JPWO2019173495A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019173495A5
JPWO2019173495A5 JP2020546433A JP2020546433A JPWO2019173495A5 JP WO2019173495 A5 JPWO2019173495 A5 JP WO2019173495A5 JP 2020546433 A JP2020546433 A JP 2020546433A JP 2020546433 A JP2020546433 A JP 2020546433A JP WO2019173495 A5 JPWO2019173495 A5 JP WO2019173495A5
Authority
JP
Japan
Prior art keywords
item
blood
flow path
internal flow
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020546433A
Other languages
Japanese (ja)
Other versions
JP2021515632A (en
JP7393339B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/020985 external-priority patent/WO2019173495A1/en
Publication of JP2021515632A publication Critical patent/JP2021515632A/en
Publication of JPWO2019173495A5 publication Critical patent/JPWO2019173495A5/ja
Application granted granted Critical
Publication of JP7393339B2 publication Critical patent/JP7393339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この概要に記載の様々な装置および方法は、本願中のいずれに記載されるものと同様に、多数の様々な組み合わせや下位の組み合わせで表現されてもよい。全ての有用な、新規性および進歩性を有する組み合わせおよび下位の組み合わせが本明細書に包含されており、これらの組み合わせの明示的な表現は不要とみなされる。例えば、本願特許請求の範囲にも記載された以下の態様が挙げられる。
(項1)
遠心力によって血液を圧送する圧送手段と、
前記圧送手段を油圧によって駆動し、血液を用いて動力を発生させる油圧式駆動手段と、を備える血液圧送装置。
(項2)
前記圧送手段は、回転軸と、血液が前記回転軸と実質的に平行に流れる入口と、圧送された血液が前記回転軸に対して実質的に垂直に流れる出口と、を備えている、項1に記載の装置。
(項3)
前記圧送手段は回転体の本体部としての外形を有する、項1に記載の装置。
(項4)
前記圧送手段は、軸周りに回転し、内部流路を含む本体部を有し、
前記油圧式駆動手段は、前記本体部の前記内部流路内に配置されている、項1に記載の装置。
(項5)
前記内部流路は、前記圧送手段の前記軸に沿って延びる、項4に記載の装置。
(項6)
前記内部流路は、前記内部流路を取り囲む内表面を有し、
前記油圧式駆動手段は、前記内表面に配置された少なくとも1つの動力変換機構を含む、項4に記載の装置。
(項7)
前記動力変換機構は、ブレードである、項6に記載の装置。
(項8)
前記前記ブレードは、前記内部流路内かつ前記本体部の前記軸に沿って螺旋状の細長い形状を有する、項7に記載の装置。
(項9)
前記動力変換機構は、複数のブレードを備える、項6に記載の装置。
(項10)
複数の前記ブレードは、それぞれ、前記内部流路の半径よりも短い径方向の長さを有する、項9に記載の装置。
(項11)
前記動力変換機構は、少なくとも部分的に前記内部流路の入口に向かう凹面を有するバケツである、項6に記載の装置。
(項12)
前記圧送手段は、入口と、出口と、外側遠心圧送面を有する本体部と、を備え、
前記油圧式駆動手段は、前記入口の側方に位置する前記外側遠心圧送面に少なくとも1つの動力変換機構を含む、項1の装置。
(項13)
前記動力変換機構は、ブレードである、項12に記載の装置。
(項14)
前記動力変換機構は、前記圧送手段の回転軸と同心の螺旋形状を有する、項12に記載の装置。
(項15)
前記入口の側方に位置する囲い板を備え、
前記入口は、前記囲い板内かつ前記流体駆動手段上を流れる血液の一部を誘導し、かつ、前記遠心圧送手段上を流れる血液の残りの部分を誘導する、項12に記載の装置。
(項16)
前記囲い板は、前記血液の流れの一部に渦を与える少なくとも1つの羽根を有する、項15に記載の装置。
(項17)
第1の供給血液の一部から動力を生成するように構成され、第1の高圧で前記第1の供給血液の一部を受け取る入口と、第1の低圧で前記第1の供給血液を出す出口とを含む油圧式モーターと、
前記第1の供給血液の残りの部分の運動エネルギーを増加させるように構成され、かつ、前記油圧式モーターによって駆動される遠心ポンプと、を備え、
前記第1の高圧よりも低い第2の減圧を有する前記第1の供給血液の残りの部分は、前記遠心ポンプの入口で受け取られ、
前記第1の供給血液の残りの部分は、前記第2の減圧よりも高い第2の増圧で前記遠心ポンプの出口から出され、
前記油圧式モーターの前記出口から出た前記第1の供給血液の一部および前記遠心ポンプの前記出口から出た前記第1の供給血液の残りの部分は、組み合わされ、かつ、前記油圧式モーターの前記入口と前記遠心ポンプの前記入口へ戻される、血液圧送装置。
(項18)
前記遠心ポンプは1対の支柱に支持され、軸に対して回転可能に設けられ、
一方の支柱は、前記第1の高圧で第1の供給血液の一部を供給し、
