JPWO2019187943A1 - A negative electrode active material for a fluoride ion secondary battery, a negative electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material. - Google Patents

A negative electrode active material for a fluoride ion secondary battery, a negative electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material. Download PDF

Info

Publication number
JPWO2019187943A1
JPWO2019187943A1 JP2020510484A JP2020510484A JPWO2019187943A1 JP WO2019187943 A1 JPWO2019187943 A1 JP WO2019187943A1 JP 2020510484 A JP2020510484 A JP 2020510484A JP 2020510484 A JP2020510484 A JP 2020510484A JP WO2019187943 A1 JPWO2019187943 A1 JP WO2019187943A1
Authority
JP
Japan
Prior art keywords
fluoride
ion secondary
secondary battery
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510484A
Other languages
Japanese (ja)
Other versions
JP7178404B2 (en
Inventor
森田 善幸
善幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2019187943A1 publication Critical patent/JPWO2019187943A1/en
Application granted granted Critical
Publication of JP7178404B2 publication Critical patent/JP7178404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides
    • C01F7/54Double compounds containing both aluminium and alkali metals or alkaline-earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

フッ化物イオン二次電池における可逆的な負極反応を、高い利用率で発現することのできるフッ化物イオン二次電池用負極活物質、当該活物質を用いた負極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法を提供する。フッ化アルミニウム(AlF3)から部分的にフッ化物イオン(F—)をあらかじめ脱離させ、フッ素原子が存在していた位置に空孔を設けるよう改質した改質フッ化アルミニウム(AlF3)を、フッ化物イオン二次電池用負極活物質とする。A negative electrode active material for a fluoride ion secondary battery capable of expressing a reversible negative electrode reaction in a fluoride ion secondary battery with a high utilization rate, a negative electrode using the active material, and a fluoride ion secondary battery. In addition, a method for producing the active material is provided. Modified aluminum fluoride (AlF3), which is modified by partially desorbing fluoride ions (F—) from aluminum fluoride (AlF3) in advance to provide holes at the positions where fluorine atoms were present, is used. Fluoride ion Negative active material for secondary batteries.

Description

本発明は、フッ化物イオン二次電池用負極活物質、当該活物質を用いた負極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法に関する。 The present invention relates to a negative electrode active material for a fluoride ion secondary battery, a negative electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material.

従来、高エネルギー密度を有する二次電池として、リチウムイオン二次電池が幅広く普及している。リチウムイオン二次電池は、正極と負極との間にセパレータを存在させ、液体の電解質(電解液)が充填された構造を有する。 Conventionally, a lithium ion secondary battery has been widely used as a secondary battery having a high energy density. The lithium ion secondary battery has a structure in which a separator is present between the positive electrode and the negative electrode and is filled with a liquid electrolyte (electrolyte solution).

リチウムイオン二次電池の電解液は、通常、可燃性の有機溶媒であるため、特に、熱に対する安全性が問題となる場合があった。そこで、有機系の液体の電解質に代えて、無機系の固体の電解質を用いた固体電池が提案されている(特許文献1参照)。固体電解質による固体電池は、電解液を用いる電池と比較して、熱の問題を解消するとともに、積層により電圧を上昇させることができ、さらに、コンパクト化の要請にも対応することができる。 Since the electrolytic solution of the lithium ion secondary battery is usually a flammable organic solvent, safety against heat may be a problem in particular. Therefore, a solid-state battery using an inorganic solid electrolyte instead of the organic liquid electrolyte has been proposed (see Patent Document 1). Compared with a battery using an electrolytic solution, a solid-state battery using a solid electrolyte can solve the problem of heat, increase the voltage by stacking, and can meet the demand for compactification.

このような固体電解質による電池として、フッ化物イオン二次電池が検討されている。フッ化物イオン二次電池は、フッ化物イオン(F)をキャリアとした二次電池であり、高い理論エネルギーを有することが知られている。そして、その電池特性については、リチウムイオン二次電池を上回る期待がある。As a battery using such a solid electrolyte, a fluoride ion secondary battery is being studied. The fluoride ion secondary battery is a secondary battery using fluoride ion (F ) as a carrier, and is known to have high theoretical energy. The battery characteristics are expected to exceed those of lithium-ion secondary batteries.

ここで、フッ化物イオン二次電池の負極活物質としては、MgF、CaF、CeF等が報告されている(非特許文献1および2参照)。しかしながら、現在報告されているこれら負極活物質を用いたフッ化物イオン二次電池は、その充放電効率が10〜20%であり、2次電池としてのエネルギー効率が低いという問題があった。また、充放電容量についても、理論容量の10〜20%程度しかなく、現行のLiイオン2次電池やNi−MH電池と比べて高容化が図られていない状況であった。 Here, MgF 2 , CaF 2 , CeF 3, and the like have been reported as negative electrode active materials for fluoride ion secondary batteries (see Non-Patent Documents 1 and 2). However, the currently reported fluoride ion secondary batteries using these negative electrode active materials have a problem that the charge / discharge efficiency is 10 to 20% and the energy efficiency as the secondary battery is low. In addition, the charge / discharge capacity is only about 10 to 20% of the theoretical capacity, and the capacity has not been increased as compared with the current Li-ion secondary batteries and Ni-MH batteries.

フッ化物イオン二次電池で使用されている、固体電解質としては、例えば、La1−xBa3−x、x=0.01〜0.2(以下LBFと呼ぶ)が存在している(非特許文献1〜4参照)。LBFの還元側電位窓は、図1に示されるように、ギブスエネルギーから算出されるLa/LaFの電位である−2.41V vs.Pb/PbFで制約を受ける。Examples of the solid electrolyte used in the fluoride ion secondary battery include La 1-x Ba x F 3-x and x = 0.01 to 0.2 (hereinafter referred to as LBF). (See Non-Patent Documents 1 to 4). The reduction side potential window of the LBF is the potential of La / LaF 3 calculated from the Gibbs energy, as shown in FIG. 1, -2.41 V vs. Constrained by Pb / PbF 2.

これに対して、図1に示されるように、現在報告されているフッ化物イオン二次電池の負極活物質の電位は、MgFが、−2.35〜−2.87V vs.Pb/PbF、CaFが、−2.85〜−2.89V vs.Pb/PbF、CeFが、−2.18〜−2.37V vs.Pb/PbFである。したがって、LBFの還元電位窓である−2.41Vの制約下における上記の負極活物質の脱フッ化/再フッ化反応は、その過電圧を考慮すると、提供できないという課題があった。On the other hand, as shown in FIG. 1, the potential of the negative electrode active material of the fluoride ion secondary battery currently reported is that MgF 2 is -2.35 to -2.87 V vs. Pb / PbF 2 and CaF 2 are -2.85 to -2.89 V vs. Pb / PbF 2 and CeF 3 are -2.18 to -2.37V vs. It is Pb / PbF 2 . Therefore, there is a problem that the defluorination / refluorination reaction of the above-mentioned negative electrode active material under the constraint of -2.41V, which is the reduction potential window of LBF, cannot be provided in consideration of its overvoltage.

一方で、正極反応についてみると、たとえばCu/CuF、Bi/BiF等の正極活物質は、高い利用率や可逆反応を示す充放電試験の結果が報告されている(非特許文献1〜3、および特許文献2参照)。On the other hand, regarding the positive electrode reaction, for example , positive electrode active materials such as Cu / CuF 2 and Bi / BiF 3 have been reported to have high utilization rates and reversible reaction results (Non-Patent Documents 1 to 1). 3 and Patent Document 2).

