signal can be mentioned (that is, θ = tan -1 (sin θ / cos θ)). In this method, the angular resolution can be improved according to the detection resolution of the amplitude of the output signal from the sensor. However, since the output signal from the sensor contains distortion of harmonic components in addition to the ideal one-scale, one-cycle sine wave signal, not only the true amount of change in the angle of the rotating body, but also Depending on the distortion of the harmonic component, an amount irrelevant to the true amount of angle change is also included in the measurement. That is, between the true angle change amount due to the rotation of the rotating body based on the command and the angle change amount due to the measurement obtained by converting the output signal from the sensor by the control unit, the true amount due to the influence of the harmonic component An error (angle error) that is irrelevant to the amount of angle change occurs. In order to measure the true amount of angle change and angle error, it is necessary to remove the distortion of the harmonic component contained in the output signal from the sensor.

更に、角度検出器において、回転体の回転軸線と目盛スケールの中心軸線とは、同軸線上に配置されていることが望ましい。しかし、一般的には、これらの軸線は完全には一致しておらず、これらの軸線間のオフセット(軸線偏心)によって、指令に基づく回転体の回転による真の角度変化量とセンサからの出力信号を制御部によって変換して得られた測定による角度変化量との間には角度誤差が生じる。また、目盛スケールの目盛は、例えば加工により刻まれるため、目盛パターン中心と目盛スケールの回転中心自体がオフセットしていること、1目盛の間隔が理想値に対して誤差を持ち複数の目盛において不均等となっていること、等の品質の問題がある。加えて、角度検出器そのものの検出精度も構成部品の劣化に伴い経年変化すること、等から、これらによっても回転体の回転による真の角度変化量とセンサからの出力信号を制御部によって変換して得られた測定による角度変化量との間には角度誤差が生じる。 Further, in the angle detector, it is desirable that the rotation axis of the rotating body and the center axis of the scale scale are arranged on the coaxial line. However, in general, these axes do not exactly match, and the offset between these axes (axis eccentricity) causes the true angle change due to the rotation of the rotating body based on the command and the output from the sensor. An angle error occurs between the signal and the amount of change in angle due to measurement obtained by converting the signal by the control unit. Further, since the scale of the scale scale is engraved by processing, for example, the center of the scale pattern and the rotation center of the scale scale itself are offset, and the interval of one scale has an error with respect to the ideal value, which is not possible in a plurality of scales. There are quality problems such as equality. In addition, the detection accuracy of the angle detector itself changes over time as the components deteriorate. Therefore, the control unit also converts the true amount of angle change due to the rotation of the rotating body and the output signal from the sensor. There is an angle error with the amount of change in angle due to the measurement obtained.

このような問題により、特許文献1には、位相が90°異なる2相正弦波状信号に含まれる3次の高調波成分の歪を検出して除去する方法が開示され、特許文献2には、位相が90°異なる2相正弦波状信号に含まれる3次及び5次の高調波成分の歪を検出して除去する方法が開示されている。 Due to such a problem, Patent Document 1 discloses a method of detecting and removing distortion of a third-order harmonic component included in a two-phase sinusoidal signal having a phase difference of 90 °, and Patent Document 2 discloses. A method for detecting and removing distortions of harmonic components of the third and fifth orders contained in a two-phase sinusoidal signal having a phase difference of 90 ° is disclosed.

また、特許文献3〜5には、回転軸線に固定された目盛り盤の周囲に、複数の第1目盛り読み取りヘッドと、1個の第2目盛り読み取りヘッドとを備え、下記のように、第2目盛り読み取りヘッドの角度信号Ai,1と各第1目盛り読み取りヘッドの角度信号Ai,jとの差SAi,jを求めて平均値SAVを得ることにより自己校正を行う角度検出器が開示されている。ここで、iは目盛番号(1〜Nの整数、Nは目盛の総数)、jは目盛り読み取りヘッド番号(1〜Nの整数、Nは目盛り読み取りヘッドの総数)である。

Figure 2019216235
Further, Patent Documents 3 to 5 include a plurality of first scale reading heads and one second scale reading head around a scale board fixed to the rotation axis, and the second scale reading head is provided as described below. angle signals a i, 1 and the angle signal a i of the first graduation readhead scale read head, the difference between the j SA i, the angle detector for performing self-calibration by obtaining an average value SAV i seeking j is It is disclosed. Here, i is a scale number (integer of 1 to NG , NG is the total number of scales), j is a scale reading head number (integer of 1 to NH , NH is the total number of scale reading heads).
Figure 2019216235

特開2006−112862号公報Japanese Unexamined Patent Publication No. 2006-112862 特開2008−304249号公報Japanese Unexamined Patent Publication No. 2008-304249 特開2006−98392号公報Japanese Unexamined Patent Publication No. 2006-98392 特開2011−99802号公報Japanese Unexamined Patent Publication No. 2011-99002 特開2011−99804号公報Japanese Unexamined Patent Publication No. 2011-99004

特許文献1、2においては、センサに起因する特定の高調波成分の歪による電気的角度誤差を検出して除去することができる。しかし、センサからの出力信号には、目盛の精度、センサの特性や方式、等によって様々な高調波成分の歪が含まれ、特定の高調波成分の歪を検出することができるだけでは、様々なセンサに対して統一的に高調波成分の歪を除去することはできない。例えば、センサの読み取り方式が光学式と磁気式とでは歪の特性が全く異なり、磁気式でも読み取る目盛が着磁リングと歯車とでは歪の特性が全く異なる。また、センサからの出力信号を増幅するアンプ等の機器を用いる場合、それらの特性による高調波成分の歪も発生する。よって、ある場合では高調波成分の歪を除去することができたとしも、別の場合では高調波成分の歪を除去することができないこともある。 In Patent Documents 1 and 2, the electrical angle error due to the distortion of a specific harmonic component caused by the sensor can be detected and removed. However, the output signal from the sensor contains distortion of various harmonic components depending on the accuracy of the scale, the characteristics and method of the sensor, etc., and it is not possible to detect the distortion of a specific harmonic component. It is not possible to remove the distortion of the harmonic component uniformly for the sensor. For example, the strain characteristics are completely different between the optical and magnetic reading methods of the sensor, and the strain characteristics are completely different between the magnetized ring and the gear, which are read by the magnetic type. Further, when a device such as an amplifier that amplifies the output signal from the sensor is used, distortion of harmonic components also occurs due to those characteristics. Therefore, in some cases, the distortion of the harmonic component can be removed, but in another case, the distortion of the harmonic component cannot be removed.

特許文献3〜5においては、角度検出器は、回転体の回転軸線と目盛スケールの中心軸線との軸線偏心、目盛スケールの品質、角度検出器の経年変化、等によって生じる機械的角度誤差を検出して除去することができる。この手法を用いて更に高精度に回転体の角度変化量を得るためには、1目盛の角度間隔を狭くすることや、高精度の目盛り読み取りヘッドを使用すること等が有効であるが、角度検出器の高コスト化に繋がりやすい。しかし、低コスト化のため目盛の間隔が広い目盛スケールや精度の低い目盛り読み取りヘッドを使用すると、目盛り読み取りヘッドが出力する信号に含まれる高調波成分が電気的角度誤差に影響する量が大きくなり、機械的角度誤差よりも支配的な誤差として現れるため、高精度に回転体の角度変化量を得ることができない。 In Patent Documents 3 to 5, the angle detector detects the mechanical angle error caused by the axis eccentricity between the rotation axis of the rotating body and the central axis of the scale scale, the quality of the scale scale, the aging of the angle detector, and the like. Can be removed. In order to obtain the amount of change in the angle of the rotating body with higher accuracy using this method, it is effective to narrow the angle interval of one scale or to use a highly accurate scale reading head. It tends to lead to higher cost of the detector. However, if a scale scale with wide scale intervals or a scale reading head with low accuracy is used to reduce the cost, the amount of harmonic components contained in the signal output by the scale reading head will increase the amount of influence on the electrical angle error. Since it appears as a dominant error rather than the mechanical angle error, it is not possible to obtain the amount of change in the angle of the rotating body with high accuracy.

従って、本発明の目的は、センサに起因する電気的角度誤差だけでなく、回転体の取り付け精度、目盛スケールの品質、角度検出器の経時変化、等に起因する機械的角度誤差を同時に除去して、高精度に回転体の角度変化量が得られ、低コスト化が可能な角度検出器を提供することである。 Therefore, an object of the present invention is to simultaneously remove not only the electrical angle error caused by the sensor but also the mechanical angle error caused by the mounting accuracy of the rotating body, the quality of the scale scale, the change over time of the angle detector, and the like. Therefore, it is an object of the present invention to provide an angle detector capable of obtaining the amount of change in the angle of the rotating body with high accuracy and reducing the cost.

本発明の1つの観点によれば、角度検出器が、回転軸線を中心に回転する回転体と、回転体の回転方向に対する一周に沿って複数の目盛を有する目盛スケールと、回転体の回転方向に対する一周に沿って配置された少なくとも2つのセンサとを備えて、回転体の回転による角度変化量を検出し、少なくとも2つのセンサの各々は、複数の目盛に基づいて角度変化量に応じた信号を出力し、出力信号は、複数の目盛のうちの1目盛分を1周期1次とする基本波成分と、基本波成分の2以上の整数倍を次数とする高調波成分とを含み、出力信号から算出された角度変位量は、高調波成分に起因して、1目盛分を1周期1次としてその整数倍の次数成分を有する少なくも1つの角度誤差成分を含み、少なくとも2つのセンサの個数は、目盛スケールの目盛数及び少なくとも1つの角度誤差成分の次数に基づいて決定されている。 According to one aspect of the present invention, the angle detector includes a rotating body that rotates about the axis of rotation, a scale scale that has a plurality of scales along the circumference of the rotating body with respect to the rotation direction, and a rotation direction of the rotating body. It is equipped with at least two sensors arranged along the circumference of the rotating body to detect the amount of change in angle due to the rotation of the rotating body, and each of the at least two sensors is a signal according to the amount of change in angle based on a plurality of scales. Is output, and the output signal includes a fundamental wave component having one scale of a plurality of scales as the first order in one cycle and a harmonic component having an integral multiple of two or more of the fundamental wave components as the order, and is output. The amount of angular displacement calculated from the signal includes at least one angular error component having an order component that is an integral multiple of one scale with one cycle as the first order due to the harmonic component, and of at least two sensors. The number is determined based on the number of scales on the scale scale and the order of at least one angular error component.

本発明の一具体例によれば、角度検出器において、少なくとも1つの角度誤差成分は、複数の角度誤差成分であって、少なくとも2つのセンサの個数は、目盛スケールの目盛数及び複数の角度誤差成分の各々の次数に基づいて決定されている。 According to a specific example of the present invention, in the angle detector, at least one angle error component is a plurality of angle error components, and the number of at least two sensors is the number of scales on the scale scale and the plurality of angle errors. It is determined based on the order of each of the components.

本発明の一具体例によれば、角度検出器において、少なくとも2つのセンサの個数は、目盛スケールの目盛数と少なくとも1つの角度誤差成分の次数である1以上の整数との積を割り切ることができない整数に基づいて決定されている。 According to a specific example of the present invention, in an angle detector, the number of at least two sensors is divisible by the product of the number of scales on the scale scale and an integer of one or more, which is the order of at least one angle error component. It is determined based on an integer that cannot be used.

