JPWO2019181883A1 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JPWO2019181883A1
JPWO2019181883A1 JP2020507806A JP2020507806A JPWO2019181883A1 JP WO2019181883 A1 JPWO2019181883 A1 JP WO2019181883A1 JP 2020507806 A JP2020507806 A JP 2020507806A JP 2020507806 A JP2020507806 A JP 2020507806A JP WO2019181883 A1 JPWO2019181883 A1 JP WO2019181883A1
Authority
JP
Japan
Prior art keywords
liquid crystal
carbon atoms
crystal display
group
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020507806A
Other languages
Japanese (ja)
Other versions
JP7310796B2 (en
Inventor
保坂 和義
和義 保坂
雅章 片山
雅章 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019181883A1 publication Critical patent/JPWO2019181883A1/en
Application granted granted Critical
Publication of JP7310796B2 publication Critical patent/JP7310796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

良好な光学特性を発現し、液晶表示素子の駆動電圧が低くなる液晶表示素子を提供する。電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有する、電圧無印加時に散乱状態となり、電圧印加時には透明状態となる液晶表示素子であって、前記液晶が、正の誘電異方性を有し、前記液晶組成物が、下記式[1]で表される化合物を含むことを特徴とする液晶表示素子。[化1](式中の各記号の定義は、明細書記載の通りである。)Provided is a liquid crystal display element which exhibits good optical characteristics and lowers the driving voltage of the liquid crystal display element. A liquid crystal composition containing a liquid crystal and a polymerizable compound arranged between a pair of substrates provided with electrodes has a liquid crystal layer cured by irradiating ultraviolet rays, and is in a scattered state when no voltage is applied and is transparent when a voltage is applied. A liquid crystal display element in a state, wherein the liquid crystal has positive dielectric anisotropy, and the liquid crystal composition contains a compound represented by the following formula [1]. .. [Chemical formula 1] (Definition of each symbol in the formula is as described in the specification.)

Description

本発明は、電圧印加時に透過状態となる透過散乱型の液晶表示素子に関する。 The present invention relates to a transmission-scattering type liquid crystal display element that is in a transmission state when a voltage is applied.

液晶表示素子としては、TN(Twisted Nematic)モードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うために、偏光板を用いる必要がある。偏光板を用いると光の利用効率が低くなる。
偏光板を用いない液晶表示素子として、液晶の透過状態(透明状態ともいう。)と散乱状態との間でスイッチングを行う素子がある。一般的には、高分子分散型液晶(PDLC(Polymer Dispersed Liquid Crystal)ともいう。)や高分子ネットワーク型液晶(PNLC(Polymer Network Liquid Crystal)ともいう。)を用いたものが知られている。
As a liquid crystal display element, a TN (Twisted Nematic) mode has been put into practical use. In this mode, it is necessary to use a polarizing plate in order to switch light by utilizing the optical rotation characteristic of the liquid crystal. When a polarizing plate is used, the efficiency of light utilization is lowered.
As a liquid crystal display element that does not use a polarizing plate, there is an element that switches between a transmissive state (also referred to as a transparent state) and a scattering state of a liquid crystal. Generally, those using a polymer dispersed liquid crystal (also referred to as PDLC (Polymer Dispersed Liquid Crystal)) or a polymer network type liquid crystal (also referred to as PNLC (Polymer Network Liquid Crystal)) are known.

これらの液晶表示素子では、電極を備えた一対の基板の間に、紫外線により重合する重合性化合物を含む液晶組成物を配置し、紫外線の照射により液晶組成物の硬化を行い、液晶と重合性化合物の硬化物(例えば、ポリマーネットワーク)との複合体を形成する。そして、この液晶表示素子では、電圧の印加により、液晶の散乱状態と透過状態が制御される。 In these liquid crystal display elements, a liquid crystal composition containing a polymerizable compound that is polymerized by ultraviolet rays is arranged between a pair of substrates provided with electrodes, and the liquid crystal composition is cured by irradiation with ultraviolet rays to be polymerizable with the liquid crystal. It forms a complex with a cured product of the compound (eg, a polymer network). Then, in this liquid crystal display element, the scattering state and the transmission state of the liquid crystal are controlled by applying a voltage.

PDLCやPNLCを用いた液晶表示素子は、電圧無印加時に、液晶がランダムな方向を向いているため、白濁(散乱)状態となり、電圧印加時には、液晶が電界方向に配列し、光を透過して透過状態となる(ノーマル型素子ともいう。)。この場合、電圧無印加時の液晶はランダムであるため、液晶を一方方向に配向させる液晶配向膜や配向処理の必要がない。そのため、この液晶表示素子では、電極と液晶層(前記の液晶と重合性化合物の硬化物との複合体)とが直に接した状態となる(特許文献1、2参照)。 A liquid crystal display element using PDLC or PNLC is in a cloudy (scattered) state because the liquid crystal is oriented in a random direction when no voltage is applied, and when a voltage is applied, the liquid crystals are arranged in the electric field direction and transmit light. (Also referred to as a normal type element). In this case, since the liquid crystal is random when no voltage is applied, there is no need for a liquid crystal alignment film or alignment treatment for aligning the liquid crystal in one direction. Therefore, in this liquid crystal display element, the electrode and the liquid crystal layer (composite of the liquid crystal and the cured product of the polymerizable compound) are in direct contact with each other (see Patent Documents 1 and 2).

日本特許第3552328号公報Japanese Patent No. 3552328 日本特許第4630954号公報Japanese Patent No. 4630954

液晶組成物中の重合性化合物は、ポリマーネットワークを形成させ、所望とする光学特性を得る役割と、液晶層と電極との密着性を高める役割がある。しかしながら、これらを実現するためには、密なポリマーネットワークを形成させる必要があるため、電圧印加に対する液晶分子の駆動が阻害される。そのため。本素子は、TNモードなどの液晶表示素子に比べて駆動電圧が高くなってしまう。
以上の点から、本発明は、良好な光学特性を発現し、液晶表示素子の駆動電圧が低くなる液晶表示素子を提供することを目的とする。
The polymerizable compound in the liquid crystal composition has a role of forming a polymer network to obtain desired optical properties and a role of enhancing the adhesion between the liquid crystal layer and the electrode. However, in order to realize these, it is necessary to form a dense polymer network, so that the driving of the liquid crystal molecules with respect to the voltage application is hindered. for that reason. The drive voltage of this element is higher than that of a liquid crystal display element such as TN mode.
From the above points, it is an object of the present invention to provide a liquid crystal display element which exhibits good optical characteristics and lowers the driving voltage of the liquid crystal display element.