他方の支柱は、前記第1の低圧で前記第1の供給血液の残りの部分を受け取る、項17に記載の装置。
(項19)
前記遠心ポンプは、前記第1の供給血液の残りの部分の運動エネルギーを増加させるように構成された外表面と、内部と、を有する回転体を含み、
前記油圧式モーターは、前記回転体の前記内部に設けられている、項17に記載の装置。
(項20)
前記油圧式モーターは、軸周りに回転し、かつ、断面積を有する回転封入流路と、前記回転封入流路内に位置しかつ前記第1の供給血液の一部のエネルギーを前記ポンプを駆動する運動エネルギーに変換する複数の動力変換機構と、を備え、
前記動力変換機構は、前記回転封入流路の前記断面積よりも小さい流路に沿った総表面積を形成するよう構成されている、項17に記載の装置。
(項21)
第1の狭窄部は生物学的ユニットの全身の循環系であり、
第2の狭窄部は生物学的ユニットの肺循環系である、項17に記載の装置。
(項22)
前記肺循環系を出る前記第1の供給血液の流れの残りの部分と、前記油圧式モーターの前記出口からの前記第1の低圧を有する前記第1の供給血液の一部とは、前記生物学的ユニットの心臓の心房の入口と流体連通している、項21に記載の装置。
(項23)
前記第1の供給血液の残りの部分は、第1の狭窄部を通って流れ、かつ、前記第2の減圧で前記第1の狭窄部を出る、項17に記載の装置。
(項24)
前記第2の増圧を有する前記第1の供給血液の流れの残りの部分は、第2の狭窄部を通って流れ、かつ、第2の狭窄部から出る前記第1の供給血液の流れの残りの部分は、第1の低圧を有する前記第1の供給血液の一部と流体連通する、項23に記載の装置。
(項25)
前記第2の増圧を有する前記第1の供給血液の流れの残りの部分は、第2の狭窄部を通って流れ、かつ、第2の狭窄部から出る前記第1の供給血液の流れの残りの部分は、第1の低圧を有する前記第1の供給血液の一部と流体連通する、項27に記載の装置。
(項26)
第1の供給血液から動力を生成するように構成され、第1の高圧で前記第1の供給血液を受け取るモーター入口と、第1の低圧で前記第1の供給血液を出すモーター出口とを備
える油圧式モーターと、
前記油圧式モーターによって駆動され、ポンプ入口と、ポンプ出口と、回転によって第2の供給血液の運動エネルギーを増加するように構成された外表面と、を有する回転可能な遠心ポンプと、を備え、
前記ポンプ入口は、第2の低圧で前記第2の供給血液を受け取り、
前記第2の供給血液は、第2の高圧で前記ポンプ出口から流れ、
前記第1の低圧で前記モーター出口から流れる前記第1の供給血圧は、前記第2の高圧で前記ポンプ出口から流れる前記第2の供給血液と流体連通し、
前記ポンプ入口における前記第2の供給血液の前記第2の低圧は、前記モーター入口における前記第1の供給血液の前記第1の高圧よりも低い、血液圧送装置。
(項27)
前記遠心ポンプは、軸周りに回転し、かつ、前記軸に対する回転体として形成され粘性的に撹拌する外表面を有し、
前記回転体は、前記ポンプ出口の側方に最大外径を有する、項26に記載の装置。
(項28)
前記遠心ポンプは、前記モーター入口から前記第1の供給血液を受け取る内部通路を含み、
前記油圧式モーターは、前記内部通路内に位置する複数の動力駆動機構を含む、項27に記載の装置。
(項29)
前記第2の高圧は、第2の高全圧であり、
前記外表面は、前記内部通路からの流れを受け取る開口部を少なくとも1つ有し、
前記開口部は、前記最大外形の側方に位置し、
前記開口部とその位置は、前記第1の低圧を前記第2の高全圧の静圧部材にさらすように構成されている、項28に記載の装置。
(項30)
第1の高圧で血液の第1の流れを油圧式モーターの入口に供給することと、
前記第1の血液の流れから前記油圧式モーターによって動力を生成することと、
第2の低圧で第2の血液の流れを遠心ポンプの入口に供給することと、
前記第1の血液の流れによって発生した前記動力で前記遠心ポンプを回転させることと、
前記遠心ポンプの回転によって前記第2の血液の流れのエネルギーを増加させること、を含む、血液の圧送方法
(項31)
前記第1の高圧は、左心室の出口の圧力と同じである、項30に記載の方法。
(項32)
前記増加されたエネルギーを有する血液を肺へ流すことをさらに含む、項30に記載の方法。
(項33)
減圧された前記第1の血液を前記油圧式モーターの出口から肺へ流すことをさらに含む、項30に記載の方法。
(項34)
減圧された前記第1の血液を前記油圧式モーターから左心房へ流すことをさらに含む、項30に記載の方法。
The various devices and methods described in this summary may be represented in a number of different combinations or subordinate combinations, as described anywhere in the present application. All useful, novel and inventive step combinations and subordinate combinations are included herein and no explicit representation of these combinations is considered unnecessary. For example, the following aspects described in the claims of the present application can be mentioned.
(Item 1)
A pumping means that pumps blood by centrifugal force,
A blood pumping device including a hydraulic drive means for driving the pumping means hydraulically and generating power using blood.