したがって、フッ化物イオン二次電池において、正/負極反応を組み合わせた実用的な全電池反応を成立させるためには、可逆的な負極反応を高い利用率で発現する負極活物質材料が必要とされていた。 Therefore, in a fluoride ion secondary battery, a negative electrode active material that exhibits a reversible negative electrode reaction with a high utilization rate is required in order to establish a practical all-battery reaction that combines a positive / negative electrode reaction. Was there.

特開2000−106154号公報Japanese Unexamined Patent Publication No. 2000-106154 特開2017−088427号公報Japanese Unexamined Patent Publication No. 2017-08427

J.Mater.Chem.A.2014.2.20861−20822J. Mater. Chem. A. 2014.2.20861-20822 J.Solid State Electrochem(2017)21:1243−1251J. Solid State Electrochem (2017) 21: 1243-1251 J.Mater.Chem.,2011,21,17059J. Mater. Chem. , 2011, 21, 17559 Dalton Trans.,2014,43,15771−15778Dalton Trans. , 2014,43,1577-115778

本発明は上記の背景技術に鑑みてなされたものであり、その目的は、フッ化物イオン二次電池において、可逆的な負極反応を高い利用率で発現することのできるフッ化物イオン二次電池用負極活物質、当該活物質を用いた負極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法を提供することにある。 The present invention has been made in view of the above background technique, and an object thereof is for a fluoride ion secondary battery capable of exhibiting a reversible negative electrode reaction with a high utilization rate in the fluoride ion secondary battery. It is an object of the present invention to provide a negative electrode active material, a negative electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material.

本発明者は、フッ化物イオン固体電解質であるLBFの電位窓−2.41Vの制約内に充放電反応(脱フッ化/再フッ化反応)が存在するフッ化アルミニウム(AlF:−1.78V vs.Pb/PbF2)に着目した。フッ化アルミニウム(AlF)は、負極反応の過電圧を0.5V程度と想定しても、LBFの還元側電位窓内(−2.41V vs.Pb/PbF2)に十分な酸化還元電位を有する。 The present inventor has made aluminum fluoride (AlF 3 : -1.) In which a charge / discharge reaction (defluorination / refluorination reaction) exists within the constraint of the potential window -2.41V of LBF, which is a fluoride ion solid electrolyte. We focused on 78V vs. Pb / PbF2). Aluminum fluoride (AlF 3 ) has a sufficient oxidation-reduction potential in the reduction side potential window (-2.41V vs. Pb / PbF2) of LBF even if the overvoltage of the negative electrode reaction is assumed to be about 0.5V. ..

しかし、フッ化アルミニウム(AlF)は、図2に示すように、イオン的、電子的にほぼ伝導率がゼロの絶縁体であることが知られている(文献5参照)。このため、フッ化アルミニウム(AlF)からのフッ化物イオン(F)の脱離および再挿入(本明細書においては、これを脱フッ化/再フッ化反応と称する)を原理とする、負極反応は発現しない。
文献5:Phys.Rev.B.69,054109(2004)
However, as shown in FIG. 2, aluminum fluoride (AlF 3 ) is known to be an insulator having almost zero conductivity ionically and electronically (see Reference 5). Therefore, the principle is the elimination and reinsertion of fluoride ion (F ) from aluminum fluoride (AlF 3 ) (in the present specification, this is referred to as a defluorination / refluorination reaction). Negative reaction does not occur.
Reference 5: Phys. Rev. B. 69,054109 (2004)

そこで、本発明者は、フッ化アルミニウム(AlF)の結晶構造に着目した。図3に示すように、フッ化アルミニウム(AlF)は、6配位八面体の完全結晶の構造を有する。本発明者は、この結晶構造が、脱フッ化/再フッ化反応を妨げていると考えた。Therefore, the present inventor paid attention to the crystal structure of aluminum fluoride (AlF 3). As shown in FIG. 3, aluminum fluoride (AlF 3 ) has a hexacoordinated octahedral perfect crystal structure. The present inventor considered that this crystal structure hindered the defluorination / refluorination reaction.

そして、フッ化アルミニウム(AlF)から部分的にフッ化物イオン(F)をあらかじめ脱離させ、フッ素原子が存在していた位置に空孔を設けるようフッ化アルミニウム(AlF)を改質すれば、当該空孔が脱フッ化/再フッ化反応の起点となり、所望の負極反応を、高い利用率および可逆性で発現させることができることを見出し、本発明を完成させるに至った。Then, aluminum fluoride (AlF 3) partially fluoride ions from - reforming were previously desorbed, aluminum fluoride so as to provide pores in the position where the fluorine atom was present (AlF 3) (F) Then, it was found that the pores became the starting point of the defluorination / refluorination reaction, and the desired negative electrode reaction could be expressed with high utilization rate and reversibility, and the present invention was completed.

すなわち本発明は、フッ化物イオンの脱離による空孔を有する改質フッ化アルミニウムである、フッ化物イオン二次電池用負極活物質である。 That is, the present invention is a negative electrode active material for a fluoride ion secondary battery, which is a modified aluminum fluoride having pores due to desorption of fluoride ions.

前記空孔は、脱フッ化反応および再フッ化反応の起点となっていてもよい。 The pores may serve as a starting point for the defluorination reaction and the refluorination reaction.

前記空孔は、改質前のフッ化アルミニウムにおいて、フッ素原子が存在していた領域であってもよい。 The pores may be regions where fluorine atoms were present in the aluminum fluoride before modification.

前記フッ化物イオンの脱離は、フッ化アルミニウムに、アルカリ金属またはアルカリ土類金属を接触させたものであってもよい。 The desorption of fluoride ions may be carried out by contacting aluminum fluoride with an alkali metal or an alkaline earth metal.

また別の本発明は、上記のフッ化物イオン二次電池用負極活物質を含む、フッ化物イオン二次電池用負極である。 Another invention is a negative electrode for a fluoride ion secondary battery containing the above-mentioned negative electrode active material for a fluoride ion secondary battery.

また別の本発明は、上記の記載のフッ化物イオン二次電池用負極と、固体電解質と、正極と、を備えるフッ化物イオン二次電池である。 Another invention is a fluoride ion secondary battery including the above-described negative electrode for a fluoride ion secondary battery, a solid electrolyte, and a positive electrode.

また別の本発明は、フッ化物イオン二次電池用負極活物質となる改質フッ化アルミニウムを製造する方法であって、フッ化アルミニウムと、アルカリ金属またはアルカリ土類金属とを接触させて、前記フッ化アルミニウムからフッ化物イオンを脱離させることにより、前記フッ化物イオンとして脱離したフッ素原子の存在位置を空孔として改質フッ化アルミニウムとする、フッ化物イオン二次電池用負極活物質の製造方法である。 Another invention is a method for producing modified aluminum fluoride, which is a negative electrode active material for a fluoride ion secondary battery, in which aluminum fluoride is brought into contact with an alkali metal or an alkaline earth metal. By desorbing fluoride ions from the aluminum fluoride, the position of the fluorine atom desorbed as the fluoride ion is used as a pore to obtain modified aluminum fluoride, which is a negative electrode active material for a fluoride ion secondary battery. It is a manufacturing method of.

上記の製造方法においては、前記アルカリ金属またはアルカリ土類金属はフッ化物となり、前記フッ化アルミニウムは一部のフッ素原子が引き抜かれ、アルミニウム金属にはならないものであってもよい。 In the above production method, the alkali metal or alkaline earth metal may be a fluoride, and the aluminum fluoride may be one in which some fluorine atoms are extracted and the metal does not become an aluminum metal.

前記アルカリ金属または前記アルカリ土類金属の比率は、前記フッ化アルミニウムとの合計に対して5〜20mol%であってもよい。 The ratio of the alkali metal or the alkaline earth metal may be 5 to 20 mol% with respect to the total with the aluminum fluoride.

