JPWO2019189718A1 - Polarizer and polarizing plate - Google Patents

Polarizer and polarizing plate Download PDF

Info

Publication number
JPWO2019189718A1
JPWO2019189718A1 JP2020511065A JP2020511065A JPWO2019189718A1 JP WO2019189718 A1 JPWO2019189718 A1 JP WO2019189718A1 JP 2020511065 A JP2020511065 A JP 2020511065A JP 2020511065 A JP2020511065 A JP 2020511065A JP WO2019189718 A1 JPWO2019189718 A1 JP WO2019189718A1
Authority
JP
Japan
Prior art keywords
polarizer
pva
based resin
weight
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020511065A
Other languages
Japanese (ja)
Other versions
JP7028962B2 (en
Inventor
友斗 猿橋
友斗 猿橋
浩明 澤田
浩明 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPWO2019189718A1 publication Critical patent/JPWO2019189718A1/en
Application granted granted Critical
Publication of JP7028962B2 publication Critical patent/JP7028962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

薄型で、かつ、非常に優れた耐熱性を有する偏光子が提供される。本発明の偏光子は、ヨウ素を含有するポリビニルアルコール系樹脂フィルムで構成され、遊離ホウ酸含有量が0.4重量%以下である。Provided is a polarizer that is thin and has excellent heat resistance. The polarizer of the present invention is composed of a polyvinyl alcohol-based resin film containing iodine, and has a free boric acid content of 0.4% by weight or less.

Description

本発明は、偏光子および偏光板に関する。 The present invention relates to a polarizer and a polarizing plate.

代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光子(実質的には、偏光子を含む偏光板)が配置されている。偏光子は、代表的には、ポリビニルアルコール(PVA)系樹脂フィルムをヨウ素等の二色性物質で染色することにより製造される(例えば、特許文献1および2)。近年、画像表示装置の薄型化の要望が高まっている。そのため、偏光子についても、さらなる薄型化が求められている。しかし、偏光子が薄くなればなるほど、耐熱性が低く、高温環境下で光学特性が変化しやすいという問題がある。 A liquid crystal display device, which is a typical image display device, has polarizing plates (substantially, polarizing plates including the polarizing elements) arranged on both sides of the liquid crystal cell due to the image forming method. The polarizer is typically produced by dyeing a polyvinyl alcohol (PVA) -based resin film with a dichroic substance such as iodine (for example, Patent Documents 1 and 2). In recent years, there has been an increasing demand for thinner image display devices. Therefore, the polarizer is also required to be further thinned. However, the thinner the polarizer, the lower the heat resistance, and there is a problem that the optical characteristics are likely to change in a high temperature environment.

特許第5048120号公報Japanese Patent No. 5048120 特開2013−156391号公報Japanese Unexamined Patent Publication No. 2013-156391

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、薄型で、かつ、非常に優れた耐熱性を有する偏光子を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing element which is thin and has extremely excellent heat resistance.

本発明の偏光子は、ヨウ素を含有するポリビニルアルコール系樹脂フィルムで構成され、
遊離ホウ酸含有量が0.4重量%以下である。
1つの実施形態においては、上記偏光子の厚みは7μm以下である。
1つの実施形態においては、上記偏光子のヨウ素含有量は10重量%〜25重量%である。
本発明の別の局面によれば、偏光板が提供される。この偏光板は、上記の偏光子と、該偏光子の片側または両側に積層された保護フィルムと、を含む。
The polarizer of the present invention is composed of a polyvinyl alcohol-based resin film containing iodine.
The free boric acid content is 0.4% by weight or less.
In one embodiment, the thickness of the polarizer is 7 μm or less.
In one embodiment, the polarizer has an iodine content of 10% to 25% by weight.
According to another aspect of the present invention, a polarizing plate is provided. The polarizing plate includes the above-mentioned polarizing element and a protective film laminated on one side or both sides of the polarizing element.

本発明によれば、偏光子に含まれる遊離ホウ酸含有量を0.4重量%以下とすることにより、長く望まれながら実現することができなかった、薄型で、かつ、非常に優れた耐熱性を有する偏光子を実現することができた。 According to the present invention, by setting the content of free boric acid contained in the polarizer to 0.4% by weight or less, it is thin and has very excellent heat resistance, which has long been desired but could not be realized. It was possible to realize a polarizer having a property.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

A.偏光子
A−1.偏光子の概略
本発明の実施形態による偏光子は、ヨウ素を含有するポリビニルアルコール(PVA)系樹脂フィルムで構成され、遊離ホウ酸含有量が0.4重量%以下である。
A. Polarizer A-1. Outline of Polarizer The polarizer according to the embodiment of the present invention is composed of a polyvinyl alcohol (PVA) -based resin film containing iodine, and has a free boric acid content of 0.4% by weight or less.