(Item 2)
The pumping means comprises a rotation axis, an inlet through which blood flows substantially parallel to the rotation axis, and an outlet through which the pumped blood flows substantially perpendicular to the rotation axis. The device according to 1.
(Item 3)
Item 2. The device according to Item 1, wherein the pumping means has an outer shape as a main body of a rotating body.
(Item 4)
The pumping means rotates around an axis and has a main body including an internal flow path.
Item 2. The device according to Item 1, wherein the hydraulic drive means is arranged in the internal flow path of the main body.
(Item 5)
Item 4. The device according to Item 4, wherein the internal flow path extends along the axis of the pumping means.
(Item 6)
The internal flow path has an inner surface surrounding the internal flow path.
Item 4. The device according to Item 4, wherein the hydraulic drive means includes at least one power conversion mechanism arranged on the inner surface.
(Item 7)
Item 6. The device according to Item 6, wherein the power conversion mechanism is a blade.
(Item 8)
Item 7. The device according to Item 7, wherein the blade has a spiral elongated shape in the internal flow path and along the axis of the main body portion.
(Item 9)
Item 6. The device according to Item 6, wherein the power conversion mechanism includes a plurality of blades.
(Item 10)
Item 9. The apparatus according to Item 9, wherein each of the plurality of blades has a radial length shorter than the radius of the internal flow path.
(Item 11)
Item 6. The device according to Item 6, wherein the power conversion mechanism is a bucket having a concave surface toward the inlet of the internal flow path, at least partially.
(Item 12)
The pumping means includes an inlet, an outlet, and a main body having an outer centrifugal pumping surface.
Item 1. The device according to Item 1, wherein the hydraulic drive means includes at least one power conversion mechanism on the outer centrifugal pressure feeding surface located on the side of the inlet.
(Item 13)
Item 12. The device according to Item 12, wherein the power conversion mechanism is a blade.
(Item 14)
Item 12. The device according to Item 12, wherein the power conversion mechanism has a spiral shape concentric with the rotation axis of the pumping means.
(Item 15)
It is equipped with an enclosure located on the side of the entrance.
Item 12. The apparatus according to Item 12, wherein the inlet guides a part of blood flowing in the enclosure and on the fluid driving means, and guides the rest of the blood flowing on the centrifugal pumping means.