前記フッ化アルミニウムは、α−AlFであってもよい。The aluminum fluoride may be α-AlF 3.

前記アルカリ金属は、Li金属であってもよい。 The alkali metal may be a Li metal.

本発明のフッ化物イオン二次電池用負極活物質によれば、フッ化物イオン二次電池における可逆的な負極反応を、高い利用率および高い可逆性で発現することができる。また、本発明のフッ化物イオン二次電池用負極活物質によれば、フッ化物イオン二次電池の充放電容量を、大幅に増加することができる。 According to the negative electrode active material for a fluoride ion secondary battery of the present invention, a reversible negative electrode reaction in a fluoride ion secondary battery can be exhibited with high utilization rate and high reversibility. Further, according to the negative electrode active material for a fluoride ion secondary battery of the present invention, the charge / discharge capacity of the fluoride ion secondary battery can be significantly increased.

ギブスエネルギーから算出された電位を示す図である。It is a figure which shows the electric potential calculated from Gibbs energy. フッ化アルミニウムのイオン伝導率および電子状態を示すグラフである。It is a graph which shows the ionic conductivity and the electronic state of aluminum fluoride. フッ化アルミニウムの結晶構造を示す図である。It is a figure which shows the crystal structure of aluminum fluoride. 実施例および比較例の改質フッ化アルミニウムのXRDチャートである。6 is an XRD chart of modified aluminum fluoride of Examples and Comparative Examples. 改質フッ化アルミニウムのXPSスペクトルである。It is an XPS spectrum of modified aluminum fluoride. 実施例および比較例の充放電曲線である。It is a charge / discharge curve of an Example and a comparative example. 実施例および比較例の充放電容量とリチウム(Li)金属配合量との関係を示すグラフである。It is a graph which shows the relationship between the charge / discharge capacity of an Example and a comparative example, and a lithium (Li) metal compounding amount.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

<フッ化物イオン二次電池用負極活物質>
フッ化物イオン二次電池の負極は、放電時にフッ化物イオン(F)を収容し、充電時にフッ化物イオン(F)を放出可能なものである必要がある。
<Negative electrode active material for fluoride ion secondary batteries>
The negative electrode of the fluoride ion secondary battery, fluoride ions during discharge (F -) accommodates, fluoride ions during charging - should those capable of releasing (F).

本発明のフッ化物イオン二次電池用負極活物質は、フッ化物イオンの脱離による空孔を有する改質フッ化アルミニウムである。 The negative electrode active material for a fluoride ion secondary battery of the present invention is modified aluminum fluoride having pores due to desorption of fluoride ions.

上記した通り、フッ化アルミニウム(AlF)は、図2に示すように、イオン的、電子的にほぼ伝導率がゼロの絶縁体であるため、フッ化アルミニウム(AlF)からのフッ化物イオン(F)の脱離および再挿入(脱フッ化/再フッ化反応)による負極反応は進行しない。このため、従来、フッ化アルミニウム(AlF)の単体を活物質として用いた先行例は、リチウムイオン電池用正極活物質としては報告されているが(文献6参照)、フッ化物イオン(F−)をキャリアとしたフッ化物イオン二次電池では報告されていない。
文献6:J.Appl Electrochem(2017)47 417−431
As described above, as shown in FIG. 2, aluminum fluoride (AlF 3 ) is an insulator having almost zero conductivity ionically and electronically, and therefore, fluoride ions from aluminum fluoride (AlF 3). The negative electrode reaction due to the desorption and reinsertion (defluorination / refluorination reaction) of (F −) does not proceed. For this reason, a prior example in which aluminum fluoride (AlF 3 ) alone is used as an active material has been reported as a positive electrode active material for a lithium ion battery (see Reference 6), but fluoride ion (F-). ) Has not been reported for fluoride ion secondary batteries.
Reference 6: J. Appl Electrochem (2017) 47 417-431

[空孔]
本発明のフッ化物イオン二次電池用負極活物質となる改質フッ化アルミニウムは、フッ化物イオン(F−)の脱離により、フッ化アルミニウム(AlF)に空孔を有する。
[Vacancy]
The modified aluminum fluoride, which is the negative electrode active material for the fluoride ion secondary battery of the present invention, has pores in the aluminum fluoride (AlF 3 ) due to the desorption of fluoride ions (F−).

改質フッ化アルミニウムが有する空孔は、脱フッ化反応および再フッ化反応の起点となる。すなわち、空孔が存在することにより、イオン的、電子的にほぼ伝導率がゼロの絶縁体であったフッ化アルミニウム(AlF)が改質され、高い利用率、および高い可逆性で、負極反応が進行するようになる。The pores of the modified aluminum fluoride serve as the starting point for the defluorination reaction and the refluorination reaction. That is, the presence of pores modifies aluminum fluoride (AlF 3 ), which was an insulator with almost zero conductivity ionic and electronically, resulting in high utilization and high reversibility, and a negative electrode. The reaction will proceed.

図3は、フッ化アルミニウム(AlF)の結晶構造のひとつであるα−AlFの構造を示す図である。図3に示されるように、結晶構造の構成単位となるフッ化アルミニウム(AlF)の構造は、Al原子1が中心に配置され、頂点が6つのフッ素原子2で構成される6配位八面体である。FIG. 3 is a diagram showing a structure of α-AlF 3 , which is one of the crystal structures of aluminum fluoride (AlF 3). As shown in FIG. 3, the structure of aluminum fluoride (AlF 3 ), which is a constituent unit of the crystal structure, has a 6-coordination 8 in which the Al atom 1 is arranged at the center and the apex is composed of 6 fluorine atoms 2. It is a facet.

空孔は、原料となる改質前のフッ化アルミニウム(AlF)において、フッ素原子が存在していた領域に形成される。すなわち、図3に示される、Al原子1が中心に配置され、頂点に存在する6つのフッ素原子2のうち、一部のフッ素原子2が引き抜かれ、引き抜かれて脱離したフッ素原子2が存在していた位置が、空孔となる。The pores are formed in the region where the fluorine atom was present in the raw material aluminum fluoride (AlF 3) before modification. That is, among the six fluorine atoms 2 in which the Al atom 1 is arranged at the center and exists at the apex, as shown in FIG. 3, a part of the fluorine atom 2 is extracted, and the extracted and desorbed fluorine atom 2 exists. The position where it was done becomes a hole.

なお、本発明の改質フッ化アルミニウムは、フッ化アルミニウム(AlF)において、6つのフッ素原子の全てが脱離するのではなく、すなわち、フッ化アルミニウム(AlF)はアルミニウム金属にはならず、一部のフッ素原子のみが引き抜かれたものである。Incidentally, it modified aluminum fluoride of the present invention, in the aluminum fluoride (AlF 3), instead of all six fluorine atoms are eliminated, i.e., aluminum fluoride (AlF 3) is not in the aluminum metal However, only some of the fluorine atoms were extracted.

<フッ化物イオン二次電池用負極>
本発明のフッ化物イオン二次電池用負極は、本発明のフッ化物イオン二次電池用負極活物質を含むことを特徴とする。本発明のフッ化物イオン二次電池用負極活物質を含んでいれば、その他の構成は特に限定されるものではない。
<Negative electrode for fluoride ion secondary battery>
The negative electrode for a fluoride ion secondary battery of the present invention is characterized by containing the negative electrode active material for a fluoride ion secondary battery of the present invention. Other configurations are not particularly limited as long as the negative electrode active material for the fluoride ion secondary battery of the present invention is contained.