本発明者は、前記の目的を達成するため鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。
即ち、本発明は、電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有する、電圧無印加時に散乱状態となり、電圧印加時には透明状態となる液晶表示素子であって、前記液晶が、正の誘電異方性を有し、かつ前記液晶組成物が、下記式[1]で表される化合物を含むことを特徴とする液晶表示素子にある。

Figure 2019181883
(Xは下記式[1−a]〜式[1−j]を示す。Xは単結合、−O−、−NH−、−N(CH)−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。Xは単結合又は−(CH−(aは1〜15の整数である)を示す。Xは単結合、−O−、−OCH−、−COO−又は−OCO−を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは単結合、−O−、−CH−、−OCH−、−CHO−、−COO−又は−OCO−を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。Xmは0〜4の整数を示す。)
Figure 2019181883

(Xは水素原子又はベンゼン環を示す。)As a result of diligent research to achieve the above object, the present inventor has completed the present invention having the following gist.
That is, the present invention has a liquid crystal layer containing a liquid crystal and a polymerizable compound arranged between a pair of substrates provided with electrodes and cured by irradiating the liquid crystal with ultraviolet rays, and is in a scattered state when no voltage is applied. The liquid crystal display element becomes transparent when a voltage is applied, the liquid crystal has positive dielectric anisotropy, and the liquid crystal composition contains a compound represented by the following formula [1]. It is in a liquid crystal display element characterized by.
Figure 2019181883
(X 1 represents the following formulas [1-a] to [1-j]. X 2 is a single bond, -O-, -NH-, -N (CH 3 )-, -CH 2 O-,-. It indicates CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -COO- or -OCO-. X 3 is a single bond or-(CH 2 ) a- (a is. X 4 represents a single bond, -O-, -OCH 2- , -COO- or -OCO-. X 5 is a group consisting of a benzene ring, a cyclohexane ring and a heterocycle. A divalent cyclic group selected from the above, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and any hydrogen atom on the cyclic group has an alkyl group having 1 to 3 carbon atoms and a carbon number of carbon atoms. It may be substituted with an alkoxy group of 1 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. X 6 is a single bond, −O−, −. CH 2- , -OCH 2- , -CH 2 O-, -COO- or -OCO-. X 7 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, and these cyclic groups. Any hydrogen atom on the group can be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or fluorine. It may be substituted with an atom. X 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. Indicates a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Xm indicates an integer of 0 to 4.)
Figure 2019181883

(X A indicates a hydrogen atom or a benzene ring.)

本発明によれば、光学特性が良好で、液晶表示素子の駆動電圧が低くなる液晶表示素子が得られる。そのため、本発明の素子は、ノーマル型素子として表示を目的とする液晶ディスプレイや、光の透過と遮断を制御する調光窓や光シャッター素子などに用いられる。
本発明により何故に上記の優れた特性を有する液晶表示素子が得られるメカニズムは、必ずしも明らかではないが、ほぼ次のように推定される。
According to the present invention, it is possible to obtain a liquid crystal display element having good optical characteristics and a low driving voltage of the liquid crystal display element. Therefore, the element of the present invention is used in a liquid crystal display for display as a normal type element, a dimming window for controlling transmission and blocking of light, an optical shutter element, and the like.
The mechanism by which the liquid crystal display element having the above-mentioned excellent characteristics can be obtained by the present invention is not necessarily clear, but it is presumed as follows.

本発明に使用される液晶組成物は、正の誘電異方性を有する液晶、重合性化合物及び前記式[1]で表される化合物(特定化合物ともいう。)を含有する。特定化合物は、ベンゼン環やシクロヘキサン環といった剛直構造の部位と、式[1]中のXで示される紫外線により重合反応する部位とを有する。そのため、かかる特定化合物を液晶組成物中に含めると、特定化合物の剛直構造の部位が、液晶の垂直配向性を高め、電圧印加に伴う液晶の駆動を促進させ、液晶表示素子の駆動電圧を低くできる。また、式[1]中のXの部位が重合性化合物と反応することで、ポリマーネットワークを密な状態に保つことができる。
以上の点から、本発明における液晶組成物を用いた液晶表示素子は、光学特性が良好で、液晶表示素子の駆動電圧が低くなるノーマル型素子となる。
The liquid crystal composition used in the present invention contains a liquid crystal having positive dielectric anisotropy, a polymerizable compound, and a compound represented by the above formula [1] (also referred to as a specific compound). Certain compounds have a site of rigid structure such as a benzene ring or a cyclohexane ring, and a portion of the polymerization reaction by ultraviolet rays represented by X 1 in the formula [1]. Therefore, when such a specific compound is included in the liquid crystal composition, the portion of the rigid structure of the specific compound enhances the vertical orientation of the liquid crystal, promotes the drive of the liquid crystal when a voltage is applied, and lowers the drive voltage of the liquid crystal display element. it can. Further, since the sites of X 1 in the formula [1] is reacted with a polymerizable compound, it is possible to maintain the polymer network dense state.
From the above points, the liquid crystal display element using the liquid crystal composition in the present invention is a normal type element having good optical characteristics and a low driving voltage of the liquid crystal display element.

<液晶組成物>
本発明における液晶組成物は、液晶、重合性化合物及び前記式[1]で表される特定化合物を含有する。
液晶には、ネマチック液晶、スメクチック液晶又はコレステリック液晶を用いることができる。なかでも、本発明においては、正の誘電異方性を有するのが好ましい。また、低電圧駆動及び散乱特性の点からは、誘電率の異方性が大きく、屈折率の異方性が大きいものが好ましい。また、液晶には、前記の相転移温度、誘電率異方性及び屈折率異方性の各物性値に応じて、2種類以上の液晶を混合して用いることができる。
<Liquid crystal composition>
The liquid crystal composition in the present invention contains a liquid crystal, a polymerizable compound, and a specific compound represented by the above formula [1].
As the liquid crystal, a nematic liquid crystal, a smectic liquid crystal or a cholesteric liquid crystal can be used. Above all, in the present invention, it is preferable to have positive dielectric anisotropy. Further, from the viewpoint of low voltage drive and scattering characteristics, it is preferable that the dielectric constant has a large anisotropy and the refractive index has a large anisotropy. Further, as the liquid crystal, two or more kinds of liquid crystals can be mixed and used according to the respective physical property values of the phase transition temperature, the dielectric anisotropy and the refractive index anisotropy.

液晶表示素子をTFT(Thin Film Transistor)などの能動素子として駆動させるためには、液晶の電気抵抗が高くて電圧保持率(VHRともいう。)が高いことが求められる。そのため、液晶には、電気抵抗が高くて紫外線などの活性エネルギー線によりVHRが低下しないフッ素系や塩素系の液晶を用いることが好ましい。 In order to drive a liquid crystal display element as an active element such as a TFT (Thin Film Transistor), it is required that the electric resistance of the liquid crystal is high and the voltage retention rate (also referred to as VHR) is high. Therefore, it is preferable to use a fluorine-based or chlorine-based liquid crystal having high electrical resistance and whose VHR is not lowered by active energy rays such as ultraviolet rays.

更に、液晶表示素子は、液晶組成物中に二色性染料を溶解させてゲストホスト型の素子とすることもできる。この場合には、電圧無印加時は吸収(散乱)で、電圧印加時に透明となる素子が得られる。また、この液晶表示素子では、液晶のダイレクターの方向(配向の方向)は、電圧印加の有無により90度変化する。そのため、この液晶表示素子は、二色性染料の吸光特性の違いを利用することで、ランダム配向と垂直配向でスイッチングを行う従来のゲストホスト型の素子に比べて、高いコントラストが得られる。また、二色性染料を溶解させたゲストホスト型の素子では、液晶が水平方向に配向した場合に有色になり、散乱状態においてのみ不透明となる。そのため、電圧を印加するにつれ、電圧無印加時の有色不透明から有色透明、無色透明の状態に切り替わる素子を得ることもできる。 Further, the liquid crystal display element can be made into a guest host type element by dissolving a dichroic dye in the liquid crystal composition. In this case, an element that absorbs (scatters) when no voltage is applied and becomes transparent when a voltage is applied can be obtained. Further, in this liquid crystal display element, the direction (direction of orientation) of the director of the liquid crystal changes by 90 degrees depending on the presence or absence of voltage application. Therefore, this liquid crystal display element can obtain higher contrast than the conventional guest-host type element that switches between random orientation and vertical orientation by utilizing the difference in absorption characteristics of the dichroic dye. Further, in the guest host type device in which the dichroic dye is dissolved, the liquid crystal becomes colored when it is oriented in the horizontal direction and becomes opaque only in the scattered state. Therefore, as the voltage is applied, it is possible to obtain an element that switches from the colored opacity when no voltage is applied to the colored transparent and colorless transparent states.