(Item 16)
Item 15. The apparatus according to Item 15, wherein the enclosure has at least one blade that vortexes a portion of the blood flow.
(Item 17)
It is configured to generate power from a portion of the first feed blood, with an inlet receiving the portion of the first feed blood at a first high pressure and exiting the first feed blood at a first low pressure. With a hydraulic motor, including an outlet,
A centrifugal pump configured to increase the kinetic energy of the rest of the first feed blood and driven by the hydraulic motor.
The rest of the first feed blood having a second decompression lower than the first high pressure is received at the inlet of the centrifugal pump.
The rest of the first feed blood is ejected from the outlet of the centrifugal pump with a second boost higher than the second depressurization.
A portion of the first feed blood coming out of the outlet of the hydraulic motor and the rest of the first feed blood coming out of the outlet of the centrifugal pump are combined and the hydraulic motor. A blood pumping device that is returned to the inlet of the centrifuge and the inlet of the centrifugal pump.
(Item 18)
The centrifugal pump is supported by a pair of stanchions and is rotatably provided with respect to the shaft.
One strut supplies a portion of the first feed blood at the first high pressure.
Item 17. The device of item 17, wherein the other strut receives the rest of the first feed blood at said first low pressure.
(Item 19)
The centrifugal pump comprises a rotating body having an outer surface and an inner surface configured to increase the kinetic energy of the rest of the first feed blood.
Item 12. The device according to Item 17, wherein the hydraulic motor is provided inside the rotating body.
(Item 20)
The hydraulic motor drives the pump with a rotary encapsulation flow path that rotates about an axis and has a cross-sectional area, and a part of the energy of the first supply blood that is located in the rotary encapsulation flow path. Equipped with multiple power conversion mechanisms that convert to kinetic energy,
Item 17. The device according to Item 17, wherein the power conversion mechanism is configured to form a total surface area along a flow path smaller than the cross section of the rotary encapsulation flow path.
(Item 21)
The first stenosis is the systemic circulatory system of the biological unit,
Item 17. The apparatus according to Item 17, wherein the second stenosis is the pulmonary circulation system of the biological unit.
(Item 22)
The rest of the flow of the first feed blood leaving the pulmonary circulation system and the portion of the first feed blood having the first low pressure from the outlet of the hydraulic motor are the biology. 21. The device of item 21, wherein the device is in fluid communication with the entrance of the atria of the heart of the target unit.
(Item 23)
Item 17. The apparatus according to Item 17, wherein the remaining portion of the first feed blood flows through the first stenosis and exits the first stenosis with the second decompression.
(Item 24)
The rest of the flow of the first feed blood having the second boost flows through the second stenosis and of the flow of the first feed blood exiting the second stenosis. 23. The device of item 23, wherein the rest is fluid communication with a portion of the first feed blood having a first low pressure.
(Item 25)
The rest of the flow of the first feed blood having the second boost flows through the second stenosis and of the flow of the first feed blood exiting the second stenosis. 27. The device of item 27, wherein the rest is in fluid communication with a portion of the first feed blood having a first low pressure.
(Item 26)
It is configured to generate power from the first feed blood and is equipped with a motor inlet that receives the first feed blood at a first high pressure and a motor outlet that outputs the first feed blood at a first low pressure.
With a hydraulic motor
It comprises a rotatable centrifugal pump, driven by the hydraulic motor, having a pump inlet, a pump outlet, and an outer surface configured to increase the kinetic energy of a second feed blood by rotation.
The pump inlet receives the second feed blood at a second low pressure and receives the second feed blood.
The second supply blood flows from the pump outlet at a second high pressure,
The first supply blood pressure flowing from the motor outlet at the first low pressure communicates with the second supply blood flowing from the pump outlet at the second high pressure.
A blood pumping device in which the second low pressure of the second feed blood at the pump inlet is lower than the first high pressure of the first feed blood at the motor inlet.
(Item 27)
The centrifugal pump has an outer surface that rotates about an axis and is formed as a rotating body with respect to the axis and viscously agitates.
26. The device of item 26, wherein the rotating body has a maximum outer diameter lateral to the pump outlet.
(Item 28)
The centrifugal pump includes an internal passage that receives the first feed blood from the motor inlet.