フッ化物イオン二次電池の電気化学反応効率を高めるためには、負極を構成する材料の表面積を拡大することが有効である。そこで、本発明のフッ化物イオン二次電池用負極は、多孔質構造等、その表面積が高い構造として、固体電解質との接触面積を増加させる構造を有することが好ましい。 In order to increase the electrochemical reaction efficiency of the fluoride ion secondary battery, it is effective to increase the surface area of the material constituting the negative electrode. Therefore, it is preferable that the negative electrode for a fluoride ion secondary battery of the present invention has a structure such as a porous structure having a high surface area to increase the contact area with the solid electrolyte.

また、本発明のフッ化物イオン二次電池用負極は、本発明のフッ化物イオン二次電池用負極活物質以外に、他の成分を含んでいてもよい。他の成分としては、例えば、導電助剤やバインダー等が挙げられる。 Further, the negative electrode for a fluoride ion secondary battery of the present invention may contain other components in addition to the negative electrode active material for a fluoride ion secondary battery of the present invention. Examples of other components include conductive aids and binders.

本発明のフッ化物イオン二次電池用負極は、例えば、本発明のフッ化物イオン二次電池用負極活物質と、導電助剤と、バインダーとを含む混合物を、集電体上に塗布して乾燥することにより得ることができる。 In the negative electrode for a fluoride ion secondary battery of the present invention, for example, a mixture containing the negative electrode active material for a fluoride ion secondary battery of the present invention, a conductive auxiliary agent, and a binder is applied onto a current collector. It can be obtained by drying.

<フッ化物イオン二次電池>
本発明のフッ化物イオン二次電池は、本発明のフッ化物イオン二次電池用負極活物質を含むフッ化物イオン二次電池用負極と、固体電解質と、正極と、を備える。本発明のフッ化物イオン二次電池は、本発明のフッ化物イオン二次電池用負極活物質を含む負極を用いていれば、その他の構成は特に限定されるものではない。
<Fluoride ion secondary battery>
The fluoride ion secondary battery of the present invention includes a negative electrode for a fluoride ion secondary battery containing the negative electrode active material for the fluoride ion secondary battery of the present invention, a solid electrolyte, and a positive electrode. The fluoride ion secondary battery of the present invention is not particularly limited in other configurations as long as it uses a negative electrode containing the negative electrode active material for the fluoride ion secondary battery of the present invention.

本発明においては、本発明のフッ化物イオン二次電池用負極活物質を含むフッ化物イオン二次電池用負極の標準電極電位に対して、十分に高い標準電極電位を提供する正極材料を選択することにより、フッ化物イオン二次電池としての特性が高く、また、所望の電池電圧を実現することが可能となる。 In the present invention, a positive electrode material that provides a sufficiently high standard electrode potential with respect to the standard electrode potential of the negative electrode for a fluoride ion secondary battery containing the negative electrode active material for the fluoride ion secondary battery of the present invention is selected. As a result, the characteristics as a fluoride ion secondary battery are high, and a desired battery voltage can be realized.

<フッ化物イオン二次電池用負極活物質の製造方法>
本発明のフッ化物イオン二次電池用負極活物質となる改質フッ化アルミニウムの製造方法は、フッ化アルミニウムと、アルカリ金属またはアルカリ土類金属とを接触させて、前記フッ化アルミニウムからフッ化物イオンを脱離させることにより、前記フッ化物イオンとして脱離したフッ素原子の存在位置を空孔として、フッ化アルミニウムを改質する。
<Manufacturing method of negative electrode active material for fluoride ion secondary battery>
In the method for producing modified aluminum fluoride, which is the negative electrode active material for a fluoride ion secondary battery of the present invention, aluminum fluoride is brought into contact with an alkali metal or an alkaline earth metal to form a fluoride from the aluminum fluoride. By desorbing the ions, the aluminum fluoride is modified by using the positions of the fluorine atoms desorbed as fluoride ions as vacancies.

[改質前のフッ化アルミニウム(AlF)]
フッ化アルミニウム(AlF)には、様々な結晶構造が存在する。結晶構造としては、例えば、α−AlF、β−AlF、θ−AlF、等が挙げられる。しかしながら、いずれの結晶構造においても、その構成単位は同一の構造である。
[Aluminum fluoride before modification (AlF 3 )]
Aluminum fluoride (AlF 3 ) has various crystal structures. Examples of the crystal structure include α-AlF 3 , β-AlF 3 , θ-AlF 3 , and the like. However, in each crystal structure, the structural unit is the same structure.

具体的には、フッ化アルミニウム(AlF)の結晶構造のひとつであるα−AlFの構造を示す図3に示されるように、結晶構造の構成単位となるフッ化アルミニウム(AlF)の構造は、Al原子が中心に配置され、頂点が6つのフッ素原子で構成される6配位八面体である。Specifically, as shown in FIG. 3 showing the structure of a is alpha-AlF 3 single crystal structure of aluminum fluoride (AlF 3), aluminum fluoride as the constituent unit of the crystal structure (AlF 3) The structure is a hexacoordinate octahedron in which the Al atom is arranged in the center and the apex is composed of 6 fluorine atoms.

本発明においては、原料として用いるフッ化アルミニウム(AlF)の構造は、特に限定されるものではなく、いずれの結晶構造のフッ化アルミニウム(AlF)も用いることができる。フッ化アルミニウム(AlF)の中では、入手が容易で最も安価な観点から、α−AlFを用いることが好ましい。α−AlFの市販品としては、例えば、シグマアルドリッチ社製AlF(純度99.9%)や、Alfa Aesar社製AlF(純度99.9%)等を挙げることができる。In the present invention, the structure of the aluminum fluoride used as a starting material (AlF 3) is not limited particularly, aluminum fluoride of any crystal structure (AlF 3) may also be used. Among aluminum fluoride (AlF 3 ), it is preferable to use α-AlF 3 from the viewpoint of being easily available and the cheapest. Examples of commercially available products of α-AlF 3 include AlF 3 manufactured by Sigma-Aldrich (purity 99.9%) and AlF 3 manufactured by Alfa Aesar (purity 99.9%).

なお、フッ化アルミニウム(AlF)は、大気中の水分を吸湿し、より安定な0.5水和物もしくは3水和物を形成する。このため、脱水処理をおこなったフッ化アルミニウム(AlF)を用いることが、さらに好ましい。脱水処理の方法としては、例えば、250〜300℃程度の温度で、真空焼成する方法等が挙げられる。Aluminum fluoride (AlF 3 ) absorbs moisture in the atmosphere to form a more stable 0.5 hydrate or trihydrate. Therefore, it is more preferable to use dehydrated aluminum fluoride (AlF 3). Examples of the dehydration treatment method include a method of vacuum firing at a temperature of about 250 to 300 ° C.

[アルカリ金属またはアルカリ土類金属]
本発明のフッ化物イオン二次電池用負極活物質を製造するために用いるアルカリ金属またはアルカリ土類金属は、特に限定されるものではない。アルカリ金属としては、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、等を挙げることができ、アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、等を挙げることができる。
[Alkali metal or alkaline earth metal]
The alkali metal or alkaline earth metal used for producing the negative electrode active material for a fluoride ion secondary battery of the present invention is not particularly limited. Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and the like, and examples of the alkaline earth metal include magnesium ( Mg), calcium (Ca), strontium (Sr), barium (Ba), and the like can be mentioned.

本発明のフッ化物イオン二次電池用負極活物質の製造方法においては、アルカリ金属またはアルカリ土類金属の中でも、リチウム(Li)金属を用いることが好ましい。リチウム(Li)金属は、全ての金属元素の中で最も軽いため、フッ化アルミニウムと混合した後の活物質重量あたりの容量(mAh/g)を高く維持することができる。 In the method for producing a negative electrode active material for a fluoride ion secondary battery of the present invention, it is preferable to use a lithium (Li) metal among alkali metals or alkaline earth metals. Since lithium (Li) metal is the lightest of all metal elements, it is possible to maintain a high capacity (mAh / g) per weight of active material after mixing with aluminum fluoride.

