JPWO2019204876A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019204876A5
JPWO2019204876A5 JP2021508033A JP2021508033A JPWO2019204876A5 JP WO2019204876 A5 JPWO2019204876 A5 JP WO2019204876A5 JP 2021508033 A JP2021508033 A JP 2021508033A JP 2021508033 A JP2021508033 A JP 2021508033A JP WO2019204876 A5 JPWO2019204876 A5 JP WO2019204876A5
Authority
JP
Japan
Prior art keywords
force
motion
imu
user
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021508033A
Other languages
Japanese (ja)
Other versions
JP7458650B2 (en
JP2021522526A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/AU2019/050370 external-priority patent/WO2019204876A1/en
Publication of JP2021522526A publication Critical patent/JP2021522526A/en
Publication of JPWO2019204876A5 publication Critical patent/JPWO2019204876A5/ja
Application granted granted Critical
Publication of JP7458650B2 publication Critical patent/JP7458650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (21)

ユーザのモーションの能力測定基準を系統的に表すためのシステムであって、
少なくとも1つの圧力センサと、慣性測定ユニット(IMU)と、前記少なくとも1つの圧力センサ及び前記IMUと通信するマイクロプロセッサと、前記マイクロプロセッサ、前記少なくとも1つの圧力センサ、及び前記IMUを収容する少なくとも1つの筐体と、を含むウェアラブルセンサデバイスと、
前記マイクロプロセッサを介して前記少なくとも1つの圧力センサ及び前記IMUの両方から入力データを受信するために前記ウェアラブルセンサデバイスと通信する外部ユニットと、
前記少なくとも1つの圧力センサ及び前記IMUの両方からの前記入力データを組み合わせるように構成された処理ユニットと、を備え、
当該組み合わされた入力データが、少なくとも1つの力の大きさ又は少なくとも1つの力の方向を推測するために用いられ、
前記少なくとも1つの力の大きさ及び前記少なくとも1つの力の方向が処理されて前記能力測定基準を提供する、システム。
It is a system for systematically expressing the user's motion ability measurement standard.
At least one containing at least one pressure sensor, an inertial measurement unit (IMU), the at least one pressure sensor and a microprocessor communicating with the IMU, the microprocessor, the at least one pressure sensor, and the IMU. With two enclosures, including wearable sensor devices,
An external unit that communicates with the wearable sensor device to receive input data from both the at least one pressure sensor and the IMU via the microprocessor.
A processing unit configured to combine the input data from both the at least one pressure sensor and the IMU.
The combined input data is used to infer at least one force magnitude or at least one force direction.
A system in which the magnitude of the at least one force and the direction of the at least one force are processed to provide the capability metric.
前記少なくとも1つの力の大きさ及び前記少なくとも1つの力の方向の両方を推測するために前記組み合わされた入力データが用いられる、請求項1に記載のシステム。 The system of claim 1, wherein the combined input data is used to infer both the magnitude of the at least one force and the direction of the at least one force. 前進方向にある力の大きさの割合を評価することによって前記能力測定基準が算出される、請求項1に記載のシステム。 The system according to claim 1, wherein the capacity measurement standard is calculated by evaluating the ratio of the magnitude of the force in the forward direction. 前記前進方向にある力の大きさの割合を評価することが、前記少なくとも1つの圧力センサからの圧力データを前記IMUからの慣性データで増強することを含む、請求項に記載のシステム。 The system of claim 3 , wherein assessing the proportion of the magnitude of the force in the forward direction comprises augmenting the pressure data from the at least one pressure sensor with the inertial data from the IMU. 全てのグローバル軸にわたって総インパルスを乗算した時間間隔の逆数を評価することによって前記能力測定基準が算出される、請求項1に記載のシステム。 The system of claim 1, wherein the capacity metric is calculated by evaluating the reciprocal of the time interval multiplied by the total impulse across all global axes. 抗力及び第1の押し上げ力から、又は、抗力、第1の押し上げ力及び第2の押し上げ力から、前記少なくとも1つの力の大きさ又は前記少なくとも1つの力の方向が算出される、請求項1に記載のシステム。 Claim 1 in which the magnitude of the at least one force or the direction of the at least one force is calculated from the drag and the first push-up force , or from the drag, the first push-up force and the second push-up force. The system described in. 前記ウェアラブルセンサデバイスが少なくとも2つの圧力センサを含む、請求項1に記載のシステム。 The system of claim 1, wherein the wearable sensor device comprises at least two pressure sensors. 