JPWO2019172164A1 - Arsenic-adsorbing cellulose material - Google Patents

Arsenic-adsorbing cellulose material Download PDF

Info

Publication number
JPWO2019172164A1
JPWO2019172164A1 JP2020505006A JP2020505006A JPWO2019172164A1 JP WO2019172164 A1 JPWO2019172164 A1 JP WO2019172164A1 JP 2020505006 A JP2020505006 A JP 2020505006A JP 2020505006 A JP2020505006 A JP 2020505006A JP WO2019172164 A1 JPWO2019172164 A1 JP WO2019172164A1
Authority
JP
Japan
Prior art keywords
arsenic
cellulose
mass
adsorbing
fine fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020505006A
Other languages
Japanese (ja)
Other versions
JP7319619B2 (en
Inventor
耕一 樋野
耕一 樋野
吉野 勝美
勝美 吉野
雅行 河崎
雅行 河崎
伸治 佐藤
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Shimane Prefecture
Original Assignee
Nippon Paper Industries Co Ltd
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Shimane Prefecture filed Critical Nippon Paper Industries Co Ltd
Publication of JPWO2019172164A1 publication Critical patent/JPWO2019172164A1/en
Application granted granted Critical
Publication of JP7319619B2 publication Critical patent/JP7319619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Abstract

本発明の目的は、飲料用地下水、産業排水、鉱山廃水、温泉水など全てのヒ素含有水を対象とし、ヒ素含有水からヒ素を効率的かつ安価に除去する吸着材を提供することにある。本発明は、セルロース系微細繊維にヒ素吸着性を有する金属成分を担持させたヒ素吸着性セルロース材料に係る。An object of the present invention is to provide an adsorbent for efficiently and inexpensively removing arsenic from arsenic-containing water, targeting all arsenic-containing water such as drinking groundwater, industrial wastewater, mine wastewater, and hot spring water. The present invention relates to an arsenic-adsorptive cellulose material in which a metal component having arsenic-adsorbing property is supported on cellulosic fine fibers.

Description

本発明は、ヒ素を吸着するための材料に関する。詳細には、本発明は、飲料用地下水、産業排水、鉱山廃水、温泉水などのヒ素汚染水から、ヒ素を効率よく除去するための吸着材料に関する。 The present invention relates to a material for adsorbing arsenic. More specifically, the present invention relates to an adsorbent material for efficiently removing arsenic from arsenic-contaminated water such as drinking groundwater, industrial wastewater, mine wastewater, and hot spring water.

ヒ素化合物は強い毒性を有することが知られている。ヒ素の水道水質基準値および環境基準値は0.01mg/L以下であり、事業場排水におけるヒ素の基準値は0.1mg/L以下である。 Arsenic compounds are known to be highly toxic. The tap water quality standard value and environmental standard value of arsenic are 0.01 mg / L or less, and the standard value of arsenic in business wastewater is 0.1 mg / L or less.

ヒ素は土壌中にも広く分布しており、地下水などの環境水への溶出が問題となる。鉱山廃水、温泉水、地熱発電の熱水などの地下水に比較的高い濃度でヒ素が含まれることは知られている。特に、中国、インド、バングラディシュ周辺地域の飲料用井戸水のヒ素汚染は深刻であり、健康被害が出ている。また、土壌中に水溶性のヒ素化合物を含む地域も各地に存在しており、トンネル掘削などの土木工事に伴い環境水中にヒ素化合物が流出する例も多く見られる。 Arsenic is also widely distributed in soil, and elution into environmental water such as groundwater becomes a problem. It is known that groundwater such as mine wastewater, hot spring water, and geothermal hot water contains arsenic at a relatively high concentration. In particular, arsenic pollution in drinking well water in areas around China, India and Bangladesh is serious and causes health hazards. In addition, there are areas where water-soluble arsenic compounds are contained in the soil, and there are many cases where arsenic compounds flow out into the environmental water due to civil engineering work such as tunnel excavation.

ヒ素を含む黄鉄石、リン鉱石などを原料として使用するリンおよびリン化合物の製造工場、ならびに硫酸製造工場などの事業場廃水中に多くのヒ素が含まれる。また、ヒ素は半導体の原料としても用いられるため、半導体の製造・加工工場の廃水にもヒ素が含まれることがある。近年、社会的要請から有害物質に対する排水処理基準が厳しくなり、前述のように、事業場排水におけるヒ素の基準値が0.1mg/L以下あるという厳しい規制が敷かれている。この規制に対応可能なヒ素除去方法が求められている。 A large amount of arsenic is contained in the wastewater of business establishments such as phosphorus and phosphorus compound manufacturing factories using arsenic-containing luteinizing stone and phosphate ore as raw materials, and sulfuric acid manufacturing factories. In addition, since arsenic is also used as a raw material for semiconductors, arsenic may be contained in wastewater from semiconductor manufacturing and processing factories. In recent years, wastewater treatment standards for harmful substances have become stricter due to social demands, and as mentioned above, strict regulations have been laid down that the standard value of arsenic in business wastewater is 0.1 mg / L or less. There is a need for an arsenic removal method that can comply with this regulation.

廃水などに含まれるヒ素の除去方法として、ヒ素を鉄、アルミニウム、カルシウム、マグネシウムなどの金属の水酸化物とともに沈殿させる凝集沈殿法(特許文献1〜3参照)が用いられてきた。しかしながら、凝集沈殿法によってヒ素を廃水基準値以下まで減少させるためには、大量の金属水酸化物を添加しなければならず、生成する大量のスラッジの後処理が問題になる。加えて、凝集沈殿剤として用いる金属水酸化物中に含まれるイオンが被処理水中に混入してしまうため、特に凝集沈殿法により処理された水は、飲料用水としての適性を欠く。 As a method for removing arsenic contained in waste water and the like, a coagulation precipitation method (see Patent Documents 1 to 3) in which arsenic is precipitated together with a hydroxide of a metal such as iron, aluminum, calcium or magnesium has been used. However, in order to reduce arsenic to below the wastewater standard value by the coagulation sedimentation method, a large amount of metal hydroxide must be added, and the post-treatment of a large amount of sludge generated becomes a problem. In addition, since the ions contained in the metal hydroxide used as the coagulation-precipitant are mixed in the water to be treated, the water treated by the coagulation-precipitation method is not suitable as drinking water.

また、半透膜を用いた膜処理によってヒ素を除去する方法もある。しかしながら、処理速度が遅く、大量の水を処理することには適さない。加えて、ヒ素を濃縮した排水の処理が問題となる。さらに、ヒ素以外のイオンも取り除いてしまうことから、膜処理により得られた水が飲料用水として適しているとは言い難い。 There is also a method of removing arsenic by a membrane treatment using a semipermeable membrane. However, the treatment speed is slow and it is not suitable for treating a large amount of water. In addition, the treatment of wastewater with concentrated arsenic becomes a problem. Furthermore, since ions other than arsenic are also removed, it is difficult to say that the water obtained by the membrane treatment is suitable as drinking water.

また、稀土類元素の含水酸化物または有機高分子多孔質担体に担持させた稀土類元素の含水酸化物からなる吸着材(特許文献4参照)を用いるヒ素除去方法、フェノール樹脂と金属水酸化物とからなる吸着材(特許文献5参照)を用いるヒ素除去方法、N−メチル−D−グルカミンを樹脂にグラフト重合したキレート吸着材などを用いるヒ素除去方法、陰イオン交換樹脂を用いるヒ素除去方法が知られている。しかしながら、これらの方法において用いる材料は高価である。 Further, a method for removing arsenic using an adsorbent made of a hydrous oxide of a rare earth element or a hydrous oxide of a rare earth element supported on an organic polymer porous carrier (see Patent Document 4), a phenol resin and a metal hydroxide. An arsenic removing method using an adsorbent (see Patent Document 5), an arsenic removing method using a chelate adsorbent obtained by graft-polymerizing N-methyl-D-glucamine on a resin, and an arsenic removing method using an anion exchange resin are available. Are known. However, the materials used in these methods are expensive.