市販のリチウム(Li)金属としては、例えば、本城金属社製Li箔(純度99.8%)等が挙げられる。リチウム(Li)金属の形状は、特に制限されるものではないが、フッ化アルミニウム(AlF)との混合が容易となる観点から、チップ状、またはビーズ状であることが好ましい。Examples of commercially available lithium (Li) metal include Li foil (purity 99.8%) manufactured by Honjo Metal Co., Ltd. The shape of the lithium (Li) metal is not particularly limited, but is preferably chip-shaped or bead-shaped from the viewpoint of facilitating mixing with aluminum fluoride (AlF 3).

[フッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属との接触]
本発明のフッ化物イオン二次電池用負極活物質の製造方法は、上記のフッ化アルミニウム(AlF)と、上記のアルカリ金属またはアルカリ土類金属とを接触させて、改質フッ化アルミニウムを得るものである。
[Contact between aluminum fluoride (AlF 3 ) and alkali metal or alkaline earth metal]
In the method for producing a negative electrode active material for a fluoride ion secondary battery of the present invention, the above-mentioned aluminum fluoride (AlF 3 ) is brought into contact with the above-mentioned alkali metal or alkaline earth metal to obtain modified aluminum fluoride. What you get.

フッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属とを接触させることにより、フッ化アルミニウムからフッ化物イオンを脱離させ、フッ化物イオンとして脱離したフッ素原子の存在位置を空孔として、改質フッ化アルミニウムを得る。By contacting aluminum fluoride (AlF 3 ) with an alkali metal or alkaline earth metal, fluoride ions are desorbed from aluminum fluoride, and the positions of fluorine atoms desorbed as fluoride ions are vacated. To obtain modified aluminum fluoride.

(反応機構)
フッ化アルミニウム(AlF)の脱フッ化/再フッ化反応電位に対して、より卑な電位を示すアルカリ金属またはアルカリ土類金属を接触させることにより、アルカリ金属またはアルカリ土類金属はフッ化物を形成し、フッ化アルミニウム(AlF)からは一部のフッ素原子が引き抜かれる反応が起こる。このような卑金属との接触によるフッ化物からの部分的なフッ素原子の引き抜きは、先行例として確認されていない。
(Reaction mechanism)
By contacting an alkali metal or alkaline earth metal showing a lower potential with respect to the defluorination / refluorination reaction potential of aluminum fluoride (AlF 3), the alkali metal or alkaline earth metal becomes fluoride. A reaction occurs in which some fluorine atoms are extracted from aluminum fluoride (AlF 3). Partial extraction of fluorine atoms from fluoride by contact with such base metals has not been confirmed as a precedent.

なお、本発明のフッ化物イオン二次電池用負極活物質の製造方法は、フッ化アルミニウム(AlF)における、6つのフッ素原子の全てを脱離させるものではない。すなわち、一部のフッ素原子のみを引き抜き、フッ化アルミニウム(AlF)がアルミニウム金属となるまで反応はさせない。The method for producing a negative electrode active material for a fluoride ion secondary battery of the present invention does not desorb all six fluorine atoms in aluminum fluoride (AlF 3). That is, only a part of fluorine atoms are extracted, and the reaction is not carried out until aluminum fluoride (AlF 3) becomes an aluminum metal.

フッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属とを接触させたときの反応の例を、以下に示す。以下は、アルカリ金属であるリチウム(Li)金属とフッ化アルミニウム(AlF)との反応である。An example of the reaction when aluminum fluoride (AlF 3 ) is brought into contact with an alkali metal or an alkaline earth metal is shown below. The following is the reaction between lithium (Li) metal, which is an alkali metal, and aluminum fluoride (AlF 3).

xLi + (1−x)AlF
(1) → xLiF + (1−x)AlF3−4X/(1−X)
(2) → xLiF + (1−4x/3)AlF + (x/3)Al
(3) → (x/3)LiAlF + (1−5x/3)AlF + (x/3)Al
xLi + (1-x) AlF 3
(1) → xLiF + (1-x) AlF 3-4X / (1-X)
(2) → xLiF + (1-4x / 3) AlF 3 + (x / 3) Al
(3) → (x / 3) Li 3 AlF 6 + (1-5x / 3) AlF 3 + (x / 3) Al

本発明においては、フッ化アルミニウム(AlF)がアルミニウム金属となる式(2)および式(3)の段階までは反応を進めず、一部のフッ素原子のみが引き抜かれた式(1)の段階で、反応をとどめる。In the present invention, the reaction does not proceed until the steps of the formulas (2) and (3 ) in which aluminum fluoride (AlF 3) becomes an aluminum metal, and only a part of the fluorine atoms is extracted from the formula (1). Stop the reaction at the stage.

(接触方法)
フッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属との接触方法は、フッ化アルミニウム(AlF)がアルミニウム金属となるまで反応を進めさせない方法であれば、特に限定されるものではない。
(Contact method)
The method of contacting aluminum fluoride (AlF 3 ) with an alkali metal or an alkaline earth metal is not particularly limited as long as the reaction is not allowed to proceed until the aluminum fluoride (AlF 3) becomes an aluminum metal. Absent.

例えば、必要量のフッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属とをそれぞれ秤量し、必要に応じて予備混合を実施し、ボールミル等によって混合処理する方法が挙げられる。For example, a method in which a required amount of aluminum fluoride (AlF 3 ) and an alkali metal or an alkaline earth metal are weighed, premixed as necessary, and mixed by a ball mill or the like can be mentioned.

なお、フッ化アルミニウム(AlF)と、アルカリ金属またはアルカリ土類金属は、いずれも水分との反応が極めて高いため、グローブボックス等、大気中の水分との接触を回避できる環境にて、接触を実施することが好ましい。Since aluminum fluoride (AlF 3 ) and alkali metal or alkaline earth metal both have extremely high reactions with moisture, they come into contact with each other in an environment such as a glove box where contact with moisture in the atmosphere can be avoided. It is preferable to carry out.

(反応組成)
また、本発明のフッ化物イオン二次電池用負極活物質の製造方法においては、用いるアルカリ金属またはアルカリ土類金属の比率は、フッ化アルミニウムとの合計に対して5〜20mol%とすることが好ましい。5〜20mol%とすることにより、大きな充放電容量が得られ、同時に、反応過電圧が減少し、充放電効率が増加したフッ化物イオン二次電池を形成することができる。アルカリ金属またはアルカリ土類金属の比率は、フッ化アルミニウムとの合計に対して5〜15mol%とすることがさらに好ましく、10〜15mol%とすることが最も好ましい。
(Reaction composition)
Further, in the method for producing a negative electrode active material for a fluoride ion secondary battery of the present invention, the ratio of the alkali metal or alkaline earth metal used may be 5 to 20 mol% with respect to the total with aluminum fluoride. preferable. By setting the content to 5 to 20 mol%, a large charge / discharge capacity can be obtained, and at the same time, a fluoride ion secondary battery in which the reaction overvoltage is reduced and the charge / discharge efficiency is increased can be formed. The ratio of the alkali metal or alkaline earth metal is more preferably 5 to 15 mol%, and most preferably 10 to 15 mol% with respect to the total with aluminum fluoride.

次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples.