前記ウェアラブルセンサデバイスが前記ユーザの手に着用され又は前記ユーザの手のひらに巻き付けられるように適合されている、請求項に記載のシステム。 7. The system of claim 7 , wherein the wearable sensor device is adapted to be worn on the user's hand or wrapped around the user's palm. 前進方向を案出するために前記IMUからの慣性データ又は磁気データが少なくとも部分的に用いられる、請求項1に記載のシステム。 The system according to claim 1, wherein the inertial data or magnetic data from the IMU is used at least partially to devise a forward direction. 前記IMUが、加速度計、ジャイロスコープ、及び磁力計からなる群からの1つ以上を含む、請求項1に記載のシステム。 The system of claim 1, wherein the IMU comprises one or more from the group consisting of an accelerometer, a gyroscope, and a magnetometer. 前記ウェアラブルセンサデバイスが複数のIMUを含む、請求項1に記載のシステム。 The system of claim 1, wherein the wearable sensor device comprises a plurality of IMUs. 前記モーションが水上競技モーションであり、前記水上競技モーションが水泳ストロークである、請求項1に記載のシステム。 The system according to claim 1, wherein the motion is a water competition motion, and the water competition motion is a swimming stroke . 前記ユーザのモーション力をグラフィック的に表示するためのディスプレイをさらに備え、前記ユーザのモーション力が360°極座標プロットで表示される、請求項1に記載のシステム。 The system of claim 1, further comprising a display for graphically displaying the user's motion force, wherein the user's motion force is displayed in a 360 ° polar coordinate plot. 前記処理ユニットが、
(a)理想的なリグ設定から取られた複数の入力変数に基づいて力のモデルを生成し
(b)モーションに係わっている間の使用のために、ウェアラブルセンサデバイスをユーザ上に配置することと、
)前記入力変数と相関する入力データであって、前記IMUから受信したデータを含む入力データを前記ウェアラブルセンサデバイスから受信
)当該ウェアラブルセンサデバイス入力データを前記力のモデルに適用することに基づいて力の推定値を算出
)前記力の推定値に基づいて前記モーションの能力測定基準を算出する
ように構成されている、請求項1に記載のシステム
The processing unit
(A) Generate a force model based on multiple input variables taken from the ideal rig settings.
(B) Placing a wearable sensor device on the user for use while engaged in motion.
( B ) Input data that correlates with the input variable and includes data received from the IMU is received from the wearable sensor device.
( C ) A force estimate is calculated based on applying the wearable sensor device input data to the force model.
( D ) Calculate the ability measurement standard of the motion based on the estimated value of the force.
The system according to claim 1, which is configured as follows .
前記(d)が、前進方向の動きを入力することと、前記前進方向の動きに対して前記力の推定値を回転させることと、前記前進方向の動きにおける前記力の推定値の一部分を算出することと、を含み、前記能力測定基準が、前記前進方向の動きにおける前記力の推定値の前記一部分に基づく、請求項14に記載のシステムThe ( d) inputs the movement in the forward direction, rotates the estimated value of the force with respect to the movement in the forward direction, and calculates a part of the estimated value of the force in the movement in the forward direction. 14. The system of claim 14 , wherein the capability metric is based on said portion of the estimated value of the force in the forward movement. 前記モデルが1つ以上の統計的モデリング技術を用いて作成される、請求項14に記載のシステム 14. The system of claim 14, wherein the model is created using one or more statistical modeling techniques. 前記(b)の後に、特定のユーザ変数を前記力のモデルに入力する、請求項14に記載のシステム15. The system of claim 14, wherein after ( b) , a particular user variable is input into the force model. 前記特定のユーザ変数が、手のサイズ、指の広がり、及びカッピングの程度を含む群のうちの1つ以上を含む、請求項17に記載のシステム 17. The system of claim 17, wherein the particular user variable comprises one or more of the groups comprising hand size, finger spread, and degree of cupping. 前記処理ユニットが
前記ユーザ上に配置された少なくとも1つの圧力センサ及び慣性測定ユニット(IMU)の両方から方位データを受信
前記方位データを校正及び/又はフィルタリング
当該校正及び/又はフィルタリングされた方位データに基づいて前記ユーザ上の少なくとも1つのモーション力を推定
前記ユーザの前進方向座標系を推定し、当該推定された少なくとも1つのモーション力を前記座標系内へと回転させ、
360°プロットを提供し、前記プロットを複数(n個)のビン内にセグメント化
当該推定され回転させられた少なくとも1つのモーション力に対して、選択された平面内の対応するモーション力の方向を算出
前記対応するモーション力の方向に基づいて、前記推定され回転させられた少なくとも1つのモーション力を適切なビンに蓄積してグラフィックデータを生成
前記グラフィックデータを線グラフとしてプロット
前記線グラフを360°極座標プロットグラフに変換することによって前記ユーザのモーション力を計算して表示するように構成されている、請求項13に記載のシステム
The processing unit
Directional data is received from both the at least one pressure sensor and the inertial measurement unit (IMU) located on the user.