Item 27. The device according to Item 27, wherein the hydraulic motor includes a plurality of power drive mechanisms located in the internal passage.
(Item 29)
The second high pressure is the second high total pressure.
The outer surface has at least one opening for receiving flow from the inner passage.
The opening is located laterally to the maximum outer shape.
28. The apparatus of item 28, wherein the opening and its position are configured to expose the first low pressure to the second high total pressure static pressure member.
(Item 30)
Supplying the first flow of blood at the first high pressure to the inlet of the hydraulic motor,
Power is generated by the hydraulic motor from the first blood flow, and
Supplying a second blood flow to the inlet of the centrifugal pump at a second low pressure,
Rotating the centrifugal pump with the power generated by the first blood flow and
A method of pumping blood, comprising increasing the energy of the second blood flow by rotating the centrifugal pump.
(Item 31)
Item 30. The method of Item 30, wherein the first high pressure is the same as the pressure at the outlet of the left ventricle.
(Item 32)
30. The method of item 30, further comprising flushing blood with increased energy into the lungs.
(Item 33)
Item 30. The method of Item 30, further comprising flowing the decompressed first blood from the outlet of the hydraulic motor into the lungs.
(Item 34)
Item 30. The method of Item 30, further comprising flowing the decompressed first blood from the hydraulic motor to the left atrium.

Claims (16)

遠心力によって血液を圧送する圧送手段と、
前記圧送手段を油圧によって駆動し、血液を用いて動力を発生させる油圧式駆動手段と、を備える血液圧送装置。
A pumping means that pumps blood by centrifugal force,
A blood pumping device including a hydraulic drive means for driving the pumping means hydraulically and generating power using blood.
前記圧送手段は、回転軸と、血液が前記回転軸と実質的に平行に流れる入口と、圧送された血液が前記回転軸に対して実質的に垂直に流れる出口と、を備えている、請求項1に記載の装置。 The pumping means comprises a rotation axis, an inlet through which blood flows substantially parallel to the rotation axis, and an outlet through which the pumped blood flows substantially perpendicular to the rotation axis. Item 1. The apparatus according to Item 1. 前記圧送手段は回転体の本体部としての外形を有する、請求項1に記載の装置。 The device according to claim 1, wherein the pumping means has an outer shape as a main body of a rotating body. 前記圧送手段は、軸周りに回転し、内部流路を含む本体部を有し、
前記油圧式駆動手段は、前記本体部の前記内部流路内に配置されている、請求項1に記載の装置。
The pumping means rotates around an axis and has a main body including an internal flow path.
The device according to claim 1, wherein the hydraulic drive means is arranged in the internal flow path of the main body.
前記内部流路は、前記圧送手段の前記軸に沿って延びる、請求項4に記載の装置。 The device of claim 4, wherein the internal flow path extends along the axis of the pumping means. 前記内部流路は、前記内部流路を取り囲む内表面を有し、
前記油圧式駆動手段は、前記内表面に配置された少なくとも1つの動力変換機構を含む、請求項4に記載の装置。
The internal flow path has an inner surface surrounding the internal flow path.
The device according to claim 4, wherein the hydraulic drive means includes at least one power conversion mechanism arranged on the inner surface.
前記動力変換機構は、ブレードである、請求項6に記載の装置。 The device according to claim 6, wherein the power conversion mechanism is a blade. 前記前記ブレードは、前記内部流路内かつ前記本体部の前記軸に沿って螺旋状の細長い形状を有する、請求項7に記載の装置。 The device according to claim 7, wherein the blade has a spiral elongated shape in the internal flow path and along the axis of the main body portion. 前記動力変換機構は、複数のブレードを備える、請求項6に記載の装置。 The device according to claim 6, wherein the power conversion mechanism includes a plurality of blades. 複数の前記ブレードは、それぞれ、前記内部流路の半径よりも短い径方向の長さを有する、請求項9に記載の装置。 The device of claim 9, wherein each of the plurality of blades has a radial length shorter than the radius of the internal flow path. 前記動力変換機構は、少なくとも部分的に前記内部流路の入口に向かう凹面を有するバケツである、請求項6に記載の装置。 The device according to claim 6, wherein the power conversion mechanism is a bucket having a concave surface toward the inlet of the internal flow path, at least partially. 前記圧送手段は、入口と、出口と、外側遠心圧送面を有する本体部と、を備え、
前記油圧式駆動手段は、前記入口の側方に位置する前記外側遠心圧送面に少なくとも1つの動力変換機構を含む、請求項1の装置。
The pumping means includes an inlet, an outlet, and a main body having an outer centrifugal pumping surface.