偏光子の遊離ホウ酸含有量は、好ましくは0.39重量%以下であり、より好ましくは0.38重量%以下である。遊離ホウ酸含有量の下限は、例えば0.01重量%である。このように、偏光子に含まれる全てのホウ酸の含有量ではなく、遊離ホウ酸の含有量に着目したことが、本発明の特徴のひとつである。偏光子の遊離ホウ酸含有量が上記の範囲内であることにより、耐熱性に優れ、高温環境下での光学特性(例えば、単体透過率)の変化が抑制され得る。偏光子の遊離ホウ酸含有量は、代表的には、誘導結合プラズマ発光分光分析(ICP−AES)法を用いて以下の手順により求めることができる。すなわち、偏光子を凍結粉砕して得た測定試料を、2−エチル−1,3−ヘキサンジオール/クロロホルム(体積比:10/90)混合溶液と混合し、この混合物を濾過して得られた濾液中のホウ素含量を、ICP発光分析装置を用いて定量する。得られたホウ素含量は全てホウ酸に由来し、濾液中のホウ酸は全て偏光子の遊離ホウ酸に由来するものと見なし、ホウ素含量を偏光子の遊離ホウ酸含有量に換算する。1つの実施形態においては、偏光子の遊離ホウ酸含有量は、後述するように偏光子の製造方法における乾燥工程において従来の加熱温度よりも低い温度(好ましくは、50℃以下)で乾燥処理することにより、上記の範囲内に調整され得る。 The free boric acid content of the polarizer is preferably 0.39% by weight or less, and more preferably 0.38% by weight or less. The lower limit of the free boric acid content is, for example, 0.01% by weight. As described above, one of the features of the present invention is to pay attention to the content of free boric acid rather than the content of all boric acid contained in the polarizer. When the free boric acid content of the polarizer is within the above range, the heat resistance is excellent, and changes in optical characteristics (for example, single transmittance) in a high temperature environment can be suppressed. The free boric acid content of the polarizer can typically be determined by the following procedure using inductively coupled plasma emission spectroscopy (ICP-AES). That is, the measurement sample obtained by freeze-grinding the polarizer was mixed with a mixed solution of 2-ethyl-1,3-hexanediol / chloroform (volume ratio: 10/90), and this mixture was filtered. The boron content in the filtrate is quantified using an ICP emission spectrometer. The obtained boron content is all derived from boric acid, and all boric acid in the filtrate is considered to be derived from the free boric acid of the polarizer, and the boron content is converted into the free boric acid content of the polarizer. In one embodiment, the free boric acid content of the polarizer is dried at a temperature lower than the conventional heating temperature (preferably 50 ° C. or lower) in the drying step in the method for producing a polarizer as described later. Thereby, it can be adjusted within the above range.

偏光子は、その厚みの上限が、1つの実施形態においては7μmであり、別の実施形態においては3μmであり、さらに別の実施形態においては2μmである。厚みの下限は、1つの実施形態においては0.5μmであり、別の実施形態においては0.6μmであり、さらに別の実施形態においては0.8μmである。本発明の実施形態によれば、厚みが薄い偏光子であっても後述のような所望の単体透過率を実現することができる。 The upper limit of the thickness of the polarizer is 7 μm in one embodiment, 3 μm in another embodiment, and 2 μm in yet another embodiment. The lower limit of the thickness is 0.5 μm in one embodiment, 0.6 μm in another embodiment, and 0.8 μm in yet another embodiment. According to the embodiment of the present invention, it is possible to realize a desired single transmittance as described later even with a polarizing element having a thin thickness.

偏光子のヨウ素含有量は、十分な偏光性能と最適な単体透過率とを両立するよう適切に設定され得る。ヨウ素含有量は、好ましくは10重量%〜25重量%であり、より好ましくは15重量%〜25重量%である。本発明の実施形態によれば、このようにきわめて高いヨウ素含有量を有する偏光子において、従来は困難であった非常に優れた耐熱性を実現することができる。より詳細には、きわめて高いヨウ素含有量を有する偏光子において、高温環境下における光学特性の変化を顕著に抑制することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA−ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。The iodine content of the polarizer can be appropriately set so as to achieve both sufficient polarization performance and optimum single transmittance. The iodine content is preferably 10% to 25% by weight, more preferably 15% to 25% by weight. According to the embodiment of the present invention, in a polarizer having such an extremely high iodine content, it is possible to realize extremely excellent heat resistance, which has been difficult in the past. More specifically, in a polarizer having an extremely high iodine content, changes in optical properties in a high temperature environment can be significantly suppressed. As used herein, the term "iodine content" means the amount of all iodine contained in the polarizer (PVA-based resin film). More specifically, iodine during polarizers iodide ion (I -), polyiodine ion (I 3 -, I 5 - ) where present in the form of such as iodine content in the present specification, these It means the amount of iodine including all forms. The iodine content can be calculated, for example, by the calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in a state in which a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light. Specifically, a complex of PVA and tri-iodide ion (PVA · I 3 -) has a light absorption peak around 470 nm, a complex of PVA and five iodide ion (PVA · I 5 -) is 600nm near Has an absorptive peak. As a result, polyiodine ions can absorb light in a wide range of visible light, depending on their morphology. On the other hand, iodine ion (I ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in the form of a complex with PVA may be mainly involved in the absorption performance of the polarizer.

偏光子の単体透過率(Ts)は、好ましくは30.0%〜43.0%であり、より好ましくは35.0%〜41.0%である。偏光子の偏光度は、好ましくは99.9%以上であり、より好ましくは99.95%以上であり、さらに好ましくは99.98%以上である。単体透過率を低く設定し偏光度を高くすることにより、コントラストを高くすることができ、黒表示をより黒く表示できるので、優れた画質の画像表示装置を実現することができる。なお、単体透過率は、積分球付き分光光度計で測定した値である。単体透過率は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値であり、例えば、積分球付き分光光度計(日本分光株式会社製、製品名:V7100)を用いて測定することができる。 The simple substance transmittance (Ts) of the polarizer is preferably 30.0% to 43.0%, more preferably 35.0% to 41.0%. The degree of polarization of the polarizer is preferably 99.9% or more, more preferably 99.95% or more, and further preferably 99.98% or more. By setting the single transmittance to be low and increasing the degree of polarization, the contrast can be increased and the black display can be displayed in black, so that an image display device having excellent image quality can be realized. The single transmittance is a value measured by a spectrophotometer with an integrating sphere. The single transmittance is a Y value measured by a two-degree field of view (C light source) of JIS Z8701 and corrected for luminosity factor. For example, a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, product name: V7100). Can be measured using.