本発明の一具体例によれば、角度検出器において、少なくとも2つのセンサの個数は更に、目盛スケールの目盛数と角度誤差成分の次数との積を割り切ることができない整数で除算した場合の余りに基づいて決定されている。 According to a specific example of the present invention, in an angle detector, the number of at least two sensors is too much when divided by an integer that cannot divide the product of the scale number of the scale scale and the order of the angle error component. It is decided based on.

本発明の一具体例によれば、角度検出器において、少なくとも2つのセンサの個数は更に、目盛スケールの目盛数と角度誤差成分の次数との積を割り切ることができない整数で除算した場合の余りの大きさに応じた重み付けに基づいて決定されている。 According to a specific example of the present invention, in the angle detector, the number of at least two sensors is the remainder when the product of the scale number of the scale scale and the order of the angle error component is further divided by an integer that cannot be divided. It is determined based on the weighting according to the size of.

本発明の一具体例によれば、角度検出器において、回転体の回転方向に対する一周に略等間隔に、割り切ることができない整数に一致する数のセンサ配置予定箇所が設定され、センサ配置予定箇所の何れかに、少なくとも2つのセンサが1つずつ配置されている。 According to a specific example of the present invention, in the angle detector, a number of planned sensor placement locations corresponding to an indivisible integer are set at approximately equal intervals around the rotation direction of the rotating body, and the sensor placement planned locations are set. At least two sensors are arranged one by one in any of the above.

本発明の一具体例によれば、角度検出器において、センサ配置予定箇所の隣接する2つに、少なくとも2つのセンサが1つずつ配置されている。 According to a specific example of the present invention, in the angle detector, at least two sensors are arranged at two adjacent positions where the sensors are planned to be arranged.

本発明の一具体例によれば、角度検出器において、センサ配置予定箇所の各々に、少なくとも2つのセンサが1つずつ配置されている。 According to a specific example of the present invention, in the angle detector, at least two sensors are arranged at each of the planned sensor arrangement locations.

本発明の一具体例によれば、角度検出器において、少なくとも1つの角度誤差成分は、少なくとも2つのセンサの種類によって相違する。 According to a specific example of the present invention, in an angle detector, at least one angle error component differs depending on the type of at least two sensors.

本発明の一具体例によれば、角度検出器は、少なくとも2つのセンサのうちの1つのセンサからの出力信号とそれ以外のセンサからの出力信号との間の出力信号差を求めることによって自己校正されている。 According to a specific example of the present invention, the angle detector self by finding the output signal difference between the output signal from at least one of the two sensors and the output signal from the other sensor. It has been calibrated.

本発明によれば、角度検出器は、センサからの出力信号に含まれる歪に起因する電気的角度誤差と、回転体の取り付け精度、目盛スケールの品質、角度検出器の経時変化、等に起因する機械的角度誤差とを同時に除去して、高精度に回転体の角度変化量が得られ、また、角度検出器は、センサに起因することなく、統一的に高精度に回転体の角度変化量が得られることができる。更に、本発明によれば、安価で精度の低いセンサを使用して回転体の角度変化量の精度を大幅に向上でき、従来の高価で精度の高いセンサを使用する必要はなく、角度検出器の低コスト化を達成することができる。 According to the present invention, the angle detector is caused by an electrical angle error due to distortion contained in an output signal from the sensor, mounting accuracy of a rotating body, quality of scale scale, aging of the angle detector, and the like. The amount of change in the angle of the rotating body can be obtained with high accuracy by simultaneously removing the mechanical angle error, and the angle detector can change the angle of the rotating body with high accuracy without being caused by the sensor. The amount can be obtained. Further, according to the present invention, the accuracy of the angle change amount of the rotating body can be significantly improved by using an inexpensive and low-precision sensor, and it is not necessary to use a conventional expensive and highly accurate sensor, and the angle detector is used. Cost reduction can be achieved.

なお、本発明の他の目的、特徴及び利点は、添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。 It should be noted that other objects, features and advantages of the present invention will become clear from the following description of the examples of the present invention with respect to the accompanying drawings.

本発明の一実施形態としての、目盛スケールが取り付けられた回転体の角度変化量を検出する角度検出器を示す概略図である。It is a schematic diagram which shows the angle detector which detects the angle change amount of the rotating body which attached the scale scale as one Embodiment of this invention. 本発明の別の実施形態としての、目盛スケールが取り付けられた回転体の角度変化量を検出する角度検出器を示す概略図である。It is the schematic which shows the angle detector which detects the angle change amount of the rotating body which attached the scale scale as another embodiment of this invention. 本発明の別の実施形態としての、少なくとも2つのセンサが取り付けられた回転体の角度変化量を検出する角度検出器を示す概略図である。It is the schematic which shows the angle detector which detects the angle change amount of the rotating body which attached at least two sensors as another embodiment of this invention. 本発明の別の実施形態としての、少なくとも2つのセンサが取り付けられた回転体の角度変化量を検出する角度検出器を示す概略図である。It is the schematic which shows the angle detector which detects the angle change amount of the rotating body which attached at least two sensors as another embodiment of this invention. 図1A〜図2Bの角度検出器の制御部の概略図である。It is the schematic of the control part of the angle detector of FIGS. 1A-2B. センサが1目盛中の位置を検出した際に出力する疑似正弦波信号を示す。The pseudo sine wave signal output when the sensor detects the position in one scale is shown. 図4Aの擬似正弦波信号により算出した、1目盛中の位置に対する測定角度と理想角度とを示す。The measurement angle and the ideal angle with respect to the position in one scale calculated by the pseudo sine wave signal of FIG. 4A are shown. 図4Aの擬似正弦波信号により算出した、1目盛中の位置に対する測定角度と理想角度との間の角度誤差を示す。The angle error between the measurement angle and the ideal angle with respect to the position in one scale calculated by the pseudo sine wave signal of FIG. 4A is shown. 目盛数を一定にして、目盛スケール一周の角度誤差次数をセンサ配置予定箇所数で除算して割り切れる/割り切れないに基づいて判定した結果を示す表である。It is a table which shows the result of having made the scale number constant, dividing the angle error order around the scale scale by the number of places where a sensor is planned, and making a judgment based on the fact that it is divisible / not divisible. 目盛数を一定にして、目盛スケール一周の角度誤差次数をセンサ配置予定箇所数で除算した場合の余りの大きさに応じた重み付けに基づいて判定した結果を示す表である。It is a table which shows the result of having determined based on the weighting according to the size of the remainder when the angle error order around the scale scale is divided by the number of places where a sensor is planned to be arranged with the number of scales is constant. センサ配置予定箇所数を一定にして、目盛スケール一周の角度誤差次数をセンサ配置予定箇所数で除算した場合の余りの大きさに応じた重み付けに基づいて判定した結果を示す表である。It is a table which shows the result of having determined based on the weighting according to the size of the remainder when the angle error order around the scale scale is divided by the number of places where a sensor is planned to be arranged with the number of places where a sensor is planned to be arranged constant. センサによる電気的角度誤差と回転体の取り付け精度等による機械的角度誤差が除去される前の回転体の指令角度に対する角度誤差を示す。It shows the angle error with respect to the command angle of the rotating body before the electrical angle error by the sensor and the mechanical angle error due to the mounting accuracy of the rotating body are removed. 回転体の指令角度を目盛に換算した場合の図6Aの一部の拡大図である。It is an enlarged view of a part of FIG. 6A when the command angle of a rotating body is converted into a scale. センサによる電気的角度誤差と回転体の取り付け精度等による機械的角度誤差が除去される前の回転体の一周を1周期1次とした角度誤差に対してフーリエ変換を実行することによって得られたスペクトル強度を示す。It was obtained by executing the Fourier transform on the angle error in which the circumference of the rotating body was set to the first order in one cycle before the electrical angle error by the sensor and the mechanical angle error due to the mounting accuracy of the rotating body were removed. Shows the spectral intensity. センサによる電気的角度誤差と回転体の取り付け精度等による機械的角度誤差が除去された後の回転体の指令角度に対する角度誤差を示す。The angle error with respect to the command angle of the rotating body after the electrical angle error by the sensor and the mechanical angle error due to the mounting accuracy of the rotating body are removed is shown. 回転体の指令角度を目盛に換算した場合の図7Aの一部の拡大図である。It is an enlarged view of a part of FIG. 7A when the command angle of a rotating body is converted into a scale. センサによる電気的角度誤差と回転体の取り付け精度等による機械的角度誤差が除去された後の回転体の一周を1周期1次とした角度誤差に対してフーリエ変換を実行することによって得られたスペクトル強度を示す。It was obtained by executing the Fourier transform on the angle error in which the circumference of the rotating body is set to the first order in one cycle after the electrical angle error by the sensor and the mechanical angle error due to the mounting accuracy of the rotating body are removed. Shows the spectral intensity.

以下、本発明の実施例について図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to these examples.

図1A〜図2Bに、回転軸線108を中心に回転する回転体105と、回転体105の回転方向106に対する一周に沿って複数の目盛103を有する目盛スケール102と、回転体105の回転方向106に沿って、センサ配置予定箇所202a〜202iに配置された少なくとも2つのセンサ201a〜201iとを備える角度検出器101を示す。ここで、目盛スケール102が有する目盛103とは、例えば加工により目盛スケール102に実際に刻まれたような視覚的に認識できるものだけではなく、目盛スケール102における所定の位置間隔を1目盛分の間隔としてセンサ201a〜201iに対して読み取らせることができるものであればよく、目盛スケール102は、そのような目盛103が複数配置された部材である。角度検出器101の代表例としては、エンコーダ、レゾルバ、インダクトシン、等があるが、本発明を適用することができれば特に原理は問われない。また、センサ201a〜201iは、目盛スケール102の目盛103を読み取ることができれば特に原理は問われない。センサ201a〜201iとしては、例えば、光学式センサ、磁気式センサ、コイル、等がある。また、目盛スケール102は、センサ201a〜201iが目盛103を読み取ることができるものであればよく、材質、目盛103の配置の方法、等は問われない。センサ201a〜201iは、回転体105の回転方向106に対する一周107、すなわち全周に沿ってセンサ配置予定箇所202a〜202iに配置されている。角度検出器101は、回転体105の回転による角度変化量Xを、回転方向106に沿って配置された複数の目盛103を使用することによってセンサ201a〜201iからの出力信号に基づいて検出する。センサ201a〜201iの各々は、複数の目盛103に基づいて、回転体105の回転による角度変化量に応じた信号204を出力する。ここで、隣接する2つの目盛103間の幅、すなわち1目盛の角度間隔104はXで示される。1A to 2B show a rotating body 105 rotating about the rotation axis 108, a scale scale 102 having a plurality of scales 103 along the circumference of the rotating body 105 with respect to the rotation direction 106, and a rotation direction 106 of the rotating body 105. Indicates an angle detector 101 including at least two sensors 201a to 201i arranged at planned sensor placement locations 202a to 202i. Here, the scale 103 included in the scale scale 102 is not only one that can be visually recognized as if it was actually engraved on the scale scale 102 by processing, for example, but also a predetermined position interval on the scale scale 102 for one scale. Anything that can be read by the sensors 201a to 201i as an interval is sufficient, and the scale scale 102 is a member in which a plurality of such scales 103 are arranged. Typical examples of the angle detector 101 include an encoder, a resolver, an induct thin, and the like, but the principle is not particularly limited as long as the present invention can be applied. Further, the principle of the sensors 201a to 201i is not particularly limited as long as the scale 103 of the scale scale 102 can be read. Examples of the sensors 201a to 201i include an optical sensor, a magnetic sensor, a coil, and the like. Further, the scale scale 102 may be any as long as the sensors 201a to 201i can read the scale 103, and the material, the method of arranging the scale 103, and the like are not limited. The sensors 201a to 201i are arranged around the circumference 107 of the rotating body 105 with respect to the rotation direction 106, that is, at the planned sensor placement locations 202a to 202i along the entire circumference. Angle detector 101, the angle variation X p by the rotation of the rotating body 105, the detection is based on the output signal from the sensor 201a~201i by using a plurality of graduations 103 which are arranged along the rotational direction 106 .. Each of the sensors 201a to 201i outputs a signal 204 according to the amount of change in the angle due to the rotation of the rotating body 105 based on the plurality of scales 103. Here, the width between two adjacent scales 103, that is, the angle interval 104 of one scale is indicated by X.