The device of claim 1, wherein the hydraulic drive means comprises at least one power conversion mechanism on the outer centrifugal pumping surface located laterally to the inlet.
前記動力変換機構は、ブレードである、請求項12に記載の装置。 The device according to claim 12, wherein the power conversion mechanism is a blade. 前記動力変換機構は、前記圧送手段の回転軸と同心の螺旋形状を有する、請求項12に記載の装置。 The device according to claim 12, wherein the power conversion mechanism has a spiral shape concentric with the rotation axis of the pumping means. 前記入口の側方に位置する囲い板を備え、
前記入口は、前記囲い板内かつ前記流体駆動手段上を流れる血液の一部を誘導し、かつ、前記遠心圧送手段上を流れる血液の残りの部分を誘導する、請求項12に記載の装置。
It is equipped with an enclosure located on the side of the entrance.
12. The device of claim 12, wherein the inlet guides a portion of blood flowing in the enclosure and on the fluid driving means and guides the rest of the blood flowing on the centrifugal pumping means.
前記囲い板は、前記血液の流れの一部に渦を与える少なくとも1つの羽根を有する、請求項15に記載の装置。 15. The apparatus of claim 15, wherein the enclosure has at least one blade that vortexes a portion of the blood flow.
JP2020546433A 2018-03-06 2019-03-06 blood pressure driven auxiliary pump Active JP7393339B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862639289P 2018-03-06 2018-03-06
US62/639,289 2018-03-06
PCT/US2019/020985 WO2019173495A1 (en) 2018-03-06 2019-03-06 Blood pressure powered auxiliary pump

Publications (3)

Publication Number Publication Date
JP2021515632A JP2021515632A (en) 2021-06-24
JPWO2019173495A5 true JPWO2019173495A5 (en) 2022-03-11
JP7393339B2 JP7393339B2 (en) 2023-12-06

Family

ID=67847501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020546433A Active JP7393339B2 (en) 2018-03-06 2019-03-06 blood pressure driven auxiliary pump

Country Status (6)

Country Link
US (1) US11596783B2 (en)
EP (1) EP3762058B1 (en)
JP (1) JP7393339B2 (en)
AU (1) AU2019230022A1 (en)
CA (1) CA3093294A1 (en)
WO (1) WO2019173495A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920597B2 (en) * 2021-03-10 2024-03-05 Indiana University Research And Technology Corporation Boundary layer powered circulatory assist device
WO2023140806A1 (en) * 2022-01-19 2023-07-27 Istanbul Bilgi Universitesi A biventricular assist system
WO2024039401A1 (en) * 2022-08-18 2024-02-22 Bard Peripheral Vascular, Inc. Bodily fluid flow assist devices and methods to improve systemic circulation

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667069A (en) * 1970-03-27 1972-06-06 Univ Minnesota Jet pump cardiac replacement and assist device and method of at least partially replacing a disabled right heart
US4335997A (en) 1980-01-16 1982-06-22 General Motors Corporation Stress resistant hybrid radial turbine wheel
US4610235A (en) 1982-08-09 1986-09-09 Grunig R Carricarte Hydraulic drive supercharger for internal combustion engines
US5102296A (en) 1989-09-07 1992-04-07 Ingersoll-Rand Company Turbine nozzle, and a method of varying the power of same
US5145333A (en) * 1990-03-01 1992-09-08 The Cleveland Clinic Foundation Fluid motor driven blood pump
IT1244315B (en) 1990-09-12 1994-07-08 Castel Mac Spa ELECTRONIC SPEED AND ROTATION CONTROL DEVICE OF A MOTOR FOR MACHINE FOR THE PRODUCTION OF ICE IN FLAKES
US5055005A (en) 1990-10-05 1991-10-08 Kletschka Harold D Fluid pump with levitated impeller
US5471965A (en) 1990-12-24 1995-12-05 Kapich; Davorin D. Very high speed radial inflow hydraulic turbine
US5577385A (en) 1995-09-11 1996-11-26 Kapich; Davorin D. Electropneumatic engine supercharger system