A−2.PVA系樹脂フィルム
PVA系樹脂フィルムを形成するPVA系樹脂としては、例えば、ポリビニルアルコール、エチレン−ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン−ビニルアルコール共重合体は、エチレン−酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%以上100モル%未満であり、好ましくは95.0モル%〜99.95モル%、さらに好ましくは99.0モル%〜99.93モル%である。ケン化度は、JIS K 6726−1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子を得ることができる。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
A-2. PVA-based resin film Examples of the PVA-based resin forming the PVA-based resin film include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponification of polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% or more and less than 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. is there. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.

PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000〜10000であり、好ましくは1200〜4500、さらに好ましくは1500〜4300である。なお、平均重合度は、JIS K 6726−1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected depending on the intended purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.

PVA系樹脂フィルムの厚みは、特に制限はなく、所望の偏光子の厚みに応じて設定され得る。PVA系樹脂フィルムの厚みは、例えば、10μm〜200μmである。 The thickness of the PVA-based resin film is not particularly limited and can be set according to the desired thickness of the polarizer. The thickness of the PVA-based resin film is, for example, 10 μm to 200 μm.

1つの実施形態においては、PVA系樹脂フィルムは、基材上に形成されたPVA系樹脂層であってもよい。基材とPVA系樹脂層との積層体は、例えば、上記PVA系樹脂を含む塗布液を基材に塗布する方法、基材にPVA系樹脂フィルムを積層する方法等により得ることができる。 In one embodiment, the PVA-based resin film may be a PVA-based resin layer formed on a substrate. The laminate of the base material and the PVA-based resin layer can be obtained, for example, by a method of applying the coating liquid containing the PVA-based resin to the base material, a method of laminating a PVA-based resin film on the base material, or the like.

B.偏光子の製造方法
B−1.偏光子の製造方法の概略
本発明の実施形態による偏光子の製造方法は、PVA系樹脂フィルムを、少なくとも延伸および染色することを含む。代表的には、当該製造方法は、PVA系樹脂フィルムを準備する工程、延伸工程、染色工程、架橋工程、洗浄工程、および乾燥工程を含む。また、必要に応じて延伸工程の前に膨潤工程を有してもよい。PVA系樹脂フィルムが供される各工程は、任意の適切な順序およびタイミングで行われ得る。したがって、各工程を上記の順序で行ってもよく、上記とは異なる順序で行ってもよい。必要に応じて、1つの工程を複数回行ってもよい。さらに、上記以外の工程(例えば、不溶化工程)を任意の適切なタイミングで行ってもよい。なお、PVA系樹脂フィルムが基材上に形成されたPVA系樹脂層である場合、基材とPVA系樹脂層との積層体が上記の工程に供される。
B. Method for manufacturing a polarizer B-1. Outline of Method for Producing Polarizer The method for producing a polarizer according to the embodiment of the present invention includes at least stretching and dyeing a PVA-based resin film. Typically, the production method includes a step of preparing a PVA-based resin film, a stretching step, a dyeing step, a cross-linking step, a washing step, and a drying step. Further, if necessary, a swelling step may be provided before the stretching step. Each step in which the PVA-based resin film is provided can be performed in any suitable order and timing. Therefore, each step may be performed in the above order, or may be performed in a different order from the above. If necessary, one step may be performed a plurality of times. Further, a step other than the above (for example, an insolubilization step) may be performed at an arbitrary appropriate timing. When the PVA-based resin film is a PVA-based resin layer formed on a base material, a laminate of the base material and the PVA-based resin layer is subjected to the above step.

以下、各工程について説明するが、上記のとおり各工程は任意の適切な順序で行われ得、記載順序に限定されるものではない。 Hereinafter, each step will be described, but as described above, each step can be performed in any appropriate order, and is not limited to the description order.

B−2.延伸工程
延伸工程において、PVA系樹脂フィルムは、代表的には3倍〜7倍に一軸延伸される。延伸方向は、フィルムの長手方向(MD方向)であってもよく、フィルムの幅方向(TD方向)であってもよい。延伸方法は、乾式延伸であってもよく、湿式延伸であってもよく、これらを組み合せてもよい。また、架橋工程、膨潤工程、染色工程等を行う際にPVA系樹脂フィルムを延伸してもよい。なお、延伸方向は、得られる偏光子の吸収軸方向に対応し得る。
B-2. Stretching Step In the stretching step, the PVA-based resin film is typically uniaxially stretched 3 to 7 times. The stretching direction may be the longitudinal direction of the film (MD direction) or the width direction of the film (TD direction). The stretching method may be dry stretching, wet stretching, or a combination of these. Further, the PVA-based resin film may be stretched when performing a crosslinking step, a swelling step, a dyeing step, or the like. The stretching direction can correspond to the absorption axis direction of the obtained polarizer.

B−3.膨潤工程
膨潤工程は、通常、染色工程の前に行われる。膨潤工程は、例えば、PVA系樹脂フィルムを膨潤浴に浸漬することにより行われる。膨潤浴としては、通常、蒸留水、純水等の水が用いられる。膨潤浴は、水以外の任意の適切な他の成分を含んでいてもよい。他の成分としては、アルコール等の溶媒、界面活性剤等の添加剤、ヨウ化物等が挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。好ましくは、ヨウ化カリウムが用いられる。膨潤浴の温度は、例えば、20℃〜45℃である。また、浸漬時間は、例えば、10秒〜300秒である。
B-3. Swelling step The swelling step is usually performed before the dyeing step. The swelling step is performed, for example, by immersing a PVA-based resin film in a swelling bath. As the swelling bath, water such as distilled water or pure water is usually used. The swelling bath may contain any suitable other ingredients other than water. Examples of other components include solvents such as alcohol, additives such as surfactants, and iodides. Examples of iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. And so on. Preferably, potassium iodide is used. The temperature of the swelling bath is, for example, 20 ° C to 45 ° C. The immersion time is, for example, 10 seconds to 300 seconds.