図1Aには、回転体105の一周107に沿って2つのセンサ201a、201bが配置され、目盛スケール102が取り付けられた回転方向106に沿って回転する回転体105の角度変化量Xを検出する角度検出器101が示され、図1Bには、回転体105の一周107に沿って、9つのセンサ201a〜201iが配置され、目盛スケール102が取り付けられた回転方向106に沿って回転する回転体105の角度変化量Xを検出する角度検出器101が示され、図2Aには、回転体105の一周107に沿って、3つのセンサ201a、201b、201dが配置され、3つのセンサ201a、201b、201dが取り付けられた回転方向106に沿って回転する回転体105の角度変化量Xを検出する角度検出器101が示され、図2Bには、回転体105の一周107に沿って、9つのセンサ201a〜201iが配置され、9つのセンサ201a〜201iが取り付けられた回転方向106に沿って回転する回転体105の角度変化量Xを検出する角度検出器101が示される。FIG 1A, 2 two sensors 201a along the circumference 107 of the rotary member 105, 201b is arranged, detects an angle change amount X p of the rotating body 105 to rotate in the rotational direction 106 of graduated scale 102 is attached The angle detector 101 is shown, and in FIG. 1B, nine sensors 201a to 201i are arranged along the circumference 107 of the rotating body 105, and the rotation is rotated along the rotation direction 106 to which the scale scale 102 is attached. indicated angle detector 101 for detecting an angle change amount X p body 105, FIG. 2A, along the circumference 107 of the rotary member 105, three sensors 201a, 201b, 201d are arranged, three sensors 201a , 201b, the angle detector 101 for detecting an angle change amount X p of the rotating body 105 to rotate in the rotational direction 106 201d is attached is shown in the Figure 2B, along the circumference 107 of the rotary member 105 are arranged nine sensors 201A~201i, the angle detector 101 for detecting an angle change amount X p of the rotating body 105 to rotate in the rotational direction 106 of the nine sensors 201A~201i is attached is shown.

図3に示すように、角度検出器101は更に、センサ201a〜201iに接続され、センサ201a〜201iの読み取り情報を回転体105の角度変化量Xに変換する制御部203を備える。変換された角度変化量Xは、表示装置211、等に出力され、又は、回転体105を駆動するモータ、回転体105の制御装置、等にフィードバックされてもよい。As shown in FIG. 3, the angle detector 101 further connected to the sensor 201A~201i, a control unit 203 for converting the read information of the sensor 201A~201i the angle variation X p of the rotary body 105. The converted angle change amount Xp may be output to the display device 211, etc., or may be fed back to the motor for driving the rotating body 105, the control device for the rotating body 105, and the like.

センサ201a〜201iは、一般的に、目盛スケール102との相対運動が生じたとき、読み取られた目盛103と1目盛の角度間隔104に基づいて、複数の目盛103のうちの1目盛を1周期1次とし角度変化量に応じて振幅が変化する出力信号204を出力することができる。また、制御部203は、センサ201a〜201iからの出力信号204と、ある時間までに数えた目盛検出数Mとから、回転体105の角度変化量Xに変換することができる。図1A〜図2Bに示すように、目盛スケール102とセンサ201a〜201iとの間の相対運動によって、例えば、センサ201a〜201iからそれぞれ図5Aに示すような位相が90°異なる2つの擬似正弦波信号(A相信号(A(0))及びB相信号(B(0)))が出力信号204として出力される場合、制御部203は、センサ201a〜201iのそれぞれによって出力された擬似正弦波信号を取得し、各センサ201a〜201iからの2つの擬似正弦波信号のうちの位相が90°遅れた一方の擬似正弦波信号(B相信号(B(0))を他方の擬似正弦波信号(A相信号(A(0))で除算したものを逆正接演算することによって1目盛を分割して、以下のように回転体105の仮の角度変化量X (0)を算出する。

Figure 2019216235

ここで、θ(0)=tan−1(B(0)/A(0))は0〜2πの範囲となるように数値処理されている。また目盛検出数Mは、θ(0)=tan−1(B(0)/A(0))が0と2πの境界を超えるタイミングで、そのカウント値を増減させる等の処理で検出可能であって、その方法については問われない。図1A〜図2Bのように、目盛スケール102又はセンサ201a〜201iを回転体105に取り付けて回転させる場合には、制御部203は、回転体105の回転による角度変位量Xとして算出できる。Sensors 201a to 201i generally cycle one of a plurality of scales 103 based on the read scale 103 and the angular distance 104 of one scale when a relative movement with the scale scale 102 occurs. It is possible to output an output signal 204 which is primary and whose amplitude changes according to the amount of change in angle. The control unit 203 includes an output signal 204 from the sensor 201A~201i, and a scale detection number M counted until a certain time, it can be converted into angle variation X p of the rotary body 105. As shown in FIGS. 1A to 2B, due to the relative motion between the scale scale 102 and the sensors 201a to 201i, for example, two pseudo sine waves having 90 ° different phases as shown in FIG. 5A from the sensors 201a to 201i, respectively. When the signal (A-phase signal (A (0) ) and B-phase signal (B (0) )) is output as the output signal 204, the control unit 203 uses the pseudo sine wave output by each of the sensors 201a to 201i. The signal is acquired, and one of the two pseudo-sine wave signals from the sensors 201a to 201i whose phase is delayed by 90 ° (B-phase signal (B (0) )) is replaced with the other pseudo-sine wave signal. (A phase signal (A (0) ) divided by the inverse tangent calculation is performed to divide one scale, and the provisional angle change amount X p (0) of the rotating body 105 is calculated as follows.
Figure 2019216235

Here, θ (0) = tan -1 (B (0) / A (0) ) is numerically processed so as to be in the range of 0 to 2π. The scale detection number M can be detected by processing such as increasing or decreasing the count value at the timing when θ (0) = tan -1 (B (0) / A (0)) exceeds the boundary between 0 and 2π. There is no question about how to do it. As shown in FIG 1A~ Figure 2B, the case of rotating by attaching the graduated scale 102 or sensor 201a~201i the rotating body 105, the control unit 203 can be calculated as the angle displacement amount X p by the rotation of the rotary member 105.

しかし、この算出された仮の角度変化量X (0)と理想とされる角度検出器101より得られるべき回転体105の角度変化量Xpidealとの間には誤差が生じる(理想的には、X=Xpidealになるのがよい)。図1A〜図2Bの回転体105が等速に回転運動して、回転体105の角度が変化するように回転指令した場合、図4Bに示すように、理想的には、回転体105が指令値に対して誤差なく回転運動が可能であると仮定すると、回転体105の回転運動によって回転体105の角度が増加するに従って、センサ201a〜201iからの出力信号204から算出された角度変化量Xは線形的に増加し、回転体105の角度と理想的な角度変化量Xpidealとの間に角度誤差は無い。しかし、実際には、センサ201a〜201iからの出力信号204から算出された角度変化量Xと理想的な角度変化量Xpidealとの間には角度誤差が生じる。この角度誤差の一因として、算出された角度変化量Xには、回転体105の回転に伴い複数の目盛103を検出する過程において、回転体105の回転軸線108と目盛スケール102の中心軸線との軸線偏心、目盛スケール102の品質、角度検出器101の経年変化、等によって生じる余分な量(機械的角度誤差と呼称する)が含まれ、また、出力信号204にはセンサ201a〜201iの特性に起因する余分な歪が含まれていることにある(センサ201a〜201iの特性に起因する角度誤差を電気的角度誤差と呼称する)。より具体的には、このセンサ201a〜201iによる電気的角度誤差の原因は、センサ201a〜201iからの出力信号が、複数の目盛103のうちの1目盛分を1周期1次とする基本波成分と、基本波成分の2以上の整数倍を次数とする高調波成分とを含んでいることにある。例えば、センサ201a〜201iからそれぞれ図4Aに示すような位相が90°異なる2つの擬似正弦波信号(A相信号(A(0))及びB相信号(B(0)))が出力信号204として出力される場合、センサ201a〜201iから出力された2つの擬似正弦波信号が、複数の目盛103のうちの1目盛分を1周期1次とする理想波となる基本波成分cos(θ)、sin(θ)と、次のように、基本波成分の2以上の整数倍を次数とする高調波成分(次数kが2以上の整数の場合の成分)を含んでいることにあって、このセンサ201a〜201iの高調波成分が、上記[数2]のように逆正接演算する際に角度変化量Xに影響を及ぼし、図4Cに示すように、電気的角度誤差が生じている。