一方で、比較的安価な材料として、鉄イオンを担持したヒ素吸着材も公知である。たとえば、繊維または不織布の化学変性により導入したカルボキシ基に鉄イオンを担持させた吸着材(特許文献6〜7参照)、および樹脂粒子の化学変性により導入したカルボキシ基に鉄イオンなどのヒ素吸着性を有する金属イオンを担持した吸着材(特許文献8参照)が知られている。ただし、このような吸着材の製造には、レドックス酸化触媒または放射線を用いたラジカル重合反応による、カルボキシ基などのキレート基の導入が不可欠である。これらの反応は、窒素ガスなどの不活性ガス雰囲気下で反応を行う必要があるため、前述の吸着材の製造は容易でない。加えて、それら吸着材を安価に製造することは難しい。 On the other hand, as a relatively inexpensive material, an arsenic adsorbent carrying iron ions is also known. For example, an adsorbent in which iron ions are supported on a carboxy group introduced by chemical modification of a fiber or a non-woven fabric (see Patent Documents 6 to 7), and an arsenic adsorption property of iron ions or the like on a carboxy group introduced by chemical modification of resin particles. An adsorbent carrying a metal ion having the above (see Patent Document 8) is known. However, in order to produce such an adsorbent, it is indispensable to introduce a chelating group such as a carboxy group by a radical polymerization reaction using a redox oxidation catalyst or radiation. Since these reactions need to be carried out in an atmosphere of an inert gas such as nitrogen gas, the production of the above-mentioned adsorbent is not easy. In addition, it is difficult to manufacture these adsorbents at low cost.

また、ポリアクリル酸を練り込んだ繊維のポリアクリル酸由来のカルボキシ基に鉄イオンを担持させた吸着材(特許文献9参照)も知られている。しかしながら、ポリアクリル酸は水溶性であるため、使用時に非処理水中にポリアクリル酸が流出し、性能が低下する可能性がある。 Further, an adsorbent in which iron ions are supported on a carboxy group derived from polyacrylic acid of a fiber kneaded with polyacrylic acid (see Patent Document 9) is also known. However, since polyacrylic acid is water-soluble, polyacrylic acid may flow out into untreated water during use, resulting in deterioration of performance.

また、前述のカルボキシ基による金属キレート結合を用いたヒ素吸着性を有する金属イオンの担持は、反応させる金属イオン水溶液のpHに強く依存することが知られている。たとえば、アクリル酸(pKa=4.35)の当量点のpHは4.35であるように、官能基となるカルボキシ基の当量点のpHは4前後である。このことから、通常はpH4程度の弱酸性域からアルカリ性域でしか効率的なキレート形成が行われないと考えられる。一方で、ヒ素吸着性を有する金属イオン水溶液として用いられる、塩化第二鉄水溶液、硝酸二アンモニウムセリウム水溶液、および塩化酸化ジルコニウム水溶液は全て高い酸性度を有し、0.2質量%程度の濃度の時に2前後のpHを示す。よって、これらの金属イオン水溶液は、金属キレート結合に適しているとは言い難い。さらに、濃度を低くすることでpHを上げることはできるが、効率が低下する。なぜなら、金属キレート形成のために、大量の水溶液と接触させる必要があるからである。つまり、煩雑な操作でカルボキシ基を導入したにもかかわらず、前述の吸着材は、十分なヒ素吸着性を有する金属イオンを担持できていないものが多いと言える。 Further, it is known that the support of a metal ion having arsenic adsorption property using the metal chelate bond by the above-mentioned carboxy group strongly depends on the pH of the aqueous metal ion solution to be reacted. For example, the pH of the equivalence point of acrylic acid (pKa = 4.35) is 4.35, and the pH of the equivalence point of the carboxy group serving as a functional group is around 4. From this, it is considered that efficient chelate formation is usually performed only in the weakly acidic range to the alkaline range of about pH 4. On the other hand, the ferric chloride aqueous solution, the diammonium cerium nitrate aqueous solution, and the zirconium chloride aqueous solution, which are used as the metal ion aqueous solution having arsenic adsorption property, all have high acidity and have a concentration of about 0.2% by mass. Sometimes it shows a pH of around 2. Therefore, it cannot be said that these metal ion aqueous solutions are suitable for metal chelate bonds. Further, the pH can be increased by lowering the concentration, but the efficiency is reduced. This is because it is necessary to contact with a large amount of aqueous solution for metal chelate formation. That is, it can be said that, despite the introduction of the carboxy group by a complicated operation, many of the above-mentioned adsorbents cannot support metal ions having sufficient arsenic adsorption property.

このように、排水中のヒ素に関しては厳しい規制が敷かれているにもかかわらず、この規制に適合するために十分な処理法は、いまだに見出されていない。 Thus, despite the strict regulations on arsenic in wastewater, no sufficient treatment method has yet been found to comply with these regulations.

特開平7−289805号公報Japanese Unexamined Patent Publication No. 7-289805 特開平10−128396号公報Japanese Unexamined Patent Publication No. 10-128396 特開平11−333468号公報Japanese Unexamined Patent Publication No. 11-333468 特開昭61−187931号公報Japanese Unexamined Patent Publication No. 61-187931 特開昭59−69151号公報JP-A-59-69151 特開2004−68182号公報Japanese Unexamined Patent Publication No. 2004-68182 特開2007−752号公報Japanese Unexamined Patent Publication No. 2007-752 特開2012−16667号公報Japanese Unexamined Patent Publication No. 2012-16667 特開2014−171996号公報Japanese Unexamined Patent Publication No. 2014-171996

上記事情を鑑み、本発明の課題は、飲料用地下水、産業排水、鉱山廃水、温泉水などの任意のヒ素含有水からヒ素を効率的かつ安価に除去する吸着材を提供することにある。 In view of the above circumstances, an object of the present invention is to provide an adsorbent that efficiently and inexpensively removes arsenic from arbitrary arsenic-containing water such as drinking groundwater, industrial wastewater, mine wastewater, and hot spring water.

本発明者らは、上記課題を鋭意研究し、比較的安価なセルロース材料の表面にヒ素と結合性のある金属成分を簡単な操作により担持させる方法を見出し、優れたヒ素吸着特性を有するヒ素吸着性セルロース材料を開発するに至った。より詳細には、ホモジナイザーなどを用いて、ヒ素と結合性のある金属イオンを含む水溶液中でセルロース系微細繊維を効率良く分散することで、セルロース系微細繊維表面に水溶液中の金属成分を担持させることに成功した。 The present inventors have diligently studied the above-mentioned problems, found a method of supporting a metal component having arsenic-binding property on the surface of a relatively inexpensive cellulose material by a simple operation, and adsorbed arsenic having excellent arsenic adsorption characteristics. We have developed a sex cellulose material. More specifically, by efficiently dispersing the cellulosic fine fibers in an aqueous solution containing metal ions having arsenic-binding properties using a homogenizer or the like, the metal components in the aqueous solution are supported on the surface of the cellulosic fine fibers. I succeeded in doing so.

即ち、本発明は、セルロース系微細繊維にヒ素吸着性を有する金属成分を担持させたヒ素吸着性セルロース材料である。ここで、セルロース系微細繊維は、未変性セルロースナノファイバーあるいは化学変性セルロースナノファイバーであってもよい。あるいはまた、セルロース系微細繊維は、未変性パルプあるいは化学変性パルプあるいはバクテリアセルロースであってもよい。セルロースナノファイバーおよびパルプの化学変性は、セルロース中のヒドロキシ基の酸化、セルロース中のヒドロキシ基のカルボキシメチル化、あるいはセルロース中のヒドロキシ基のリン酸エステル化又は亜リン酸エステル化により実施することができる。酸化による化学変性を受けたセルロースナノファイバーまたはパルプにおいて、カルボキシ基の量は、0.10mmol/g〜3.00mmol/gの範囲内であってもよい。カルボキシメチル化による化学変性を受けたセルロースナノファイバーまたはパルプにおいて、カルボキシメチル置換度は、0.02〜0.5の範囲内であってもよい。さらに、金属成分は、鉄、セリウムあるいはジルコニウムであってもよい。また、本発明のヒ素吸着性セルロース材料は、1.0質量%以上の金属成分を担持していることが好ましい。 That is, the present invention is an arsenic-adsorptive cellulose material in which a metal component having arsenic-adsorbing property is supported on cellulosic fine fibers. Here, the cellulosic fine fibers may be unmodified cellulose nanofibers or chemically modified cellulose nanofibers. Alternatively, the cellulosic fine fibers may be unmodified pulp, chemically modified pulp or bacterial cellulose. Chemical modification of cellulose nanofibers and pulp can be carried out by oxidation of hydroxy groups in cellulose, carboxymethylation of hydroxy groups in cellulose, or phosphoric acid esterification or phosphite esterification of hydroxy groups in cellulose. it can. In cellulose nanofibers or pulp that have undergone chemical modification by oxidation, the amount of carboxy groups may be in the range of 0.10 mmol / g to 3.00 mmol / g. In cellulose nanofibers or pulp that have undergone chemical modification by carboxymethylation, the degree of carboxymethyl substitution may be in the range of 0.02 to 0.5. Further, the metal component may be iron, cerium or zirconium. Further, the arsenic-adsorbing cellulose material of the present invention preferably supports 1.0% by mass or more of a metal component.