B−4.染色工程
染色工程は、PVA系樹脂フィルムを二色性物質で染色する工程である。好ましくは二色性物質を吸着させることにより行う。当該吸着方法としては、例えば、二色性物質を含む染色液にPVA系樹脂フィルムを浸漬させる方法、PVA系樹脂フィルムに当該染色液を塗工する方法、当該染色液をPVA系樹脂フィルムに噴霧する方法等が挙げられる。好ましくは、染色液にPVA系樹脂フィルムを浸漬させる方法である。二色性物質が良好に吸着し得るからである。
B-4. Dyeing step The dyeing step is a step of dyeing a PVA-based resin film with a dichroic substance. It is preferably carried out by adsorbing a dichroic substance. Examples of the adsorption method include a method of immersing a PVA-based resin film in a dyeing solution containing a bicolor substance, a method of applying the dyeing solution to the PVA-based resin film, and a method of spraying the dyeing solution onto the PVA-based resin film. The method of doing this can be mentioned. A method of immersing the PVA-based resin film in the dyeing solution is preferable. This is because the dichroic substance can be adsorbed well.

上記二色性物質としては、例えば、ヨウ素、二色性染料が挙げられる。好ましくは、ヨウ素である。二色性物質としてヨウ素を用いる場合、染色液としては、ヨウ素水溶液が好ましく用いられる。ヨウ素水溶液のヨウ素の含有量は、水100重量部に対して、好ましくは0.04重量部〜5.0重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、ヨウ化カリウムが好ましく用いられる。ヨウ化物の含有量は、水100重量部に対して、好ましくは0.3重量部〜15重量部である。 Examples of the dichroic substance include iodine and a dichroic dye. Iodine is preferred. When iodine is used as the dichroic substance, an aqueous iodine solution is preferably used as the staining solution. The iodine content of the iodine aqueous solution is preferably 0.04 parts by weight to 5.0 parts by weight with respect to 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add iodide to the aqueous iodine solution. Potassium iodide is preferably used as the iodide. The content of iodide is preferably 0.3 to 15 parts by weight with respect to 100 parts by weight of water.

染色液の染色時の液温は、任意の適切な値に設定することができ、例えば、20℃〜50℃である。染色液にPVA系樹脂フィルムを浸漬させる場合、浸漬時間は、例えば、5秒〜5分である。 The liquid temperature at the time of dyeing the dyeing liquid can be set to an arbitrary appropriate value, for example, 20 ° C. to 50 ° C. When the PVA-based resin film is immersed in the dyeing solution, the immersion time is, for example, 5 seconds to 5 minutes.

B−5.架橋工程
架橋工程においては、通常、架橋剤としてホウ素化合物が用いられる。ホウ素化合物としては、例えば、ホウ酸、ホウ砂等が挙げられる。好ましくは、ホウ酸である。架橋工程においては、ホウ素化合物は、通常、水溶液の形態で用いられる。
B-5. Cross-linking step In the cross-linking step, a boron compound is usually used as a cross-linking agent. Examples of the boron compound include boric acid and borax. Preferably, it is boric acid. In the cross-linking step, the boron compound is usually used in the form of an aqueous solution.

ホウ酸水溶液を用いる場合、ホウ酸水溶液のホウ酸濃度は、例えば、1重量%〜15重量%であり、好ましくは1重量%〜10重量%である。ホウ酸水溶液には、ヨウ化カリウム等のヨウ化物、硫酸亜鉛、塩化亜鉛等の亜鉛化合物をさらに含有させてもよい。 When an aqueous boric acid solution is used, the boric acid concentration of the aqueous boric acid solution is, for example, 1% by weight to 15% by weight, preferably 1% by weight to 10% by weight. The boric acid aqueous solution may further contain an iodide such as potassium iodide and a zinc compound such as zinc sulfate and zinc chloride.

架橋工程は、任意の適切な方法により行うことができる。例えば、ホウ素化合物を含む水溶液にPVA系樹脂フィルムを浸漬する方法、ホウ素化合物を含む水溶液をPVA系樹脂フィルムに塗布する方法、または、ホウ素化合物を含む水溶液をPVA系樹脂フィルムに噴霧する方法が挙げられる。ホウ素化合物を含む水溶液に浸漬することが好ましい。 The cross-linking step can be performed by any suitable method. For example, a method of immersing a PVA-based resin film in an aqueous solution containing a boron compound, a method of applying an aqueous solution containing a boron compound to a PVA-based resin film, or a method of spraying an aqueous solution containing a boron compound onto a PVA-based resin film can be mentioned. Be done. It is preferable to immerse in an aqueous solution containing a boron compound.

架橋に用いる溶液の温度は、例えば、25℃以上であり、好ましくは30℃〜85℃、さらに好ましくは40℃〜70℃である。浸漬時間は、例えば、5秒〜800秒であり、好ましくは8秒〜500秒である。 The temperature of the solution used for crosslinking is, for example, 25 ° C. or higher, preferably 30 ° C. to 85 ° C., and more preferably 40 ° C. to 70 ° C. The immersion time is, for example, 5 seconds to 800 seconds, preferably 8 seconds to 500 seconds.

B−6.洗浄工程
洗浄工程は、代表的には、架橋工程以降に行われ得る。洗浄工程は、代表的には、PVA系樹脂フィルムを洗浄液に浸漬させることにより行われる。洗浄液の代表例としては、純水が挙げられる。純水にヨウ化カリウムを添加してもよい。
B-6. Cleaning Step The cleaning step can typically be performed after the crosslinking step. The cleaning step is typically performed by immersing a PVA-based resin film in a cleaning liquid. Pure water is a typical example of the cleaning liquid. Potassium iodide may be added to pure water.

洗浄液の温度は、例えば5℃〜50℃である。浸漬時間は、例えば1秒〜300秒である。 The temperature of the cleaning liquid is, for example, 5 ° C to 50 ° C. The immersion time is, for example, 1 second to 300 seconds.