Figure 2019216235

ここで、a及びbは、1目盛を1周期とする1次の基本波成分の振幅を1とした場合の次数kの高調波成分のゲインであって、φa及びφbは、次数kの高調波成分の基本波成分に対する位相差である。なお、a、b、φa、φbは、一般的には、異なる目盛103であっても変化しないか、又は変化したとしても小さい相違である。なお、a、b、φa、φbは、センサ201a〜201iや目盛スケール102の特性、検出原理により決定付けられ、例えば、センサ201a〜201iが光検出型センサであれば目盛スケール102の目盛パターンの反射・透過特性や受光部の感度特性により決定付けられ、センサ201a〜201iが半導体磁気抵抗型センサであれば半導体の磁気抵抗特性により決定付けられ、また、半導体磁気抵抗型センサを使用する場合において、磁気検出に平歯車を使用すると、歯の形状特性により決定付けられる。このように、出力信号204に含まれる高調波成分は、センサ201a〜201i等の種類によって相違する。なお、センサ201a〜201iは、実質的に同一の基本波成分及び高調波成分を含む出力信号204を出力するセンサであることが好ましい。例えば、センサ201a〜201iは同一の種類であってもよい。However, an error occurs between the calculated temporary angle change amount X p (0) and the angle change amount X pideal of the rotating body 105 that should be obtained from the ideal angle detector 101 (ideally). Should be X p = X political). When the rotating body 105 of FIGS. 1A to 2B rotates at a constant speed and is commanded to rotate so that the angle of the rotating body 105 changes, ideally, the rotating body 105 commands as shown in FIG. 4B. Assuming that rotational movement is possible without error with respect to the value, the amount of change in angle X calculated from the output signals 204 from the sensors 201a to 201i as the angle of the rotating body 105 increases due to the rotational movement of the rotating body 105. p increases linearly, and there is no angle error between the angle of the rotating body 105 and the ideal amount of change in angle X pideal. In practice, however, the angle error is generated between the angle variation X p and the ideal angle variation X Pideal calculated from the output signal 204 from the sensor 201A~201i. As one of the causes of this angle error, the calculated angle change amount Xp includes the rotation axis 108 of the rotating body 105 and the central axis of the scale scale 102 in the process of detecting a plurality of scales 103 with the rotation of the rotating body 105. Axis eccentricity with, quality of scale scale 102, aging of angle detector 101, etc. include extra quantities (referred to as mechanical angle error), and the output signal 204 includes sensors 201a-201i. It is due to the inclusion of extra distortion due to the characteristics (angle errors due to the characteristics of the sensors 201a to 201i are referred to as electrical angle errors). More specifically, the cause of the electrical angle error due to the sensors 201a to 201i is that the output signal from the sensors 201a to 201i is a harmonic component in which one scale of the plurality of scales 103 is one cycle primary. And a harmonic component having an order of two or more integral multiples of the fundamental wave component. For example, two pseudo sine wave signals (A phase signal (A (0) ) and B phase signal (B (0) )) having phases different from each other by 90 ° as shown in FIG. 4A are output signals 204 from the sensors 201a to 201i. When the two pseudo sine wave signals output from the sensors 201a to 201i are output as, the fundamental wave component cos (θ) which is an ideal wave in which one scale of the plurality of scales 103 is one cycle primary. , Sine (θ) and a harmonic component (a component when the order k is an integer of 2 or more) whose order is an integral multiple of 2 or more of the fundamental wave component, as shown below. harmonic components of the sensor 201a~201i is, affects the angle variation X p when arctangent calculation as described above [Equation 2], as shown in FIG. 4C, the electrical angle error has occurred ..
Figure 2019216235

Here, a k and b k are gains of harmonic components of degree k when the amplitude of the first-order fundamental wave component with one scale as one cycle is 1, and φ a k and φ b k are. This is the phase difference of the harmonic component of order k with respect to the fundamental wave component. Incidentally, a k, b k, φa k, φb k is generally unchanged or even different scales 103, or difference is small as changed. Incidentally, a k, b k, φa k, φb k is characteristic of the sensor 201a~201i and graduated scale 102, dictated by the detection principle, for example, graduated scale 102 if sensor 201a~201i is a light detection type sensor It is determined by the reflection / transmission characteristics of the scale pattern and the sensitivity characteristics of the light receiving part. If the sensors 201a to 201i are semiconductor magnetic resistance type sensors, it is determined by the magnetic resistance characteristics of the semiconductor. When used, the use of spur gears for magnetic detection is determined by the shape characteristics of the teeth. As described above, the harmonic components included in the output signal 204 differ depending on the type of the sensors 201a to 201i and the like. The sensors 201a to 201i are preferably sensors that output an output signal 204 containing substantially the same fundamental wave component and harmonic component. For example, the sensors 201a to 201i may be of the same type.

また、上記のように、角度誤差には、センサ201a〜201iの特性に起因する電気的角度誤差だけでなく、回転体105の取り付け精度、目盛スケール102の品質、角度検出器101の経時変化、等に起因する機械的角度誤差も含まれている。 Further, as described above, the angle error includes not only the electrical angle error due to the characteristics of the sensors 201a to 201i, but also the mounting accuracy of the rotating body 105, the quality of the scale scale 102, and the change with time of the angle detector 101. It also includes mechanical angle errors due to such factors.

そこで、センサ201a〜201iの特性に起因する電気的角度誤差、及び回転体105の取り付け精度、目盛スケール102の品質、角度検出器101の経時変化、等に起因する機械的角度誤差を除去するために、上記のように、角度検出器101は、回転体105の回転方向106に対する一周に沿って複数の目盛103を有する目盛スケール102と、回転体105の回転方向106に対する一周に沿って、センサ配置予定箇所202a〜202iに配置された少なくとも2つのセンサ201a〜201iとを備え、更に、図3に示すように、制御部203は、これらのセンサ201a〜201iからの出力信号204を演算処理する信号処理部209を備える。 Therefore, in order to eliminate the electrical angle error caused by the characteristics of the sensors 201a to 201i, and the mechanical angle error caused by the mounting accuracy of the rotating body 105, the quality of the scale scale 102, the change with time of the angle detector 101, and the like. As described above, the angle detector 101 has a scale scale 102 having a plurality of scales 103 along the circumference of the rotating body 105 with respect to the rotation direction 106, and a sensor along the circumference of the rotating body 105 with respect to the rotation direction 106. At least two sensors 201a to 201i arranged at the planned arrangement locations 202a to 202i are provided, and as shown in FIG. 3, the control unit 203 arithmetically processes the output signals 204 from these sensors 201a to 201i. A signal processing unit 209 is provided.

なお、制御部203は、信号処理部209による出力信号204の演算処理に先立って、出力信号204を取得するための入力部205、出力信号204のノイズを除去するノイズフィルタ206、出力信号204を増幅する増幅器207、及び出力信号204をアナログ値からデジタル値に変換するA/D変換器208を備えていてもよい。デジタル値に変換された出力信号204が、信号処理部209に出力される。また、制御部203は、信号処理部209によるデータの書き込み/読み出しを行う記憶部210を備えていてもよい。信号処理部209は、出力信号204が位相の異なる2相の信号である場合には、2相間の振幅、オフセット、位相差を調整できてもよい。なお、調整しない場合でも各センサの信号特性が同レベルであれば、これらの値はほぼ同じになると考えられ、本発明によって電気的角度誤差を除去することができる。 The control unit 203 sets the input unit 205 for acquiring the output signal 204, the noise filter 206 for removing the noise of the output signal 204, and the output signal 204 prior to the arithmetic processing of the output signal 204 by the signal processing unit 209. An amplifier 207 for amplification and an A / D converter 208 for converting an output signal 204 from an analog value to a digital value may be provided. The output signal 204 converted into a digital value is output to the signal processing unit 209. Further, the control unit 203 may include a storage unit 210 that writes / reads data by the signal processing unit 209. When the output signal 204 is a two-phase signal having different phases, the signal processing unit 209 may be able to adjust the amplitude, offset, and phase difference between the two phases. Even when not adjusted, if the signal characteristics of the sensors are at the same level, these values are considered to be substantially the same, and the electrical angle error can be eliminated by the present invention.

センサ201a〜201iからの出力信号204のうちの1つを基準センサ(例えば、センサ201a)として、基準センサからの出力信号204と、それ以外の各センサ(例えば、センサ201b〜201i)の出力信号204との間の出力信号差を求め、求められたそれ以外のセンサとの出力信号差についての平均値を得ることによって、機械的角度誤差を除去するための校正値を得ることができる。この校正値を、算出された回転体105の仮の角度変化量X (0)に対して足し引きすることで、真の角度変化量Xを検出することができ、角度検出器101は、機械的角度誤差について自己校正される。しかし、センサ201a〜201iを単に回転体105の回転方向106に沿って配置しただけでは、電気的角度誤差を除去することはできない。これは上記のように、センサ201a〜201iの各々の出力信号204は、複数の目盛103のうちの1目盛分を1周期1次とする基本波成分と、基本波成分の2以上の整数倍を次数とする高調波成分とを含み、出力信号204から算出された仮の角度変位量X (0)は、出力信号204の1つ以上の高調波成分に起因して、目盛103の1目盛分を1周期1次としてその整数倍の次数成分を有する少なくとも1つの角度誤差成分を含んでいるからである。One of the output signals 204 from the sensors 201a to 201i is used as a reference sensor (for example, sensor 201a), and the output signal 204 from the reference sensor and the output signals of the other sensors (for example, sensors 201b to 201i) are used. By obtaining the output signal difference from 204 and obtaining the average value of the obtained output signal difference from other sensors, a calibration value for removing the mechanical angle error can be obtained. By adding and subtracting this calibration value to the calculated temporary angle change amount X p (0) of the rotating body 105, the true angle change amount X p can be detected, and the angle detector 101 can detect the true angle change amount X p. , Self-calibrated for mechanical angle error. However, the electrical angle error cannot be eliminated by simply arranging the sensors 201a to 201i along the rotation direction 106 of the rotating body 105. As described above, each output signal 204 of the sensors 201a to 201i has a fundamental wave component in which one scale of the plurality of scales 103 is the first order in one cycle, and an integral multiple of two or more of the fundamental wave components. The tentative angular displacement amount X p (0) calculated from the output signal 204, including the harmonic component of order, is 1 of the scale 103 due to one or more harmonic components of the output signal 204. This is because it contains at least one angle error component having an order component that is an integral multiple of the scale with the first order in one cycle.

センサ201a〜201iの特性に起因する電気的角度誤差を除去するためには、回転体105の回転方向106に対する一周107に沿った目盛スケール102の目盛数N、及びセンサ201a〜201iからの出力信号204に含まれる高調波成分に起因する1目盛における角度誤差成分の次数pに基づいて、回転体105の回転方向106に対する一周107に沿って配置されるセンサ201a〜201iの個数を適切に選択する必要がある。ここで、角度誤差成分の次数とは、角度誤差成分が有する次数のことであって、角度誤差成分の次数は、目盛103の1目盛分を1周期1次とするとその整数倍である。例えば、図1A〜図2Bのように、目盛スケール102の目盛数が32であって、出力信号204に含まれる高調波成分に起因する1目盛における角度誤差成分の次数がpである場合には、目盛スケール102の目盛数32、及び角度誤差成分の次数pに基づいて、一周107に沿って配置されるセンサ201a〜201iの個数を選択する。なお、角度誤差成分の次数pは、推定で見積ってもよいし、目盛スケール102の一周における角度誤差成分を算出した結果から決定してもよい。参考として、電気的角度誤差が顕著に現れる角度誤差成分の次数pは5以下であることが多い。或いは、事前にセンサ201a〜201iからの出力信号204から高調波成分を抽出し、除去が必要となる角度誤差成分の次数pを決定してもよい。また、センサ201a〜201iからの出力信号204が、図3のように、入力部205、ノイズフィルタ206、増幅器207、A/D変換器208、等を介して信号処理部209に入力される場合には、信号処理部209に入力される信号に含まれる高調波成分を抽出し、除去が必要となる角度誤差成分の次数pに基づいてセンサ201a〜201iの個数を適切に選択してもよい。 In order to eliminate the electrical angle error caused by the characteristics of the sensors 201a to 201i, the scale number N of the scale scale 102 along the circumference 107 with respect to the rotation direction 106 of the rotating body 105, and the output signals from the sensors 201a to 201i. Based on the order p of the angle error component in one scale due to the harmonic component included in 204, the number of sensors 201a to 201i arranged along the circumference 107 with respect to the rotation direction 106 of the rotating body 105 is appropriately selected. There is a need. Here, the order of the angle error component is the order of the angle error component, and the order of the angle error component is an integral multiple of the order of one scale of the scale 103, where one cycle is the first order. For example, as shown in FIGS. 1A to 2B, when the scale number of the scale scale 102 is 32 and the order of the angle error component in one scale due to the harmonic component included in the output signal 204 is p. , The number of the sensors 201a to 201i arranged along the circumference 107 is selected based on the scale number 32 of the scale scale 102 and the order p of the angle error component. The order p of the angle error component may be estimated by estimation, or may be determined from the result of calculating the angle error component in one round of the scale scale 102. As a reference, the order p of the angle error component in which the electrical angle error appears remarkably is often 5 or less. Alternatively, the harmonic component may be extracted in advance from the output signals 204 from the sensors 201a to 201i to determine the order p of the angle error component that needs to be removed. Further, when the output signals 204 from the sensors 201a to 201i are input to the signal processing unit 209 via the input unit 205, the noise filter 206, the amplifier 207, the A / D converter 208, etc., as shown in FIG. The number of sensors 201a to 201i may be appropriately selected based on the order p of the angle error component that needs to be removed by extracting the harmonic component included in the signal input to the signal processing unit 209. ..