液晶組成物中の重合性化合物は、液晶表示素子作製時の紫外線の照射により、重合反応して硬化性樹脂を形成するためのものである。そのため、予め、重合性化合物を重合反応させたポリマーを液晶組成物に導入しても良い。ただし、ポリマーとした場合でも、紫外線の照射により重合反応する部位を有する必要がある。重合性化合物は、液晶組成物の取り扱い、即ち、液晶組成物の高粘度化の抑制や液晶への溶解性の点から、重合性化合物を含む液晶組成物を用いることが好ましい。
重合性化合物は、液晶に溶解すれば、特に限定されないが、重合性化合物を液晶に溶解した際に、液晶組成物の一部又は全体が液晶相を示す温度が存在することが必要となる。液晶組成物の一部が液晶相を示す場合であっても、液晶表示素子を肉眼で確認して、素子内全体が、ほぼ一様な散乱特性と透明性が得られていれば良い。
The polymerizable compound in the liquid crystal composition is for forming a curable resin by a polymerization reaction by irradiation with ultraviolet rays at the time of producing a liquid crystal display element. Therefore, a polymer obtained by polymerizing a polymerizable compound in advance may be introduced into the liquid crystal composition. However, even if it is a polymer, it is necessary to have a site that undergoes a polymerization reaction by irradiation with ultraviolet rays. As the polymerizable compound, it is preferable to use a liquid crystal composition containing the polymerizable compound from the viewpoint of handling the liquid crystal composition, that is, suppressing the increase in viscosity of the liquid crystal composition and the solubility in the liquid crystal.
The polymerizable compound is not particularly limited as long as it is dissolved in the liquid crystal, but it is necessary that a part or the whole of the liquid crystal composition has a temperature at which the liquid crystal phase is exhibited when the polymerizable compound is dissolved in the liquid crystal. Even when a part of the liquid crystal composition exhibits a liquid crystal phase, it is sufficient that the liquid crystal display element is visually confirmed and the entire inside of the element is obtained with substantially uniform scattering characteristics and transparency.

重合性化合物は、紫外線により重合する化合物であれば良く、その際、どのような反応形式で重合が進み、硬化性樹脂を形成させても良い。具体的な反応形式としては、ラジカル重合、カチオン重合、アニオン重合又は重付加反応が挙げられる。
なかでも、重合性化合物の反応形式は、液晶表示素子の光学特性の点から、ラジカル重合が好ましい。その際、重合性化合物としては、下記のラジカル型の重合性化合物、又はそのオリゴマーを用いることができる。また、前記の通り、これらの重合性化合物を重合反応させたポリマーを用いることもできる。
ラジカル型の重合性化合物又はそのオリゴマーの具体例は、国際公開第2015/146987(2015.10.1公開)の69頁〜71頁に記載されるラジカル型の重合性化合物が挙げられる。
The polymerizable compound may be any compound that is polymerized by ultraviolet rays, and at that time, the polymerization may proceed in any reaction form to form a curable resin. Specific reaction types include radical polymerization, cationic polymerization, anionic polymerization and polyaddition reaction.
Among them, the reaction type of the polymerizable compound is preferably radical polymerization from the viewpoint of the optical characteristics of the liquid crystal display element. At that time, as the polymerizable compound, the following radical-type polymerizable compound or an oligomer thereof can be used. Further, as described above, a polymer obtained by polymerizing these polymerizable compounds can also be used.
Specific examples of the radical-type polymerizable compound or its oligomer include the radical-type polymerizable compound described on pages 69 to 71 of International Publication No. 2015/146987 (Published on 2015.10.1).

ラジカル型の重合性化合物又はそのオリゴマーの使用割合は、液晶表示素子の液晶層と電極との密着性の点から、液晶組成物中の液晶100質量部に対して、70〜150質量部が好ましく、80〜110質量部がより好ましい。また、ラジカル型の重合性化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
前記硬化性樹脂の形成を促進させるため、液晶組成物中には、重合性化合物のラジカル重合を促進させる目的で、紫外線により、ラジカルを発生するラジカル開始剤(重合開始剤ともいう)を導入することが好ましい。
具体的には、国際公開第2015/146987の71頁〜72頁に記載されるラジカル開始剤が挙げられる。
The ratio of the radical type polymerizable compound or its oligomer used is preferably 70 to 150 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the electrode. , 80 to 110 parts by mass is more preferable. Further, the radical type polymerizable compound may be used alone or in combination of two or more depending on each property.
In order to promote the formation of the curable resin, a radical initiator (also referred to as a polymerization initiator) that generates radicals by ultraviolet rays is introduced into the liquid crystal composition for the purpose of promoting radical polymerization of the polymerizable compound. Is preferable.
Specific examples thereof include radical initiators described on pages 71 to 72 of International Publication No. 2015/146987.

ラジカル開始剤の使用割合は、液晶表示素子の液晶層と電極との密着性の点から、液晶組成物中の液晶100質量部に対して、0.01〜20質量部が好ましく、0.05〜10質量部がより好ましい。また、ラジカル開始剤は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
特定化合物は、前記式[1]で表される化合物である。
The ratio of the radical initiator used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition, preferably 0.05, from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the electrode. 10 parts by mass is more preferable. Further, the radical initiator may be used alone or in combination of two or more, depending on each property.
The specific compound is a compound represented by the above formula [1].

式[1]中、X〜X及びXmは、上記に定義した通りであるが、なかでもそれぞれ、下記のものが好ましい。
は前記式[1−a]、式[1−b]、式[1−c]、式[1−d]、式[1−e]又は式[1−f]が好ましく、式[1−a]、式[1−b]、式[1−c]又は式[1−e]がより好ましく、式[1−a]又は式[1−b]が最も好ましい。
は単結合、−O−、−CHO−、−CONH−、−COO−又は−OCO−が好ましく、単結合、−O−、−COO−又は−OCO−がより好ましい。
Wherein [1], X 1 ~X 8 and Xm is as defined above, among others respectively, preferably from below.
X 1 is the formula [1-a], Formula [1-b] of the formula [1-c] of the formula [1-d], formula [1-e] or formula [1-f] are preferred, wherein [ 1-a], formula [1-b], formula [1-c] or formula [1-e] are more preferable, and formula [1-a] or formula [1-b] is most preferable.
X 2 is preferably single-bonded, -O-, -CH 2 O-, -CONH-, -COO- or -OCO-, and more preferably single-bonded, -O-, -COO- or -OCO-.

は単結合又は−(CH−(aは1〜10の整数である)が好ましく、−(CH−(aは1〜10の整数である)がより好ましい。
は単結合、−O−又は−COO−が好ましく、−O−がより好ましい。
はベンゼン環又はシクロヘキサン環、又はステロイド骨格を有する炭素数17〜51の2価の有機基が好ましく、ベンゼン環又はステロイド骨格を有する炭素数17〜51の2価の有機基がより好ましい。
は単結合、−O−、−COO−又は−OCO−が好ましく、単結合、−COO−又は−OCO−がより好ましい。
X 3 is preferably a single bond or − (CH 2 ) a − (a is an integer of 1 to 10), and more preferably − (CH 2 ) a − (a is an integer of 1 to 10).
X 4 is preferably single-bonded, -O- or -COO-, more preferably -O-.
X 5 is preferably a divalent organic group having 17 to 51 carbon atoms having a benzene ring or a cyclohexane ring, or steroid skeleton, a divalent organic group having 17 to 51 carbon atoms having a benzene ring or a steroid skeleton is more preferable.
X 6 is preferably single-bonded, -O-, -COO- or -OCO-, more preferably single-bonded, -COO- or -OCO-.