B−7.乾燥工程
乾燥工程は、任意の適切な方法により行うことができる。乾燥方法としては、例えば、自然乾燥、送風乾燥、減圧乾燥、加熱乾燥等が挙げられる。加熱乾燥が好ましく用いられる。乾燥時間短縮の観点から、加熱乾燥を行う場合、加熱温度は、好ましくは50℃以下であり、さらに好ましくは45℃以下であり、特に好ましくは40℃以下である。加熱温度の下限は、特に限定されないが加熱乾燥装置で設定し得る下限温度である。例えば30℃である。また、乾燥時間は、例えば、20秒〜10分間である。1つの実施形態においては、2段階以上で加熱乾燥を行う。この場合、好ましくは、少なくともいずれかの段階の加熱温度が上記範囲内の温度である。加熱乾燥を行う場合に加熱温度を上記の範囲内とすることにより、非常に優れた耐熱性を有する偏光子が得られ得る。
B-7. Drying Step The drying step can be carried out by any suitable method. Examples of the drying method include natural drying, blast drying, vacuum drying, heat drying and the like. Heat drying is preferably used. From the viewpoint of shortening the drying time, when heat-drying is performed, the heating temperature is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and particularly preferably 40 ° C. or lower. The lower limit of the heating temperature is not particularly limited, but is a lower limit temperature that can be set by the heating / drying device. For example, 30 ° C. The drying time is, for example, 20 seconds to 10 minutes. In one embodiment, heat drying is performed in two or more steps. In this case, preferably, the heating temperature at at least one stage is a temperature within the above range. By setting the heating temperature within the above range in the case of heat drying, a polarizer having extremely excellent heat resistance can be obtained.

C.偏光板
本発明の実施形態による偏光子は、代表的には、その片側または両側に保護フィルムが積層された状態で(すなわち、偏光板として)使用される。実用的には、偏光板は、最外層として粘着剤層を有する。粘着剤層は、代表的には画像表示装置側の最外層となる。粘着剤層には、セパレーターが剥離可能に仮着され、実際の使用まで粘着剤層を保護するとともに、ロール形成を可能としている。
C. Polarizing Plate The polarizer according to the embodiment of the present invention is typically used in a state where a protective film is laminated on one side or both sides thereof (that is, as a polarizing plate). Practically, the polarizing plate has an adhesive layer as the outermost layer. The pressure-sensitive adhesive layer is typically the outermost layer on the image display device side. A separator is temporarily attached to the pressure-sensitive adhesive layer so that it can be peeled off, protecting the pressure-sensitive adhesive layer until actual use and enabling roll formation.

保護フィルムとしては、任意の適切な樹脂フィルムが用いられる。樹脂フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。 As the protective film, any suitable resin film is used. Examples of the resin film forming material include (meth) acrylic resin, cellulose-based resin such as diacetyl cellulose and triacetyl cellulose, cycloolefin-based resin such as norbornene-based resin, olefin-based resin such as polypropylene, and polyethylene terephthalate-based resin. Etc., ester-based resins, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof. The "(meth) acrylic resin" refers to an acrylic resin and / or a methacrylic resin.

1つの実施形態においては、上記(メタ)アクリル系樹脂として、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報、特開2007−009182号公報、特開2009−161744号公報、特開2010−284840号公報に記載されている。これらの記載は、本明細書に参考として援用される。 In one embodiment, as the (meth) acrylic resin, a (meth) acrylic resin having a glutarimide structure is used. Examples of the (meth) acrylic resin having a glutarimide structure (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in JP-A-161744 and JP-A-2010-284840. These statements are incorporated herein by reference.