また、出力信号204から算出された仮の角度変化量X (0)は、出力信号204に含まれる1つ以上の高調波成分に起因して、目盛103の1目盛分を1周期1次として、それぞれがその整数倍の次数成分を有する複数の角度誤差成分を含んでいて、角度誤差成分が複数の角度誤差成分であってもよい。センサ201a〜201iの個数は、目盛スケール102の目盛数N、及びその複数の角度誤差成分の各々の次数に基づいて、回転体105の回転方向106に対する一周107に沿って配置されるセンサ201a〜201iの個数を適切に選択する必要がある。例えば、出力信号204の1つ以上の高調波成分に起因して、出力信号204から算出された仮の角度変化量X (0)は、次数p=1、p=2の2つの角度誤差成分が含まれ、図1A〜図2Bのような場合には、目盛スケール102の目盛数32、及び2つの角度誤差成分の次数p=1とp=2に基づいて、回転体105の回転方向106に対する一周107に沿って配置されるセンサ201a〜201iの個数を選択する。Further, the provisional angle change amount X p (0) calculated from the output signal 204 is caused by one or more harmonic components included in the output signal 204, and one scale of the scale 103 is set to the first order in one cycle. As a result, a plurality of angle error components may be included, each of which has an order component that is an integral multiple of the order component, and the angle error component may be a plurality of angle error components. The number of sensors 201a to 201i is based on the scale number N of the scale scale 102 and the order of each of the plurality of angular error components, and the sensors 201a to 201a are arranged along the circumference 107 with respect to the rotation direction 106 of the rotating body 105. It is necessary to appropriately select the number of 201i. For example, the provisional angular change amount X p (0) calculated from the output signal 204 due to one or more harmonic components of the output signal 204 has two angular errors of order p = 1 and p = 2. In the case where the components are included and as shown in FIGS. 1A to 2B, the rotation direction of the rotating body 105 is based on the scale number 32 of the scale scale 102 and the orders p = 1 and p = 2 of the two angle error components. The number of sensors 201a to 201i arranged along the circumference 107 with respect to 106 is selected.

センサ201a〜201iの個数は、目盛スケール102の目盛数Nと1目盛における角度誤差成分の次数pとの積を割り切ることができない整数に基づいて決定されてもよい。すなわち、角度誤差成分の具体的な大きさ等は、回転体105の一周に対しては目盛数だけ目盛の各々の個体差をもって現れるが、1目盛に発生する角度誤差成分の次数pは何れの目盛でも同じであるために、目盛スケール102の一周における電気的角度誤差は、次数N=N(目盛スケール102の目盛数)×p(1目盛における角度誤差成分の次数)として現れ、次数Nを割り切ることができない整数に基づいて、センサ201a〜201iの個数は決定されてもよい。これによって、センサ201a〜201iはそれぞれ、位相の異なる出力信号204を出力することができる。すなわち、センサ201a〜201iのそれぞれによって出力される出力信号204に含まれる基本波成分及び高調波成分の位相は、各センサ201a〜201iで相違する。The number of sensors 201a to 201i may be determined based on an integer that cannot divide the product of the scale number N of the scale scale 102 and the order p of the angle error component in one scale. That is, the specific size of the angle error component and the like appear with individual differences of the scales by the number of scales with respect to one circumference of the rotating body 105, but which order p of the angle error component generated in one scale is. Since the same applies to the scale, the electrical angle error in one round of the scale scale 102 appears as order N p = N (scale number of scale scale 102) × p (order of the angle error component in one scale), and order N. The number of sensors 201a-201i may be determined based on an integer that is not divisible by p. As a result, the sensors 201a to 201i can output output signals 204 having different phases. That is, the phases of the fundamental wave component and the harmonic component included in the output signal 204 output by each of the sensors 201a to 201i are different in each of the sensors 201a to 201i.

具体的には、目盛スケール102が有する目盛103の目盛数Nである256に対して、仮に出力信号204の高調波成分に起因して、仮の角度変化量X (0)には1目盛において次数p(1〜10)の成分を有する角度誤差成分が含まれると想定して次数pを乗算することによって、目盛スケール102の一周における電気的角度誤差の次数Nを求め、その次数Nを、センサ配置予定箇所数としての整数(5〜9)で割り切れる場合を×で、割り切れない場合を○で判定した結果を図5Aに示す。○の数が多いセンサ配置予定箇所数の方が、より多くの次数pの成分による電気的角度誤差を除去することができる。図5Aの場合においては、整数が7又は9の場合、すなわちセンサ配置予定箇所数が7又は9の場合に○の数が9であって、多くの次数pの成分による電気的角度誤差を除去することができ、7つ又は9つのセンサ配置予定箇所202a〜202iの何れかに、センサ201a〜201iを配置する。一方で、整数が8の場合、すなわちセンサ配置予定箇所数が8の場合には○の数が0であって、全く電気的角度誤差を除去することができない。なお、図5Aは一例であって、目盛スケール102が有する目盛103の目盛数、センサ配置予定箇所数には特に上下限はない。Specifically, with respect to 256, which is the number of scales N of the scale 103 of the scale scale 102, one scale is used for the temporary angle change amount Xp (0) due to the harmonic component of the output signal 204. By multiplying the order p on the assumption that an angle error component having a component of the order p (1 to 10) is included, the order N p of the electrical angle error in one round of the scale scale 102 is obtained, and the order N is obtained. FIG. 5A shows the result of determining p as x when it is divisible by an integer (5 to 9) as the number of planned sensor placement locations and ◯ when it is not divisible. The number of planned sensor placement locations with a large number of ◯ can eliminate the electrical angle error due to a larger number of components of order p. In the case of FIG. 5A, when the integer is 7 or 9, that is, when the number of planned sensor placement locations is 7 or 9, the number of ○ is 9, and the electrical angle error due to many components of order p is removed. The sensors 201a to 201i are arranged at any of the seven or nine planned sensor arrangement locations 202a to 202i. On the other hand, when the integer is 8, that is, when the number of planned sensor placement locations is 8, the number of ◯ is 0, and the electrical angle error cannot be removed at all. Note that FIG. 5A is an example, and there are no upper or lower limits on the number of scales 103 on the scale scale 102 and the number of planned sensor placement locations.

図1A、図2Aのように、センサ配置予定箇所202a〜202iは、回転体105の回転方向106に対する一周107に沿って略等間隔に、目盛スケール102の一周における電気的角度誤差の次数Nを割り切ることができない整数に一致する数によって設定されている。図5Aのように、目盛スケール102の目盛数Nが256である場合には、センサ配置予定箇所202a〜202iの個数を7又は9として、7つ又は9つのセンサ配置予定箇所202a〜202iを回転体105の回転方向106に対する一周107に沿って略等間隔に設定することができる。図1A、図2Aでは、回転体105の回転方向106に対する一周107に沿って、9つのセンサ配置予定箇所202a〜202iが設定されている。そして、センサ201a〜201iは、センサ配置予定箇所202a〜202iの何れかに配置されている。図1Aでは、9つのセンサ配置予定箇所202a〜202iのうちの2箇所(202a、202b)にセンサ201a、201bが配置され、図2Aでは、9つのセンサ配置予定箇所202a〜202iのうちの3箇所(202a、202b、202d)にセンサ201a、201b、201dが配置されているが、センサ配置予定箇所202a〜202iの何れにセンサ202a〜202iが配置されているかは問われない。例えば、図1Aのように、センサ配置予定箇所202a〜202iのうちの隣接する2つのセンサ配置予定箇所202a、202bに、センサ201a、201bがそれぞれ1つずつ配置されてもよいし、図1B、図2Bのように、センサ配置予定箇所202a〜202iの各々に、センサ201a〜201iがそれぞれ1つずつ配置されてもよい。Figure 1A, as shown in FIG. 2A, the sensor arrangement planned portion 202a~202i are at substantially equal intervals along the circumference 107 with respect to the rotational direction 106 of the rotating body 105, the order of the electrical angle error in the circumference of the graduated scale 102 N p Is set by a number that matches an integer that is not divisible by. As shown in FIG. 5A, when the number of scales N of the scale scale 102 is 256, the number of planned sensor placement locations 202a to 202i is 7 or 9, and 7 or 9 planned sensor placement locations 202a to 202i are rotated. It can be set at substantially equal intervals along the circumference 107 with respect to the rotation direction 106 of the body 105. In FIGS. 1A and 2A, nine sensor placement planned locations 202a to 202i are set along a circumference 107 with respect to the rotation direction 106 of the rotating body 105. The sensors 201a to 201i are arranged at any of the planned sensor placement locations 202a to 202i. In FIG. 1A, the sensors 201a and 201b are arranged at two of the nine planned sensor placement locations 202a to 202i (202a and 202b), and in FIG. 2A, three of the nine sensor placement planned locations 202a to 202i are arranged. Although the sensors 201a, 201b, and 201d are arranged in (202a, 202b, 202d), it does not matter which of the planned sensor arrangement locations 202a to 202i the sensors 202a to 202i are arranged. For example, as shown in FIG. 1A, one sensor 201a and one 201b may be arranged at two adjacent sensor placement planned locations 202a and 202b among the sensor placement planned locations 202a to 202i, and FIG. 1B, FIG. As shown in FIG. 2B, one sensor 201a to 201i may be arranged at each of the planned sensor arrangement locations 202a to 202i.