はベンゼン環又はシクロヘキサン環が好ましい。
は炭素数1〜18のアルキル基若しくはアルコキシ基、又は炭素数2〜18のアルケニル基が好ましく、炭素数1〜12のアルキル基又はアルコキシ基がより好ましい。Xmは0〜2の整数が好ましい。
X 7 is preferably a benzene ring or a cyclohexane ring.
X 8 is preferably an alkyl group or an alkoxy group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, and more preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms. Xm is preferably an integer of 0 to 2.

式[1]における好ましいX〜X及びXmの組み合わせは、下記の表1〜9に示される。

Figure 2019181883
A preferred combination of X 1 to X 8 and Xm in formula [1] are shown in Table 1-9 below.
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

Figure 2019181883
Figure 2019181883

なかでも、(1−3a)〜(1−8a)、(1−11a)〜(1−24a)、(1−27a)〜(1−36a)、(1−39a)、(1−40a)、(1−43a)〜(1−48a)、(1−51a)〜(1−64a)、(1−67a)〜(1−76a)、(1−79a)、(1−80a)、(1−83a)〜(1−88a)、(1−91a)〜(1−104a)、(1−107a)〜(1−116a)、(1−119a)、(1−120a)、(1−123a)、(1−124a)、(1−129a)、(1−130a)、(1−133a)、(1−134a)、(1−137a)、(1−138a)、(1−141a)、(1−142a)、(1−145a)、(1−146a)又は(1−149a)〜(1−172a)の組み合わせが好ましい。 Among them, (1-3a) to (1-8a), (1-11a) to (1-24a), (1-27a) to (1-36a), (1-39a), (1-40a). , (1-43a) to (1-48a), (1-51a) to (1-64a), (1-67a) to (1-76a), (1-79a), (1-80a), ( 1-83a) to (1-88a), (1-91a) to (1-104a), (1-107a) to (1-116a), (1-119a), (1-120a), (1- 123a), (1-124a), (1-129a), (1-130a), (1-133a), (1-134a), (1-137a), (1-138a), (1-141a). , (1-142a), (1-145a), (1-146a) or combinations of (1-149a) to (1-172a) are preferred.

より好ましいのは、(1−3a)〜(1−8a)、(1−11a)、(1−12a)、(1−15a)〜(1−18a)、(1−21a)、(1−22a)、(1−27a)〜(1−30a)、(1−33a)、(1−34a)、(1−39a)、(1−40a)、(1−43a)〜(1−48a)、(1−51a)、(1−52a)、(1−55a)〜(1−58a)、(1−61a)、(1−62a)、(1−67a)〜(1−70a)、(1−73a)、(1−74a)、(1−79a)、(1−80a)、(1−83a)〜(1−88a)、(1−91a)、(1−92a)、(1−95a)〜(1−98a)、(1−101a)、(1−102a)、(1−107a)〜(1−110a)、(1−113a)、(1−114a)、(1−119a)、(1−120a)、(1−123a)、(1−124a)、(1−129a)、(1−130a)、(1−133a)、(1−134a)、(1−137a)、(1−138a)、(1−141a)、(1−142a)、(1−145a)、(1−146a)又は(1−149a)〜(1−172a)の組み合わせである。 More preferred are (1-3a) to (1-8a), (1-11a), (1-12a), (1-15a) to (1-18a), (1-21a), (1- 22a), (1-27a) to (1-30a), (1-33a), (1-34a), (1-39a), (1-40a), (1-43a) to (1-48a). , (1-51a), (1-52a), (1-55a) to (1-58a), (1-61a), (1-62a), (1-67a) to (1-70a), ( 1-73a), (1-74a), (1-79a), (1-80a), (1-83a) to (1-88a), (1-91a), (1-92a), (1- 95a) to (1-98a), (1-101a), (1-102a), (1-107a) to (1-110a), (1-113a), (1-114a), (1-119a). , (1-120a), (1-123a), (1-124a), (1-129a), (1-130a), (1-133a), (1-134a), (1-137a), ( 1-138a), (1-141a), (1-142a), (1-145a), (1-146a) or a combination of (1-149a) to (1-172a).

最も好ましいのは、(1−3a)〜(1−8a)、(1−15a)〜(1−18a)、(1−29a)、(1−30a)、(1−43a)〜(1−48a)、(1−55a)〜(1−58a)、(1−69a)、(1−70a)、(1−83a)〜(1−88a)、(1−95a)〜(1−98a)、(1−109a)、(1−110a)、(1−123a)、(1−124a)、(1−133a)、(1−134a)、(1−141a)、(1−142a)、(1−149a)〜(1−152a)又は(1−161a)〜(1−172a)の組み合わせである。 Most preferred are (1-3a) to (1-8a), (1-15a) to (1-18a), (1-29a), (1-30a), (1-43a) to (1-). 48a), (1-55a) to (1-58a), (1-69a), (1-70a), (1-83a) to (1-88a), (1-95a) to (1-98a). , (1-109a), (1-110a), (1-123a), (1-124a), (1-133a), (1-134a), (1-141a), (1-142a), ( It is a combination of 1-149a) to (1-152a) or (1-161a) to (1-172a).

より具体的な特定化合物としては、下記式[1a−1]〜式[1a−11]からなる群から選ばれる化合物が挙げられ、これらを用いることが好ましい。

Figure 2019181883
(Xは、−O−又は−COO−を示す。Xは、炭素数1〜12のアルキル基を示す。p1は、1〜10の整数を示す。p2は、1又は2の整数を示す。)More specific specific compounds include compounds selected from the group consisting of the following formulas [1a-1] to [1a-11], and it is preferable to use these.
Figure 2019181883
(X a represents -O- or -COO-. X b represents an alkyl group having 1 to 12 carbon atoms. P1 represents an integer of 1 to 10. P2 represents an integer of 1 or 2. Show.)

Figure 2019181883
(Xは、単結合、−COO−又は−OCO−を示す。Xは、炭素数1〜12のアルキル基又はアルコキシ基を示す。p3は、1〜10の整数を示す。p4は、1又は2の整数を示す。)
Figure 2019181883
(X c represents a single bond, -COO- or -OCO-. X d represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms. P3 represents an integer of 1 to 10. P4 represents an integer of 1 to 10. Indicates an integer of 1 or 2.)

Figure 2019181883
(Xは、−O−又は−COO−を示す。Xは、ステロイド骨格を有する炭素数17〜51の2価の有機基を示す。Xは、炭素数1〜12のアルキル基又は炭素数2〜18のアルケニル基を示す。p5は、1〜10の整数を示す。)
Figure 2019181883
(X e represents -O- or -COO-. X f represents a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms. X g represents an alkyl group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms. Indicates an alkenyl group having 2 to 18 carbon atoms. P5 represents an integer of 1 to 10).

特定化合物の含有割合は、液晶表示素子の液晶層と電極との密着性の点から、液晶組成物中の液晶100質量部に対して、0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜10質量部が最も好ましい。また、特定化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The content ratio of the specific compound is preferably 0.1 to 30 parts by mass, preferably 0.5 to 30 parts by mass, based on 100 parts by mass of the liquid crystal in the liquid crystal composition, from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the electrode. 20 parts by mass is more preferable, and 1 to 10 parts by mass is most preferable. Further, the specific compound may be used alone or in combination of two or more depending on each property.