基材とPVA系樹脂層との積層体を用いて偏光子を製造する場合には、基材を剥離せずにそのまま保護フィルムとして用いてもよい。また、基材を剥離して偏光子に保護フィルムを貼り合わせてもよい。 When a polarizer is produced using a laminate of a base material and a PVA-based resin layer, the base material may be used as it is as a protective film without peeling. Alternatively, the base material may be peeled off and a protective film may be attached to the polarizer.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。
(1)単体透過率変化量Ts
実施例および比較例で得られた積層体の偏光子側に厚み1.0μmの接着層を介して反射型偏光子(3M社製、商品名「DBEF」)を貼り合わせた。次いで、熱可塑性樹脂基材を剥離し、当該剥離面に、厚み20μmのアクリル粘着剤層を介して厚み1.3mmの無アルカリガラスを貼り合せ、試験サンプルとした。この試験サンプルを80℃の条件で200時間加熱した(加熱試験)。試験前、加熱試験後の偏光子の単体透過率を、それぞれ、積分球付き分光光度計(日本分光株式会社製、製品名:V7100)を用いて測定した。加熱前の単体透過率Ts0および加熱試験後の単体透過率Ts1から、下記式を用いて単体透過率変化量Tsを求めた。
Ts(%)=Ts1−Ts0
(2)ヨウ素含有量
実施例および比較例で得られた積層体の偏光子について、蛍光X線分析装置(リガク社製、商品名「ZSX−PRIMUS II」、測定径:ψ20mm)を用いて蛍光X線強度(kcps)を測定した。一方、当該偏光子の厚み(μm)を、分光膜厚計(大塚電子社製、商品名「MCPD−3000」)を用いて測定した。得られた蛍光X線強度と厚みから下記式を用いてヨウ素含有量(重量%)を求めた。
(ヨウ素濃度)=20.5×(蛍光X線強度)/(フィルム厚み)
なお、ヨウ素含有量を算出する際の係数は測定装置によって異なるが、当該係数は適切な検量線を用いて求めることができる。
(3)遊離ホウ酸含有量
実施例および比較例で得られた偏光子をハサミで約5mm角に裁断したもの50mgを、鋼球とともに試料容器に充填した。その後、凍結粉砕装置JFC−300(日本分析工業株式会社製)を用い、冷媒としては液体窒素を用いて予冷7分、振動5分の条件で測定試料を凍結粉砕した。粉砕された測定試料を室温にて約30分放置した。得られた測定試料を、2−エチル−1,3−ヘキサンジオール/クロロホルム(体積比:10/90)混合溶液3.5mLと混合し、室温で24時間放置した。得られた混合物を、0.45μmのフィルターを用いて濾過した。得られた濾液を、ホットプレート上でクロロホルムを除去後、残渣をテフロン(登録商標)製分解容器に移し取り、酸を加えて密栓した。この分解容器にマイクロ波を照射し、加圧酸分解した。分解後、超純水を加えて25mLに定容し、下記ホウ酸の定量条件により分析した。
<ホウ酸の定量条件>
装置名 :ICP発光分析装置SPS−3520UV(株式会社日立ハイテクサイエンス製)
測定波長 :B 249.848nm
得られたホウ素含量は全てホウ酸に由来するものと見なし、ホウ酸含量に換算した。このホウ酸含量を、偏光子の遊離ホウ酸含有量とした。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows.
(1) Single transmittance change amount Ts
A reflective polarizer (manufactured by 3M, trade name "DBEF") was attached to the polarizer side of the laminates obtained in Examples and Comparative Examples via an adhesive layer having a thickness of 1.0 μm. Next, the thermoplastic resin base material was peeled off, and non-alkali glass having a thickness of 1.3 mm was attached to the peeled surface via an acrylic pressure-sensitive adhesive layer having a thickness of 20 μm to prepare a test sample. This test sample was heated at 80 ° C. for 200 hours (heating test). The single transmittance of the polarizer before the test and after the heating test was measured using a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, product name: V7100). From the simple substance transmittance Ts0 before heating and the simple substance transmittance Ts1 after the heating test, the amount of change in simple substance transmittance Ts was determined using the following formula.
Ts (%) = Ts1-Ts0
(2) Iodine content The polarizers of the laminates obtained in Examples and Comparative Examples are fluorescent using a fluorescent X-ray analyzer (manufactured by Rigaku, trade name "ZSX-PRIMUS II", measurement diameter: ψ20 mm). The X-ray intensity (kcps) was measured. On the other hand, the thickness (μm) of the polarizer was measured using a spectroscopic film thickness meter (manufactured by Otsuka Electronics Co., Ltd., trade name “MCPD-3000”). The iodine content (% by weight) was determined from the obtained fluorescent X-ray intensity and thickness using the following formula.
(Iodine concentration) = 20.5 x (fluorescent X-ray intensity) / (film thickness)
The coefficient for calculating the iodine content differs depending on the measuring device, but the coefficient can be obtained by using an appropriate calibration curve.
(3) Free boric acid content 50 mg of the polarizers obtained in Examples and Comparative Examples cut into about 5 mm squares with scissors was filled in a sample container together with steel balls. Then, the measurement sample was freeze-ground using a freeze-crusher JFC-300 (manufactured by Nippon Analytical Industry Co., Ltd.) under the conditions of pre-cooling 7 minutes and vibration 5 minutes using liquid nitrogen as a refrigerant. The pulverized measurement sample was left at room temperature for about 30 minutes. The obtained measurement sample was mixed with 3.5 mL of a mixed solution of 2-ethyl-1,3-hexanediol / chloroform (volume ratio: 10/90) and left at room temperature for 24 hours. The resulting mixture was filtered using a 0.45 μm filter. Chloroform was removed from the obtained filtrate on a hot plate, and the residue was transferred to a Teflon (registered trademark) decomposition vessel, acid was added, and the mixture was sealed. The decomposition vessel was irradiated with microwaves to decompose the acid under pressure. After decomposition, ultrapure water was added to the volume to 25 mL, and the volume was analyzed under the following quantification conditions for boric acid.
<Boric acid quantification conditions>
Device name: ICP emission spectrometer SPS-3520UV (manufactured by Hitachi High-Tech Science Corporation)
Measurement wavelength: B 249.848 nm
All the obtained boron contents were considered to be derived from boric acid and converted into boric acid content. This boric acid content was defined as the free boric acid content of the polarizer.

[実施例1]
熱可塑性樹脂基材として、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、テンター延伸機を用いて、140℃で積層体の長手方向と直交する方向に4.5倍空中延伸した(延伸処理)。
次いで、積層体を液温25℃の染色浴(ヨウ素濃度1.4重量%およびヨウ化カリウム濃度9.8重量%の水溶液)に12秒間浸漬させ、染色した(染色処理)。
次いで、積層体を液温25℃の洗浄浴(純水)に6秒間浸漬させた(第1洗浄処理)。
次いで、液温60℃の架橋浴(ホウ素濃度1重量%およびヨウ化カリウム濃度1重量%の水溶液)に16秒間浸漬させた(架橋処理)。
次いで、積層体を液温25℃の洗浄浴(ヨウ化カリウム濃度1重量%の水溶液)に3秒間浸漬させた(第2洗浄処理)。
次いで、積層体を25℃のオーブンで8秒間乾燥させた(第1乾燥処理)。
最後に、積層体を25℃のオーブンで13秒間乾燥させ(第2乾燥処理)、厚み1.2μmのPVA系樹脂層(偏光子)を有する積層体を得た。得られた偏光子のヨウ素含有量は18.5重量%、遊離ホウ酸含有量は0.32重量%、単体透過率は40.0%であった。
得られた積層体を上記(1)の評価に供した。結果を表1に示す。
[Example 1]
As the thermoplastic resin base material, an amorphous isophthalic acid copolymer polyethylene terephthalate (IPA copolymer PET) film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of 75 ° C. was used. One side of the base material is corona-treated, and polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6) are applied to the corona-treated surface. %, Degree of polymerization of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z200") in a ratio of 9: 1 is applied and dried at 25 ° C. to a thickness of 11 μm. A PVA-based resin layer was formed to prepare a laminate.
The obtained laminate was stretched 4.5 times in the air at 140 ° C. in a direction orthogonal to the longitudinal direction of the laminate using a tenter stretching machine (stretching treatment).
Next, the laminate was immersed in a dyeing bath at a liquid temperature of 25 ° C. (an aqueous solution having an iodine concentration of 1.4% by weight and a potassium iodide concentration of 9.8% by weight) for 12 seconds for dyeing (dyeing treatment).
Next, the laminate was immersed in a washing bath (pure water) having a liquid temperature of 25 ° C. for 6 seconds (first washing treatment).
Then, it was immersed in a cross-linking bath (an aqueous solution having a boron concentration of 1% by weight and a potassium iodide concentration of 1% by weight) at a liquid temperature of 60 ° C. for 16 seconds (crosslinking treatment).
Next, the laminate was immersed in a washing bath (an aqueous solution having a potassium iodide concentration of 1% by weight) at a liquid temperature of 25 ° C. for 3 seconds (second washing treatment).
The laminate was then dried in an oven at 25 ° C. for 8 seconds (first drying process).
Finally, the laminate was dried in an oven at 25 ° C. for 13 seconds (second drying treatment) to obtain a laminate having a PVA-based resin layer (polarizer) having a thickness of 1.2 μm. The iodine content of the obtained polarizer was 18.5% by weight, the free boric acid content was 0.32% by weight, and the single transmittance was 40.0%.
The obtained laminate was subjected to the evaluation of (1) above. The results are shown in Table 1.