Calibrate and / or filter the orientation data
At least one motion force on the user is estimated based on the calibration and / or filtered directional data.
The user's forward coordinate system is estimated, and the estimated at least one motion force is rotated into the coordinate system.
A 360 ° plot is provided and the plot is segmented into multiple (n) bins.
For at least one estimated and rotated motion force, the direction of the corresponding motion force in the selected plane is calculated.
Based on the direction of the corresponding motion force, the estimated and rotated at least one motion force is accumulated in an appropriate bin to generate graphic data.
The graphic data is plotted as a line graph and
13. The system of claim 13, configured to calculate and display the user's motion force by converting the line graph into a 360 ° polar plot graph.
前記ウェアラブルセンサデバイスが、前記能力測定基準を算出するときに静水圧の影響が取り除かれるように配置された2つ以上の圧力センサを含む、請求項8に記載のシステム。8. The system of claim 8, wherein the wearable sensor device comprises two or more pressure sensors arranged such that the effects of hydrostatic pressure are removed when calculating the capability metrics. 水泳に関する前記能力測定基準を算出するときに、前記圧力センサ及び前記IMUからの入力データの組み合わせが泳者のストロークのセグメント化及びフェーズを識別させる、請求項1に記載のシステム。The system of claim 1, wherein the combination of the pressure sensor and the input data from the IMU identifies the segmentation and phase of the swimmer's stroke when calculating the ability metric for swimming.
JP2021508033A 2018-04-26 2019-04-26 System and method for systematically representing swimmer motion performance metrics Active JP7458650B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2018901377 2018-04-26
AU2018901377A AU2018901377A0 (en) 2018-04-26 Systems and methods for formulating a performance metric of a motion of a user
PCT/AU2019/050370 WO2019204876A1 (en) 2018-04-26 2019-04-26 Systems and methods for formulating a performance metric of a motion of a swimmer

Publications (3)

Publication Number Publication Date
JP2021522526A JP2021522526A (en) 2021-08-30
JPWO2019204876A5 true JPWO2019204876A5 (en) 2022-05-06
JP7458650B2 JP7458650B2 (en) 2024-04-01

Family

ID=68293360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021508033A Active JP7458650B2 (en) 2018-04-26 2019-04-26 System and method for systematically representing swimmer motion performance metrics

Country Status (8)

Country Link
US (1) US12121772B2 (en)
EP (1) EP3797299A4 (en)
JP (1) JP7458650B2 (en)
KR (1) KR20210010989A (en)
CN (1) CN112470009A (en)
AU (1) AU2019258597A1 (en)
CA (1) CA3098300A1 (en)
WO (1) WO2019204876A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12029940B2 (en) 2019-03-11 2024-07-09 Rom Technologies, Inc. Single sensor wearable device for monitoring joint extension and flexion
US11541274B2 (en) 2019-03-11 2023-01-03 Rom Technologies, Inc. System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine
US11185735B2 (en) 2019-03-11 2021-11-30 Rom Technologies, Inc. System, method and apparatus for adjustable pedal crank
CN111803903A (en) * 2019-04-10 2020-10-23 深圳先进技术研究院 Body-building action recognition method and system and electronic equipment
TWI697346B (en) * 2019-09-06 2020-07-01 柯文生 Device for measuring hand and foot movements for swimming training
US11071597B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Telemedicine for orthopedic treatment
US11701548B2 (en) 2019-10-07 2023-07-18 Rom Technologies, Inc. Computer-implemented questionnaire for orthopedic treatment
US20210127974A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Remote examination through augmented reality
US20210128080A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Augmented reality placement of goniometer or other sensors
US11265234B2 (en) 2019-10-03 2022-03-01 Rom Technologies, Inc. System and method for transmitting data and ordering asynchronous data
US11282599B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions
US11282608B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session
US20210134412A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for processing medical claims using biometric signatures
US11317975B2 (en) 2019-10-03 2022-05-03 Rom Technologies, Inc. Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment
US11075000B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Method and system for using virtual avatars associated with medical professionals during exercise sessions