液晶組成物の調製方法としては、単独又は複数種の重合性化合物と特定化合物を混合したものを液晶に加える方法や、予め、液晶に特定化合物を加えたものを調製し、それに単独又は複数種の重合性化合物を加える方法が挙げられる。
複数種の重合性化合物を用いる場合、それらを混合する際に重合性化合物の溶解性に応じて、加熱することもできる。その際の温度は100℃未満が好ましい。また、重合性化合物と特定化合物とを混合する場合、及び液晶と特定化合物とを混合する場合も同様である。
As a method for preparing the liquid crystal composition, a method of adding a single or a mixture of a plurality of kinds of polymerizable compounds and a specific compound to the liquid crystal, or a method of preparing a liquid crystal to which a specific compound is added in advance and then singly or a plurality of kinds thereof. A method of adding the polymerizable compound of the above can be mentioned.
When a plurality of types of polymerizable compounds are used, they can be heated depending on the solubility of the polymerizable compounds when they are mixed. The temperature at that time is preferably less than 100 ° C. The same applies to the case where the polymerizable compound and the specific compound are mixed, and the case where the liquid crystal and the specific compound are mixed.

<液晶表示素子の作製方法>
液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板などのプラスチック基板、更には、それらのフィルムを用いることができる。特に、調光窓などに用いる場合には、プラスチック基板やフィルムが好ましい。また、プロセスの簡素化の観点からは、液晶駆動のためのITO電極、IZO(Indium Zinc Oxide)電極、IGZO(Indium Gallium Zinc Oxide)電極、有機導電膜などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用できる。
<Method of manufacturing liquid crystal display element>
The substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, and in addition to a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, a PET (polyethylene terephthalate) substrate, and a film thereof. Can be used. In particular, when used for a dimming window or the like, a plastic substrate or film is preferable. From the viewpoint of process simplification, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal, an IZO (Indium Zinc Oxide) electrode, an IGZO (Indium Gallium Zinc Oxide) electrode, an organic conductive film, or the like is formed. .. Further, in the case of a reflective liquid crystal display element, if only one substrate is used, a substrate on which a metal such as a silicon wafer or aluminum or a dielectric multilayer film is formed can be used.

液晶表示素子に用いる液晶組成物は、前記の通りの液晶組成物であるが、そのなかに、液晶表示素子の電極間隙(ギャップともいう。)を制御するためのスペーサーを導入することもできる。
液晶組成物の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。即ち、基板にガラス基板を用いる場合、一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、電極面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から液晶組成物を減圧注入して、液晶組成物注入セルを得る方法が挙げられる。更に、基板にプラスチック基板やフィルムを用いる場合には、一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶組成物を滴下し、その後、もう片側の基板を貼り合わせて、液晶組成物注入セルを得る方法が挙げられる。本発明の液晶表示素子では、液晶層と電極との密着性が高いため、基板の4片にシール剤を塗布しなくても良い。
The liquid crystal composition used for the liquid crystal display element is the liquid crystal composition as described above, but a spacer for controlling the electrode gap (also referred to as a gap) of the liquid crystal display element can be introduced therein.
The method for injecting the liquid crystal composition is not particularly limited, and examples thereof include the following methods. That is, when a glass substrate is used as the substrate, a pair of substrates is prepared, and four pieces of the substrate on one side are coated with a sealant except for a part, and then the electrode surface is on the inside so that the other side is on the other side. An empty cell is prepared by laminating the substrates. Then, a method of injecting the liquid crystal composition under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal composition injection cell can be mentioned. Furthermore, when using a plastic substrate or film as the substrate, prepare a pair of substrates, drop the liquid crystal composition onto one of the substrates by the ODF (One Drop Filling) method, the inkjet method, or the like, and then drop the liquid crystal composition onto the substrate. A method of sticking the substrates on one side to obtain a liquid crystal composition injection cell can be mentioned. In the liquid crystal display element of the present invention, since the adhesion between the liquid crystal layer and the electrodes is high, it is not necessary to apply a sealant to the four pieces of the substrate.

液晶表示素子のギャップは、前記のスペーサーなどで制御できる。その方法は、前記の通りに、液晶組成物中に目的とする大きさのスペーサーを導入する方法や、目的とする大きさのカラムスペーサーを有する基板を用いる方法などが挙げられる。また、基板にプラスチックやフィルム基板を用いて、基板の貼り合わせをラミネートで行う場合は、スペーサーを導入せずに、ギャップを制御することもできる。
液晶表示素子のギャップの大きさは、1〜100μmが好ましく、1〜50μmがより好ましく、2〜30μmが特に好ましい。ギャップが小さすぎると、液晶表示素子のコントラストが低下し、大きすぎると、素子の駆動電圧が高くなる。
The gap of the liquid crystal display element can be controlled by the spacer or the like. Examples of the method include a method of introducing a spacer of a desired size into the liquid crystal composition, a method of using a substrate having a column spacer of the desired size, and the like. Further, when a plastic or film substrate is used as the substrate and the substrates are laminated by lamination, the gap can be controlled without introducing a spacer.
The size of the gap of the liquid crystal display element is preferably 1 to 100 μm, more preferably 1 to 50 μm, and particularly preferably 2 to 30 μm. If the gap is too small, the contrast of the liquid crystal display element decreases, and if it is too large, the drive voltage of the element increases.

液晶表示素子は、液晶組成物の硬化を行い、液晶層を形成させて得られる。この液晶組成物の硬化は、前記の液晶組成物注入セルに、紫外線を照射して行う。その際に用いる紫外線照射装置の光源としては、例えば、メタルハライドランプ又は高圧水銀ランプが挙げられる。その際、紫外線の波長は、250〜400nmが好ましく、310〜370nmがより好ましい。また、紫外線を照射した後に、加熱処理を行っても良い。その際の温度としては、20〜120℃が好ましく、30〜100℃がより好ましい。 The liquid crystal display element is obtained by curing the liquid crystal composition to form a liquid crystal layer. The liquid crystal composition is cured by irradiating the liquid crystal composition injection cell with ultraviolet rays. Examples of the light source of the ultraviolet irradiation device used at that time include a metal halide lamp and a high-pressure mercury lamp. At that time, the wavelength of ultraviolet rays is preferably 250 to 400 nm, more preferably 310 to 370 nm. Moreover, you may perform heat treatment after irradiating with ultraviolet rays. The temperature at that time is preferably 20 to 120 ° C, more preferably 30 to 100 ° C.

以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。以下で用いる略語は下記の通りである。
<特定化合物>

Figure 2019181883
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The abbreviations used below are as follows.
<Specific compound>
Figure 2019181883

<重合性化合物>
R1:IBXA(大阪有機化学工業社製)
R2:2−ヒドロキシエチルメタクリレート
R3:KAYARAD FM−400(日本化薬社製)
R4:EBECRYL 230(ダイセル・オルネクス社製)
R5:カレンズMT PE1(昭和電工社製)
<光ラジカル開始剤>
P1:IRGACURE 184(BASF社製)
<液晶>
L1:MLC−3018(メルク社製)
<Polymerizable compound>
R1: IBXA (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
R2: 2-Hydroxyethyl methacrylate R3: KAYARAD FM-400 (manufactured by Nippon Kayaku Co., Ltd.)
R4: EBECRYL 230 (manufactured by Daicel Ornex)
R5: Calends MT PE1 (manufactured by Showa Denko)
<Photoradical initiator>
P1: IRGACURE 184 (manufactured by BASF)
<LCD>
L1: MLC-3018 (manufactured by Merck & Co., Ltd.)