[実施例2]
第1乾燥処理および第2乾燥処理において、積層体をそれぞれ30℃のオーブンで乾燥させたこと以外は実施例1と同様にして、偏光子を有する積層体を得た。得られた偏光子のヨウ素含有量は18.8重量%、遊離ホウ酸含有量は0.32重量%、単体透過率は39.9%であった。得られた積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Example 2]
In the first drying treatment and the second drying treatment, a laminate having a polarizer was obtained in the same manner as in Example 1 except that the laminates were each dried in an oven at 30 ° C. The iodine content of the obtained polarizer was 18.8% by weight, the free boric acid content was 0.32% by weight, and the single transmittance was 39.9%. The obtained laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

[実施例3]
第1乾燥処理および第2乾燥処理において、積層体をそれぞれ40℃のオーブンで乾燥させたこと以外は実施例1と同様にして、偏光子を有する積層体を得た。得られた偏光子のヨウ素含有量は18.6重量%、遊離ホウ酸含有量は0.39重量%、単体透過率は39.9%であった。得られた積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Example 3]
In the first drying treatment and the second drying treatment, a laminate having a polarizer was obtained in the same manner as in Example 1 except that the laminates were each dried in an oven at 40 ° C. The iodine content of the obtained polarizer was 18.6% by weight, the free boric acid content was 0.39% by weight, and the single transmittance was 39.9%. The obtained laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

[比較例1]
第2乾燥処理において、積層体を60℃のオーブンで乾燥させたこと以外は実施例3と同様にして、偏光子を有する積層体を得た。得られた偏光子のヨウ素含有量は19.1重量%、遊離ホウ酸含有量は0.45重量%、単体透過率は39.9%であった。得られた積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 1]
In the second drying treatment, a laminate having a polarizer was obtained in the same manner as in Example 3 except that the laminate was dried in an oven at 60 ° C. The iodine content of the obtained polarizer was 19.1% by weight, the free boric acid content was 0.45% by weight, and the single transmittance was 39.9%. The obtained laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

[比較例2]
第1乾燥処理において、積層体を50℃のオーブンで乾燥させたこと以外は比較例1と同様にして、偏光子を有する積層体を得た。得られた偏光子のヨウ素含有量は19.2重量%、遊離ホウ酸含有量は0.48重量%、単体透過率は39.9%であった。得られた積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 2]
In the first drying treatment, a laminate having a polarizer was obtained in the same manner as in Comparative Example 1 except that the laminate was dried in an oven at 50 ° C. The iodine content of the obtained polarizer was 19.2% by weight, the free boric acid content was 0.48% by weight, and the single transmittance was 39.9%. The obtained laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

[比較例3]
第1乾燥処理において、積層体を60℃のオーブンで乾燥させたこと以外は比較例1と同様にして、偏光子を有する積層体を得た。得られた偏光子のヨウ素含有量は19.3重量%、遊離ホウ酸含有量は0.57重量%、単体透過率は40.0%であった。得られた積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 3]
In the first drying treatment, a laminate having a polarizer was obtained in the same manner as in Comparative Example 1 except that the laminate was dried in an oven at 60 ° C. The iodine content of the obtained polarizer was 19.3% by weight, the free boric acid content was 0.57% by weight, and the single transmittance was 40.0%. The obtained laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.

Figure 2019189718
Figure 2019189718

表1から明らかなように、本発明の実施例の偏光子は、比較例の偏光子に比べて、加熱試験後の単体透過率変化量が小さく、非常に優れた耐熱性を有することがわかる。具体的には、実施例の偏光子はTsが0.75%〜0.80%であり、Tsがこの程度の値であれば、実用上、耐熱性の問題は生じないとされる。実施例の偏光子は、薄型であり、かつ、高温環境下における単体透過率変化量が顕著に抑制されている。このような優れた効果は、得られる偏光子の遊離ホウ酸含有量を低く抑えることにより、高温環境下でのポリエン化が防止されることで実現されると推定される。これは、従来は作製すら困難であった非常に薄い(例えば、厚み7μm以下の)偏光子を実際に作製したことによって新たに見出された課題を解決するものであり、予期せぬ優れた効果である。 As is clear from Table 1, it can be seen that the polarizer of the embodiment of the present invention has a smaller amount of change in the simple substance transmittance after the heating test and has extremely excellent heat resistance as compared with the polarizer of the comparative example. .. Specifically, the polarizer of the example has a Ts of 0.75% to 0.80%, and if the Ts is a value of this level, it is said that there is no problem of heat resistance in practical use. The polarizer of the example is thin, and the amount of change in the single transmittance in a high temperature environment is remarkably suppressed. It is presumed that such an excellent effect is realized by suppressing the free boric acid content of the obtained polarizer to prevent polyene formation in a high temperature environment. This solves a new problem found by actually producing a very thin (for example, 7 μm or less) polarizer, which was difficult to produce in the past, and is unexpectedly excellent. It is an effect.