<実施例1〜6>
実施例1〜6においては、リチウム(Li)金属を用いて、フッ化アルミニウム(AlF)を改質フッ化アルミニウムとした。
<Examples 1 to 6>
In Examples 1 to 6, lithium (Li) metal was used and aluminum fluoride (AlF 3 ) was used as modified aluminum fluoride.

[改質フッ化アルミニウムの製造]
(原料の秤量・予備混合)
フッ化アルミニウム(AlF)、およびリチウム(Li)金属を、表1に示すモル比率で、全量が6.0グラムになるよう秤量し、メノウ製の乳鉢と乳棒を用いて、約1時間、予備混合して、原料混合粉末を得た。
[Manufacturing of modified aluminum fluoride]
(Weighing and premixing of raw materials)
Aluminum fluoride (AlF 3 ) and lithium (Li) metal were weighed in the molar ratio shown in Table 1 to a total weight of 6.0 grams, and using an agate mortar and pestle for about 1 hour. Premixing was performed to obtain a raw material mixed powder.

なお、フッ化アルミニウム(AlF)、およびリチウム(Li)金属はいずれも、水分との反応性が極めて高いため、原料の秤量および予備混合は、グローブボックス((株)美和製作所製、型式DBO−1.5BNK−SQ1)内にて実施した。Since both aluminum fluoride (AlF 3 ) and lithium (Li) metal have extremely high reactivity with water, the raw materials are weighed and premixed by the glove box (Miwa Seisakusho Co., Ltd., model DBO). It was carried out within -1.5BNK-SQ1).

Figure 2019187943
Figure 2019187943

(接触処理)
得られた原料混合粉末を、窒化ケイ素製ボールミル容器(独フリッチュ社製、内容積:80cc、PL−7専用容器)に投入し、直径2mmの窒化ケイ素製ボールを40グラム投入し、密封した。
(Contact processing)
The obtained raw material mixed powder was put into a silicon nitride ball mill container (manufactured by Fritsch, Germany, internal volume: 80 cc, PL-7 dedicated container), and 40 g of silicon nitride balls having a diameter of 2 mm were put into the container and sealed.

引き続き、密封した容器を、回転数600rpmで15時間回転させ、ボールミル処理を実施した。ボールミル処理の後、処理された粉末を回収した。 Subsequently, the sealed container was rotated at a rotation speed of 600 rpm for 15 hours to carry out ball milling. After ball milling, the treated powder was recovered.

<比較例1>
リチウム(Li)金属を用いず、フッ化アルミニウム(AlF)のみを用いて、実施例と同様の操作を実施し、ボールミル処理された粉末を得た。
<Comparative example 1>
The same operation as in Example was carried out using only aluminum fluoride (AlF 3 ) without using a lithium (Li) metal to obtain a ball milled powder.

<改質フッ化アルミニウムの評価>
[X線回折パターン]
XRD(リガク社製、SmartLaB、Cu−Kα線源、λ=1.5418Å)を用いて、実施例および比較例で得られた改質フッ化アルミニウムの結晶構造を解析した。XRDチャートを、図4に示す。
<Evaluation of modified aluminum fluoride>
[X-ray diffraction pattern]
The crystal structures of the modified aluminum fluoride obtained in Examples and Comparative Examples were analyzed using XRD (SmartLaB, Cu-Kα source, λ = 1.5418 Å, manufactured by Rigaku). The XRD chart is shown in FIG.

[X線光電子分光スペクトル]
X線光電子分光:XPS(アルバックファイ社製、PHI5000 Versa ProbeII、Al−Kα線源)を用いて、実施例および比較例で得られた改質フッ化アルミニウムの結晶構造を解析した。図5(a)に、Li 1sスペクトルを、図5(b)に、Al 2pスペクトルを示す。
[X-ray photoelectron spectroscopy spectrum]
X-ray photoelectron spectroscopy: XPS (PHI5000 Versa ProbeII, Al-Kα source, manufactured by ULVAC-PHI) was used to analyze the crystal structure of the modified aluminum fluoride obtained in Examples and Comparative Examples. FIG. 5 (a) shows the Li 1s spectrum, and FIG. 5 (b) shows the Al 2p spectrum.

[評価]
図4のXRDチャートより、リチウム(Li)金属が5.0mol%〜20mol%である実施例1〜4の回折ピーク位置は、リチウム(Li)金属を用いなかった比較例1(AlFのみ)の回折ピーク位置と同一であり、結晶構造の変化は認められなかった。
[Evaluation]
From the XRD chart of FIG. 4, the diffraction peak positions of Examples 1 to 4 in which the lithium (Li) metal is 5.0 mol% to 20 mol% are Comparative Example 1 (AlF 3 only) in which the lithium (Li) metal was not used. It was the same as the diffraction peak position of, and no change in crystal structure was observed.

一方で、リチウム(Li)金属が30mol%以上の実施例5および6では、アルミニウム(Al)金属、LiF、LiAlFに帰属するピークが確認された。すなわち、リチウム(Li)金属を30mol%以上とした範囲では、LiAlFが存在していることから、上記した式(3)まで、反応が進んでいることとなる。On the other hand, in Examples 5 and 6 in which the lithium (Li) metal content was 30 mol% or more, peaks attributed to the aluminum (Al) metal, LiF, and Li 3 AlF 6 were confirmed. That is, since Li 3 AlF 6 is present in the range where the lithium (Li) metal is 30 mol% or more, the reaction proceeds to the above formula (3).

また、図5(a)に示されるLi 1sスペクトルより、全ての実施例において、LiFの生成が確認され、図5(b)に示されるAl 2pスペクトルより、リチウム(Li)金属が30mol%以上の実施例5および6では、Al金属の生成が認められた。すなわち、上記した式(2)まで、反応が進んでいることとなる。 Further, from the Li 1s spectrum shown in FIG. 5 (a), the formation of LiF was confirmed in all the examples, and from the Al 2p spectrum shown in FIG. 5 (b), the lithium (Li) metal content was 30 mol% or more. In Examples 5 and 6 of the above, the formation of Al metal was observed. That is, the reaction has proceeded to the above formula (2).

X線回折パターンおよびX線光電子分光スペクトルより、上記した式(1)までで反応をとどめるためには、リチウム(Li)金属の配合量は、20mol%以下とすることが好ましい。 From the X-ray diffraction pattern and the X-ray photoelectron spectroscopic spectrum, in order to keep the reaction up to the above formula (1), the blending amount of the lithium (Li) metal is preferably 20 mol% or less.

<フッ化物イオン二次電池の作製>
以下の材料を用いて、以下の方法で、フッ化物イオン二次電池を作製した。
<Manufacturing of fluoride ion secondary battery>
A fluoride ion secondary battery was prepared by the following method using the following materials.

(固体電解質)
タイソナイト系の固体電解質であるLa0.95Ba0.052.95(LBF)を用いた。LBFは公知の化合物(文献7〜9参照)であり、文献7に記載された方法にて作製した。
文献7:ACS Appl.Mater.Interfaces 2014,6,2103−2110
文献8:J.Phys.Chem.C 2013,117,4943−4950
文献9:J.Phys.Chem.C 2014,118,7117−7129
(Solid electrolyte)
La 0.95 Ba 0.05 F 2.95 (LBF), which is a tysonite-based solid electrolyte, was used. LBF is a known compound (see Documents 7 to 9) and was prepared by the method described in Document 7.
Reference 7: ACS Appl. Mater. Interfaces 2014, 6, 2103-1110
Reference 8: J. Phys. Chem. C 2013, 117,4943-4950
Reference 9: J. Phys. Chem. C 2014, 118, 7117-7129

(負極合剤粉末)
実施例で作製した改質または比較例1のフッ化アルミニウム(AlF)、イオン伝導経路を付与するための固体電解質(LBF)、および電子伝導経路を付与するためのアセチレンブラック(電気化学工業製)を、10:80:10の質量比で秤量し、メノウ製の乳鉢と乳棒を用いて十分に混合し、負極合剤粉末とした。
(Negative electrode mixture powder)
Aluminum fluoride (AlF 3 ) of the modified or comparative example 1 prepared in Examples, a solid electrolyte (LBF) for imparting an ionic conduction path, and acetylene black (manufactured by Electrochemical Industry) for imparting an electron conduction path. ) Was weighed at a mass ratio of 10:80:10 and sufficiently mixed using a Menou dairy pot and a dairy rod to prepare a negative electrode mixture powder.