<液晶組成物(1)の作製>
R1(1.20g)、R2(0.30g)、R3(1.20g)、R4(0.90g)及びR5(0.30g)を混合し、60℃で2時間撹拌して、重合性化合物の溶液を作製した。その一方で、S1(0.20g)及びL1(5.80g)を混合し、25℃で2時間撹拌して特定化合物を含む液晶を作製した。その後、作製した重合性化合物の溶液、特定化合物を含む液晶、及びP1(0.10g)を混合し、25℃で6時間撹拌して、液晶組成物(1)を得た。
<Preparation of liquid crystal composition (1)>
R1 (1.20 g), R2 (0.30 g), R3 (1.20 g), R4 (0.90 g) and R5 (0.30 g) are mixed and stirred at 60 ° C. for 2 hours to obtain a polymerizable compound. The solution of was prepared. On the other hand, S1 (0.20 g) and L1 (5.80 g) were mixed and stirred at 25 ° C. for 2 hours to prepare a liquid crystal containing a specific compound. Then, the prepared solution of the polymerizable compound, the liquid crystal containing the specific compound, and P1 (0.10 g) were mixed and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (1).

<液晶組成物(2)の作製>
R1(1.20g)、R2(0.30g)、R3(1.20g)、R4(0.90g)及びR5(0.30g)を混合し、60℃で2時間撹拌して、重合性化合物の溶液を作製した。その一方で、S1(0.80g)及びL1(5.20g)を混合し、25℃で2時間撹拌して特定化合物を含む液晶を作製した。その後、作製した重合性化合物の溶液、特定化合物を含む液晶、及びP1(0.10g)を混合し、25℃で6時間撹拌して、液晶組成物(2)を得た。
<Preparation of liquid crystal composition (2)>
R1 (1.20 g), R2 (0.30 g), R3 (1.20 g), R4 (0.90 g) and R5 (0.30 g) are mixed and stirred at 60 ° C. for 2 hours to obtain a polymerizable compound. The solution of was prepared. On the other hand, S1 (0.80 g) and L1 (5.20 g) were mixed and stirred at 25 ° C. for 2 hours to prepare a liquid crystal containing a specific compound. Then, the prepared solution of the polymerizable compound, the liquid crystal containing the specific compound, and P1 (0.10 g) were mixed and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (2).

<液晶組成物(3)の作製>
R1(1.20g)、R2(0.30g)、R3(1.20g)、R4(0.90g)及びR5(0.30g)を混合し、60℃で2時間撹拌して、重合性化合物の溶液を作製した。その一方で、S2(0.40g)及びL1(5.60g)を混合し、25℃で2時間撹拌して特定化合物を含む液晶を作製した。その後、作製した重合性化合物の溶液、特定化合物を含む液晶、及びP1(0.10g)を混合し、25℃で6時間撹拌して、液晶組成物(3)を得た。
<Preparation of liquid crystal composition (3)>
R1 (1.20 g), R2 (0.30 g), R3 (1.20 g), R4 (0.90 g) and R5 (0.30 g) are mixed and stirred at 60 ° C. for 2 hours to obtain a polymerizable compound. The solution of was prepared. On the other hand, S2 (0.40 g) and L1 (5.60 g) were mixed and stirred at 25 ° C. for 2 hours to prepare a liquid crystal containing a specific compound. Then, the prepared solution of the polymerizable compound, the liquid crystal containing the specific compound, and P1 (0.10 g) were mixed and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (3).

<液晶組成物(4)の作製>
R1(1.20g)、R2(0.30g)、R3(1.20g)、R4(0.90g)及びR5(0.30g)を混合し、60℃で2時間撹拌して、重合性化合物の溶液を作製した。その一方で、S1(0.20g)、S2(0.10g)及びL1(5.70g)を混合し、25℃で2時間撹拌して特定化合物を含む液晶を作製した。その後、作製した重合性化合物の溶液、特定化合物を含む液晶、及びP1(0.10g)を混合し、25℃で6時間撹拌して、液晶組成物(4)を得た。
<Preparation of liquid crystal composition (4)>
R1 (1.20 g), R2 (0.30 g), R3 (1.20 g), R4 (0.90 g) and R5 (0.30 g) are mixed and stirred at 60 ° C. for 2 hours to obtain a polymerizable compound. The solution of was prepared. On the other hand, S1 (0.20 g), S2 (0.10 g) and L1 (5.70 g) were mixed and stirred at 25 ° C. for 2 hours to prepare a liquid crystal containing a specific compound. Then, the prepared solution of the polymerizable compound, the liquid crystal containing the specific compound, and P1 (0.10 g) were mixed and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (4).

<液晶組成物(5)の作製>
R1(1.20g)、R2(0.30g)、R3(1.20g)、R4(0.90g)及びR5(0.30g)を混合し、60℃で2時間撹拌して、重合性化合物の溶液を作製した。その後、作製した重合性化合物の溶液、L1(6.00g)及びP1(0.10g)を混合し、25℃で6時間撹拌して、液晶組成物(5)を得た。
<Preparation of liquid crystal composition (5)>
R1 (1.20 g), R2 (0.30 g), R3 (1.20 g), R4 (0.90 g) and R5 (0.30 g) are mixed and stirred at 60 ° C. for 2 hours to obtain a polymerizable compound. The solution of was prepared. Then, the prepared solution of the polymerizable compound, L1 (6.00 g) and P1 (0.10 g) were mixed and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (5).

「液晶表示素子の作製(ガラス基板)」
純水及びIPA(イソプロピルアルコール)で洗浄したITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)を2枚用意し、その一方の基板のITO面に、粒子径が15μmのスペーサー(商品名:ミクロパール、積水化学社製)を塗布した。その後、その基盤のスペーサーを塗布した面に、ODF(One Drop Filling)法にて前記の液晶組成物(1)〜(5)を滴下し、次いで、他方の基板のITO面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
この処理前の液晶表示素子に、照度20mW/cmのメタルハライドランプを用いて、350nm以下の波長をカットし、照射時間60秒で紫外線照射を行った。これにより、液晶表示素子(ガラス基板)を得た。
"Manufacturing of liquid crystal display element (glass substrate)"
Two glass substrates with ITO electrodes (length: 100 mm, width: 100 mm, thickness: 0.7 mm) washed with pure water and IPA (isopropyl alcohol) were prepared, and the particle size was measured on the ITO surface of one of the substrates. A 15 μm spacer (trade name: Micropearl, manufactured by Sekisui Chemical Co., Ltd.) was applied. Then, the liquid crystal compositions (1) to (5) are dropped onto the surface of the substrate coated with the spacer by the ODF (One Drop Filling) method, and then the liquid crystal compositions (1) to (5) are attached so that the ITO surfaces of the other substrate face each other. The alignment was performed to obtain a liquid crystal display element before processing.
A metal halide lamp having an illuminance of 20 mW / cm 2 was used for the liquid crystal display element before this treatment to cut wavelengths of 350 nm or less, and ultraviolet irradiation was performed with an irradiation time of 60 seconds. As a result, a liquid crystal display element (glass substrate) was obtained.