本発明によれば、飲料用地下水及び産業排水及び環境水などのヒ素含有溶液の処理において、安価な材料で効率よくヒ素を処理することが可能となる。また、セルロースナノファイバー、バクテリアセルロースなどのナノ材料を利用することで、分子や繊維の表面積が増加するため、ヒ素吸着性能の大幅な増加が見込める。特に、本発明において好ましいセルロース系微細繊維は、機械解繊により得られるセルロースナノファイバー(未変性CNF)、および化学変性セルロースナノファイバーなどを含む。本発明の化学変性セルロースナノファイバーは、最も好ましくは、アニオン変性セルロースナノファイバーである。アニオン変性セルロースナノファイバーの例は、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)による酸化反応を用いてカルボキシ基を導入し、解繊した酸化セルロースナノファイバー(TEMPO−CNF)を含む。カルボキシメチル化セルロースナノファイバー(CM−CNF)、リン酸エステル化セルロースナノファイバー、及び、亜リン酸エステル化セルロースナノファイバーを含む。さらに、ヒ素と結合性のある金属成分を担持する際に金属キレート結合の効果が期待できるため、アニオン変性セルロース材料はより強固に金属成分を担持できる。これらのセルロースナノファイバーから造ったヒ素吸着性セルロース材料は容易にフィルム形状に成型することができる。フィルム形状に成型されたヒ素吸着性セルロース材料は、ヒ素汚染水に浸漬させるだけで非処理水中のヒ素を除去でき、かつ、水から容易に分離できる。また、繊維、不織布などの形状に成型することで、本発明のヒ素吸着性セルロース材料を、水処理用カートリッジなどの通水型の水処理用途にも用いることができる。 According to the present invention, in the treatment of arsenic-containing solutions such as drinking groundwater, industrial wastewater and environmental water, arsenic can be efficiently treated with an inexpensive material. Further, by using nanomaterials such as cellulose nanofibers and bacterial cellulose, the surface area of molecules and fibers is increased, so that a significant increase in arsenic adsorption performance can be expected. In particular, the cellulosic fine fibers preferable in the present invention include cellulose nanofibers (unmodified CNF) obtained by mechanical defibration, chemically modified cellulose nanofibers, and the like. The chemically modified cellulose nanofibers of the present invention are most preferably anion-modified cellulose nanofibers. An example of anion-modified cellulose nanofibers is an oxidized cellulose nanofiber (TEMPO-CNF) that has been defibrated by introducing a carboxy group using an oxidation reaction with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). )including. Includes carboxymethylated cellulose nanofibers (CM-CNF), phosphate esterified cellulose nanofibers, and phosphite esterified cellulose nanofibers. Further, since the effect of the metal chelate bond can be expected when supporting the metal component having a binding property to arsenic, the anion-modified cellulose material can support the metal component more firmly. The arsenic-adsorbing cellulose material made from these cellulose nanofibers can be easily molded into a film shape. The arsenic-adsorbing cellulose material molded into a film shape can remove arsenic in untreated water simply by immersing it in arsenic-contaminated water, and can be easily separated from water. Further, by molding into a shape such as a fiber or a non-woven fabric, the arsenic-adsorbing cellulose material of the present invention can also be used for a water-permeable water treatment application such as a water treatment cartridge.

2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)以外による酸化反応としては、N−オキシル化合物による酸化反応が用いられる。N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6−テトラメチルピペリジン−1−オキシラジカル(TEMPO)およびその誘導体(例えば4−ヒドロキシTEMPO)、アザアダマンタン型ニトロキシルラジカル、アザノルアダマンタン型ニトロキシルラジカル等が挙げられる。 As the oxidation reaction other than 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), an oxidation reaction with an N-oxyl compound is used. The N-oxyl compound is a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it is a compound that promotes the desired oxidation reaction. For example, 2,2,6,6-tetramethylpiperidin-1-oxyrad radical (TEMPO) and its derivative (for example, 4-hydroxyTEMPO), azaadamantane type nitroxyl radical, azanoruadamantane type nitroxyl radical and the like can be mentioned. ..

あるいはまた、各種セルロースナノファイバーよりも繊維径の大きい未変性パルプ、TEMPOによる酸化反応を用い、カルボキシ基を導入したパルプ(TEMPO−パルプ)のような化学変性パルプ、あるいは紙などのセルロース材料を用いる場合には、それらセルロース材料を細かく解繊して用いることでより大きな効果が得られる。パルプの化学変性は、セルロースナノファイバーの場合と同様の方法を用いることができる。本発明で用いる表面処理反応は、簡単かつ安価である。なぜなら、表面処理を金属イオン水溶液中での撹拌のみで実施することができ、前述の特許文献6および特許文献7の提案のような窒素雰囲気などの特殊な環境を必要としないためである。また、特許文献9の提案と異なり、本発明のヒ素吸着性セルロース材料においては、ヒ素吸着性に寄与する成分の流出の恐れもない。 Alternatively, unmodified pulp having a larger fiber diameter than various cellulose nanofibers, chemically modified pulp such as pulp having a carboxy group introduced (TEMPO-pulp) using an oxidation reaction by TEMPO, or a cellulose material such as paper is used. In some cases, a greater effect can be obtained by finely defibrating and using these cellulose materials. For the chemical modification of pulp, the same method as for cellulose nanofibers can be used. The surface treatment reaction used in the present invention is simple and inexpensive. This is because the surface treatment can be carried out only by stirring in a metal ion aqueous solution, and does not require a special environment such as a nitrogen atmosphere as proposed in Patent Documents 6 and 7 described above. Further, unlike the proposal of Patent Document 9, in the arsenic-adsorbing cellulose material of the present invention, there is no risk of outflow of components contributing to arsenic adsorption.

本発明において、セルロース系微細繊維とは、β-グルコースが重合したセルロースを含む微細な繊維である。セルロース系微細繊維は、綿、木材など天然素材より加工される種々の形状のものが一般的に入手可能である。セルロース系微細繊維の具体例は、セルロースナノファイバー、パルプ和紙、洋紙、再生紙などを含む。加えて、バクテリアセルロースのような微生物の生産するセルロース材料もまた、本発明のセルロース系微細繊維として使用可能である。 In the present invention, the cellulosic fine fiber is a fine fiber containing cellulose obtained by polymerizing β-glucose. Cellulose-based fine fibers are generally available in various shapes processed from natural materials such as cotton and wood. Specific examples of cellulosic fine fibers include cellulose nanofibers, pulp Japanese paper, Western paper, recycled paper and the like. In addition, cellulosic materials produced by microorganisms such as bacterial cellulose can also be used as the cellulosic fine fibers of the present invention.

本発明において用いるセルロース系微細繊維の繊維径は50μm以下、特に30μm以下が好ましい。本発明のセルロース系微細繊維の代表例は、一般的な繊維径が100nm以下のセルロースナノファイバー、および一般的な繊維径が30μm程度のパルプを含む。繊維長、セルロースの化学変性などのセルロール系微細繊維のその他の特徴に関しては、特に制限はない。 The fiber diameter of the cellulosic fine fibers used in the present invention is preferably 50 μm or less, particularly preferably 30 μm or less. Representative examples of the cellulosic fine fibers of the present invention include cellulose nanofibers having a general fiber diameter of 100 nm or less, and pulp having a general fiber diameter of about 30 μm. There are no particular restrictions on other characteristics of cellol-based fine fibers such as fiber length and chemical modification of cellulose.