電気的角度誤差は、次数N=N(目盛スケール102の目盛数)×p(1目盛における角度誤差成分の次数)として現れ、一般的にはNとpは整数であるためNも整数となる。しかし、実際には目盛スケール102の1目盛の間隔が複数の目盛103において不均一である点等に起因し、角度誤差に対して回転体105の一周を1周期1次としてフーリエ変換して実行すると、スペクトル強度は整数の次数の近辺において山形で生じている(例えば、次数が3のスペクトル強度の近辺において、2.9次、3.1次、等の少数点を有する次数のスペクトル強度が含まれている)。よって、目盛スケール102の一周における電気的角度誤差の次数Nをセンサ配置予定箇所数としての整数で除算した場合に、その場合における余り(端数)の数が大きいほど除去できる電気的角度誤差の次数Nの数が多くなるために、その余りに基づいて、センサ201a〜201iの個数は決定されてもよい。The electrical angle error appears as order N p = N (scale number of scale scale 102) × p (order of angle error component in one scale), and since N and p are generally integers, N p is also an integer. It becomes. However, in reality, due to the fact that the interval between one scale of the scale scale 102 is non-uniform in the plurality of scales 103, etc., the circumference of the rotating body 105 is Fourier transformed as one cycle primary with respect to the angle error. Then, the spectral intensity occurs in a chevron shape in the vicinity of the order of the integer (for example, in the vicinity of the spectral intensity of the order 3), the spectral intensity of the order having a minority point such as 2.9th order, 3.1th order, etc. include). Accordingly, when dividing the order N p of the electrical angle error in the circumference of the graduated scale 102 in integer as a sensor arrangement planned portion number, the electrical angle error can be removed larger the number of remainder (fraction) in case for the number of order N p increases, based on the remainder, the number of sensors 201a~201i may be determined.

具体的には、図5Aと同様に、目盛スケール102が有する目盛103の目盛数Nである256に対して、仮に出力信号204の高調波成分に起因して、仮の角度変化量X (0)には1目盛において次数p(1〜10)の成分を有する角度誤差成分が含まれると想定して次数pを乗算することによって、目盛スケール102の一周における電気的角度誤差の次数Nを求め、その次数Nを、センサ配置予定箇所数としての整数(5〜9)によって除算した場合に、例えば、余りが0.3未満の場合を×、余りが0.3以上0.7未満の場合を○、余りが0.7以上の場合を◎とし、余りの大きさに応じて重み付けをし(例えば、×は0点、○は1点、◎は2点)、総得点の多いセンサ配置予定箇所数を判定した結果を図5Bに示す。総得点が高い方が、より多くの次数pの成分による電気的角度誤差を除去することができる。図5Bの場合においては、整数が7又は9の場合、すなわちセンサ配置予定箇所数が7又は9の場合に総得点が9点であって、多くの次数pの成分による電気的角度誤差を除去することができ、図1A〜図2Bのように、9つのセンサ配置予定箇所202a〜202iの何れかに、センサ201a〜201iを配置する。このように、目盛スケール102の一周における電気的角度誤差の次数Nをセンサ配置予定箇所数としての整数で除算した場合の余りの大きさに応じて重み付けをし、各次数の重み付けに基づいてセンサ201a〜201iの個数は決定されてもよい。また、出力信号204の高調波成分に起因する1目盛における角度誤差成分が2次及び4次の次数成分を含む場合には、p=2、p=4で◎と判定されているので、センサ配置予定箇所数を9として選定すれば、2次及び4次の電気的角度誤差を除去することができ、図1A〜図2Bのように、9つのセンサ配置予定箇所202a〜202iの何れかに、センサ201a〜201iを配置する。このように、目盛スケール102の一周における電気的角度誤差の次数Nをセンサ配置予定箇所数としての整数で除算した場合の余りの大きさに応じた重み付けに基づいて、センサ201a〜201iの個数は決定されてもよい。Specifically, as in FIG. 5A, with respect to 256, which is the scale number N of the scale 103 of the scale scale 102, a temporary angle change amount X p (temporary angle change amount X p () due to the harmonic component of the output signal 204. 0) is assumed to include an angle error component having a component of order p (1 to 10) on one scale, and is multiplied by a degree p to obtain an order N p of an electrical angle error in one circumference of the scale scale 102. look, the order N p, when divided by an integer (5-9) of the sensor arrangement planned portion number, for example, the remainder is × the case of less than 0.3, the remainder is 0.3 to 0.7 If it is less than, it is marked as ○, if the remainder is 0.7 or more, it is marked as ◎, and it is weighted according to the size of the remainder (for example, × is 0 points, ○ is 1 point, ◎ is 2 points), and the total score is FIG. 5B shows the result of determining the number of planned locations for arranging a large number of sensors. The higher the total score, the more the electrical angle error due to the components of order p can be eliminated. In the case of FIG. 5B, when the integer is 7 or 9, that is, when the number of planned sensor placement locations is 7 or 9, the total score is 9 points, and the electrical angle error due to many components of order p is eliminated. The sensors 201a to 201i are arranged at any of the nine planned sensor placement locations 202a to 202i, as shown in FIGS. 1A to 2B. In this manner, the weighting depending on the magnitude of the remainder when divided by integer of the order N p of the electrical angle error as a sensor disposed planned portion number in one round of the graduated scale 102, based on the weight of each order The number of sensors 201a to 201i may be determined. Further, when the angle error component in the 1st scale due to the harmonic component of the output signal 204 includes the second-order and fourth-order order components, it is determined as ⊚ in p = 2 and p = 4, so that the sensor. If the number of planned placement locations is selected as 9, secondary and quaternary electrical angle errors can be removed, and as shown in FIGS. 1A to 2B, any of the nine planned placement locations 202a to 202i can be used. , Sensors 201a to 201i are arranged. Thus, based on weighting according to the size of the remainder when dividing the order N p of the electrical angle error in the circumference of the graduated scale 102 in integer as a sensor arrangement planned portion number, the number of sensors 201a~201i May be determined.

また、センサ配置予定箇所数を先に決定して、目盛スケール102が有する目盛103の目盛数Nを選定してもよい。具体的には、センサ配置予定箇所数を5とし、目盛スケール102が有する目盛103の目盛数Nである254〜259に対して、仮に出力信号204の高調波成分に起因して、仮の角度変化量X (0)には1目盛において次数p(1〜10)の成分を有する角度誤差成分が含まれると想定して次数pを乗算することによって、目盛スケール102の一周における電気的角度誤差の次数Nを求め、その次数Nを、センサ配置予定箇所数の5によって除算した場合に、例えば、余りが0.3未満の場合を×、余りが0.3以上0.7未満の場合を○、余りが0.7以上の場合を◎とし、余りの大きさに応じて重み付けをし(例えば、×は0点、○は1点、◎は2点)、目盛スケール102の一周における目盛数Nを判定した結果を図5Cに示す。総得点が高い方が、より多くの次数pの電気的角度誤差を除去することができる。図5Cの場合においては、目盛スケール102の一周における目盛数Nが255である場合を除いて、ほぼ同等数の次数pの電気的角度誤差を除去することができ、5つのセンサ配置予定箇所202a〜202eの何れかに、センサ201a〜201eを配置する。なお、目盛スケール102の一周における目盛数Nについての判定した結果は、センサ配置予定箇所数による繰り返し性を有する。例えば、センサ配置予定箇所数を5とした場合の判定した結果は、目盛スケール102の一周における目盛数Nが254±(5×整数倍)の場合において同じである(図5Cにおいては、254と259の場合では同じ判定結果となる)。このように、目盛スケール102の一周における目盛数Nの大小に寄らず、センサ配置予定箇所数による繰り返し性を有する判定結果を得ることができる。Further, the number of planned sensor placement locations may be determined first, and the scale number N of the scale 103 of the scale scale 102 may be selected. Specifically, the number of planned sensor placement locations is set to 5, and a temporary angle is tentatively caused by the harmonic component of the output signal 204 with respect to 254 to 259, which is the scale number N of the scale 103 of the scale scale 102. The change amount X p (0) is assumed to include an angle error component having a component of order p (1 to 10) on one scale, and is multiplied by the order p to obtain an electrical angle in one circumference of the scale scale 102. When the order N p of the error is obtained and the order N p is divided by 5 of the planned number of sensor placement locations, for example, the case where the remainder is less than 0.3 is ×, and the remainder is 0.3 or more and less than 0.7. The case of is ○, the case of the remainder of 0.7 or more is ◎, and the weight is given according to the size of the remainder (for example, × is 0 points, ○ is 1 point, ◎ is 2 points), and the scale scale 102. The result of determining the scale number N in one round is shown in FIG. 5C. The higher the total score, the more electrical angle errors of order p can be eliminated. In the case of FIG. 5C, the electrical angle error of the order p of almost the same number can be removed except when the scale number N in one round of the scale scale 102 is 255, and the five sensor placement planned locations 202a can be removed. Sensors 201a to 201e are arranged in any of ~ 202e. The result of determining the number of scales N in one round of the scale scale 102 has repeatability depending on the number of planned sensor placement locations. For example, the judgment result when the number of planned sensor placement locations is 5 is the same when the number of scales N in one round of the scale scale 102 is 254 ± (5 × integer multiple) (254 in FIG. 5C). In the case of 259, the same determination result is obtained). In this way, it is possible to obtain a determination result having repeatability depending on the number of planned sensor placement locations, regardless of the magnitude of the scale number N in one round of the scale scale 102.

上記のようにして、目盛スケール102が有する目盛103の目盛数N、出力信号204が含む高調波成分から推定される、或いは事前に確認した角度誤差成分の次数p、センサ配置予定箇所数を得、図1A〜図2Bのように、センサ配置予定箇所202a〜202iにセンサ201a〜201iを配置し、センサ201a〜201iからの出力信号204のうちの1つを基準センサ(例えば、センサ201a)として、基準センサからの出力信号204と、それ以外の各センサ(例えば、センサ201b〜201i)の出力信号204との間の出力信号差を求め、求められたそれ以外のセンサとの出力信号差についての平均値を得ることによって、機械的角度誤差だけでなく電気的角度誤差をも除去するための校正値を得ることができる。この校正値を、算出された回転体105の仮の角度変化量X (0)に対して足し引きすることで、真の角度変化量Xを検出することができ、角度検出器101は、機械的角度誤差及び電気的角度誤差を含む角度誤差について自己校正される。校正後の角度変化量Xは、角度検出器101の検出値としてもよいし、回転体105を駆動するモータ、回転体105の制御装置、等にフィードバックされ、参照角度として使用されてもよい。この校正値は、回転体105が回転してセンサ201a〜201iからの出力信号204が信号処理部209に入力される都度に演算されてもよいし、事前に回転体105の1周分についてこの校正値を信号処理部209にて演算し、補正テーブルとして記憶部210に保存しておき、回転体105が回転する際に、この校正値が記憶部210から読み出されてもよい。As described above, the scale number N of the scale 103 of the scale scale 102, the order p of the angle error component estimated from the harmonic component included in the output signal 204, or the number of planned sensor placement locations are obtained. , As shown in FIGS. 1A to 2B, the sensors 201a to 201i are arranged at the planned sensor arrangement locations 202a to 202i, and one of the output signals 204 from the sensors 201a to 201i is used as a reference sensor (for example, the sensor 201a). , The output signal difference between the output signal 204 from the reference sensor and the output signal 204 of each other sensor (for example, sensors 201b to 201i) is obtained, and the obtained output signal difference from the other sensors is obtained. By obtaining the average value of, it is possible to obtain a calibration value for removing not only the mechanical angle error but also the electrical angle error. By adding and subtracting this calibration value to the calculated temporary angle change amount X p (0) of the rotating body 105, the true angle change amount X p can be detected, and the angle detector 101 can detect the true angle change amount X p. Self-calibrated for angular errors, including mechanical and electrical angular errors. Angle variation X p after calibration may be as a detection value of the angle detector 101, the motor driving the rotating body 105, the control unit of the rotating body 105, is fed back to an equal, or may be used as a reference angle .. This calibration value may be calculated each time the rotating body 105 rotates and the output signals 204 from the sensors 201a to 201i are input to the signal processing unit 209, or this calibration value may be calculated in advance for one round of the rotating body 105. The calibration value may be calculated by the signal processing unit 209 and stored in the storage unit 210 as a correction table, and this calibration value may be read out from the storage unit 210 when the rotating body 105 rotates.