「液晶表示素子の作製(プラスチック基板)」
純水で洗浄したITO電極付きPET基板(縦:150mm、横:150mm、厚さ:0.1mm)を2枚用意し、その一方の基板のITO面に、前記20μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布したITO面に、ODF法にて前記の液晶組成物(1)〜(5)を滴下し、次いで、他方の基板のITO面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。なお、ODF法にて、液晶組成物の滴下及び貼り合わせを行う際には、ITO電極付きPET基板の支持基板としてガラス基板を用いた。その後、紫外線を照射する前に、その支持基板を外した。
この処理前の液晶表示素子に、前記の「液晶表示素子の作製(ガラス基板)」と同様の手法で紫外線を照射し、液晶表示素子(プラスチック基板)を得た。
"Manufacturing of liquid crystal display element (plastic substrate)"
Two PET substrates with ITO electrodes (length: 150 mm, width: 150 mm, thickness: 0.1 mm) washed with pure water were prepared, and the 20 μm spacer was applied to the ITO surface of one of the substrates. Then, the liquid crystal compositions (1) to (5) are dropped onto the ITO surface coated with the spacer of the substrate by the ODF method, and then bonded so that the ITO surfaces of the other substrate face each other. A liquid crystal display element before processing was obtained. When the liquid crystal composition was dropped and bonded by the ODF method, a glass substrate was used as a support substrate for the PET substrate with an ITO electrode. Then, the support substrate was removed before irradiating with ultraviolet rays.
The liquid crystal display element before this treatment was irradiated with ultraviolet rays by the same method as in the above-mentioned "Production of liquid crystal display element (glass substrate)" to obtain a liquid crystal display element (plastic substrate).

「光学特性(散乱特性と透明性)の評価」
本評価は、液晶表示素子(ガラス基板及びプラスチック基板)の電圧無印加状態(0V)及び電圧印加状態(交流駆動:10V〜50V)のHaze(曇り度)を測定することで行った。その際、Hazeは、JIS K 7136に準拠し、ヘーズメータ(HZ−V3,スガ試験機社製)で測定した。なお、本評価では、電圧無印加状態のHazeが高いほど散乱特性に優れ、電圧印加状態でのHazeが低いほど透明性に優れるとした。 Hazeの結果を、表10にまとめて示す。
"Evaluation of optical characteristics (scattering characteristics and transparency)"
This evaluation was performed by measuring the haze (cloudiness) of the liquid crystal display element (glass substrate and plastic substrate) in the voltage-free state (0V) and the voltage-applied state (AC drive: 10V to 50V). At that time, Haze was measured with a haze meter (HZ-V3, manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7136. In this evaluation, it was determined that the higher the haze in the no-voltage state, the better the scattering characteristics, and the lower the haze in the voltage-applied state, the better the transparency. The results of Haze are summarized in Table 10.

<実施例1〜8及び比較例1、2>
下記の表10に示されるように、前記の液晶組成物(1)〜(5)を用いて、前記の手法で液晶表示素子の作製及び光学特性(散乱特性と透明性)の評価を行った。
その際、実施例1、実施例3、実施例5、実施例7及び比較例1は、ガラス基板を用いて液晶表示素子の作製と各評価を行い、実施例2、実施例4、実施例6、実施例8及び比較例2では、プラスチック基板を用いた。
<Examples 1 to 8 and Comparative Examples 1 and 2>
As shown in Table 10 below, using the liquid crystal compositions (1) to (5), the liquid crystal display element was manufactured and the optical characteristics (scattering characteristics and transparency) were evaluated by the above method. ..
At that time, in Example 1, Example 3, Example 5, Example 7, and Comparative Example 1, a liquid crystal display element was manufactured using a glass substrate and each evaluation was performed, and Examples 2, Example 4, and Example 1 were carried out. 6. In Example 8 and Comparative Example 2, a plastic substrate was used.

Figure 2019181883
Figure 2019181883

上記表10からわかるように、実施例の液晶表示素子は、比較例に比べて、電圧印加状態でのHazeが低く、且つ、より低い電圧でHazeが低い。即ち、実施例では、良好な光学特性(透明性)を発現し、且つ、液晶表示素子の駆動電圧が低くなる。
具体的には、同一の条件での比較である、実施例1と比較例1との比較、及び実施例2と比較例2との比較から明らかである。これらの結果は、液晶表示素子の基板にプラスチック基板を用いても同様であった。
As can be seen from Table 10 above, the liquid crystal display element of the example has a lower Haze in the voltage-applied state and a lower Haze at a lower voltage than the comparative example. That is, in the embodiment, good optical characteristics (transparency) are exhibited, and the driving voltage of the liquid crystal display element is low.
Specifically, it is clear from the comparison between Example 1 and Comparative Example 1, and the comparison between Example 2 and Comparative Example 2, which are comparisons under the same conditions. These results were the same even when a plastic substrate was used as the substrate of the liquid crystal display element.

また、本発明の液晶表示素子は、電圧無印加時に散乱状態となり、電圧印加時には透明状態になるノーマル型素子に、好適に用いることができる。そして、本素子は、表示を目的とする液晶ディスプレイ、更には、光の遮断と透過とを制御する調光窓や光シャッター素子などに用いることができ、このノーマル型素子の基板には、プラスチック基板を用いることができる。
なお、2018年3月20日に出願された日本特許出願2018−052662号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Further, the liquid crystal display element of the present invention can be suitably used for a normal type element which is in a scattered state when no voltage is applied and is in a transparent state when a voltage is applied. This element can be used for a liquid crystal display for display purposes, a dimming window for controlling light blocking and transmission, an optical shutter element, and the like, and the substrate of this normal type element is made of plastic. A substrate can be used.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-052662 filed on March 20, 2018 are cited here as disclosure of the specification of the present invention. , Incorporate.

Claims (6)

電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有する、電圧無印加時に散乱状態となり、電圧印加時には透明状態となる液晶表示素子であって、
前記液晶が、正の誘電異方性を有し、かつ、
前記液晶組成物が、下記式[1]で表される化合物を含むことを特徴とする液晶表示素子。
Figure 2019181883
(Xは下記式[1−a]〜式[1−j]を示す。Xは単結合、−O−、−NH−、−N(CH)−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。Xは単結合又は−(CH−(aは1〜15の整数である)を示す。Xは単結合、−O−、−OCH−、−COO−又は−OCO−を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは単結合、−O−、−CH−、−OCH−、−CHO−、−COO−又は−OCO−を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。Xmは0〜4の整数を示す。)
Figure 2019181883
(Xは水素原子又はベンゼン環を示す。)
A liquid crystal composition containing a liquid crystal and a polymerizable compound arranged between a pair of substrates provided with electrodes has a liquid crystal layer cured by irradiating with ultraviolet rays, and is in a scattered state when no voltage is applied and transparent when a voltage is applied. A liquid crystal display element that is in a state
The liquid crystal has positive dielectric anisotropy and
A liquid crystal display device, wherein the liquid crystal composition contains a compound represented by the following formula [1].
Figure 2019181883
(X 1 represents the following formulas [1-a] to [1-j]. X 2 is a single bond, -O-, -NH-, -N (CH 3 )-, -CH 2 O-,-. It indicates CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -COO- or -OCO-. X 3 is a single bond or-(CH 2 ) a- (a is. X 4 represents a single bond, -O-, -OCH 2- , -COO- or -OCO-. X 5 is a group consisting of a benzene ring, a cyclohexane ring and a heterocycle. A divalent cyclic group selected from the above, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and any hydrogen atom on the cyclic group has an alkyl group having 1 to 3 carbon atoms and a carbon number of carbon atoms. It may be substituted with an alkoxy group of 1 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. X 6 is a single bond, −O−, −. CH 2- , -OCH 2- , -CH 2 O-, -COO- or -OCO-. X 7 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, and these cyclic groups. Any hydrogen atom on the group can be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or fluorine. It may be substituted with an atom. X 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. Indicates a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Xm indicates an integer of 0 to 4.)
Figure 2019181883
(X A indicates a hydrogen atom or a benzene ring.)
前記式[1]で表される化合物の導入量が、液晶100質量部に対して、0.5〜20質量部である請求項1に記載の液晶表示素子。 The liquid crystal display element according to claim 1, wherein the amount of the compound represented by the formula [1] introduced is 0.5 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal. 前記式[1]中のXが、前記式[1−a]、式[1−b]、式[1−c]、式[1−d]、式[1−e]又は式[1−f]である請求項1又は2に記載の液晶表示素子。 X 1 in the formula [1] is the formula [1-a], the formula [1-b], the formula [1-c], the formula [1-d], the formula [1-e] or the formula [1]. -F] The liquid crystal display element according to claim 1 or 2. 前記式[1]で表される化合物が、下記式[1a−1]〜式[1a−11]からなる群から選ばれる少なくとも1種である請求項1又は2の液晶表示素子。
Figure 2019181883
(Xは、−O−又は−COO−を示す。Xは、炭素数1〜12のアルキル基を示す。p1は、1〜10の整数を示す。p2は、1又は2の整数を示す。)
Figure 2019181883
(Xは、単結合、−COO−又は−OCO−を示す。Xは、炭素数1〜12のアルキル基又はアルコキシ基を示す。p3は、1〜10の整数を示す。p4は、1又は2の整数を示す。)
Figure 2019181883