特に、本発明のセルロース系微細繊維の好ましい例は、未変性セルロースナノファイバー、バクテリアセルロース、ならびに、カルボキシメチル化セルロースなどの化学変性セルロースを含む。本発明における化学変性は、セルロース中のヒドロキシ基の酸化、カルボキシメチル化、リン酸エステル化、または、亜リン酸エステル化であってもよい。セルロース中のヒドロキシ基の酸化は、第1級アルコールの選択的酸化によるカルボキシ基の形成であることが好ましい。一方、レーヨンなどの再生繊維はそのままでは好ましく利用できない。しかしながら、TEMPOによる酸化反応を用い、再生繊維に対してカルボキシ基を導入したものなどは、本発明において利用可能である。 In particular, preferred examples of the cellulosic fine fibers of the present invention include unmodified cellulose nanofibers, bacterial cellulose, and chemically modified cellulose such as carboxymethylated cellulose. The chemical modification in the present invention may be oxidation of a hydroxy group in cellulose, carboxymethylation, phosphate esterification, or phosphite esterification. Oxidation of hydroxy groups in cellulose is preferably the formation of carboxy groups by selective oxidation of primary alcohols. On the other hand, recycled fibers such as rayon cannot be preferably used as they are. However, those in which a carboxy group is introduced into a regenerated fiber by using an oxidation reaction by TEMPO can be used in the present invention.

本発明において、化学変性セルロース系微細繊維としてナノファイバーまたはパルプ形態のカルボキシメチル化セルロースを用いる場合、カルボキシメチル化セルロースのグルコース単位当たりのカルボキシメチル置換度は特に限定されない。しかしながら、カルボキシメチル化セルロースのグルコース単位当たりのカルボキシメチル置換度は、0.02〜0.50であることが好ましい。セルロースにカルボキシメチル置換基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル置換基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのカルボキシメチル置換基が0.02より小さいと、カルボキシメチル化セルロースを十分にナノ解繊することができない。一方、グルコース単位当たりのカルボキシメチル置換基が0.50より大きいと、カルボキシメチル化セルロースが膨潤あるいは溶解するため、ナノファイバー形状のカルボキシメチル化セルロースを得られなくなる場合がある。セルロース系微細繊維のカルボキシメチル化は、モノクロロ酢酸ナトリウムなどの化合物を用いて実施することができる。 In the present invention, when nanofibers or pulp-shaped carboxymethylated cellulose is used as the chemically modified cellulosic fine fibers, the degree of carboxymethyl substitution per glucose unit of the carboxymethylated cellulose is not particularly limited. However, the degree of carboxymethyl substitution per glucose unit of carboxymethylated cellulose is preferably 0.02 to 0.50. By introducing a carboxymethyl substituent into cellulose, the celluloses electrically repel each other. Therefore, cellulose into which a carboxymethyl substituent has been introduced can be easily nano-defibrated. If the carboxymethyl substituent per glucose unit is less than 0.02, carboxymethylated cellulose cannot be sufficiently nano-defibrated. On the other hand, if the carboxymethyl substituent per glucose unit is larger than 0.50, the carboxymethylated cellulose swells or dissolves, so that a nanofiber-shaped carboxymethylated cellulose may not be obtained. Carboxymethylation of cellulosic fine fibers can be carried out using a compound such as sodium monochloroacetate.

本発明において、化学変性セルロース系微細繊維としてTEMPO−CNFまたはTEMPO−パルプを用いる場合、TEMPO酸化により得られるセルロースのカルボキシ基の導入量は特に限定されない。しかしながら、カルボキシ基およびその塩(以下これらをまとめて「カルボキシ基等」という)の量は、セルロース系微細繊維の乾燥質量に対し0.10mmol/g以上が好ましく、1.20mmol/g以上がより好ましく、1.40mmol/g以上がさらに好ましい。しかしながら、より多量のカルボキシ基等を得る条件は、酸化反応時の副反応であるセルロースの切断によって収率が低下するため、不経済となる。このため、カルボキシ基等の量の上限は、3.00mmol/g以下が好ましく、2.00mmol/g以下がより好ましい。 In the present invention, when TEMPO-CNF or TEMPO-pulp is used as the chemically modified cellulosic fine fiber, the amount of carboxy group introduced in the cellulose obtained by TEMPO oxidation is not particularly limited. However, the amount of the carboxy group and its salt (hereinafter collectively referred to as "carboxy group or the like") is preferably 0.10 mmol / g or more, more preferably 1.20 mmol / g or more, based on the dry mass of the cellulosic fine fiber. It is preferable, and more preferably 1.40 mmol / g or more. However, the condition for obtaining a larger amount of carboxy groups or the like is uneconomical because the yield decreases due to the cleavage of cellulose, which is a side reaction during the oxidation reaction. Therefore, the upper limit of the amount of the carboxy group or the like is preferably 3.00 mmol / g or less, and more preferably 2.00 mmol / g or less.

本発明において、セルロース材料に担持するヒ素と結合性のある金属としては、鉄、セリウム、およびジルコニウムが好ましい。セルロース系微細繊維への担持においては、たとえば、塩化第二鉄、硫酸鉄、硝酸鉄、硝酸二アンモニウムセリウム、硫酸セリウム、硝酸セリウム、塩化セリウム、塩化酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニルなどの水溶液を用いることができる。水溶液濃度は、0.1〜1質量%程度が望ましいが、その範囲に限定されるものではない。それ以上の濃度は、金属溶液中の金属イオン量が過剰となり不経済である。それ以下の濃度では、金属溶液中の金属イオン量が少なくなり、セルロース系微細繊維を大量の水溶液と接触させる必要がある。 In the present invention, iron, cerium, and zirconium are preferable as the metal that binds to arsenic supported on the cellulose material. For support on cellulose-based fine fibers, for example, an aqueous solution of ferric chloride, iron sulfate, iron nitrate, diammonium cerium nitrate, cerium sulfate, cerium nitrate, cerium chloride, zirconium chloride, zirconium sulfate, zirconyl nitrate, etc. is used. Can be used. The concentration of the aqueous solution is preferably about 0.1 to 1% by mass, but is not limited to that range. Higher concentrations are uneconomical because the amount of metal ions in the metal solution becomes excessive. At a concentration lower than that, the amount of metal ions in the metal solution decreases, and it is necessary to bring the cellulosic fine fibers into contact with a large amount of aqueous solution.

本発明において、セルロース系微細繊維への金属成分の担持形態は、系中で生成する金属水酸化物ナノ粒子の物理吸着のほかに、変性セルロースの場合にはカルボキシ基などによる金属キレート結合も含む。また、担持される金属成分は、十分なヒ素吸着効果を得るために、1質量%以上の量で存在することが好ましい。 In the present invention, the support form of the metal component on the cellulosic fine fiber includes not only the physical adsorption of the metal hydroxide nanoparticles generated in the system but also the metal chelate bond by a carboxy group or the like in the case of modified cellulose. .. Further, the supported metal component preferably exists in an amount of 1% by mass or more in order to obtain a sufficient arsenic adsorption effect.

本発明において、セルロース系微細繊維とヒ素と結合性のある金属イオンを含む水溶液を接触させる方法は特に限定されない。ただし、特に繊維の細かい未変性セルロースナノファイバーあるいは化学変性セルロースナノファイバーなどを用いる場合、超高速ホモジナイザー、超音波ホモジナイザー、高圧式ホモジナイザーなどを用いてナノファイバーを分散させ、効率良く金属イオンとセルロース材料を接触させることが好ましい。マグネチックスターラー等による撹拌では、繊維の細かいナノファイバーの均一分散が困難であるためである。 In the present invention, the method of contacting the cellulosic fine fibers with the aqueous solution containing metal ions having arsenic-binding properties is not particularly limited. However, especially when using unmodified cellulose nanofibers or chemically modified cellulose nanofibers with fine fibers, nanofibers are dispersed using an ultra-high-speed homogenizer, ultrasonic homogenizer, high-pressure homogenizer, etc., and metal ions and cellulose materials are efficiently used. It is preferable to bring them into contact with each other. This is because it is difficult to uniformly disperse the fine nanofibers by stirring with a magnetic stirrer or the like.