(正極)
鉛箔((株)ニラコ製、純度:99.99%、厚さ:200um)を、直径10mmに加工し、正極として用いた。
(Positive electrode)
A lead foil (manufactured by Nirako Co., Ltd., purity: 99.99%, thickness: 200 um) was processed to a diameter of 10 mm and used as a positive electrode.

(フッ化物イオン二次電池)
上記のように準備した負極合剤粉末(20mg)、固体電解質(400mg)、正極を、直径10mmΦの金型中で4ton/cmの圧力で一体成形し、フッ化物イオン二次電池となる成型体を得た。得られた成型体の正/負極面に、カーボンペーストにより、充放電測定に使用する端子として用いるための金線を接着した。
(Fluoride ion secondary battery)
The negative electrode mixture powder (20 mg), solid electrolyte (400 mg), and positive electrode prepared as described above are integrally molded in a mold having a diameter of 10 mmΦ at a pressure of 4 ton / cm 2 , to form a fluoride ion secondary battery. I got a body. A gold wire for use as a terminal used for charge / discharge measurement was adhered to the positive / negative electrode surfaces of the obtained molded body with carbon paste.

<フッ化物イオン二次電池の評価>
(定電流充放電試験)
ポテンショガルバノスタット装置(ソーラトロン社、SI1287/1255B)を用いて、充電0.02mA、放電0.01mAの電流にて、下限電圧−2.35V、上限電圧−0.1V、にて、定電流充放電試験を実施した。充放電曲線を、図6に示す。
<Evaluation of fluoride ion secondary battery>
(Constant current charge / discharge test)
Using a potentiogalvanostat device (Solartron, SI1287 / 1255B), constant current charging at a lower limit voltage of -2.35V and an upper limit voltage of -0.1V with a current of 0.02mA for charging and 0.01mA for discharging. A discharge test was carried out. The charge / discharge curve is shown in FIG.

図6より、改質処理を行っていない比較例1の負極活物質を用いたフッ化物イオン二次電池は、充放電容量が数十mAh/gしか得られなかったのに対して、改質フッ化アルミニウムを用いた実施例の負極活物質を用いたフッ化物イオン二次電池は、充放電容量が大幅に増加していることが確認できる。また、比較例1の負極活物質を用いたフッ化物イオン二次電池と比べて、実施例の負極活物質を用いたフッ化物イオン二次電池は、充放電容量が増加していること、反応過電圧が減少していること、充放電効率が増加していること、の全てについて確認できる。 From FIG. 6, the fluoride ion secondary battery using the negative electrode active material of Comparative Example 1 which was not reformed had a charge / discharge capacity of only several tens of mAh / g, whereas it was reformed. It can be confirmed that the charge / discharge capacity of the fluoride ion secondary battery using the negative electrode active material of the example using aluminum fluoride is significantly increased. Further, as compared with the fluoride ion secondary battery using the negative electrode active material of Comparative Example 1, the fluoride ion secondary battery using the negative electrode active material of Example has an increased charge / discharge capacity and a reaction. It can be confirmed that the overvoltage is decreasing and the charge / discharge efficiency is increasing.

(充放電容量とリチウム(Li)金属配合量との関係)
実施例1〜6、および比較例1について、充放電容量とAlF改質処理におけるリチウム(Li)金属配合量との関係を、図7に示す。図7より、本発明のフッ化アルミニウム(AlF)の改質処理において、特に良好なチウム(Li)金属の配合量は、5〜20mol%であることが確認できる。
(Relationship between charge / discharge capacity and lithium (Li) metal compounding amount)
For Examples 1 to 6 and Comparative Example 1, the relationship between the charge / discharge capacity and the amount of lithium (Li) metal compounded in the AlF 3 modification treatment is shown in FIG. From FIG. 7, it can be confirmed that in the modification treatment of aluminum fluoride (AlF 3 ) of the present invention, a particularly good compounding amount of thium (Li) metal is 5 to 20 mol%.

1 Al原子
2 フッ素原子
1 Al atom 2 Fluorine atom

Claims (11)

フッ化物イオンの脱離による空孔を有する改質フッ化アルミニウムである、フッ化物イオン二次電池用負極活物質。 A negative electrode active material for a fluoride ion secondary battery, which is a modified aluminum fluoride having pores due to desorption of fluoride ions. 前記空孔は、脱フッ化反応および再フッ化反応の起点となる、請求項1に記載のフッ化物イオン二次電池用負極活物質。 The negative electrode active material for a fluoride ion secondary battery according to claim 1, wherein the pores serve as a starting point for a defluorination reaction and a refluorination reaction. 前記空孔は、改質前のフッ化アルミニウムにおいて、フッ素原子が存在していた領域である、請求項1または2に記載のフッ化物イオン二次電池用負極活物質。 The negative electrode active material for a fluoride ion secondary battery according to claim 1 or 2, wherein the pores are regions in which fluorine atoms were present in aluminum fluoride before modification. 前記フッ化物イオンの脱離は、フッ化アルミニウムに、アルカリ金属またはアルカリ土類金属を接触させてなる、請求項1〜3いずれか記載のフッ化物イオン二次電池用負極活物質。 The negative electrode active material for a fluoride ion secondary battery according to any one of claims 1 to 3, wherein the desorption of fluoride ions is formed by contacting aluminum fluoride with an alkali metal or an alkaline earth metal. 請求項1〜4いずれか記載のフッ化物イオン二次電池用負極活物質を含む、フッ化物イオン二次電池用負極。 A negative electrode for a fluoride ion secondary battery, which comprises the negative electrode active material for a fluoride ion secondary battery according to any one of claims 1 to 4. 請求項5に記載のフッ化物イオン二次電池用負極と、固体電解質と、正極と、を備えるフッ化物イオン二次電池。 The fluoride ion secondary battery comprising the negative electrode for a fluoride ion secondary battery according to claim 5, a solid electrolyte, and a positive electrode. フッ化物イオン二次電池用負極活物質となる改質フッ化アルミニウムを製造する方法であって、
フッ化アルミニウムと、アルカリ金属またはアルカリ土類金属とを接触させて、前記フッ化アルミニウムからフッ化物イオンを脱離させることにより、前記フッ化物イオンとして脱離したフッ素原子の存在位置を空孔として改質フッ化アルミニウムとする、フッ化物イオン二次電池用負極活物質の製造方法。
A method for producing modified aluminum fluoride, which is a negative electrode active material for fluoride ion secondary batteries.
By contacting aluminum fluoride with an alkali metal or alkaline earth metal to desorb fluoride ions from the aluminum fluoride, the position of the fluorine atom desorbed as the fluoride ion is set as a vacancy. A method for producing a negative electrode active material for a fluoride ion secondary battery, which is a modified aluminum fluoride.
前記アルカリ金属または前記アルカリ土類金属はフッ化物となり、前記フッ化アルミニウムは一部のフッ素原子が引き抜かれ、アルミニウム金属にはならない、請求項7記載のフッ化物イオン二次電池用負極活物質の製造方法。 The negative electrode active material for a fluoride ion secondary battery according to claim 7, wherein the alkali metal or the alkaline earth metal becomes a fluoride, and the aluminum fluoride is not made into an aluminum metal by extracting some fluorine atoms. Production method. 前記アルカリ金属または前記アルカリ土類金属の比率は、前記フッ化アルミニウムとの合計に対して5〜20mol%である、請求項7または8に記載のフッ化物イオン二次電池用負極活物質の製造方法。 The production of the negative electrode active material for a fluoride ion secondary battery according to claim 7 or 8, wherein the ratio of the alkali metal or the alkaline earth metal is 5 to 20 mol% with respect to the total with the aluminum fluoride. Method. 前記フッ化アルミニウムは、α−AlFである、請求項7〜9いずれかに記載のフッ化物イオン二次電池用負極活物質の製造方法。The method for producing a negative electrode active material for a fluoride ion secondary battery according to any one of claims 7 to 9, wherein the aluminum fluoride is α-AlF 3. 前記アルカリ金属は、Li金属である、請求項7〜10いずれかに記載のフッ化物イオン二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a fluoride ion secondary battery according to any one of claims 7 to 10, wherein the alkali metal is a Li metal.
JP2020510484A 2018-03-27 2019-02-27 Negative electrode active material for fluoride ion secondary battery, negative electrode using said active material, fluoride ion secondary battery, and method for producing said active material Active JP7178404B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018059703 2018-03-27
JP2018059703 2018-03-27
PCT/JP2019/007699 WO2019187943A1 (en) 2018-03-27 2019-02-27 Negative electrode active material for fluoride ion secondary batteries, negative electrode using said active material, fluoride ion secondary battery, and method for producing said active material