US11978559B2 (en) 2019-10-03 2024-05-07 Rom Technologies, Inc. Systems and methods for remotely-enabled identification of a user infection
US11515028B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome
US11282604B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease
US11087865B2 (en) 2019-10-03 2021-08-10 Rom Technologies, Inc. System and method for use of treatment device to reduce pain medication dependency
US11337648B2 (en) 2020-05-18 2022-05-24 Rom Technologies, Inc. Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session
US11270795B2 (en) 2019-10-03 2022-03-08 Rom Technologies, Inc. Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context
US11325005B2 (en) 2019-10-03 2022-05-10 Rom Technologies, Inc. Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise
US11069436B2 (en) 2019-10-03 2021-07-20 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks
US20210134432A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Method and system for implementing dynamic treatment environments based on patient information
US20210134425A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance
US11515021B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance
US11101028B2 (en) 2019-10-03 2021-08-24 Rom Technologies, Inc. Method and system using artificial intelligence to monitor user characteristics during a telemedicine session
US20210134458A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method to enable remote adjustment of a device during a telemedicine session
US20210142893A1 (en) 2019-10-03 2021-05-13 Rom Technologies, Inc. System and method for processing medical claims
US11139060B2 (en) 2019-10-03 2021-10-05 Rom Technologies, Inc. Method and system for creating an immersive enhanced reality-driven exercise experience for a user
US11826613B2 (en) 2019-10-21 2023-11-28 Rom Technologies, Inc. Persuasive motivation for orthopedic treatment
US11107591B1 (en) 2020-04-23 2021-08-31 Rom Technologies, Inc. Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts
GB2597336B (en) * 2020-09-08 2023-06-14 Swim Smooth Ltd System and method for coaching a swimmer
FR3115152A1 (en) 2020-10-09 2022-04-15 Vt Innov Device and motion tracking system for a swimmer adaptable to a swimming instrument
US11331537B1 (en) * 2021-06-11 2022-05-17 Vision Quest Virtual, LLC System and method for using drag force data to optimize athletic performance
CN114602155B (en) * 2022-05-11 2023-02-21 荣耀终端有限公司 Swimming information statistical method, computer-readable storage medium and electronic device
WO2023230660A1 (en) * 2022-05-31 2023-12-07 Omnibus157 Pty Ltd A system and method for measuring performance
CN116059605B (en) * 2022-08-17 2024-09-20 顾大成 Taekwondo competition integral data processing method and system
WO2024092315A1 (en) * 2022-11-03 2024-05-10 Butler 88 Pty Ltd A swim stroke analysis method and system
CN116808553B (en) * 2023-08-04 2023-12-29 国家体育总局体育科学研究所 System for quantitatively researching specific technical level of athletic swimmers

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654010A (en) * 1985-03-04 1987-03-31 Rod Havriluk Method and apparatus of measuring swimming technique
SU1556653A1 (en) 1987-01-12 1990-04-15 Челябинский государственный медицинский институт Device for determining coefficient of sportsmanъs athletic training
US5258927A (en) * 1990-01-23 1993-11-02 Swimming Technology Research, Inc. Method and apparatus for measuring pressure exerted during aquatic and land-based therapy, exercise and athletic performance
US5663897A (en) * 1995-06-08 1997-09-02 Strokz Digital Sports, Inc. Method and apparatus for analyzing a swimmer's swim stroke
FR2784590B1 (en) 1998-10-14 2001-05-18 Pascal Reynier PALM PLATES INTENDED TO BE FIXED IN THE HANDS OF USERS IN AN AQUATIC ENVIRONMENT
US6955542B2 (en) * 2002-01-23 2005-10-18 Aquatech Fitness Corp. System for monitoring repetitive movement
DE10206345B3 (en) 2002-02-14 2004-01-22 Wolfgang Held training aid
WO2004039462A1 (en) 2002-11-01 2004-05-13 M.B.T.L. Limited Monitoring sports
DE20306128U1 (en) 2003-04-17 2003-08-07 Held, Wolfgang, 04177 Leipzig Device for measuring the pull produced during swimming, diving, rowing and similar activities comprises a measuring grid with a high ohmic resistance, and a pressure plate with a plunger
HK1064864A2 (en) 2004-08-03 2005-01-14 Jetfly Technology Ltd Swim stroke monitor.