ヒ素吸着性セルロース材料をメンブレンフィルターで濾過して薄膜化し、次いで乾燥することにより、フィルム形状のヒ素吸着性セルロース材料を容易に成型できる。この時、熱ロールなどでフィルム形状の材料をプレス乾燥させることで、透明性が増加する。フィルム形状に成型されたヒ素吸着性セルロース材料は、再度水に浸漬させても溶解することはない。 A film-shaped arsenic-adsorbing cellulose material can be easily molded by filtering the arsenic-adsorbing cellulose material with a membrane filter to form a thin film, and then drying the material. At this time, the transparency is increased by press-drying the film-shaped material with a heat roll or the like. The arsenic-adsorbing cellulose material molded into a film shape does not dissolve even when immersed in water again.

吸着材をヒ素含有溶液と接触させる方法について、特に制限はない。バッチ処理の例は、(1)タンク中にヒ素含有溶液と本発明のヒ素吸着性セルロース材料を添加し、撹拌後、メンブレンフィルターで濾過する方法、および(2)タンク中にヒ素含有溶液とフィルム形状のヒ素吸着性セルロース材料とを添加し、ヒ素吸着後にヒ素吸着性セルロース材料フィルムを回収する方法を含む。ヒ素吸着性セルロース材料を水処理用カートリッジや水浄化用吸着塔などに充填して、通水方式で連続した水処理に使用することができる。 There is no particular limitation on the method of contacting the adsorbent with the arsenic-containing solution. Examples of batch processing include (1) a method of adding an arsenic-containing solution and the arsenic-adsorbing cellulose material of the present invention to a tank, stirring the mixture, and then filtering the mixture with a membrane filter, and (2) an arsenic-containing solution and a film in the tank. It includes a method of adding an arsenic-adsorbing cellulose material in a shape and recovering an arsenic-adsorbing cellulose material film after arsenic adsorption. An arsenic-adsorbing cellulose material can be filled in a water treatment cartridge, a water purification adsorption tower, or the like and used for continuous water treatment by a water flow method.

本発明ヒ素吸着性セルロース材料を用いるヒ素除去方法は、例えば鉄、アルミニウム、カルシウム、マグネシウムなどの金属の水酸化物とともに沈殿させる凝集沈殿法、あるいは、イオン交換樹脂、キレート樹脂、半透膜を用いた膜処理などの既知の処理方法と組み合わせて用いることもできる。 The arsenic removing method using the arsenic-adsorbing cellulose material of the present invention uses, for example, a coagulation precipitation method in which a metal hydroxide such as iron, aluminum, calcium, or magnesium is precipitated, or an ion exchange resin, a chelate resin, or a semipermeable membrane. It can also be used in combination with known treatment methods such as precipitated membrane treatment.

(実施例1)
TEMPO、臭化ナトリウム、および次亜塩素酸ナトリウムを用いて酸化処理したパルプを高圧ホモジナイザーにより解繊することにより、平均繊維径3nm、アスペクト比250、カルボキシ基量1.6mmol/gを有するTEMPO−CNFの1質量%水分散物を得た。1質量%水分散TEMPO−CNF10質量部、および0.2質量%塩化第二鉄水溶液100質量部(pH2.4)を予め混合し、ホモジナイザー(IKA−AERKE製 ULTRA−TURRAX T50basic)で10分間にわたって6000rpmで分散して、セルロースナノファイバーを均一に分散させるとともに鉄の担持を行った。この際に反応混合物の温度はホモジナイザーの撹拌により約55℃まで上昇した。室温で1時間冷却し、メンブレンフィルターでろ過し、薄膜とした後に100℃の乾燥機で乾燥し、鉄担持ヒ素吸着性TEMPO−CNFフィルムを得た。得られた試料を濃硝酸を用いた湿式分解により溶液化し、誘導結合プラズマ質量分析計(ICP−MS)を用いて試料中の鉄含有量を測定した。得られた鉄担持ヒ素吸着性TEMPO−CNFフィルムの鉄含有量は、14.4%であった。
(Example 1)
By defibrating pulp oxidized with TEMPO, sodium bromide, and sodium hypochlorite with a high-pressure homogenizer, TEMPO- having an average fiber diameter of 3 nm, an aspect ratio of 250, and a carboxy group amount of 1.6 mmol / g. A 1% by mass aqueous dispersion of CNF was obtained. 10 parts by mass of 1% by mass aqueous dispersion TEMPO-CNF and 100 parts by mass (pH 2.4) of a 0.2% by mass ferric chloride aqueous solution were mixed in advance, and a homogenizer (ULTRA-TURRAX T50basic manufactured by IKA-AERKE) was used for 10 minutes. It was dispersed at 6000 rpm to uniformly disperse the cellulose nanofibers and to carry iron. At this time, the temperature of the reaction mixture was raised to about 55 ° C. by stirring the homogenizer. The film was cooled at room temperature for 1 hour, filtered through a membrane filter to form a thin film, and then dried in a dryer at 100 ° C. to obtain an iron-supported arsenic-adsorbing TEMPO-CNF film. The obtained sample was liquefied by wet decomposition using concentrated nitrate, and the iron content in the sample was measured using an inductively coupled plasma mass spectrometer (ICP-MS). The iron content of the obtained iron-supported arsenic-adsorbing TEMPO-CNF film was 14.4%.

(実施例2)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液(pH2.0)を用いた以外は、実施例1と同様の操作によりセリウム担持ヒ素吸着性TEMPO−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、23.1%であった。
(Example 2)
Cerium-supported arium-adsorbing TEMPO-CNF was carried out in the same manner as in Example 1 except that a 0.2 mass% diammonium cerium nitrate aqueous solution (pH 2.0) was used instead of the 0.2 mass% ferric chloride aqueous solution. The film was synthesized. The cerium content in the sample measured by ICP-MS as in Example 1 was 23.1%.

(実施例3)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%塩化酸化ジルコニウム八水和物水溶液(pH2.5)を用いた以外は、実施例1と同様の操作によりジルコニウム担持ヒ素吸着性TEMPO−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のジルコニウムの含有量は、17.3%であった。
(Example 3)
Zirconium-supported arsenic adsorption by the same operation as in Example 1 except that a 0.2 mass% zirconium chloride octahydrate aqueous solution (pH 2.5) was used instead of the 0.2 mass% ferric chloride aqueous solution. A TEMPO-CNF film was synthesized. The zirconium content in the sample measured by ICP-MS as in Example 1 was 17.3%.

(実施例4)
製紙用パルプを処理圧150MPaの超高圧ホモジナイザーで10回処理して未変性CNFの1質量%水分散物を得た。1質量%水分散TEMPO−CNFのかわりに1質量%水分散未変性CNFを用いた以外は、実施例1と同様の操作により鉄担持ヒ素吸着性未変性CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中の鉄の含有量は、14.9%であった。
(Example 4)
The papermaking pulp was treated 10 times with an ultra-high pressure homogenizer having a treatment pressure of 150 MPa to obtain a 1% by mass aqueous dispersion of unmodified CNF. An iron-supported arsenic-adsorbing unmodified CNF film was synthesized by the same procedure as in Example 1 except that 1 mass% water-dispersed unmodified CNF was used instead of 1 mass% water-dispersed TEMPO-CNF. The iron content in the sample measured by ICP-MS as in Example 1 was 14.9%.

(実施例5)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液を用いた以外は、実施例4と同様の操作によりセリウム担持ヒ素吸着性未変性CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、19.8%であった。
(Example 5)
A cerium-supported arsenic-adsorbing unmodified CNF film was synthesized by the same procedure as in Example 4 except that a 0.2 mass% diammonium cerium nitrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. The cerium content in the sample measured by ICP-MS as in Example 1 was 19.8%.

(実施例6)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%塩化酸化ジルコニウム八水和物水溶液を用いた以外は、実施例4と同様の操作によりジルコニウム担持ヒ素吸着性未変性CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のジルコニウム含有量は、2.16%であった。
(Example 6)
A zirconium-supported arsenic-adsorbing unmodified CNF film was prepared by the same operation as in Example 4 except that a 0.2 mass% zirconium chloride octahydrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. Synthesized. The zirconium content in the sample measured by ICP-MS as in Example 1 was 2.16%.