Publications (2)

Publication Number Publication Date
JPWO2019187943A1 true JPWO2019187943A1 (en) 2021-04-01
JP7178404B2 JP7178404B2 (en) 2022-11-25

Family

ID=68061244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510484A Active JP7178404B2 (en) 2018-03-27 2019-02-27 Negative electrode active material for fluoride ion secondary battery, negative electrode using said active material, fluoride ion secondary battery, and method for producing said active material

Country Status (4)

Country Link
JP (1) JP7178404B2 (en)
CN (1) CN112042018B (en)
DE (1) DE112019001579T5 (en)
WO (1) WO2019187943A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862608B2 (en) * 2019-01-28 2021-04-21 パナソニック株式会社 Active Material, Negative Electrode Active Material, and Fluoride Ion Rechargeable Battery
CN114556650B (en) * 2019-10-09 2024-07-16 本田技研工业株式会社 Fluoride ion secondary battery
WO2021070299A1 (en) * 2019-10-09 2021-04-15 本田技研工業株式会社 Fluoride ion secondary battery negative electrode mixture composite, fluoride ion secondary battery negative electrode and secondary battery using fluoride ion secondary battery negative electrode mixture composite, and production method for fluoride ion secondary battery negative electrode mixture composite
WO2021070298A1 (en) * 2019-10-09 2021-04-15 本田技研工業株式会社 Negative electrode mixture composite body for fluoride ion secondary batteries, negative electrode for fluoride ion secondary batteries and secondary battery each using said composite body, and method for producing said composite body
CN114556649B (en) * 2019-10-09 2024-07-26 本田技研工业株式会社 Negative electrode composite material composite for fluoride ion secondary battery, negative electrode for fluoride ion secondary battery and secondary battery using the composite, and method for producing the composite
US20230317944A1 (en) * 2020-11-19 2023-10-05 Carnegie Mellon University Fluorinated electrodes and batteries containing the same
CN116670845A (en) 2020-12-24 2023-08-29 松下控股株式会社 Fluoride ion secondary battery and method for producing same
JP2022114305A (en) * 2021-01-26 2022-08-05 本田技研工業株式会社 Negative electrode for fluoride ion secondary battery and fluoride ion secondary battery having the same
JPWO2023013390A1 (en) * 2021-08-06 2023-02-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845372A (en) * 1981-09-10 1983-03-16 Oyo Kagaku Kenkyusho Direct formation of film of graphite fluoride on surface of aluminum using carbonaceous material and fluorine
JP2016103407A (en) * 2014-11-28 2016-06-02 積水化学工業株式会社 Secondary battery, and method for manufacturing secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155018A (en) * 1980-04-25 1981-12-01 Hitachi Ltd Solid compound and solid electrolyte
IT1291758B1 (en) * 1997-05-22 1999-01-21 Ausimont Spa PROCESS FOR THE PREPARATION OF ALUMINUM FLUORIDE
ITMI20030006A1 (en) * 2003-01-03 2004-07-04 Solvay Solexis Spa ALUMINUM FLUORIDE CATALYST.
JP5271275B2 (en) * 2007-12-14 2013-08-21 パナソニック株式会社 Method for producing non-aqueous electrolyte secondary battery
CN102754257B (en) * 2009-11-09 2016-06-01 拉特格斯,新泽西州立大学 Metal fluoride composition for self-forming battery
US9843041B2 (en) * 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US9048497B2 (en) * 2012-10-05 2015-06-02 Rutgers, The State University Of New Jersey Metal fluoride compositions for self formed batteries
JP6250879B2 (en) * 2013-12-26 2017-12-20 国立大学法人京都大学 Secondary battery
JP6770701B2 (en) * 2016-05-02 2020-10-21 株式会社Gsユアサ Power storage element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845372A (en) * 1981-09-10 1983-03-16 Oyo Kagaku Kenkyusho Direct formation of film of graphite fluoride on surface of aluminum using carbonaceous material and fluorine
JP2016103407A (en) * 2014-11-28 2016-06-02 積水化学工業株式会社 Secondary battery, and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP7178404B2 (en) 2022-11-25
CN112042018A (en) 2020-12-04
CN112042018B (en) 2023-11-07
DE112019001579T5 (en) 2020-12-03
WO2019187943A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JPWO2019187943A1 (en) A negative electrode active material for a fluoride ion secondary battery, a negative electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material.
JP5985120B1 (en) Sulfide solid electrolyte and solid electrolyte compound for lithium ion battery
JP5873533B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
WO2015012042A1 (en) Sulfide-based solid electrolyte for lithium ion battery
JP2018514908A (en) Cathode active material for sodium ion batteries
WO2017013876A1 (en) Layered oxide materials for batteries
JPWO2018092359A1 (en) Positive electrode active material for battery and battery
JP6486814B2 (en) Crystal production method, crystal and electrolyte for fluoride ion secondary battery
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2000512425A (en) Lithium cell with lithium-metal-chalcogenide mixed cathode
KR20190022310A (en) All solid state secondary battery
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
JPWO2013125668A1 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR20220088884A (en) LMO cathode composition
JP7031553B2 (en) Solid electrolyte
KR20170011859A (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP2008181881A (en) Composite anode active material, method of manufacturing the same, and anode and lithium battery containing the material
JP7292399B2 (en) Fluoride ion secondary battery
JP7292398B2 (en) Negative electrode mixture composite for fluoride ion secondary battery, negative electrode for fluoride ion secondary battery and secondary battery using the composite, and method for producing the composite
JP7324856B2 (en) Negative electrode mixture composite for fluoride ion secondary battery, negative electrode for fluoride ion secondary battery and secondary battery using the composite, and method for producing the composite
JP6966308B2 (en) Positive active material for lithium-ion batteries and their manufacturing methods, lithium-ion batteries, and lithium-ion battery systems
KR102330436B1 (en) Rechargeable Calcium-Lithium- Oxygen Secondary Battery
JP3379331B2 (en) Lead storage battery
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7178404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150