DE69825907D1 (en) * 1997-07-01 2004-09-30 Advanced Bionics Inc ROTOR FOR A BLOOD PUMP
US5924286A (en) 1998-01-05 1999-07-20 Kapich; Davorin D. Hydraulic supercharger system
US6206630B1 (en) 1998-04-24 2001-03-27 Universal Electric Power Corp. High torque impulse turbine
JP3689567B2 (en) * 1998-09-29 2005-08-31 京セラ株式会社 Centrifugal blood pump
US6152704A (en) * 1998-09-30 2000-11-28 A-Med Systems, Inc. Blood pump with turbine drive
SE514428C2 (en) 1999-06-23 2001-02-19 Anagram Consultants Ag Implantable device for harnessing the hydraulic energy of the heart
DE20004136U1 (en) * 2000-03-04 2000-12-14 Krankenhausbetr Sgesellschaft Blood pump
US6450156B1 (en) 2000-09-14 2002-09-17 Albert F. Araujo Turbine supercharger for an internal combustion engine
WO2003010433A1 (en) 2001-07-23 2003-02-06 Ramgen Power Systems, Inc. Radial impulse turbine for rotary ramjet engine
AU2003281669A1 (en) 2002-07-26 2004-02-16 Bernd Gapp Composite material
US7044718B1 (en) * 2003-07-08 2006-05-16 The Regents Of The University Of California Radial-radial single rotor turbine
US7682301B2 (en) * 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
US7478629B2 (en) 2004-11-04 2009-01-20 Del Valle Bravo Facundo Axial flow supercharger and fluid compression machine
US7530553B2 (en) 2005-05-14 2009-05-12 Davorin Kapich Water misting gun
US20060254274A1 (en) 2005-05-14 2006-11-16 Davorin Kapich Hydraulic turbine assisted turbocharger system
KR100720909B1 (en) 2005-06-23 2007-05-22 한국해양연구원 Impulse turbine with rotor blade for prevention against clearance flow loss
EP1767778B1 (en) 2005-09-26 2009-10-14 IN.SER. S.p.A. Liquid-piston engine and system for generating electric current
CA2645646C (en) 2006-03-14 2015-09-22 John D. Pickard Rotor assembly for a radial turbine
CN102380135A (en) 2006-03-23 2012-03-21 宾州研究基金会 Heart assist device with expandable impeller pump
ES2284396B1 (en) * 2006-04-20 2008-10-16 Salvador Merce Vives PUMP FOR BLOOD PERFUSION.
US7841977B2 (en) 2006-06-22 2010-11-30 Matthias Vaska Devices and methods for absorbing, transferring and delivering heart energy
JP4681625B2 (en) 2008-02-22 2011-05-11 三菱重工業株式会社 Blood pump and pump unit
EP2341956B1 (en) 2008-10-06 2015-12-23 Indiana University Research and Technology Corporation Methods and apparatus for active or passive assistance in the circulatory system
JP4310552B1 (en) 2008-11-28 2009-08-12 株式会社マック Turbine impeller
CA2769631A1 (en) 2009-07-01 2011-01-06 The Penn State Research Foundation Blood pump with expandable cannula
US8453999B2 (en) 2009-07-29 2013-06-04 Davorin Kapich High capacity water misting gun
CN101695991B (en) 2009-10-26 2011-03-16 吴玉鹏 Freely deformable funnel and manufacturing method thereof
EP2338540A1 (en) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Delivery blade for a compressible rotor
EP2407187A3 (en) 2010-07-15 2012-06-20 ECP Entwicklungsgesellschaft mbH Blood pump for invasive application within the body of a patient
US20120180480A1 (en) 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
ES1074113Y (en) 2011-02-10 2011-06-22 Soriano Jose Ortuno ADVERTISING VERTICAL AEROGENERATOR
US9084859B2 (en) 2011-03-14 2015-07-21 Sleepnea Llc Energy-harvesting respiratory method and device
EP2562423A1 (en) * 2011-08-25 2013-02-27 Vetco Gray Controls Limited Rotors
EP2785392B1 (en) 2011-12-03 2017-04-12 Indiana University Research and Technology Corporation Cavopulmonary viscous impeller assist device and method
EP2812044B1 (en) 2012-02-07 2021-04-07 Hridaya, Inc. Hemodynamic assist device