本発明の偏光子は、液晶テレビ、液晶ディスプレイ、携帯電話、デジタルカメラ、ビデオカメラ、携帯ゲーム機、カーナビゲーション、コピー機、プリンター、ファックス、時計、電子レンジ等の液晶パネルに幅広く適用させることができる。
The polarizer of the present invention can be widely applied to liquid crystal panels of liquid crystal televisions, liquid crystal displays, mobile phones, digital cameras, video cameras, portable game machines, car navigation systems, copiers, printers, fax machines, watches, microwave ovens, and the like. it can.

Claims (4)

ヨウ素を含有するポリビニルアルコール系樹脂フィルムで構成され、
遊離ホウ酸含有量が0.4重量%以下である、偏光子。
Consists of a polyvinyl alcohol-based resin film containing iodine,
A polarizer having a free boric acid content of 0.4% by weight or less.
ヨウ素含有量が10重量%〜25重量%である、請求項1に記載の偏光子。 The polarizer according to claim 1, wherein the iodine content is 10% by weight to 25% by weight. 厚みが7μm以下である、請求項1または2に記載の偏光子。 The polarizer according to claim 1 or 2, wherein the thickness is 7 μm or less. 請求項1から3のいずれかに記載の偏光子と、該偏光子の片側または両側に積層された保護フィルムと、を含む、偏光板。 A polarizing plate comprising the polarizing element according to any one of claims 1 to 3 and a protective film laminated on one side or both sides of the polarizing element.
JP2020511065A 2018-03-30 2019-03-29 Polarizers and polarizing plates Active JP7028962B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018066678 2018-03-30
JP2018066678 2018-03-30
PCT/JP2019/013918 WO2019189718A1 (en) 2018-03-30 2019-03-29 Polarizer and polarizing plate

Publications (2)

Publication Number Publication Date
JPWO2019189718A1 true JPWO2019189718A1 (en) 2021-01-07
JP7028962B2 JP7028962B2 (en) 2022-03-02

Family

ID=68059234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020511065A Active JP7028962B2 (en) 2018-03-30 2019-03-29 Polarizers and polarizing plates

Country Status (5)

Country Link
JP (1) JP7028962B2 (en)
KR (1) KR102566455B1 (en)
CN (1) CN111902751A (en)
TW (1) TWI791811B (en)
WO (1) WO2019189718A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018032A1 (en) * 2010-08-02 2012-02-09 住友化学株式会社 Method for determining amount of free boric acid
WO2014208695A1 (en) * 2013-06-28 2014-12-31 日東電工株式会社 Polarizing film with adhesive layer, laminate, and image display device
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device
US20150260894A1 (en) * 2013-06-18 2015-09-17 Lg Chem, Ltd. Thin film polarizer, method of manufacturing the same, and polarizing plate and display device including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196651B2 (en) * 2008-11-27 2013-05-15 日東電工株式会社 Iodine polarizing film and method for producing the same
JP5048120B2 (en) 2010-03-31 2012-10-17 住友化学株式会社 Method for producing polarizing laminated film and method for producing polarizing plate
JP2013156391A (en) 2012-01-30 2013-08-15 Konica Minolta Inc Manufacturing method of roll-shaped circularly polarizing plate, organic electroluminescence display device and lateral electric field type switching mode type liquid crystal display device
CN105339816B (en) * 2013-06-28 2019-02-05 日东电工株式会社 Polarizing coating, laminated body and image display device with adhesive phase
JP5943444B2 (en) * 2015-05-21 2016-07-05 日東電工株式会社 Polarizing film and manufacturing method of polarizing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018032A1 (en) * 2010-08-02 2012-02-09 住友化学株式会社 Method for determining amount of free boric acid
US20150260894A1 (en) * 2013-06-18 2015-09-17 Lg Chem, Ltd. Thin film polarizer, method of manufacturing the same, and polarizing plate and display device including the same
WO2014208695A1 (en) * 2013-06-28 2014-12-31 日東電工株式会社 Polarizing film with adhesive layer, laminate, and image display device
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device

Also Published As

Publication number Publication date
TWI791811B (en) 2023-02-11
JP7028962B2 (en) 2022-03-02
TW201942594A (en) 2019-11-01
WO2019189718A1 (en) 2019-10-03
KR102566455B1 (en) 2023-08-14
KR20200139136A (en) 2020-12-11
CN111902751A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
JP6914355B2 (en) Polarizer and polarizing plate
TWI624701B (en) Method for manufacturing polarizing film
TWI584004B (en) Polarizing film and method for manufacturing polarizing film
TWI750429B (en) Manufacturing method of polarizing parts
TW201728704A (en) Polarizer, polarizing plate, and image display apparatus
TWI763820B (en) Polarizers and polarizers
JP6822641B2 (en) A method for manufacturing a polarizer and a polarizer manufactured using the same.
KR20170045265A (en) Method for manufacturing polarizer
JP2018156010A (en) Method for manufacturing polarizer
JP2021140164A (en) Polarizing plate and production method therefor
TW202032172A (en) Polarizer and method for manufacturing same
JP7028962B2 (en) Polarizers and polarizing plates
JP6712595B2 (en) Method of manufacturing polarizer
WO2020066318A1 (en) Method for producing polarizer
WO2021033406A1 (en) Optical layered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150