(Xは、−O−又は−COO−を示す。Xは、ステロイド骨格を有する炭素数17〜51の2価の有機基を示す。Xは、炭素数1〜12のアルキル基又は炭素数2〜18のアルケニル基を示す。p5は、1〜10の整数を示す。)
The liquid crystal display device according to claim 1 or 2, wherein the compound represented by the formula [1] is at least one selected from the group consisting of the following formulas [1a-1] to [1a-11].
Figure 2019181883
(X a represents -O- or -COO-. X b represents an alkyl group having 1 to 12 carbon atoms. P1 represents an integer of 1 to 10. P2 represents an integer of 1 or 2. Show.)
Figure 2019181883
(X c represents a single bond, -COO- or -OCO-. X d represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms. P3 represents an integer of 1 to 10. P4 represents an integer of 1 to 10. Indicates an integer of 1 or 2.)
Figure 2019181883

(X e represents -O- or -COO-. X f represents a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms. X g represents an alkyl group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms. Indicates an alkenyl group having 2 to 18 carbon atoms. P5 represents an integer of 1 to 10).
前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である請求項1〜4のいずれか一項に記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 4, wherein the substrate of the liquid crystal display element is a glass substrate or a plastic substrate. 前記液晶表示素子が、調光窓又は光シャッター素子である請求項1〜5のいずれか一項に記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 5, wherein the liquid crystal display element is a dimming window or an optical shutter element.
JP2020507806A 2018-03-20 2019-03-18 liquid crystal display element Active JP7310796B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018052662 2018-03-20
JP2018052662 2018-03-20
PCT/JP2019/011260 WO2019181883A1 (en) 2018-03-20 2019-03-18 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2019181883A1 true JPWO2019181883A1 (en) 2021-03-18
JP7310796B2 JP7310796B2 (en) 2023-07-19

Family

ID=67987736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507806A Active JP7310796B2 (en) 2018-03-20 2019-03-18 liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7310796B2 (en)
KR (1) KR20200131887A (en)
CN (1) CN111868614A (en)
TW (1) TW202003810A (en)
WO (1) WO2019181883A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188355A (en) * 1991-07-09 1993-07-30 Dainippon Ink & Chem Inc Liquid crystal device and production thereof
JPH09316032A (en) * 1993-02-12 1997-12-09 Dainippon Ink & Chem Inc Acrylate compound and liquid crystal device produced by using the compound
JP2001004986A (en) * 1999-06-22 2001-01-12 Optrex Corp Liquid crystal optical device and its production
KR20130024870A (en) * 2011-08-31 2013-03-08 주식회사 엘지화학 Liquid crystal cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4630954Y1 (en) 1964-12-26 1971-10-26
JPS552328A (en) 1978-06-20 1980-01-09 Toshiba Corp Field system controller of synchronous motor
US9745513B2 (en) * 2013-03-06 2017-08-29 Dic Corporation Nematic liquid crystal composition and liquid crystal display device using same
ES2877070T3 (en) * 2014-06-17 2021-11-16 Nissan Chemical Corp Liquid crystal display element, liquid crystal alignment film and liquid crystal alignment treatment agent
JP6414226B2 (en) * 2014-09-25 2018-10-31 日産化学株式会社 Liquid crystal display element
CN107077024B (en) * 2014-11-07 2020-11-17 日产化学工业株式会社 Liquid crystal display element
JP6798097B2 (en) * 2015-04-23 2020-12-09 Dic株式会社 Liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188355A (en) * 1991-07-09 1993-07-30 Dainippon Ink & Chem Inc Liquid crystal device and production thereof
JPH09316032A (en) * 1993-02-12 1997-12-09 Dainippon Ink & Chem Inc Acrylate compound and liquid crystal device produced by using the compound
JP2001004986A (en) * 1999-06-22 2001-01-12 Optrex Corp Liquid crystal optical device and its production
KR20130024870A (en) * 2011-08-31 2013-03-08 주식회사 엘지화학 Liquid crystal cell

Also Published As

Publication number Publication date
KR20200131887A (en) 2020-11-24
JP7310796B2 (en) 2023-07-19
CN111868614A (en) 2020-10-30
TW202003810A (en) 2020-01-16
WO2019181883A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
US10048541B2 (en) Liquid crystal device
TWI412578B (en) Polymeric dispersed liquid crystal light shutter device
TWI523941B (en) Liquid crystal device and liquid crystal composition
JPH06194636A (en) Polymer-dispersed liquid crystal composite film, liquid crystal display element and its production
JP6724352B2 (en) Liquid crystal element, liquid crystal composition, screen and display using liquid crystal element
JP7120013B2 (en) Materials for liquid crystal devices and liquid crystal devices
JP6398163B2 (en) Liquid crystal element, screen and display using the liquid crystal element, and liquid crystal composition
KR20170072270A (en) Polymer containing scattering type vertically aligned liquid crystal device
JP2014080605A (en) Liquid crystal composition, liquid crystal element, and screen and display using said liquid crystal element
TWI763954B (en) Liquid crystal composition and liquid crystal display element
TW202233811A (en) Light control liquid crystal composition containing anthraquinone compound, its photo-cured product and light control element
CN109416484B (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JPH02116824A (en) Liquid crystal device
JP7226428B2 (en) liquid crystal display element
TWI786218B (en) Liquid crystal composition and liquid crystal display element
TWI697550B (en) Liquid crystal composition and liquid crystal optical device
WO2022118745A1 (en) Liquid crystal display element
JP7310796B2 (en) liquid crystal display element
JP2016136247A (en) Manufacturing method of liquid crystal display device
JP2022115558A (en) Polymer dispersion type liquid crystal display device and method of manufacturing the same
JP5136597B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2019219626A (en) Material for liquid crystal device and liquid crystal device
JPH06148605A (en) Liquid crystal electrooptical device
JP2550628C (en)
JPH052156A (en) Production of liquid crystal device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7310796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151