図6A〜図6Cにそれぞれ、図1Bの角度検出器101のセンサ201aのみからの出力信号204に基づいて信号処理部209によって算出された、機械的角度誤差及び電気的角度誤差を含む角度誤差が除去される前における、回転体105の指令角度に対する角度誤差、その一部を拡大した回転体105の1目盛中の指令角度に対する角度誤差、回転体105の一周を1周期1次とした角度誤差に対してフーリエ変換を実行することによって得られたスペクトル強度を示す。指令角度に対して、周期が長い(次数が小さい)成分による角度誤差が、機械的角度誤差によるものであって、図6Aによれば、この角度検出器101においては、機械的角度誤差は、回転体105の一周を1周期1次とする角度誤差を主成分として約180arcsecの幅である。なお図6Aは、測定された0〜360degの範囲のうちの0〜180degの範囲だけを抜き出した測定結果である。指令角度に対して、周期が短い(次数が大きい)成分による角度誤差が、電気的角度誤差によるものであって、図6Bによれば、電気的角度誤差の次数は、1024次(1目盛における次数p=4次)による角度誤差を主成分として約20arcsecの幅であって、目盛スケール102の全目盛数が256であることから1目盛の角度間隔104は1.406degであるので、電気的角度誤差である約20arcsecはその約0.4%に相当する。図6Cによれば、角度誤差の次数成分が256次(1目盛1次)、768次(1目盛3次)、1024次(1目盛4次)のスペクトル強度が大きく、角度誤差の次数成分が1024次(1目盛4次)のスペクトル強度が、特に顕著であることが分かる。 6A to 6C show the angle errors including the mechanical angle error and the electrical angle error calculated by the signal processing unit 209 based on the output signal 204 from only the sensor 201a of the angle detector 101 of FIG. 1B, respectively. Angle error with respect to the command angle of the rotating body 105 before removal, angle error with respect to the command angle in one scale of the rotating body 105 with a part thereof enlarged, angle error with one circumference of the rotating body 105 as the first order in one cycle The spectral intensity obtained by performing the Fourier transform on the is shown. The angle error due to the component having a long period (small order) with respect to the command angle is due to the mechanical angle error. According to FIG. 6A, in this angle detector 101, the mechanical angle error is The width is about 180 arcsec, with the angle error in which one circumference of the rotating body 105 is the first order in one cycle as the main component. Note that FIG. 6A is a measurement result obtained by extracting only the range of 0 to 180 deg from the measured range of 0 to 360 deg. The angle error due to the component having a short period (large order) with respect to the command angle is due to the electrical angle error, and according to FIG. 6B, the order of the electrical angle error is 1024th order (on the 1st scale). Since the width is about 20 arcsec with the angle error due to the order p = 4) as the main component and the total number of scales of the scale scale 102 is 256, the angle interval 104 of one scale is 1.406 deg, so that it is electrical. The angular error of about 20 arcsec corresponds to about 0.4% of that. According to FIG. 6C, the order component of the angle error is 256th order (1st scale 1st order), 768th order (1st scale 3rd order), 1024th order (1st scale 4th order), and the spectral intensity is large, and the order component of the angle error is It can be seen that the spectral intensity of the 1024th order (1st scale 4th order) is particularly remarkable.

次に、図7A〜図7Cにそれぞれ、図1Bの角度検出器101のセンサ201a〜201iからの出力信号204に基づいて信号処理部209によって算出された、機械的角度誤差及び電気的角度誤差を含む角度誤差が除去された後における、回転体105の指令角度に対する角度誤差、その一部を拡大した回転体105の1目盛中の指令角度に対する角度誤差、回転体105の一周を1周期1次とした角度誤差に対してフーリエ変換を実行することによって得られたスペクトル強度を示す。センサ配置予定箇所数(センサ配置数)が9であるので、9で割り切ることができない次数Nの機械的角度誤差及び電気的角度誤差を含む角度誤差を除去することができ、図7Aによれば、9で割り切ることができない1次を主成分とする機械的角度誤差を、約45arcsecの幅まで減少することができる。なお図7Aは、測定された0〜360degの範囲のうちの0〜180degの範囲だけを抜き出した測定結果である。図7Bによれば、9で割り切ることができない1024次を主成分とする電気的角度誤差を、約5arcsec(1目盛の角度間隔104である1.406degに対して約0.1%)の幅まで減少することができる。このように、機械的角度誤差及び電気的角度誤差を含む角度誤差を約1/4まで減少することができる。図7Cによれば、角度誤差の次数成分が256次(1目盛における次数p=1次)、768次(1目盛3次)、1024次(1目盛4次)のスペクトル強度を大幅に減少させることができる。また図7Aにおいて、回転体105の指令角度180deg中に発生している10山成分(回転体105の一周を1周期1次として20次成分)は、使用した回転体105の機構特性に起因する角度誤差であることが分かっており、本発明を使用することで、出力信号204から算出された仮の角度変化量X (0)から機械的角度誤差及び電気的角度誤差を除去し、回転体105の真の回転角度量Xと角度誤差をより高精度に検出可能であることを図7A〜図7Cは示している。Next, the mechanical angle error and the electrical angle error calculated by the signal processing unit 209 based on the output signals 204 from the sensors 201a to 201i of the angle detector 101 of FIG. 1B are shown in FIGS. 7A to 7C, respectively. After the included angle error is removed, the angle error with respect to the command angle of the rotating body 105, the angle error with respect to the command angle in one scale of the rotating body 105 with a part thereof enlarged, and one cycle of the rotating body 105 are primary. The spectral intensity obtained by performing the Fourier transform on the angle error is shown. Since the sensor arrangement planned portion number (sensor arrangement number) is 9, it is possible to eliminate the angle error, including mechanical angle error and electrical angular error of order N p can not be divisible by 9, according to FIG. 7A For example, the mechanical angle error of the primary component, which cannot be divided by 9, can be reduced to a width of about 45 arcsec. Note that FIG. 7A is a measurement result obtained by extracting only the range of 0 to 180 deg from the measured range of 0 to 360 deg. According to FIG. 7B, the electrical angle error mainly composed of 1024th order, which cannot be divided by 9, has a width of about 5 arcsec (about 0.1% with respect to 1.406 deg, which is the angle interval 104 of one scale). Can be reduced to. In this way, the angle error including the mechanical angle error and the electrical angle error can be reduced to about 1/4. According to FIG. 7C, the order component of the angle error significantly reduces the spectral intensities of the 256th order (order p = 1st order in the 1st scale), the 768th order (1st scale 3rd order), and the 1024th order (1st scale 4th order). be able to. Further, in FIG. 7A, the 10-ridge component (the 20th-order component with one cycle of the rotating body 105 as the primary) generated during the command angle of 180 deg of the rotating body 105 is due to the mechanical characteristics of the rotating body 105 used. It is known that it is an angle error, and by using the present invention, the mechanical angle error and the electrical angle error are removed from the temporary angle change amount Xp (0) calculated from the output signal 204, and the rotation is performed. Figure 7A~ Figure 7C shows that can detect the true rotation angle X p and the angle error of the body 105 with higher accuracy.

上記記載は特定の実施例についてなされたが、本発明はそれに限らず、本発明の原理と添付の特許請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。 Although the above description has been made for a specific embodiment, it is clear to those skilled in the art that the present invention is not limited to this, and various changes and modifications can be made within the scope of the principles of the present invention and the appended claims. is there.

101 角度検出器
102 目盛スケール
103 目盛
104 1目盛の角度間隔
105 回転体
106 回転方向
107 一周
108 回転軸線
201a〜201i センサ
202a〜202i センサ配置予定箇所
203 制御部
204 出力信号
205 入力部
206 ノイズフィルタ
207 増幅器
208 A/D変換器
209 信号処理部
210 記憶部
211 表示装置
101 Angle detector 102 Scale scale 103 Scale 104 1 Scale angle interval 105 Rotating body 106 Rotation direction 107 One round 108 Rotation axis 201a to 201i Sensor 202a to 202i Sensor placement planned location 203 Control unit 204 Output signal 205 Input unit 206 Noise filter 207 Amplifier 208 A / D converter 209 Signal processing unit 210 Storage unit 211 Display device

Claims (10)