US9572915B2 (en) 2012-03-26 2017-02-21 Procyrion, Inc. Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement
EP2662099B1 (en) 2012-05-09 2014-09-10 Abiomed Europe GmbH Intravascular blood pump
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US20140341709A1 (en) 2012-11-19 2014-11-20 Innocent Hervé Yamodo Double impulse turbine system
WO2014143730A1 (en) 2013-03-15 2014-09-18 Boston Scientific Scimed, Inc. Anti-migratory stent coating
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
DE112014001418T5 (en) 2013-03-15 2015-12-17 Minnetronix, Inc. Expandable blood pump for cardiac support
WO2014191254A1 (en) 2013-05-28 2014-12-04 Alstom Renewable Technologies Hydraulic pelton turbine
CN105636619B (en) * 2013-08-14 2017-09-29 哈特威尔公司 Impeller for axial-flow pump
CN103480053A (en) 2013-10-10 2014-01-01 上海理工大学 Magnetism-driven blood pump system
US10056817B2 (en) 2013-11-21 2018-08-21 Saeid Sirous Fluid ferfereh
US9764113B2 (en) 2013-12-11 2017-09-19 Magenta Medical Ltd Curved catheter
EP3821939A1 (en) 2014-05-13 2021-05-19 Abiomed, Inc. Blood pump housing component
AU2015262870B2 (en) 2014-05-19 2019-10-10 Magenta Medical Ltd. Blood pump
WO2016115595A1 (en) 2015-01-19 2016-07-28 AFFLECK, Gail Ann Implantable power supply
DE102015204399A1 (en) 2015-03-11 2016-09-15 Siemens Healthcare Gmbh A blood vessel support for a charging circuit arrangement, charging circuit arrangement and automatic system for the electromagnetic induction principle based charging of at least one rechargeable battery in or on the body of a living being
JP6572056B2 (en) * 2015-08-11 2019-09-04 株式会社イワキ Perfusion pump
EP3173109A1 (en) 2015-11-30 2017-05-31 Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi Method for controlling a centrifugal heart assist pomp impeller position
WO2017217946A1 (en) * 2016-06-16 2017-12-21 Koc Universitesi Self-propelled venous blood pump

Similar Documents

Publication Publication Date Title
JP4015196B2 (en) Blood pump
AU2013258252B2 (en) Intravascular blood pump
JP7004653B2 (en) Ventricular assisted blood flow pump
US6247892B1 (en) Continuous flow rotary pump
JP2021532931A (en) Bearing device for cardiac assist system and flushing method of intermediate space in bearing device for cardiac assist system
CN102257279B (en) There is the centrifugal pump of offset volute
US10294956B2 (en) Propeller blade
CN1022505C (en) Non variable capacitance type rotary machine
CN104707194B (en) A kind of implantable axial flow type blood pump supported based on blood flow dynamic pressure and Pivot
CN104069555A (en) Accessory axial-flow type blood pump for heart
US20200215245A1 (en) Cardiac pump having a turbine with internal blades
EP3146987A1 (en) Impeller of a heart assisting rotary blood pump
JP7393339B2 (en) blood pressure driven auxiliary pump
JPWO2019173495A5 (en)
CN111372618B (en) Turbine with internal vanes
CN217286897U (en) Blood pump and heart assist device
CN114768083A (en) Impeller shaft supporting structure of external drive ventricular assist device
US20230381489A1 (en) Implantable centrifugal cardiac assist pump having permanent magnets embedded in impeller
WO2006096049A1 (en) Pump for a delicate fluid, use of such a pump for pumping blood
JP4690702B2 (en) Water wheel and control method thereof
RU2352821C1 (en) Auger-centrifugal pump
CN116966413A (en) Blood pump and heart assist device
CN114191704A (en) Blood pump with self-adaptive flow guide device
CN114191703A (en) Blood pump with function of actively adjusting guide vanes