US20100201512A1 (en) * 2006-01-09 2010-08-12 Harold Dan Stirling Apparatus, systems, and methods for evaluating body movements
JP2010022740A (en) * 2008-07-24 2010-02-04 Citizen Holdings Co Ltd Device for measuring quantity of swimming
US9216341B2 (en) 2008-08-04 2015-12-22 Xipu Li Real-time swimming monitor
US20100093458A1 (en) 2008-10-09 2010-04-15 Roger Davenport Golf swing analysis apparatus and method
US8988240B2 (en) * 2009-01-15 2015-03-24 AvidaSports, LLC Performance metrics
WO2010090867A2 (en) 2009-01-21 2010-08-12 SwimSense, LLC Multi-state performance monitoring system
FI20096232A0 (en) 2009-11-23 2009-11-23 Valtion Teknillinen Physical activity-based control for a device
GB0921448D0 (en) 2009-12-04 2010-01-20 222 Sports Ltd A Sports Monitoring system
US8406085B2 (en) * 2009-12-21 2013-03-26 Masami Sakita Swim device
US20120009553A1 (en) * 2010-07-07 2012-01-12 Ben-Tal Eran Apparatus for assisting swimming training
WO2013083278A2 (en) 2011-12-07 2013-06-13 Eth Zurich Mobile computing system
US10022087B2 (en) * 2012-11-29 2018-07-17 Johnson Outdoors Inc. Swim stroke counter
US9192817B2 (en) 2012-12-17 2015-11-24 Anthony Frolov Device for training swimmers and performing physiotherapeutic exercises
US20140200116A1 (en) 2013-01-17 2014-07-17 Alex Aquatics Real Time Feedback Swim Training System and Method Based on Instantaneous Speed
GB2511833B (en) 2013-03-15 2016-01-13 Suunto Oy Device and method for monitoring swimming performance
FI124343B (en) 2013-03-15 2014-07-15 Suunto Oy Apparatus and method for monitoring swimming performance
KR101860654B1 (en) 2013-10-14 2018-05-23 나이키 이노베이트 씨.브이. Calculating pace and energy expenditure from athletic movement attributes
US10254804B2 (en) * 2014-02-11 2019-04-09 Apple Inc. Detecting the limb wearing a wearable electronic device
ITMI20140136U1 (en) * 2014-04-08 2015-10-08 Milano Politecnico WEARABLE SYSTEM FOR MONITORING THE SWIMMER'S PERFORMANCE
US20170086519A1 (en) 2014-05-15 2017-03-30 Sensoria, Inc. Gloves with sensors for monitoring and analysis of position, pressure and movement
FI125723B (en) 2014-07-11 2016-01-29 Suunto Oy Portable activity monitoring device and associated process
US9858328B2 (en) * 2014-07-17 2018-01-02 Verily Life Sciences, LLC Data tagging
TW201618835A (en) * 2014-11-25 2016-06-01 沅聖科技股份有限公司 Wearable device analyzing swimming and the analyzing method of the same
US10016158B2 (en) 2015-03-09 2018-07-10 RhoForce LLC Rowing force and rowing performance monitoring device
US20170319904A1 (en) 2015-04-06 2017-11-09 Western Michigan University Research Foundation Interactive performance feedback for exercise equipment
JP2016198194A (en) 2015-04-08 2016-12-01 セイコーエプソン株式会社 Paddle and water-pressure display system
CN204579983U (en) 2015-04-28 2015-08-26 关宏刚 A kind of novel data acquisition gloves
CN104888444B (en) * 2015-05-20 2018-09-21 深圳大学 Wisdom gloves, the method and system of a kind of calorie of consumption and hand positions identification
ITUB20152294A1 (en) 2015-07-20 2017-01-20 Wearit S R L SYSTEM AND METHOD OF ACQUISITION AND PROCESSING OF DATA OF A SPORTING PERFORMANCE
CN204988293U (en) 2015-07-28 2016-01-20 苏州曼普拉斯传感科技有限公司 Real -time testing arrangement of three -dimensional coordinate and test system
CN104977356B (en) 2015-07-31 2020-06-09 中航复合材料有限责任公司 Composite material foam structure ultrasonic detection method based on reflection principle
HK1207793A2 (en) 2015-08-11 2016-02-05 Platysens Ltd System and method for analysing stroking motions in water sports
US10854104B2 (en) * 2015-08-28 2020-12-01 Icuemotion Llc System for movement skill analysis and skill augmentation and cueing
FI126326B (en) * 2015-11-11 2016-09-30 Teknologian Tutkimuskeskus Vtt Oy Analysis of swimming technique
GB2545191A (en) 2015-12-08 2017-06-14 222 Sports Ltd Swimming performance tracking device