回転軸線を中心に回転する回転体と、前記回転体の回転方向に対する一周に沿って複数の目盛を有する目盛スケールと、前記一周に沿って配置された少なくとも2つのセンサとを備え、前記回転体の回転による角度変化量を検出する角度検出器であって、
前記少なくとも2つのセンサの各々は、前記複数の目盛に基づいて前記角度変化量に応じた信号を出力し、
前記出力信号は、前記複数の目盛のうちの1目盛分を1周期1次とする基本波成分と、前記基本波成分の2以上の整数倍を次数とする高調波成分とを含み、前記出力信号から算出された前記角度変位量は、前記高調波成分に起因して、1目盛分を1周期1次としてその整数倍の次数成分を有する少なくとも1つの角度誤差成分を含み、
前記少なくとも2つのセンサの個数は、前記目盛スケールの目盛数及び前記少なくとも1つの角度誤差成分の次数成分に基づいて決定されている、角度検出器。
The rotating body includes a rotating body that rotates about the rotation axis, a scale scale having a plurality of scales along the circumference of the rotating body with respect to the rotation direction, and at least two sensors arranged along the circumference. It is an angle detector that detects the amount of angle change due to the rotation of
Each of the at least two sensors outputs a signal according to the amount of change in angle based on the plurality of scales.
The output signal includes a fundamental wave component having one scale of the plurality of scales as the first order in one cycle and a harmonic component having an integral multiple of two or more of the fundamental wave components as the order, and the output. The angular displacement amount calculated from the signal includes at least one angular error component having an order component that is an integral multiple of one scale as one cycle primary due to the harmonic component.
The number of the at least two sensors is determined based on the number of scales on the scale scale and the order component of the at least one angle error component, the angle detector.
前記少なくとも1つの角度誤差成分は、複数の角度誤差成分であって、前記少なくとも2つのセンサの個数は、前記目盛スケールの目盛数及び前記複数の角度誤差成分の各々の次数成分に基づいて決定されている、請求項1に記載の角度検出器。 The at least one angle error component is a plurality of angle error components, and the number of the at least two sensors is determined based on the number of scales on the scale scale and the order component of each of the plurality of angle error components. The angle detector according to claim 1. 前記少なくとも2つのセンサの個数は、前記目盛スケールの目盛数と前記少なくとも1つの角度誤差成分の次数成分である1以上の整数との積を割り切ることができない整数に基づいて決定されている、請求項1又は2に記載の角度検出器。 The number of the at least two sensors is determined based on an integer that cannot divide the product of the number of scales on the scale scale and an integer of 1 or more that is a degree component of the at least one angle error component. Item 2. The angle detector according to item 1 or 2. 前記少なくとも2つのセンサの個数は更に、前記積を前記割り切ることができない整数で除算した場合の余りに基づいて決定されている、請求項3に記載の角度検出器。 The angle detector according to claim 3, wherein the number of the at least two sensors is further determined based on the remainder when the product is divided by the indivisible integer. 前記少なくとも2つのセンサの個数は更に、前記余りの大きさに応じた重み付けに基づいて決定されている、請求項4に記載の角度検出器。 The angle detector according to claim 4, wherein the number of the at least two sensors is further determined based on weighting according to the size of the remainder. 前記一周に沿って略等間隔に、前記割り切ることができない整数に一致する数のセンサ配置予定箇所が設定され、前記センサ配置予定箇所の何れかに、前記少なくとも2つのセンサが1つずつ配置されている、請求項3〜5の何れか一項に記載の角度検出器。 A number of planned sensor placement locations corresponding to the indivisible integer are set at approximately equal intervals along the circumference, and at least two sensors are arranged one by one at any of the planned sensor placement locations. The angle detector according to any one of claims 3 to 5. 前記センサ配置予定箇所の隣接する2つに、前記少なくとも2つのセンサが1つずつ配置されている、請求項6に記載の角度検出器。 The angle detector according to claim 6, wherein at least two sensors are arranged one by one at two adjacent locations where the sensors are to be arranged. 前記センサ配置予定箇所の各々に、前記少なくとも2つのセンサが1つずつ配置されている、請求項6に記載の角度検出器。 The angle detector according to claim 6, wherein at least one of the two sensors is arranged at each of the planned sensor arrangement locations. 前記少なくとも1つの角度誤差成分は、前記少なくとも2つのセンサの種類によって相違する、請求項1〜8の何れか一項に記載の角度検出器。 The angle detector according to any one of claims 1 to 8, wherein the at least one angle error component differs depending on the type of the at least two sensors. 前記少なくとも2つのセンサのうちの1つのセンサからの出力信号とそれ以外のセンサからの出力信号との間の出力信号差を求めることによって自己校正されている、請求項1〜9の何れか一項に記載の角度検出器。
Any one of claims 1 to 9, which is self-calibrated by obtaining the output signal difference between the output signal from one of the at least two sensors and the output signal from the other sensor. The angle detector described in the section.
JP2020518258A 2018-05-11 2019-04-25 angle detector Active JP7240387B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018092021 2018-05-11
JP2018092021 2018-05-11
PCT/JP2019/017642 WO2019216235A1 (en) 2018-05-11 2019-04-25 Angle detector

Publications (3)

Publication Number Publication Date
JPWO2019216235A1 true JPWO2019216235A1 (en) 2021-05-13
JPWO2019216235A5 JPWO2019216235A5 (en) 2022-01-21
JP7240387B2 JP7240387B2 (en) 2023-03-15

Family

ID=68468315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518258A Active JP7240387B2 (en) 2018-05-11 2019-04-25 angle detector

Country Status (7)

Country Link
US (1) US11573103B2 (en)
EP (1) EP3792601B1 (en)
JP (1) JP7240387B2 (en)
KR (1) KR20210007939A (en)
CN (1) CN110998244B (en)
TW (1) TWI714072B (en)
WO (1) WO2019216235A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213923B (en) * 2022-09-20 2023-01-06 深圳市欢创科技有限公司 Rotating seat, distance measuring device and mobile robot
CN117288140B (en) * 2023-11-21 2024-02-20 西安交通大学 Method and system for measuring roundness error of rotary shaft and radial rotary error measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170710A (en) * 1984-02-15 1985-09-04 Asahi Optical Co Ltd Correcting device for error in measured angle
US6433536B1 (en) * 1998-12-31 2002-08-13 Pacsci Motion Control, Inc. Apparatus for measuring the position of a movable member
JP2005214920A (en) * 2004-02-02 2005-08-11 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2012132714A (en) * 2010-12-20 2012-07-12 Mitsutoyo Corp Angle detecting device and method of estimating eccentricity thereof
JP2012519296A (en) * 2009-03-02 2012-08-23 アールエルエス メリルナ テニカ ディー.オー.オー. Position encoder device
JP2016118491A (en) * 2014-12-22 2016-06-30 Dmg森精機株式会社 Rotary encoder, control method and control program of rotary encoder

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680435B2 (en) * 1989-07-26 1997-11-19 シーケーディ株式会社 Rotation angle detector
JPH11122120A (en) * 1997-10-17 1999-04-30 Sony Corp Coding method and device therefor, and decoding method and device therefor
JP3629242B2 (en) * 2001-02-05 2005-03-16 ペンタックス株式会社 Magnetic encoder and its harmonic error reduction method
JP3826207B2 (en) 2004-08-31 2006-09-27 独立行政法人産業技術総合研究所 Angle detector with self-calibration function
JP4768248B2 (en) 2004-10-13 2011-09-07 株式会社ミツトヨ Encoder output signal correction apparatus and method
FR2896036B1 (en) * 2006-01-06 2008-11-07 Skf Ab ABSOLUTE DIFFERENTIAL COMPARISON ANGULAR POSITION DETECTION SYSTEM, BEARING AND ROTATING MACHINE
GB0601174D0 (en) * 2006-01-20 2006-03-01 Renishaw Plc Multiple readhead apparatus
CN101443632B (en) * 2006-05-12 2010-10-13 株式会社安川电机 Magnetic encoder
JP2008304249A (en) 2007-06-06 2008-12-18 Yaskawa Electric Corp Encoder signal processing device and its signal processing method
DE102007036984A1 (en) * 2007-07-06 2009-01-08 Austriamicrosystems Ag Measuring method, sensor arrangement and measuring system
FR2920224B1 (en) * 2007-08-23 2009-10-02 Sagem Defense Securite METHOD FOR DETERMINING A ROTATIONAL SPEED OF AN AXISYMETRIC VIBRANT SENSOR, AND INERTIAL DEVICE USING THE METHOD
JP4900837B2 (en) * 2008-05-16 2012-03-21 日立金属株式会社 Rotation angle detector and rotating machine
TWI643187B (en) * 2009-05-27 2018-12-01 瑞典商杜比國際公司 Systems and methods for generating a high frequency component of a signal from a low frequency component of the signal, a set-top box, a computer program product and storage medium thereof
JP4984269B2 (en) 2009-11-09 2012-07-25 独立行政法人産業技術総合研究所 Angle detector with complex self-calibration function
JP4984268B2 (en) 2009-11-09 2012-07-25 独立行政法人産業技術総合研究所 Shaft measurement method and angle detector with self-calibration function with shaft shake measurement function
JP4916556B2 (en) * 2010-01-19 2012-04-11 三菱電機株式会社 Rotation angle detection device, rotating electrical machine device, and electric power steering device
JP5706440B2 (en) * 2010-11-18 2015-04-22 三菱電機株式会社 Rotation angle detector
JP5660381B2 (en) 2011-03-09 2015-01-28 株式会社ジェイテクト Rotation angle detector
JP2013228312A (en) * 2012-04-26 2013-11-07 Nikon Corp Encoder and drive device
KR101428971B1 (en) * 2013-03-21 2014-08-13 숭실대학교산학협력단 Apparatus for measuring displacement
JP2015192538A (en) * 2014-03-28 2015-11-02 キヤノン株式会社 Stepping motor drive device, image carrier rotary drive device and image forming apparatus
JP2017011880A (en) * 2015-06-22 2017-01-12 株式会社リコー Harmonic component extraction device, motor drive controller, transport device, and harmonic component extraction method
WO2017068684A1 (en) 2015-10-22 2017-04-27 三菱電機株式会社 Angle detection device
JP6288481B2 (en) * 2016-06-24 2018-03-07 Tdk株式会社 Angle sensor and angle sensor system
CN108885124A (en) * 2016-07-20 2018-11-23 日本精工株式会社 rotation angle detector and torque sensor
JP6350834B2 (en) * 2016-09-30 2018-07-04 Tdk株式会社 Angle sensor and angle sensor system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170710A (en) * 1984-02-15 1985-09-04 Asahi Optical Co Ltd Correcting device for error in measured angle
US6433536B1 (en) * 1998-12-31 2002-08-13 Pacsci Motion Control, Inc. Apparatus for measuring the position of a movable member
JP2005214920A (en) * 2004-02-02 2005-08-11 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2012519296A (en) * 2009-03-02 2012-08-23 アールエルエス メリルナ テニカ ディー.オー.オー. Position encoder device
JP2012132714A (en) * 2010-12-20 2012-07-12 Mitsutoyo Corp Angle detecting device and method of estimating eccentricity thereof
JP2016118491A (en) * 2014-12-22 2016-06-30 Dmg森精機株式会社 Rotary encoder, control method and control program of rotary encoder

Also Published As

Publication number Publication date
TWI714072B (en) 2020-12-21
CN110998244A (en) 2020-04-10
US20210215512A1 (en) 2021-07-15
WO2019216235A1 (en) 2019-11-14
CN110998244B (en) 2022-06-17
US11573103B2 (en) 2023-02-07
EP3792601A4 (en) 2022-02-16
EP3792601A1 (en) 2021-03-17
JP7240387B2 (en) 2023-03-15
TW202006323A (en) 2020-02-01
EP3792601B1 (en) 2024-03-20
KR20210007939A (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US6188341B1 (en) Encoder interpolation circuit which corrects an interpolation angle between a received sine-wave encoder signal and a cosine-wave encoder signal
CN110940371B (en) Calibration method, device and equipment of rotary magnetoelectric encoder
TWI468649B (en) Position detector
KR101502259B1 (en) Device for detecting multi-turn absolute rotation angle, and method for detecting rotation angle thereof
JP4984269B2 (en) Angle detector with complex self-calibration function
JP4142942B2 (en) Rotary encoder
US20130253870A1 (en) Self-Calibrating Single Track Absolute Rotary Encoder
Just et al. Comparison of angle standards with the aid of a high-resolution angle encoder
JP7240387B2 (en) angle detector
JP2014025871A (en) Encoder output signal correction apparatus
CN111368584B (en) High-resolution position information splicing method of sine and cosine encoder capable of self-correcting
WO2018092416A1 (en) Rotary encoder signal processing device and rotary encoder signal processing method
EP3588014B1 (en) Transport system and method for detecting a position of a carrier in a transport system
EP3748306B1 (en) Method and device for detecting positional change amount due to movement of moving body
Ishii et al. Development of super-accurate angular encoder system with multi-detecting heads using VEDA method
JP6845517B2 (en) Encoder
JP2004132912A (en) Absolute value encoder
JP2001033280A (en) Correction method of digital scale and its device
KR20030060857A (en) position finder method of digital and analog hybrid type

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R150 Certificate of patent or registration of utility model

Ref document number: 7240387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150