(実施例7)
モノクロロ酢酸ナトリウムを用いてカルボキシメチル化したパルプを高圧ホモジナイザーにより解繊することにより、平均繊維径15nm、アスペクト比50、カルボキシメチル置換度0.25を有するCM−CNFの1質量%水分散物を得た。1質量%水分散TEMPO−CNFのかわりに1質量%水分散CM−CNFを用い、0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液を用いた以外は実施例1と同様の操作によりセリウム担持ヒ素吸着性CM−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、35.3%であった。
(Example 7)
By defibrating pulp carboxymethylated with sodium monochloroacetate with a high-pressure homogenizer, a 1% by mass aqueous dispersion of CM-CNF having an average fiber diameter of 15 nm, an aspect ratio of 50, and a carboxymethyl substitution degree of 0.25 was obtained. Obtained. Except that 1% by mass water-dispersed CM-CNF was used instead of 1% by mass aqueous dispersion TEMPO-CNF, and 0.2% by mass diammonium cerium nitrate aqueous solution was used instead of 0.2% by mass ferric chloride aqueous solution. A cerium-supported arsenic-adsorbing CM-CNF film was synthesized by the same operation as in Example 1. The cerium content in the sample measured by ICP-MS as in Example 1 was 35.3%.

(実施例8)
0.2質量%硝酸二アンモニウムセリウム水溶液のかわりに0.2質量%塩化酸化ジルコニウム八水和物水溶液を用いた以外は、実施例7と同様の操作によりジルコニウム担持ヒ素吸着性CM−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中のジルコニウム含有量は、11.7%であった。
(Example 8)
A zirconium-supported arsenic-adsorbing CM-CNF film was prepared in the same manner as in Example 7 except that a 0.2 mass% zirconium chloride octahydrate aqueous solution was used instead of the 0.2 mass% diammonium cerium nitrate aqueous solution. Synthesized. The zirconium content in the sample measured by ICP-MS as in Example 1 was 11.7%.

(実施例9)
TEMPO、臭化ナトリウム、および次亜塩素酸ナトリウムを用いてパルプを酸化処理し、平均繊維径30μm、長さ1〜2mm、約1.6mmol/gのカルボキシ基量および76.7%の水分量を有するTEMPO−パルプを得た。前述のTEMPO−パルプ0.43質量部を純水1質量部の中でかき混ぜて、解繊物を得た。前述の解繊物および0.2質量%塩化第二鉄水溶液100質量部を用いて実施例1と同様の操作を行い、鉄担持ヒ素吸着性TEMPO−パルプを合成した。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、13.1%であった。
(Example 9)
Pulp was oxidized with TEMPO, sodium bromide, and sodium hypochlorite to produce an average fiber diameter of 30 μm, a length of 1-2 mm, a carboxy group content of about 1.6 mmol / g, and a water content of 76.7%. TEMPO-pulp having the above was obtained. 0.43 parts by mass of the above-mentioned TEMPO-pulp was stirred in 1 part by mass of pure water to obtain a defibrated product. The same operation as in Example 1 was carried out using the above-mentioned defibrated product and 100 parts by mass of a 0.2 mass% ferric chloride aqueous solution to synthesize iron-supported arsenic-adsorbing TEMPO-pulp. The iron content in the sample measured by ICP-MS as in Example 1 was 13.1%.

(実施例10)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液を用いた以外は、実施例9と同様の操作によりセリウム担持ヒ素吸着性TEMPO−パルプを合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、12.5%であった。
(Example 10)
A cerium-supported arsenic-adsorbing TEMPO-pulp was synthesized by the same procedure as in Example 9 except that a 0.2 mass% diammonium cerium nitrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. The cerium content in the sample measured by ICP-MS as in Example 1 was 12.5%.

(実施例11)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%塩化酸化ジルコニウム八水和物水溶液を用いた以外は、実施例9と同様の操作によりジルコニウム担持ヒ素吸着性TEMPO−パルプを合成した。実施例1と同様にICP−MSで測定した試料中のジルコニウム含有量は、12.5%であった。
(Example 11)
Zirconium-supported arsenic-adsorbing TEMPO-pulp was synthesized by the same operation as in Example 9 except that a 0.2 mass% zirconium chloride octahydrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. did. The zirconium content in the sample measured by ICP-MS as in Example 1 was 12.5%.

(実施例12)
平均繊維径30μm、長さ約1〜2mm、水分量54.3%を有する未変性パルプ0.22質量部を純水1質量部の中でかき混ぜて、解繊物を得た。解繊物を、0.2質量%塩化第二鉄水溶液100質量部に浸漬し、マグネティックスターラーで撹拌しながらオイルバスを用いて55℃で1時間加熱した。加熱後、自然冷却した試料を濾過、洗浄した。洗浄後の試料を、100℃の乾燥機で乾燥して、鉄担持ヒ素吸着性未変性パルプを得た。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、11.8%であった。
(Example 12)
0.22 parts by mass of unmodified pulp having an average fiber diameter of 30 μm, a length of about 1 to 2 mm, and a water content of 54.3% was stirred in 1 part by mass of pure water to obtain a defibrated product. The defibrated product was immersed in 100 parts by mass of a 0.2 mass% ferric chloride aqueous solution and heated at 55 ° C. for 1 hour using an oil bath while stirring with a magnetic stirrer. After heating, the naturally cooled sample was filtered and washed. The washed sample was dried in a dryer at 100 ° C. to obtain iron-supported arsenic-adsorbing unmodified pulp. The iron content in the sample measured by ICP-MS as in Example 1 was 11.8%.

(実施例13)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液を用いた以外は、実施例12と同様の操作によりセリウム担持ヒ素吸着性未変性パルプを合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、3.5%であった。
(Example 13)
A cerium-supported arsenic-adsorbing unmodified pulp was synthesized by the same operation as in Example 12 except that a 0.2 mass% diammonium cerium nitrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. The cerium content in the sample measured by ICP-MS as in Example 1 was 3.5%.

(実施例14)
0.2質量%塩化第二鉄水溶液のかわりに0.1質量%塩化第二鉄水溶液(pH2.6)を用いた以外は、実施例1と同様の操作により鉄担持ヒ素吸着性TEMPO−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、8.3%であった。
(Example 14)
Iron-supported arsenic-adsorbing TEMPO-CNF was carried out in the same manner as in Example 1 except that a 0.1 mass% ferric chloride aqueous solution (pH 2.6) was used instead of the 0.2 mass% ferric chloride aqueous solution. The film was synthesized. The iron content in the sample measured by ICP-MS as in Example 1 was 8.3%.

(実施例15)
0.2質量%塩化第二鉄水溶液のかわりに0.4質量%塩化第二鉄水溶液(pH2.2)を用いた以外は、実施例1と同様の操作により鉄担持TEMPO−CNFフィルムを得た。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、14.1%であった。
(Example 15)
An iron-supported TEMPO-CNF film was obtained by the same operation as in Example 1 except that a 0.4 mass% ferric chloride aqueous solution (pH 2.2) was used instead of the 0.2 mass% ferric chloride aqueous solution. It was. The iron content in the sample measured by ICP-MS as in Example 1 was 14.1%.

(実施例16)
0.2質量%塩化第二鉄水溶液のかわりに0.6質量%塩化第二鉄水溶液(pH2.1)を用いた以外は、実施例1と同様の操作により鉄担持TEMPO−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、11.2%であった。
(Example 16)
An iron-supported TEMPO-CNF film was synthesized by the same operation as in Example 1 except that a 0.6 mass% ferric chloride aqueous solution (pH 2.1) was used instead of the 0.2 mass% ferric chloride aqueous solution. did. The iron content in the sample measured by ICP-MS as in Example 1 was 11.2%.

(実施例17)
0.2質量%塩化第二鉄水溶液のかわりに0.8質量%塩化第二鉄水溶液(pH2.0)を用いた以外は、実施例1と同様の操作により鉄担持TEMPO−CNFフィルムを合成した。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、4.8%であった。
(Example 17)
An iron-supported TEMPO-CNF film was synthesized by the same operation as in Example 1 except that a 0.8 mass% ferric chloride aqueous solution (pH 2.0) was used instead of the 0.2 mass% ferric chloride aqueous solution. did. The iron content in the sample measured by ICP-MS as in Example 1 was 4.8%.

(比較例1)
3.3dtexの繊度および76mmの長さを有するレーヨン繊維0.1質量部を0.2質量%塩化第二鉄水溶液100質量部に浸漬し、オイルバスを用いて55℃で1時間加熱した。加熱後、自然冷却した試料を濾過、洗浄した。洗浄後の試料を100℃の乾燥機で乾燥して、鉄担持レーヨン繊維を得た。実施例1と同様にICP−MSで測定した試料中の鉄含有量は、0.6%であった。
(Comparative Example 1)
0.1 part by mass of rayon fiber having a fineness of 3.3 dtex and a length of 76 mm was immersed in 100 parts by mass of a 0.2 mass% ferric chloride aqueous solution, and heated at 55 ° C. for 1 hour using an oil bath. After heating, the naturally cooled sample was filtered and washed. The washed sample was dried in a dryer at 100 ° C. to obtain iron-supported rayon fibers. The iron content in the sample measured by ICP-MS as in Example 1 was 0.6%.

(比較例2)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%硝酸二アンモニウムセリウム水溶液を用いた以外は、比較例1と同様の操作によりセリウム担持レーヨン繊維を合成した。実施例1と同様にICP−MSで測定した試料中のセリウム含有量は、0.9%であった。
(Comparative Example 2)
A cerium-supported rayon fiber was synthesized by the same operation as in Comparative Example 1 except that a 0.2 mass% diammonium cerium nitrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. The cerium content in the sample measured by ICP-MS as in Example 1 was 0.9%.

(比較例3)
0.2質量%塩化第二鉄水溶液のかわりに0.2質量%塩化酸化ジルコニウム八水和物水溶液を用いた以外は、比較例1と同様の操作によりジルコニウム担持レーヨン繊維を合成した。実施例1と同様にICP−MSで測定した試料中のジルコニウム含有量は、0.8%であった。
(Comparative Example 3)
Zirconium-supported rayon fibers were synthesized by the same procedure as in Comparative Example 1 except that a 0.2 mass% zirconium chloride octahydrate aqueous solution was used instead of the 0.2 mass% ferric chloride aqueous solution. The zirconium content in the sample measured by ICP-MS as in Example 1 was 0.8%.

(比較例4)
実施例1で得た1質量%水分散TEMPO−CNF10質量部と、純水100質量部とをホモジナイザーで10分間にわたって6000rpmで分散して、均一な分散溶液とした。得られた分散溶液を室温で1時間冷却し、メンブレンフィルターでろ過し、薄膜とした。得られた薄膜を100℃の乾燥機で乾燥し、TEMPO−CNFフィルムを得た。
(Comparative Example 4)
10 parts by mass of 1% by mass aqueous dispersion TEMPO-CNF obtained in Example 1 and 100 parts by mass of pure water were dispersed with a homogenizer at 6000 rpm for 10 minutes to obtain a uniform dispersion solution. The obtained dispersion solution was cooled at room temperature for 1 hour and filtered through a membrane filter to obtain a thin film. The obtained thin film was dried in a dryer at 100 ° C. to obtain a TEMPO-CNF film.

(比較例5)
1質量%水分散TEMPO−CNFのかわりに実施例4で得た1質量%水分散未変性CNFを用いた以外は、比較例4と同様の操作により未変性CNFフィルムを得た。
(Comparative Example 5)
An unmodified CNF film was obtained by the same operation as in Comparative Example 4 except that the 1% by mass water-dispersed unmodified CNF obtained in Example 4 was used instead of the 1% by mass water-dispersed TEMPO-CNF.

(比較例6)
1質量%水分散TEMPO−CNFのかわりに実施例7で得た1質量%水分散CM−CNFを用いた以外は、比較例4と同様の操作によりCM−CNFフィルムを得た。
(Comparative Example 6)
A CM-CNF film was obtained by the same operation as in Comparative Example 4 except that the 1 mass% aqueous dispersion CM-CNF obtained in Example 7 was used instead of the 1 mass% aqueous dispersion TEMPO-CNF.

(比較例7)
実施例9と同様の手順により、TEMPO−パルプ解繊物を得た。TEMPO−パルプ解繊物と、純水100質量部とをホモジナイザーで10分間にわたって6000rpmで分散して、均一な分散溶液とした。得られた分散溶液を室温で1時間冷却し、メンブレンフィルターでろ過し、薄膜とした。得られた薄膜を100℃の乾燥機で乾燥し、TEMPO−パルプからなる紙を得た。
(Comparative Example 7)
A TEMPO-pulp defibrated product was obtained by the same procedure as in Example 9. The TEMPO-pulp defibrated product and 100 parts by mass of pure water were dispersed with a homogenizer at 6000 rpm for 10 minutes to obtain a uniform dispersion solution. The obtained dispersion solution was cooled at room temperature for 1 hour and filtered through a membrane filter to obtain a thin film. The obtained thin film was dried in a dryer at 100 ° C. to obtain a paper made of TEMPO-pulp.

(比較例8)
実施例12で得た未変性パルプ解繊物を、マグネティックスターラーで撹拌しながらオイルバスを用いて55℃で1時間加熱した。加熱後、自然冷却した試料を濾過、洗浄した後に100℃の乾燥機で乾燥し未変性パルプからなる紙を得た。
(Comparative Example 8)
The unmodified pulp defibrated product obtained in Example 12 was heated at 55 ° C. for 1 hour using an oil bath while stirring with a magnetic stirrer. After heating, the naturally cooled sample was filtered, washed, and then dried in a dryer at 100 ° C. to obtain a paper made of unmodified pulp.

(比較例9)
3.3dtexの繊度および76mmの長さを有するレーヨン繊維0.1質量部を純水100質量部に浸漬し、オイルバスを用いて55℃で1時間加熱した。加熱後、自然冷却した試料を濾過、洗浄した。洗浄後の試料を100℃の乾燥機で乾燥して、比較用レーヨン繊維を得た。
(Comparative Example 9)
0.1 part by mass of rayon fiber having a fineness of 3.3 dtex and a length of 76 mm was immersed in 100 parts by mass of pure water and heated at 55 ° C. for 1 hour using an oil bath. After heating, the naturally cooled sample was filtered and washed. The washed sample was dried in a dryer at 100 ° C. to obtain rayon fibers for comparison.

(ヒ素吸着試験1)
和光純薬製ヒ素標準液(1,000mg/L)を用いて、実施例1〜13および比較例1〜9で合成した材料のヒ素吸着性能評価を行った。ヒ素濃度はICP−MSを使用して測定した。予め3mg/Lに希釈し、中性に調整したヒ素溶液のヒ素濃度を測定し、初期ヒ素濃度とした。このヒ素溶液10mlに10mgの試料を添加し、室温で15時間振とうした後、試料を取り除いた。次いで、溶液中のヒ素濃度を測定し、最終ヒ素濃度とした。ヒ素除去率は下記の式により算出した。
ヒ素除去率(%)={(初期ヒ素濃度−最終ヒ素濃度)/初期ヒ素濃度×100}
試験の結果を第1表にまとめる。
(Arsenic adsorption test 1)
The arsenic adsorption performance of the materials synthesized in Examples 1 to 13 and Comparative Examples 1 to 9 was evaluated using an arsenic standard solution (1,000 mg / L) manufactured by Wako Pure Chemical Industries. Arsenic concentration was measured using ICP-MS. The arsenic concentration of the arsenic solution diluted to 3 mg / L in advance and adjusted to neutral was measured and used as the initial arsenic concentration. A 10 mg sample was added to 10 ml of this arsenic solution, shaken at room temperature for 15 hours, and then the sample was removed. Next, the arsenic concentration in the solution was measured and used as the final arsenic concentration. The arsenic removal rate was calculated by the following formula.
Arsenic removal rate (%) = {(initial arsenic concentration-final arsenic concentration) / initial arsenic concentration x 100}
The test results are summarized in Table 1.

(ヒ素吸着試験2)
実施例1及び実施例14〜17で合成した材料のヒ素吸着性能評価を、初期ヒ素濃度2mg/Lのヒ素溶液を用いてヒ素吸着試験1と同様の方法で行った。
試験の結果を第2表にまとめる。
(Arsenic adsorption test 2)
The arsenic adsorption performance of the materials synthesized in Examples 1 and 14 to 17 was evaluated using an arsenic solution having an initial arsenic concentration of 2 mg / L in the same manner as in the arsenic adsorption test 1.
The test results are summarized in Table 2.

Figure 2019172164
Figure 2019172164

Figure 2019172164
Figure 2019172164

Claims (7)

セルロース系微細繊維にヒ素吸着性を有する金属成分を担持させたヒ素吸着性セルロース材料。 An arsenic-adsorbing cellulose material in which a metal component having arsenic-adsorbing property is supported on cellulosic fine fibers. 前記セルロース系微細繊維が、未変性セルロースナノファイバーおよび化学変性セルロースナノファイバーからなる群から選択される少なくとも1種である請求項1に記載のヒ素吸着性セルロース材料。 The arsenic-adsorbing cellulose material according to claim 1, wherein the cellulosic fine fibers are at least one selected from the group consisting of unmodified cellulose nanofibers and chemically modified cellulose nanofibers. 前記セルロース系微細繊維が、未変性パルプ、化学変性パルプ、およびバクテリアセルロースからなる群から選択される少なくとも1種である請求項1に記載のヒ素吸着性セルロース材料。 The arsenic-adsorbing cellulose material according to claim 1, wherein the cellulosic fine fibers are at least one selected from the group consisting of unmodified pulp, chemically modified pulp, and bacterial cellulose. 前記化学変性が、セルロース中のヒドロキシ基の酸化、カルボキシメチル化、リン酸エステル化、および亜リン酸エステル化からなる群から選択される少なくとも1種である請求項2または請求項3に記載のヒ素吸着性セルロース材料。 The second or third claim, wherein the chemical modification is at least one selected from the group consisting of oxidation, carboxymethylation, phosphate esterification, and phosphite esterification of hydroxy groups in cellulose. Phosphite adsorptive cellulose material. 前記セルロース系微細繊維が、セルロース中のヒドロキシ基の酸化によって得られる酸化セルロースナノファイバーまたは酸化パルプであり、カルボキシ基の量は、前記セルロース系微細繊維の乾燥質量に対して0.10mmol/g〜3.00mmol/gである請求項1に記載のヒ素吸着性セルロース材料。 The cellulosic fine fibers are oxidized cellulose nanofibers or oxidized pulp obtained by oxidizing hydroxy groups in cellulose, and the amount of carboxy groups is 0.10 mmol / g to the dry mass of the cellulosic fine fibers. The arsenic-adsorbing cellulose material according to claim 1, which is 3.00 mmol / g. 前記セルロース系微細繊維が、セルロース中のヒドロキシ基のカルボキシメチル化によって得られるカルボキシメチル化セルロースナノファイバーまたはカルボキシメチル化パルプであり、グルコース単位当たりのカルボキシメチル置換度が0.02〜0.5である請求項1に記載のヒ素吸着性セルロース材料。 The cellulosic fine fibers are carboxymethylated cellulose nanofibers or carboxymethylated pulp obtained by carboxymethylation of hydroxy groups in cellulose, and the degree of carboxymethyl substitution per glucose unit is 0.02 to 0.5. The arsenic-adsorbing cellulose material according to claim 1. 前記金属成分が、鉄、セリウム、およびジルコニウムからなる群から選択される少なくとも1種であり、さらに前記金属成分が1.0質量%以上の量で担持されている請求項1から請求項6のいずれか一項に記載のヒ素吸着性セルロース材料。
Claims 1 to 6 wherein the metal component is at least one selected from the group consisting of iron, cerium, and zirconium, and the metal component is further supported in an amount of 1.0% by mass or more. The arsenic-adsorbing cellulose material according to any one item.
JP2020505006A 2018-03-07 2019-03-04 Arsenic-adsorbing cellulose material Active JP7319619B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018041126 2018-03-07
JP2018041126 2018-03-07
PCT/JP2019/008317 WO2019172164A1 (en) 2018-03-07 2019-03-04 Arsenic-adsorbent cellulose material

Publications (2)

Publication Number Publication Date
JPWO2019172164A1 true JPWO2019172164A1 (en) 2021-03-18
JP7319619B2 JP7319619B2 (en) 2023-08-02

Family

ID=67847390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020505006A Active JP7319619B2 (en) 2018-03-07 2019-03-04 Arsenic-adsorbing cellulose material

Country Status (2)

Country Link
JP (1) JP7319619B2 (en)
WO (1) WO2019172164A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor
WO2023210025A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025540A (en) * 1983-07-22 1985-02-08 Japan Metals & Chem Co Ltd Humic acid type adsorbent
JPS63100936A (en) * 1986-08-04 1988-05-06 アイソ−クリア− システムズ コ−ポレ−シヨン Removal of heavy metal and heavy-metallic radioactive isotope from liquid
JP2003225559A (en) * 2001-06-21 2003-08-12 Japan Science & Technology Corp Adsorbent made from plant biomass
JP2007000752A (en) * 2005-06-23 2007-01-11 Gp One Corp High-speed arsenic adsorbing material and its producing method
WO2010095222A1 (en) * 2009-02-18 2010-08-26 株式会社Nhvコーポレーション Zirconium-loaded particulate adsorbent and method for producing the same
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2017225964A (en) * 2016-06-15 2017-12-28 有限会社シングレット開発 Environmental cleanup tool using tennis ball, manufacturing method, use method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025540A (en) * 1983-07-22 1985-02-08 Japan Metals & Chem Co Ltd Humic acid type adsorbent
JPS63100936A (en) * 1986-08-04 1988-05-06 アイソ−クリア− システムズ コ−ポレ−シヨン Removal of heavy metal and heavy-metallic radioactive isotope from liquid
JP2003225559A (en) * 2001-06-21 2003-08-12 Japan Science & Technology Corp Adsorbent made from plant biomass
JP2007000752A (en) * 2005-06-23 2007-01-11 Gp One Corp High-speed arsenic adsorbing material and its producing method
WO2010095222A1 (en) * 2009-02-18 2010-08-26 株式会社Nhvコーポレーション Zirconium-loaded particulate adsorbent and method for producing the same
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2017225964A (en) * 2016-06-15 2017-12-28 有限会社シングレット開発 Environmental cleanup tool using tennis ball, manufacturing method, use method and application thereof

Also Published As

Publication number Publication date
WO2019172164A1 (en) 2019-09-12
JP7319619B2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
Li et al. Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms
Dong et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions
Tirtom et al. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution
Niu et al. Novel recyclable adsorbent for the removal of copper (II) and lead (II) from aqueous solution
Usman et al. Environmentally friendly fabrication of new β-Cyclodextrin/ZrO2 nanocomposite for simultaneous removal of Pb (II) and BPA from water
Sirviö et al. Bisphosphonate nanocellulose in the removal of vanadium (V) from water
Zhang et al. Highly effective lead (II) removal by sustainable alkaline activated β-lactoglobulin nanofibrils from whey protein
JP4669584B2 (en) N-oxyl compound recovery and reuse method
Zhang et al. Highly efficient phosphate sequestration in aqueous solutions using nanomagnesium hydroxide modified polystyrene materials
Chai et al. Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As (V) removal
Kim et al. Highly efficient Cr (VI) remediation by cationic functionalized nanocellulose beads
Santos et al. Tannin‐adsorbents for water decontamination and for the recovery of critical metals: current state and future perspectives
Magrì et al. Titanate fibroin nanocomposites: a novel approach for the removal of heavy-metal ions from water
Duan et al. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent
Córdova et al. Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb (II) and Cd (II) from aqueous solutions
Anirudhan et al. Development of an amino functionalized glycidylmethacrylate-grafted-titanium dioxide densified cellulose for the adsorptive removal of arsenic (V) from aqueous solutions
Dwivedi et al. Mechanistic investigation on the green recovery of ionic, nanocrystalline, and metallic gold by two anionic nanocelluloses
Rizwan et al. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices
JP7319619B2 (en) Arsenic-adsorbing cellulose material
Wang et al. Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents
Zheng et al. Sludge-derived biopolymers for in-situ synthesis of magnetic ALE-Fe-Zr composites for phosphate removal
Sinha et al. Prospects on arsenic remediation using organic cellulose-based adsorbents
Hamed et al. Cellulose Powder Functionalized with Phenyl Biguanide: Synthesis, Cross-Linking, Metal Adsorption, and Molecular Docking
Shiraghaei Koutenaei et al. Ziziphus spina-christi leaves biochar decorated with Fe3O4 and SDS for sorption of chromium (III) from aqueous solution
Ciopec et al. Equilibrium and kinetic studies of the adsorption of Cr (III) ions onto Amberlite XAD-8 impregnated with Di-(2-ethylhexyl) Phosphoric Acid (DEHPA)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230711

R150 Certificate of patent or registration of utility model

Ref document number: 7319619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150