CN105797350A (en) * 2016-03-18 2016-07-27 深圳大学 Intelligent method and system for body building posture recognition, evaluation, early-warning and intensity estimation
WO2017163108A1 (en) 2016-03-22 2017-09-28 Instituto Tecnologico Metropolitano System for tracking animate or inanimate objects in real time with autoreferencing, autocalibration and robust synchronisation
US10918907B2 (en) 2016-08-14 2021-02-16 Fitbit, Inc. Automatic detection and quantification of swimming
US10617912B2 (en) * 2016-08-31 2020-04-14 Apple Inc. Systems and methods of swimming calorimetry
AU2017321776A1 (en) 2016-08-31 2019-03-07 Apple Inc. Systems and methods of swimming analysis
US9773330B1 (en) * 2016-12-29 2017-09-26 BioMech Sensor LLC Systems and methods for real-time data quantification, acquisition, analysis, and feedback
WO2018136550A1 (en) * 2017-01-18 2018-07-26 Davis Guy Savaric Scott Swimming paddle
FI127556B (en) 2017-02-06 2018-09-14 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for breath analysis
CN108392811B (en) 2017-02-08 2020-08-04 余嘉翔 Intelligent swimming partner
CN106912006A (en) 2017-04-01 2017-06-30 成都精位科技有限公司 A kind of wisdom swimming exercise system and the method for realizing Sport Administration
US10220255B2 (en) * 2017-04-12 2019-03-05 Russell Copelan Wearable measuring apparatus for sports training
CN107270934A (en) 2017-06-08 2017-10-20 海能电子(深圳)有限公司 A kind of swimming information monitoring recognition methods based on wearable intelligent equipment
CA3033603A1 (en) * 2018-02-12 2019-08-12 David RIVAL Apparatus and method for measuring force and power during unsteady fluid motions
US11833392B2 (en) * 2018-03-02 2023-12-05 Form Athletica Inc. Methods and systems for swimming performance analysis
WO2019199183A2 (en) 2018-04-13 2019-10-17 Universidad Tecnológica De Panama System for measuring a person's rowing performance based on the action of the oar in the displacement of fluid
TW202031321A (en) * 2019-02-25 2020-09-01 財團法人工業技術研究院 Swimming posture correction method and swimming posture correction system
TWI697346B (en) 2019-09-06 2020-07-01 柯文生 Device for measuring hand and foot movements for swimming training

Similar Documents

Publication Publication Date Title
JPWO2019204876A5 (en)
JP7458650B2 (en) System and method for systematically representing swimmer motion performance metrics
AU2020273327B2 (en) Systems and methods of swimming analysis
US20180335843A1 (en) Tracking finger movements to generate inputs for computer systems
JP5417970B2 (en) Pedometer and step counting method
JP2003337963A5 (en)
JP2014517569A5 (en)
JP2013535051A5 (en)
CN110038291B (en) Motion information acquisition system and motion posture recovery method for rowing athletes
Kim et al. Recognition of sign language with an inertial sensor-based data glove
KR20190136047A (en) Tracking the Position and Orientation of a Virtual Controller in a Virtual Reality System
US20230067081A1 (en) System and method for real-time creation and execution of a human Digital Twin
JP6446941B2 (en) Kinematic analysis apparatus, method, and program
WO2017177582A1 (en) Method and device for implementing speed measurement of sports apparatus
CN110296717A (en) A kind of processing method and calculating equipment of event data stream
CN104679229A (en) Gesture recognition method and apparatus
WO2014210344A4 (en) Systems and methods to assess balance
JP2015205072A5 (en)
Nakashima et al. Development of a swimming motion display system for athlete swimmers’ training using a wristwatch-style acceleration and gyroscopic sensor device
US20180216959A1 (en) A Combined Motion Capture System
CN108227928B (en) Picking method and device in virtual reality scene
CN112791382A (en) VR scene control method, device, equipment and storage medium
CN105912117B (en) Motion state method for catching and system
KR102150172B1 (en) Relative movement based motion recognition method and apparatus
Callejas-Cuervo et al. Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes