WO2023210025A1 - Complex and manufacturing method therefor - Google Patents

Complex and manufacturing method therefor Download PDF

Info

Publication number
WO2023210025A1
WO2023210025A1 PCT/JP2022/019877 JP2022019877W WO2023210025A1 WO 2023210025 A1 WO2023210025 A1 WO 2023210025A1 JP 2022019877 W JP2022019877 W JP 2022019877W WO 2023210025 A1 WO2023210025 A1 WO 2023210025A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
arsenic
microfibrous cellulose
composite
water
Prior art date
Application number
PCT/JP2022/019877
Other languages
French (fr)
Japanese (ja)
Inventor
浩 長谷川
優斗 阪井
航季 湯之下
圭佑 中窪
麻彩実 眞塩
クオ ホン ウォン
克 遠藤
隆 新井
陽子 三橋
Original Assignee
国立大学法人金沢大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 株式会社ダイセル filed Critical 国立大学法人金沢大学
Priority to PCT/JP2022/019877 priority Critical patent/WO2023210025A1/en
Priority to PCT/JP2023/016989 priority patent/WO2023210831A1/en
Publication of WO2023210025A1 publication Critical patent/WO2023210025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present disclosure relates to a novel composite, a method for producing the composite, an arsenic adsorbent containing the composite, a method for producing water using the arsenic adsorbent, and a water purification device equipped with the arsenic adsorbent.
  • arsenic Although arsenic is widely distributed in the environment, it is highly toxic and is known to cause various diseases and harm health when ingested even in minute amounts over a long period of time.
  • Patent Document 1 describes that an adsorbent obtained by mixing ferric hydroxide with a styrene-acrylic copolymer binder and pelletizing the mixture is capable of adsorbing and removing arsenic (III) from strongly acidic water. It is stated that it is useful.
  • Arsenic (V) is adsorbed on the surface of iron, but because the ferric hydroxide supported on the binder dissolves in water, it is difficult to secure a wide adsorption surface for arsenic (V). there were.
  • ferric hydroxide is supported by bonding to the carboxyl group of the styrene-acrylic acid copolymer binder, it is difficult to increase the amount of iron supported per unit weight, and arsenic (V) is efficiently It was not possible to adsorb it well.
  • an object of the present disclosure is to provide a novel composite that has the effect of efficiently adsorbing and recovering arsenic (V) dissolved in water. Another object of the present disclosure is to provide a method for producing the composite. Another object of the present disclosure is to provide a novel arsenic adsorbent that can efficiently adsorb and recover arsenic (V) dissolved in water. Another object of the present disclosure is to provide a method for producing purified water using the arsenic adsorbent. Another object of the present disclosure is to provide a water purification device equipped with the arsenic adsorbent.
  • Microfibrous cellulose has an extremely large surface area and also has three hydroxyl groups per constituent unit to which iron can be bonded, so it is possible to increase the amount of iron supported per unit weight. 3. When metal particles are supported on the surface of microfibrous cellulose, agglomeration of metal particles can be suppressed, and a wide surface area of metal particles, which is effective in adsorbing arsenic, can be secured.3. Microfibrous cellulose has excellent hydrophilicity, and when immersed in water, water easily penetrates into the microfibrous cellulose. Therefore, arsenic dissolved in water is efficiently transferred to the metal particles supported on the microfibrous cellulose. Being Adsorbed The present disclosure has been completed based on these findings.
  • the present disclosure provides a composite having a structure in which metal particles containing zero-valent and/or trivalent iron are supported on the surface of microfibrous cellulose.
  • the present disclosure also provides the composite, in which the total supported amount of zero-valent and trivalent iron (in terms of iron element) is 1 to 100 mmol per gram of microfibrous cellulose.
  • the present disclosure also provides the composite, wherein the microfibrous cellulose is microfibrillated cellulose.
  • the metal particles contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium, as well as zero-valent and/or trivalent iron.
  • the molar ratio of the iron (in terms of iron element) and the oxide, hydroxide, or oxyhydroxide of the metal (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is 1 to 100.
  • the present disclosure also provides the composite, wherein the trivalent iron is at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide.
  • the present disclosure also provides the composite, wherein the metal particles have a volume-equivalent spherical particle diameter of 1 ⁇ m or more.
  • the present disclosure also provides a method for producing a composite, which comprises producing the composite through Reaction 1 or Reaction 2 below.
  • Reaction 1 Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound
  • Reaction 2 Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles.
  • the present disclosure also provides an arsenic adsorbent comprising the composite.
  • the present disclosure also provides a method for producing purified water, in which purified water is obtained by treating arsenic-contaminated water with the arsenic adsorbent.
  • the present disclosure also provides a water purification device including the arsenic adsorbent.
  • the composite of the present disclosure has a structure in which metal particles having an arsenic-adsorbing surface are dispersed and supported on microfibrous cellulose having excellent hydrophilicity and an extremely large surface area. Therefore, when the composite is immersed in water, arsenic dissolved in water can be efficiently adsorbed and recovered. Furthermore, the complex can selectively adsorb and recover arsenic even if phosphorus (P), which has chemical properties similar to arsenic, coexists. Furthermore, the above-mentioned composite does not cause any emission problems even when burned, and by burning it to reduce its volume after adsorbing arsenic, it is possible to significantly reduce the cost of disposal such as landfilling. . Therefore, the composite is extremely useful as an arsenic adsorbent.
  • FIG. 3 is a diagram showing the relationship between the As(V) adsorption rate and pH of the composite (1) obtained in the example.
  • FIG. 2 is a diagram showing the As(V) adsorption rate of the complex (1) obtained in Examples in the presence of anions.
  • FIG. 3 is a diagram showing a SEM image of composite (2) obtained in Example.
  • the composite of the present disclosure has a structure in which metal particles containing zero-valent iron or trivalent iron are supported on the surface of microfibrous cellulose.
  • the composite includes at least one metal particle selected from metal particles containing zero-valent iron, metal particles containing trivalent iron, and metal particles containing zero-valent iron and trivalent iron. .
  • the trivalent iron compounds include, for example, water-insoluble compounds such as iron oxide (Fe 2 O 3 ), iron hydroxide (Fe(OH) 3 ), and iron oxyhydroxide (FeOOH).
  • the metal particles contain at least zero-valent iron (i.e., metallic iron) or trivalent iron as an iron component, and may contain other iron components, but the iron component contained in the metal particles (In other words, the total amount of iron-containing compounds), the total content of zero-valent iron and trivalent iron is, for example, 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more. , particularly preferably 80% by weight or more, most preferably 90% by weight or more, particularly preferably 95% by weight or more. Note that the upper limit is 100% by weight.
  • the metal particles may contain other metal components in addition to the iron component, such as zirconium oxide, zirconium hydroxide, zirconium oxyhydroxide, titanium oxide, titanium hydroxide, titanium oxyhydroxide, etc. It may contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium. Further, it may contain a combination of two or more selected from oxides, hydroxides, and oxyhydroxides of the metals.
  • the metal oxide, hydroxide, or oxyhydroxide has excellent affinity for arsenic (eg, pentavalent arsenic). Therefore, if the oxide, hydroxide, or oxyhydroxide of the metal is supported on the surface of the microfibrous cellulose together with the iron component, the arsenic adsorption power can be further improved.
  • the metal particles contain zero-valent and/or trivalent iron and an oxide, hydroxide, or oxyhydroxide of the metal, the iron (iron element equivalent value), the oxide of the metal, and water
  • the molar ratio [iron/(zirconium+titanium)] of the oxide or oxyhydroxide (metal element equivalent value; if two or more types are contained, the total amount thereof) is, for example, 1 to 100.
  • the upper limit of the molar ratio is preferably 50, more preferably 30, even more preferably 20, particularly preferably 15.
  • the lower limit of the molar ratio is preferably 2, particularly preferably 3, and most preferably 5.
  • the shape of the metal particles is not particularly limited, and examples thereof include spherical shapes (true spheres, substantially true spheres, elliptical spheres, etc.), polyhedral shapes, needle shapes, plate shapes, scale shapes, irregular shapes, and the like.
  • the particle diameter of the volume equivalent sphere of the metal particles (hereinafter sometimes referred to as "volume equivalent diameter") is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, particularly preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less. .
  • the lower limit of the particle diameter is, for example, 1 ⁇ m.
  • the particle diameter can be determined by SEM observation or image analysis.
  • the total supported amount of zero-valent and trivalent iron (in terms of iron element) in 1 g of the composite (or the total of the microfibrous cellulose and the metal particles contained in the composite) is, for example, 1 to 100 mmol. It is.
  • the upper limit of the supported amount is preferably 80 mmol, more preferably 70 mmol, still more preferably 60 mmol, even more preferably 40 mmol, particularly preferably 30 mmol, most preferably 10 mmol, particularly preferably 5 mmol.
  • the lower limit of the supported amount is preferably 1.5 mmol, particularly preferably 2 mmol, and most preferably 3 mmol.
  • the total amount of zero-valent and trivalent iron supported per gram of microfibrous cellulose is, for example, 1 to 10 mmol, preferably 1 to 5 mmol, particularly preferably 1.5 to 4 mmol.
  • Microfibrous cellulose is, for example, cellulose fibers torn longitudinally and made into fine particles, and is preferably microfibrillated cellulose.
  • the average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm.
  • the average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 ⁇ m.
  • the composite may further contain other components, but the proportion of the microfibrous cellulose and metal particles is, for example, 50% by weight or more, preferably 60% by weight or more, particularly preferably 60% by weight or more of the total amount of the composite. is 70% by weight or more, most preferably 80% by weight or more, particularly preferably 90% by weight or more. If the proportion of microfibrous cellulose and metal particles is below the above range, it tends to be difficult to efficiently and selectively adsorb arsenic.
  • Arsenic (V) exists as arsenate ions in an aqueous solution.
  • the above-mentioned complex is produced by complexing the zero-valent and/or trivalent iron contained in the metal particles through the hydroxyl group of arsenic (especially arsenate ion) in water. Adsorb and fix (see below).
  • the arsenic adsorption capacity of the complex is, for example, 300 ⁇ mol/g or more, preferably 350 ⁇ mol/g or more, more preferably 400 ⁇ mol/g or more, still more preferably 450 ⁇ mol/g or more, particularly preferably 500 ⁇ mol/g or more, and most preferably It is 520 ⁇ mol/g or more.
  • the upper limit of the arsenic adsorption capacity is, for example, 5000 ⁇ mol/g, particularly 1000 ⁇ mol/g.
  • the adsorption capacity of arsenic per 1 mol of the total amount of zero-valent and trivalent iron (converted value as iron element) contained in the composite is, for example, 0.05 mol or more, preferably 0.08 mol or more, particularly preferably 0.1 mol.
  • the above amount is particularly preferably 0.15 mol or more.
  • the upper limit of the arsenic adsorption capacity is, for example, 10 mol, further 5 mol, particularly 3 mol.
  • Zero-valent and/or trivalent iron has a high affinity for arsenic ions, but other ions such as dihydrogen phosphate ions containing phosphorus, which have chemical properties similar to arsenic, halide ions, and sulfate ions, have a high affinity for arsenic ions. It has low affinity with anions. Since the above-mentioned complex contains zero- and/or trivalent iron having the above-mentioned characteristics, it can adsorb arsenic even in the coexistence of other anions (e.g., halide ions, sulfate ions, dihydrogen phosphate ions, etc.). Power is maintained without decreasing.
  • other anions e.g., halide ions, sulfate ions, dihydrogen phosphate ions, etc.
  • the adsorption capacity of arsenic by the above composite is determined by immersing 0.01 g of the above complex in 10 mL of a 1000 mg/L arsenic (V) aqueous solution at 25°C and shaking it for 30 minutes with a shaker. It is the capacity and is calculated from the formula described in the examples.
  • the above-mentioned composite has the above characteristics, it is suitable as an arsenic adsorbent (especially an arsenic (V) adsorbent) for efficiently adsorbing and recovering arsenic (in particular, arsenic (V)) dissolved in water. can be used.
  • an arsenic adsorbent especially an arsenic (V) adsorbent
  • arsenic (in particular, arsenic (V)) dissolved in water can be used.
  • the complex can be produced, for example, through the following reaction [1] or [2].
  • [Reaction 1] Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound
  • [Reaction 2] Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles.
  • Reaction 1 includes an adsorption step in which microfibrous cellulose and an iron compound are mixed in water and the iron compound is adsorbed onto the microfibrous cellulose, and a reduction step in which the adsorbed iron compound is reduced.
  • Reaction 1 may include a drying step after the reduction step.
  • the adsorption step is a step in which microfibrous cellulose and an iron compound are mixed in water and the iron compound is adsorbed onto the microfibrous cellulose.
  • Microfibrous cellulose is, for example, cellulose fibers that are longitudinally torn and made into fine particles, that is, microfibrillated cellulose.
  • Microfibrous cellulose can be produced, for example, by subjecting cellulose fibers having a specific fiber length to, for example, beating treatment and/or mechanical shearing treatment (for example, homogenization treatment).
  • cellulose fibers for example, cellulose fibers derived from wood pulp (softwood pulp, hardwood pulp) or cotton linter pulp can be suitably used. These can be used alone or in combination of two or more. Note that the pulp may contain different components such as hemicellulose.
  • the cellulose fiber may have a hydrophilic group added to its surface.
  • the average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm.
  • the average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 ⁇ m.
  • microfibrous cellulose for example, commercially available products such as the product names "Selish”, “Filtration Meijin”, “PC110S”, and “PC110T” (manufactured by Daicel Millize Co., Ltd.) can be used.
  • the iron compound it is preferable to use, for example, a trivalent iron compound such as FeCl 3 .
  • a trivalent iron compound such as FeCl 3
  • the iron compound adsorbed on the microfibrous cellulose is, for example, a trivalent iron ion.
  • the amount of iron compound used is, for example, 1 to 100 mmol, preferably 1 to 50 mmol, per 1 g of microfibrous cellulose.
  • At least one metal compound selected from zirconium compounds, titanium compounds, etc. may be added to the adsorption reaction system (or in water) together with the iron compound. By adding the metal compound together with the iron compound, the iron compound and the metal compound can be adsorbed onto the microfibrous cellulose.
  • the molar ratio of the iron compound (in terms of iron element) and the metal compound (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is, for example, 1 to 100 (preferably 1 to 50, particularly preferably 1 to 10, most preferably 2 to 10, particularly preferably 3 to 10) to improve the arsenic adsorption power. It is preferable because it has a particularly excellent effect.
  • zirconium compound examples include zirconium oxide (ZrO 4 ), zirconium hydroxide, zirconium oxyhydroxide, and zirconium chloride oxide (ZrCl 2 O). These can be used alone or in combination of two or more.
  • titanium compound examples include titanium chloride, titanium oxide, titanium hydroxide, titanium oxyhydroxide, and the like. These can be used alone or in combination of two or more.
  • a zirconium compound such as zirconium chloride oxide (ZrCl 2 O) is preferable because it has excellent affinity with arsenic and is particularly effective in improving the amount of arsenic adsorbed.
  • the adsorption step it is preferable to mix the microfibrous cellulose and the iron compound in water and stir them.
  • the stirring conditions are not particularly limited, but are, for example, 100 rpm for about 30 to 120 minutes. Further, the temperature of the mixed liquid during the stirring is, for example, 25 to 60°C.
  • the reaction atmosphere during the stirring is not particularly limited as long as it does not inhibit the reaction, and may be, for example, any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
  • the reduction step is a step in which microfibrous cellulose adsorbed with iron compounds is subjected to a reduction reaction to obtain microfibrous cellulose supporting metal particles containing zero-valent iron.
  • the reduction reaction can be performed using a reducing agent.
  • the reducing agent include C 1-5 alkyllithium such as methyllithium, ethyllithium, and t-butyllithium; lithium borohydride, sodium borohydride, sodium cyanoborohydride, lithium triethylborohydride, and hydrogen.
  • Borate salts such as sodium triethylborohydride, lithium tri(sec-butyl)borohydride, potassium tri(sec-butyl)borohydride; lithium aluminum hydride, sodium bis(2-methoxyethoxy)aluminum hydride
  • Examples include aluminum hydride compounds such as. These can be used alone or in combination of two or more.
  • the amount of the reducing agent used is, for example, 0.1 to 10 mol, preferably 0.1 to 5 mol, particularly preferably 0.3 to 2 mol, per 1 mol of the iron compound.
  • the reduction reaction can be carried out, for example, by adding a reducing agent to a mixture of microfibrous cellulose and an iron compound, and stirring the mixture.
  • stirring conditions There are no particular restrictions on stirring conditions, but for example, stirring is performed using a stirrer for about 1 hour.
  • the temperature of the mixed liquid during stirring is, for example, 25 to 60°C.
  • the atmosphere for the reaction is not particularly limited as long as it does not inhibit the reaction, and may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.
  • the iron compound adsorbed on the microfibrous cellulose is reduced, and zero-valent iron can be precipitated on the surface of the microfibrous cellulose.
  • reaction product After the reduction reaction is completed, the obtained reaction product can be separated and purified by conventional precipitation, washing, and filtration.
  • Drying process This is a process of drying the microfibrous cellulose supporting metal particles containing zero-valent iron obtained through the reduction process.
  • a drying method a well-known and commonly used method can be adopted.
  • the drying temperature is, for example, about room temperature to 50°C.
  • a powdered composite is obtained, which has metal particles containing zero-valent iron supported on the surface of microfibrous cellulose.
  • Reaction 2 includes at least an adsorption step in which microfibrous cellulose, an iron compound, and a basic compound are mixed in water, and a trivalent iron colloid is adsorbed onto the microfibrous cellulose, and a growth step in which the trivalent iron colloid is grown into particles.
  • Reaction 2 may include a drying step after the adsorption/growth step.
  • the same ones as the iron compound and the microfibrous cellulose in Reaction 1 can be used.
  • microfibrous cellulose used is, for example, 10 to 1000 mg per 1 mmol of the iron compound.
  • microfibrous cellulose an iron compound, and a basic compound are mixed in water and stirred to adsorb the trivalent iron colloid onto the microfibrous cellulose.
  • Trivalent iron colloid can be grown to precipitate metal particles containing trivalent iron (iron hydroxide and/or iron oxyhydroxide).
  • the stirring conditions are not particularly limited, but are, for example, 100 rpm for about 30 to 120 minutes. Further, the temperature of the mixed liquid during the stirring is, for example, 25 to 60°C.
  • the concentration of iron compounds (in terms of iron element) in the adsorption/growth reaction system (or in water) is, for example, 10 to 0.1% by weight.
  • Examples of the basic compound include organic bases such as ammonia and inorganic bases such as hydroxides of alkali metals (eg, sodium, potassium, etc.). These can be used alone or in combination of two or more.
  • organic bases such as ammonia
  • inorganic bases such as hydroxides of alkali metals (eg, sodium, potassium, etc.). These can be used alone or in combination of two or more.
  • the pH is set to, for example, 4 to 13 (the lower limit of pH is preferably 5, particularly preferably 6; the upper limit of pH is preferably 12, particularly preferably 10, and most preferably 9). It is preferable to adjust the temperature to 100% because the effect of promoting the precipitation of metal particles containing trivalent iron can be obtained.
  • a well-known and commonly used pH adjuster or a buffer solution can be used.
  • the adsorption/growth reaction temperature is, for example, room temperature to 100°C.
  • the adsorption/growth reaction time is, for example, 0.5 to 10 hours.
  • the adsorption/growth reaction produces metal particles containing trivalent iron (for example, iron hydroxide and/or iron oxyhydroxide).
  • metal particles containing trivalent iron and the metal compound can be formed. can get.
  • the molar ratio of the iron compound (in terms of iron element) and the metal compound (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is, for example, 1 to 100 (preferably 1 to 50, particularly preferably 1 to 10, most preferably 2 to 10, particularly preferably 3 to 10) to improve the arsenic adsorption power. It is preferable because it has a particularly excellent effect.
  • zirconium compound examples include ZrCl 2 O, ZrO 4 and the like. These can be used alone or in combination of two or more.
  • titanium compound examples include titanium chloride, titanium oxide, and the like. These can be used alone or in combination of two or more.
  • zirconium compounds are preferred because they have excellent affinity with arsenic and are particularly effective in improving the amount of arsenic adsorbed.
  • the microfibrous cellulose carrying trivalent iron-containing metal particles (for example, iron hydroxide and/or iron oxyhydroxide-containing metal particles) obtained through the adsorption/growth process is dried in the drying process.
  • the drying temperature is, for example, from room temperature to about 50°C.
  • a structure in which metal particles containing trivalent iron (for example, metal particles containing at least one selected from iron hydroxide, iron oxyhydroxide, and iron oxide) are supported on the surface of microfibrous cellulose through a drying process.
  • a powdered composite is obtained.
  • the arsenic adsorbent of the present disclosure includes the composite.
  • the arsenic adsorbent may contain other components in addition to the complex, but the proportion of the complex in the total amount of the arsenic adsorbent (or the total amount of nonvolatile content contained in the arsenic adsorbent) is For example, it is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, particularly preferably 95% by weight or more.
  • the arsenic adsorbent may be composed only of the composite.
  • nonvolatile content refers to the total weight of components other than the solvent (including water and organic solvents), and for example, the amount remaining after heating 1 g of arsenic adsorbent at 100 ° C. for 1 hour under normal pressure. It is an ingredient.
  • the shape of the arsenic adsorbent is not particularly limited as long as it does not impair the effects of the present disclosure, but it may be gel-like or powdery in that it can be easily recovered from the aqueous solution after adsorbing arsenic therein. or pellet form is preferable.
  • the arsenic adsorbent of the present disclosure contains the above-mentioned complex, it can be suitably used for adsorbing and removing arsenic (V) dissolved in water.
  • the arsenic adsorbent can be prepared by manufacturing a composite by the method for manufacturing the composite, adding other components as necessary, and molding as necessary.
  • the method for producing purified water of the present disclosure includes treating arsenic-contaminated water (water contaminated with arsenic, where the arsenic concentration is, for example, 5 mM or more) with the arsenic adsorbent (or the complex), This is a method for obtaining purified water (for example, purified water in which 99% by weight or more (more preferably 99.9% by weight or more) of arsenic contained in the contaminated water has been removed).
  • Arsenic (V) exists as arsenate ions in an aqueous solution.
  • the arsenic adsorbent (or the composite) adsorbs arsenic ions by complexing the zero-valent and/or trivalent iron contained in the metal particles with the hydroxyl groups of arsenate ions. ,to recover.
  • the method of treating contaminated water with the arsenic adsorbent is a method in which arsenic contained in contaminated water is adsorbed onto the arsenic adsorbent.
  • the method is not particularly limited, and examples include a method in which the arsenic adsorbent is packed in a column or the like and contaminated water is poured therein, a method in which the arsenic adsorbent is added to contaminated water, and the mixture is stirred. Can be mentioned.
  • the pH of contaminated water When treating with the arsenic adsorbent, adjusting the pH of contaminated water to, for example, 10 or less (for example, 1 to 10, preferably 2 to 10), preferably 8 or less, recovers arsenic more efficiently. This is preferable because it can be done.
  • the said pH adjustment can be performed using a well-known and commonly used pH adjuster.
  • the volume can be significantly reduced and the cost of disposal can be reduced.
  • arsenic can be efficiently removed from water contaminated with arsenic, and purified water without arsenic contamination can be efficiently produced.
  • the water purification device of the present disclosure includes the arsenic adsorbent (or the composite).
  • the water purification device may include a column filled with the arsenic adsorbent.
  • the water purification device may include necessary configurations such as a device for supplying unpurified water to the arsenic adsorbent and a device for discharging water after being purified by the arsenic adsorbent. I can do it.
  • the water purification device includes the arsenic adsorbent, it can efficiently remove arsenic from arsenic-contaminated water, and can efficiently produce purified water free of arsenic contamination.
  • Example 1 In a 100 mL flask, add cellulose nanofiber (hereinafter sometimes referred to as "CNF") (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, product name "Filtration Meijin", Daicel 0.10 g (manufactured by Millize Co., Ltd.) and 10 mL of 10% FeCl 3 .6H 2 O were added thereto, and the mixture was stirred with a stirrer at room temperature for 1 hour. Thereafter, 7.0 mL of 1 mM NaBH 4 was added into the flask while stirring the solution, and the mixture was stirred with a stirrer at room temperature for 1 hour.
  • CNF cellulose nanofiber
  • the composite (1) exhibits an arsenic adsorption rate of over 90% at pH 10 or lower. It can be seen that at pH 8 or lower, the arsenic adsorption rate is close to 100%.
  • Example 2 NaOH was added to a mixed solution of 10% by weight FeCl 3 .6H 2 O and a buffer solution to adjust the pH to 6 to obtain an iron compound solution (1).
  • cellulose nanofibers average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, product name "Filtration Meijin", Daicel 0.10 g of Millize Co., Ltd.
  • Example 3 NaOH was added to a solution containing 10% by weight FeCl 3 .6H 2 O and NH 4 buffer to adjust the pH to 9 to obtain an iron compound solution (2).
  • a composite (3) in which iron oxide (Fe 2 O 3 ) particles are supported on cellulose nanofibers was prepared in the same manner as in Example 2 except that the iron compound solution (2) was used instead of the iron compound solution (1).
  • Fe III -CNF volume equivalent diameter: 1 ⁇ m or more
  • cellulose nanofiber In a 100 mL flask, 0.10 g of cellulose nanofiber (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, product name "Furoku Meijin", manufactured by Daicel Millize Co., Ltd.), and the above. 10 mL of a dispersion of particles containing iron oxide/zirconia oxide was added and stirred for 1 hour using a stirrer to support the particles on the cellulose nanofibers. Thereafter, a solid content was obtained by suction filtration, and the obtained solid content was dried.
  • the adsorption capacity of arsenic (V) was determined by the following method. 10 mL of a 1000 mg/L As(V) aqueous solution and 0.010 g of arsenic adsorbent were added to a 100 mL centrifuge tube, and the mixture was stirred for 20 minutes with a shaker at 25°C. It was filtered using a membrane filter (nitrocellulose, pore size: 0.45 ⁇ m), and the arsenic ion concentration (Ce: ⁇ mol/L) in the filtrate was determined using an ICP emission spectrometer (iCAP6300 manufactured by Thermo Fischer Scientific).
  • the complex of the present disclosure can efficiently adsorb and recover arsenic in a solution, and can significantly reduce the arsenic concentration in the solution, and after adsorbing arsenic to the complex, It can be seen that by firing, the volume can be significantly reduced, and the cost of disposal such as landfilling can be significantly reduced.
  • the total supported amount of zero-valent and trivalent iron (in terms of iron element) per 1 g of the metal particles containing microfibrous cellulose and zero-valent and/or trivalent iron is 1 to 100 mmol, The complex according to [1].
  • the metal particles contain zero-valent and/or trivalent iron as well as an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium,
  • the molar ratio of the iron (in terms of iron element) and the oxide, hydroxide, or oxyhydroxide of the metal (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is 1 to 100, the complex according to any one of [1] to [4].
  • the trivalent iron according to any one of [1] to [5], wherein the trivalent iron is at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide. complex.
  • a method for producing a composite which comprises producing the composite according to any one of [1] to [6] through Reaction 1 or Reaction 2 below.
  • reaction 1 Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound
  • reaction 2 Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles
  • a method for producing purified water comprising treating arsenic-contaminated water with the arsenic adsorbent according to [8] to obtain purified water.
  • a method for producing purified water comprising treating arsenic-contaminated water with the complex according to any one of [1] to [6] to obtain purified water.
  • a water purification device comprising the arsenic adsorbent according to [8].
  • a water purification device comprising the composite according to any one of [1] to [6].
  • the composite and arsenic adsorbent of the present disclosure can efficiently adsorb and recover arsenic dissolved in water. After arsenic has been adsorbed, it is burned to reduce its volume, thereby significantly reducing the cost of disposal such as landfilling. Therefore, it can be suitably used for purifying water contaminated with arsenic.

Abstract

Provided are a novel complex having the effect of efficiently adsorbing and collecting arsenic(V) dissolved in water, and a novel arsenic adsorbent. The complex has a structure in which metal particles including zero-valent and/or trivalent iron are supported on a microfibrous cellulose surface. The metal particles of the complex contain at least one type of metal oxide, hydroxide or oxyhydroxide selected from zirconium and titanium, together with zero-valent and/or trivalent iron. The molar ratio [iron/(zirconium + titanium)] of iron (elementary iron equivalent) and the metal oxide, hydroxide and oxyhydroxide (elementary metal equivalent; total amount when containing two or more compounds) is preferably 1 to 100. The arsenic adsorbent contains the complex.

Description

複合体及びその製造方法Composite and its manufacturing method
 本開示は、新規の複合体、前記複合体の製造方法、前記複合体を含むヒ素吸着剤、前記ヒ素吸着剤を用いた浄水の製造方法、並びに前記ヒ素吸着剤を備えた浄水装置に関する。 The present disclosure relates to a novel composite, a method for producing the composite, an arsenic adsorbent containing the composite, a method for producing water using the arsenic adsorbent, and a water purification device equipped with the arsenic adsorbent.
 ヒ素は、環境中に広く分布しているが、有害性が高く、微量であっても長期間摂取することで、種々の疾患を引き起こし、健康被害をもたらすことが知られている。 Although arsenic is widely distributed in the environment, it is highly toxic and is known to cause various diseases and harm health when ingested even in minute amounts over a long period of time.
 そして、東南アジアをはじめ世界各地で発生している井戸水の無機ヒ素汚染が、大きな環境問題となっている。そのため、水中に含まれるヒ素を除去する方法が求められている。 Inorganic arsenic contamination of well water, which is occurring in Southeast Asia and other parts of the world, has become a major environmental problem. Therefore, there is a need for a method to remove arsenic contained in water.
 例えば、特許文献1には、水酸化第2鉄を、スチレン−アクリル共重合体バインダーと混合し、ペレット化して得られる吸着剤は、強酸性水中からヒ素(III)を吸着して除去するのに有用であることが記載されている。 For example, Patent Document 1 describes that an adsorbent obtained by mixing ferric hydroxide with a styrene-acrylic copolymer binder and pelletizing the mixture is capable of adsorbing and removing arsenic (III) from strongly acidic water. It is stated that it is useful.
特開2008−207110号公報JP2008-207110A
 ヒ素(V)は鉄の表面に吸着するが、前記吸着剤は、バインダーに担持された水酸化第2鉄が水に溶解するため、ヒ素(V)の吸着面を広く確保することが困難であった。また、水酸化第2鉄は、スチレン−アクリル酸共重合体バインダーのカルボキシル基に結合して担持されるため、単位重量当たりの鉄担持量を増やすことが困難であり、ヒ素(V)を効率よく吸着することができなかった。 Arsenic (V) is adsorbed on the surface of iron, but because the ferric hydroxide supported on the binder dissolves in water, it is difficult to secure a wide adsorption surface for arsenic (V). there were. In addition, since ferric hydroxide is supported by bonding to the carboxyl group of the styrene-acrylic acid copolymer binder, it is difficult to increase the amount of iron supported per unit weight, and arsenic (V) is efficiently It was not possible to adsorb it well.
 従って、本開示の目的は、水中に溶解するヒ素(V)を効率よく吸着・回収する効果を有する新規の複合体を提供することにある。
 本開示の他の目的は、前記複合体の製造方法を提供することにある。
 本開示の他の目的は、水中に溶解するヒ素(V)を効率よく吸着・回収することができる新規のヒ素吸着剤を提供することにある。
 本開示の他の目的は、前記ヒ素吸着剤を用いた浄水の製造方法を提供することにある。
 本開示の他の目的は、前記ヒ素吸着剤を備えた浄水装置を提供することにある。
Therefore, an object of the present disclosure is to provide a novel composite that has the effect of efficiently adsorbing and recovering arsenic (V) dissolved in water.
Another object of the present disclosure is to provide a method for producing the composite.
Another object of the present disclosure is to provide a novel arsenic adsorbent that can efficiently adsorb and recover arsenic (V) dissolved in water.
Another object of the present disclosure is to provide a method for producing purified water using the arsenic adsorbent.
Another object of the present disclosure is to provide a water purification device equipped with the arsenic adsorbent.
 本発明者らは前記課題を解決するため鋭意検討した結果、以下の事項を見出した。
1.微小繊維状セルロースは表面積が極めて大きく、その上、鉄が結合する水酸基を構成単位当たり3個も有するため、単位重量当たりの鉄担持量を増やすことができること
2.微小繊維状セルロースの表面に金属粒子を担持すると、金属粒子の凝集を抑制することができ、ヒ素の吸着に有効な金属粒子の表面積が広く確保できること
3.微小繊維状セルロースは親水性に優れ、水に浸漬すると、微小繊維状セルロース中に水が容易に浸透するため、水中に溶解するヒ素が、微小繊維状セルロースに担持された金属粒子に効率的に吸着されること
 本開示はこれらの知見に基づいて完成させたものである。
The present inventors have made extensive studies to solve the above problems, and as a result, have discovered the following matters.
1. 2. Microfibrous cellulose has an extremely large surface area and also has three hydroxyl groups per constituent unit to which iron can be bonded, so it is possible to increase the amount of iron supported per unit weight. 3. When metal particles are supported on the surface of microfibrous cellulose, agglomeration of metal particles can be suppressed, and a wide surface area of metal particles, which is effective in adsorbing arsenic, can be secured.3. Microfibrous cellulose has excellent hydrophilicity, and when immersed in water, water easily penetrates into the microfibrous cellulose. Therefore, arsenic dissolved in water is efficiently transferred to the metal particles supported on the microfibrous cellulose. Being Adsorbed The present disclosure has been completed based on these findings.
 すなわち、本開示は、微小繊維状セルロース表面に、0価及び/又は3価の鉄を含む金属粒子を担持した構成を有する複合体を提供する。 That is, the present disclosure provides a composite having a structure in which metal particles containing zero-valent and/or trivalent iron are supported on the surface of microfibrous cellulose.
 本開示は、また、微小繊維状セルロース1g当たりの0価及び3価の鉄の合計担持量(鉄元素換算値)が1~100mmolである前記複合体を提供する。 The present disclosure also provides the composite, in which the total supported amount of zero-valent and trivalent iron (in terms of iron element) is 1 to 100 mmol per gram of microfibrous cellulose.
 本開示は、また、微小繊維状セルロースがミクロフィブリル化セルロースである前記複合体を提供する。 The present disclosure also provides the composite, wherein the microfibrous cellulose is microfibrillated cellulose.
 本開示は、また、前記金属粒子が、0価及び/又は3価の鉄と共に、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、
前記鉄(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]が1~100である前記複合体を提供する。
The present disclosure also provides that the metal particles contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium, as well as zero-valent and/or trivalent iron. ,
The molar ratio of the iron (in terms of iron element) and the oxide, hydroxide, or oxyhydroxide of the metal (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is 1 to 100.
 本開示は、また、前記3価の鉄が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物である前記複合体を提供する。 The present disclosure also provides the composite, wherein the trivalent iron is at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide.
 本開示は、また、前記金属粒子の体積相当球の粒子直径が1μm以上である前記複合体を提供する。 The present disclosure also provides the composite, wherein the metal particles have a volume-equivalent spherical particle diameter of 1 μm or more.
 本開示は、また、下記反応1又は反応2を経て前記複合体を製造する、複合体の製造方法を提供する。
[反応1]水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させ、吸着した鉄化合物を還元する
[反応2]水中で微小繊維状セルロースと鉄化合物と塩基性化合物とを混合して、微小繊維状セルロースに3価の鉄コロイドを吸着させ、粒子に成長させる
The present disclosure also provides a method for producing a composite, which comprises producing the composite through Reaction 1 or Reaction 2 below.
[Reaction 1] Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound [Reaction 2] Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles.
 本開示は、また、前記複合体を含むヒ素吸着剤を提供する。 The present disclosure also provides an arsenic adsorbent comprising the composite.
 本開示は、また、ヒ素汚染水を、前記ヒ素吸着剤で処理して浄水を得る、浄水の製造方法を提供する。 The present disclosure also provides a method for producing purified water, in which purified water is obtained by treating arsenic-contaminated water with the arsenic adsorbent.
 本開示は、また、前記ヒ素吸着剤を備えた浄水装置を提供する。 The present disclosure also provides a water purification device including the arsenic adsorbent.
 本開示の複合体は、親水性に優れ、表面積が極めて大きい微小繊維状セルロースに、ヒ素吸着表面を有する金属粒子が分散して担持された構成を有する。そのため、前記複合体を水中に浸漬すると、水中に溶解したヒ素を効率よく吸着して回収することができる。
 また、前記複合体は、ヒ素と類似の化学的性質を有するリン(P)が共存しても、ヒ素を選択的に吸着・回収することができる。
 さらに、前記複合体は、燃焼させても排気問題を生じることがなく、ヒ素を吸着させたあとは燃焼させて減容することにより、埋め立て等の処分に係る費用を大幅に削減することができる。
 従って、前記複合体はヒ素吸着剤として極めて有用である。
The composite of the present disclosure has a structure in which metal particles having an arsenic-adsorbing surface are dispersed and supported on microfibrous cellulose having excellent hydrophilicity and an extremely large surface area. Therefore, when the composite is immersed in water, arsenic dissolved in water can be efficiently adsorbed and recovered.
Furthermore, the complex can selectively adsorb and recover arsenic even if phosphorus (P), which has chemical properties similar to arsenic, coexists.
Furthermore, the above-mentioned composite does not cause any emission problems even when burned, and by burning it to reduce its volume after adsorbing arsenic, it is possible to significantly reduce the cost of disposal such as landfilling. .
Therefore, the composite is extremely useful as an arsenic adsorbent.
実施例で得られた複合体(1)のAs(V)吸着率とpHとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the As(V) adsorption rate and pH of the composite (1) obtained in the example. 実施例で得られた複合体(1)の、陰イオン共存下におけるAs(V)吸着率を示す図である。FIG. 2 is a diagram showing the As(V) adsorption rate of the complex (1) obtained in Examples in the presence of anions. 実施例で得られた複合体(2)のSEM画像を示す図である。FIG. 3 is a diagram showing a SEM image of composite (2) obtained in Example.
 [複合体]
 本開示の複合体は、微小繊維状セルロース表面に、0価の鉄又は3価の鉄を含む金属粒子を担持した構成を有する。尚、前記複合体は、金属粒子として、0価の鉄を含む金属粒子、3価の鉄を含む金属粒子、及び0価と3価の鉄を含む金属粒子から選択される少なくとも1種を含む。
[Complex]
The composite of the present disclosure has a structure in which metal particles containing zero-valent iron or trivalent iron are supported on the surface of microfibrous cellulose. The composite includes at least one metal particle selected from metal particles containing zero-valent iron, metal particles containing trivalent iron, and metal particles containing zero-valent iron and trivalent iron. .
 前記3価の鉄化合物には、例えば、酸化鉄(Fe)、水酸化鉄(Fe(OH))、オキシ水酸化鉄(FeOOH)等の水に不溶の化合物が含まれる。 The trivalent iron compounds include, for example, water-insoluble compounds such as iron oxide (Fe 2 O 3 ), iron hydroxide (Fe(OH) 3 ), and iron oxyhydroxide (FeOOH).
 さらに、前記金属粒子は、鉄成分として少なくとも0価の鉄(すなわち、金属鉄)又は3価の鉄を含有し、その他の鉄成分を含有していても良いが、金属粒子に含まれる鉄成分(すなわち、鉄を含有する化合物)全量において、0価の鉄と3価の鉄の合計含有量の占める割合は、例えば50重量%以上、好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。尚、上限は100重量%である。 Furthermore, the metal particles contain at least zero-valent iron (i.e., metallic iron) or trivalent iron as an iron component, and may contain other iron components, but the iron component contained in the metal particles (In other words, the total amount of iron-containing compounds), the total content of zero-valent iron and trivalent iron is, for example, 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more. , particularly preferably 80% by weight or more, most preferably 90% by weight or more, particularly preferably 95% by weight or more. Note that the upper limit is 100% by weight.
 前記金属粒子は、鉄成分以外にも他の金属成分を含有していても良く、例えば、酸化ジルコニウム、水酸化ジルコニウム、オキシ水酸化ジルコニウム、酸化チタン、水酸化チタン、オキシ水酸化チタン等の、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有していても良い。また、前記金属の酸化物、水酸化物、及びオキシ水酸化物から選択される2種以上を組み合わせて含有しても良い。前記金属の酸化物、水酸化物、又はオキシ水酸化物はヒ素(例えば、5価のヒ素)に対する親和性に優れる。そのため、微小繊維状セルロース表面に、鉄成分と共に前記金属の酸化物、水酸化物、又はオキシ水酸化物を担持すれば、ヒ素吸着力をより一層向上することができる。 The metal particles may contain other metal components in addition to the iron component, such as zirconium oxide, zirconium hydroxide, zirconium oxyhydroxide, titanium oxide, titanium hydroxide, titanium oxyhydroxide, etc. It may contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium. Further, it may contain a combination of two or more selected from oxides, hydroxides, and oxyhydroxides of the metals. The metal oxide, hydroxide, or oxyhydroxide has excellent affinity for arsenic (eg, pentavalent arsenic). Therefore, if the oxide, hydroxide, or oxyhydroxide of the metal is supported on the surface of the microfibrous cellulose together with the iron component, the arsenic adsorption power can be further improved.
 前記金属粒子が0価及び/又は3価の鉄と前記金属の酸化物、水酸化物、又はオキシ水酸化物を含有する場合、前記鉄(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]は、例えば1~100である。前記モル比の上限値は、好ましくは50、より好ましくは30、更に好ましくは20、特に好ましくは15である。前記モル比の下限値は、好ましくは2、特に好ましくは3、最も好ましくは5である。 When the metal particles contain zero-valent and/or trivalent iron and an oxide, hydroxide, or oxyhydroxide of the metal, the iron (iron element equivalent value), the oxide of the metal, and water The molar ratio [iron/(zirconium+titanium)] of the oxide or oxyhydroxide (metal element equivalent value; if two or more types are contained, the total amount thereof) is, for example, 1 to 100. The upper limit of the molar ratio is preferably 50, more preferably 30, even more preferably 20, particularly preferably 15. The lower limit of the molar ratio is preferably 2, particularly preferably 3, and most preferably 5.
 前記金属粒子の形状は特に制限がなく、例えば、球状(真球状、略真球状、楕円球状など)、多面体状、針状、平板状、りん片状、不定形状等を挙げることができる。 The shape of the metal particles is not particularly limited, and examples thereof include spherical shapes (true spheres, substantially true spheres, elliptical spheres, etc.), polyhedral shapes, needle shapes, plate shapes, scale shapes, irregular shapes, and the like.
 前記金属粒子の体積相当球の粒子直径(以後、「体積相当径」と称する場合がある)は、例えば100μm以下であり、好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。前記粒子直径の下限値は、例えば1μmである。前記粒子直径は、SEM観察や画像解析で求めることができる。 The particle diameter of the volume equivalent sphere of the metal particles (hereinafter sometimes referred to as "volume equivalent diameter") is, for example, 100 μm or less, preferably 50 μm or less, particularly preferably 20 μm or less, and most preferably 10 μm or less. . The lower limit of the particle diameter is, for example, 1 μm. The particle diameter can be determined by SEM observation or image analysis.
 前記複合体(若しくは、複合体に含まれる、微小繊維状セルロースと前記金属粒子の合計)1gにおける、前記0価と3価の鉄の合計担持量(鉄元素換算値)は、例えば1~100mmolである。前記担持量の上限値は、好ましくは80mmol、より好ましくは70mmol、更に好ましくは60mmol、更に好ましくは40mmol、特に好ましくは30mmol、最も好ましくは10mmol、とりわけ好ましくは5mmolである。前記担持量の下限値は、好ましくは1.5mmol、特に好ましくは2mmol、最も好ましくは3mmolである。 The total supported amount of zero-valent and trivalent iron (in terms of iron element) in 1 g of the composite (or the total of the microfibrous cellulose and the metal particles contained in the composite) is, for example, 1 to 100 mmol. It is. The upper limit of the supported amount is preferably 80 mmol, more preferably 70 mmol, still more preferably 60 mmol, even more preferably 40 mmol, particularly preferably 30 mmol, most preferably 10 mmol, particularly preferably 5 mmol. The lower limit of the supported amount is preferably 1.5 mmol, particularly preferably 2 mmol, and most preferably 3 mmol.
 微小繊維状セルロース1g当たりの0価と3価の鉄の合計担持量(鉄元素換算値)は、例えば1~10mmol、好ましくは1~5mmol、特に好ましくは1.5~4mmolである。 The total amount of zero-valent and trivalent iron supported per gram of microfibrous cellulose (in terms of iron element) is, for example, 1 to 10 mmol, preferably 1 to 5 mmol, particularly preferably 1.5 to 4 mmol.
 微小繊維状セルロースは、例えばセルロース繊維が縦に引き裂かれ、微細化されたものであり、好ましくはミクロフィブリル化セルロースである。 Microfibrous cellulose is, for example, cellulose fibers torn longitudinally and made into fine particles, and is preferably microfibrillated cellulose.
 微小繊維状セルロースの平均繊維長は、例えば0.5~1.5mm、好ましくは0.5~1.2mm、特に好ましくは0.6~0.8mmである。微小繊維状セルロースの平均繊維径は、例えば0.5~50μmである。 The average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm. The average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 μm.
 前記複合体は、さらに他の成分を含有していても良いが、微小繊維状セルロースと金属粒子の占める割合は、前記複合体全量の例えば50重量%以上、好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上、とりわけ好ましくは90重量%以上である。微小繊維状セルロースと金属粒子の占める割合が前記範囲を下回ると、ヒ素を効率よく且つ選択的に吸着することが困難となる傾向がある。 The composite may further contain other components, but the proportion of the microfibrous cellulose and metal particles is, for example, 50% by weight or more, preferably 60% by weight or more, particularly preferably 60% by weight or more of the total amount of the composite. is 70% by weight or more, most preferably 80% by weight or more, particularly preferably 90% by weight or more. If the proportion of microfibrous cellulose and metal particles is below the above range, it tends to be difficult to efficiently and selectively adsorb arsenic.
 ヒ素(V)は水溶液中においてはヒ酸イオンとして存在する。前記複合体は、水中において、金属粒子に含まれる0価及び/又は3価の鉄がヒ素(特に、ヒ酸イオン)の水酸基を介して錯形成することによって、ヒ素(特に、ヒ酸イオン)を吸着し固定する(下記参照)。
Figure JPOXMLDOC01-appb-C000001
Arsenic (V) exists as arsenate ions in an aqueous solution. The above-mentioned complex is produced by complexing the zero-valent and/or trivalent iron contained in the metal particles through the hydroxyl group of arsenic (especially arsenate ion) in water. Adsorb and fix (see below).
Figure JPOXMLDOC01-appb-C000001
 前記複合体のヒ素の吸着容量は、例えば300μmol/g以上、好ましくは350μmol/g以上、より好ましくは400μmol/g以上、更に好ましくは450μmol/g以上、特に好ましくは500μmol/g以上、最も好ましくは520μmol/g以上である。ヒ素吸着容量の上限値は、例えば5000μmol/g、特に1000μmol/gである。 The arsenic adsorption capacity of the complex is, for example, 300 μmol/g or more, preferably 350 μmol/g or more, more preferably 400 μmol/g or more, still more preferably 450 μmol/g or more, particularly preferably 500 μmol/g or more, and most preferably It is 520 μmol/g or more. The upper limit of the arsenic adsorption capacity is, for example, 5000 μmol/g, particularly 1000 μmol/g.
 前記複合体が含有する0価と3価の鉄の合計量(鉄元素換算値)1mol当たりのヒ素の吸着容量は、例えば0.05mol以上、好ましくは0.08mol以上、特に好ましくは0.1mol以上、とりわけ好ましくは0.15mol以上である。ヒ素吸着容量の上限値は、例えば10mol、更に5mol、特に3molである。 The adsorption capacity of arsenic per 1 mol of the total amount of zero-valent and trivalent iron (converted value as iron element) contained in the composite is, for example, 0.05 mol or more, preferably 0.08 mol or more, particularly preferably 0.1 mol. The above amount is particularly preferably 0.15 mol or more. The upper limit of the arsenic adsorption capacity is, for example, 10 mol, further 5 mol, particularly 3 mol.
 0価及び/又は3価の鉄は、ヒ素イオンとは高い親和性を有するが、ヒ素と化学的性質が近似するリンを含むリン酸二水素イオンや、ハロゲン化物イオン、硫酸イオン等の他の陰イオンとは親和性が低い。前記複合体は前記特性を有する0価及び/又は3価の鉄を含有するため、他の陰イオン(例えば、ハロゲン化物イオン、硫酸イオン、リン酸二水素イオン等)の共存下でも、ヒ素吸着力は低下することなく保持される。 Zero-valent and/or trivalent iron has a high affinity for arsenic ions, but other ions such as dihydrogen phosphate ions containing phosphorus, which have chemical properties similar to arsenic, halide ions, and sulfate ions, have a high affinity for arsenic ions. It has low affinity with anions. Since the above-mentioned complex contains zero- and/or trivalent iron having the above-mentioned characteristics, it can adsorb arsenic even in the coexistence of other anions (e.g., halide ions, sulfate ions, dihydrogen phosphate ions, etc.). Power is maintained without decreasing.
 尚、前記複合体によるヒ素の吸着容量は、25℃において、1000mg/Lのヒ素(V)水溶液10mLに、前記複合体0.01gを浸漬し、振とう器で30分振とうした場合の吸着容量であり、実施例に記載の式から算出される。 The adsorption capacity of arsenic by the above composite is determined by immersing 0.01 g of the above complex in 10 mL of a 1000 mg/L arsenic (V) aqueous solution at 25°C and shaking it for 30 minutes with a shaker. It is the capacity and is calculated from the formula described in the examples.
 前記複合体は以上の特性を有するため、水中に溶解したヒ素(特に、ヒ素(V))を効率よく吸着して回収するためのヒ素吸着剤(特に、ヒ素(V)吸着剤)として好適に使用することができる。 Since the above-mentioned composite has the above characteristics, it is suitable as an arsenic adsorbent (especially an arsenic (V) adsorbent) for efficiently adsorbing and recovering arsenic (in particular, arsenic (V)) dissolved in water. can be used.
 [複合体の製造方法]
 前記複合体は、例えば、下記反応[1]又は[2]を経て製造することができる。
[反応1]水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させ、吸着した鉄化合物を還元する
[反応2]水中で微小繊維状セルロースと鉄化合物と塩基性化合物とを混合して、微小繊維状セルロースに3価の鉄コロイドを吸着させ、粒子に成長させる
[Method for manufacturing composite]
The complex can be produced, for example, through the following reaction [1] or [2].
[Reaction 1] Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound [Reaction 2] Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles.
 (反応1)
 反応1は、水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させる吸着工程と、吸着した鉄化合物を還元する還元工程を含む。
(Reaction 1)
Reaction 1 includes an adsorption step in which microfibrous cellulose and an iron compound are mixed in water and the iron compound is adsorbed onto the microfibrous cellulose, and a reduction step in which the adsorbed iron compound is reduced.
 反応1は、還元工程の後に乾燥工程を含んでいても良い。 Reaction 1 may include a drying step after the reduction step.
 吸着工程は、水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させる工程である。 The adsorption step is a step in which microfibrous cellulose and an iron compound are mixed in water and the iron compound is adsorbed onto the microfibrous cellulose.
 微小繊維状セルロースは、例えばセルロース繊維が縦に引き裂かれ、微細化されたもの、すなわちミクロフィブリル化セルロースである。微小繊維状セルロースは、例えば、特定の繊維長を有するセルロース繊維を、例えば、叩解処理及び/又は機械的剪断処理(例えば、ホモジナイズ処理)等に付すことにより製造することができる。 Microfibrous cellulose is, for example, cellulose fibers that are longitudinally torn and made into fine particles, that is, microfibrillated cellulose. Microfibrous cellulose can be produced, for example, by subjecting cellulose fibers having a specific fiber length to, for example, beating treatment and/or mechanical shearing treatment (for example, homogenization treatment).
 前記セルロース繊維としては、例えば、木材パルプ(針葉樹パルプ、広葉樹パルプ)やコットンリンターパルプ由来のセルロース繊維を好適に用いることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。尚、前記パルプには、ヘミセルロースなどの異成分が含まれていてもよい。 As the cellulose fibers, for example, cellulose fibers derived from wood pulp (softwood pulp, hardwood pulp) or cotton linter pulp can be suitably used. These can be used alone or in combination of two or more. Note that the pulp may contain different components such as hemicellulose.
 また、前記セルロース繊維は、その表面に親水性基が付与されたものであっても良い。 Furthermore, the cellulose fiber may have a hydrophilic group added to its surface.
 微小繊維状セルロースの平均繊維長は、例えば0.5~1.5mm、好ましくは0.5~1.2mm、特に好ましくは0.6~0.8mmである。微小繊維状セルロースの平均繊維径は、例えば0.5~50μmである。 The average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm. The average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 μm.
 前記微小繊維状セルロースとしては、例えば、商品名「セリッシュ」「ろ過名人」「PC110S」「PC110T」(以上、ダイセルミライズ(株)製)等の市販品を使用することができる。 As the microfibrous cellulose, for example, commercially available products such as the product names "Selish", "Filtration Meijin", "PC110S", and "PC110T" (manufactured by Daicel Millize Co., Ltd.) can be used.
 鉄化合物としては、例えば、FeCl等の3価の鉄化合物を使用することが好ましい。3価の鉄化合物を使用した場合、微小繊維状セルロースに吸着する鉄化合物は、例えば、3価の鉄イオンである。 As the iron compound, it is preferable to use, for example, a trivalent iron compound such as FeCl 3 . When a trivalent iron compound is used, the iron compound adsorbed on the microfibrous cellulose is, for example, a trivalent iron ion.
 鉄化合物の使用量は、微小繊維状セルロース1gに対して、例えば1~100mmol、好ましくは1~50mmolである。 The amount of iron compound used is, for example, 1 to 100 mmol, preferably 1 to 50 mmol, per 1 g of microfibrous cellulose.
 また、吸着反応系内(若しくは、水中)には、鉄化合物と共に、ジルコニウム化合物、チタン化合物等から選択される少なくとも1種の金属化合物を添加してもよい。鉄化合物と共に、前記金属化合物を添加することで、鉄化合物と前記金属化合物を微小繊維状セルロースに吸着させることができる。 Additionally, at least one metal compound selected from zirconium compounds, titanium compounds, etc. may be added to the adsorption reaction system (or in water) together with the iron compound. By adding the metal compound together with the iron compound, the iron compound and the metal compound can be adsorbed onto the microfibrous cellulose.
 鉄化合物と前記金属化合物を使用する場合、前記鉄化合物(鉄元素換算値)と前記金属化合物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]が、例えば1~100(好ましくは1~50、特に好ましくは1~10、最も好ましくは2~10、とりわけ好ましくは3~10)となる範囲で使用することが、ヒ素吸着力を向上させる効果に特に優れる点で好ましい。 When using an iron compound and the metal compound, the molar ratio of the iron compound (in terms of iron element) and the metal compound (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is, for example, 1 to 100 (preferably 1 to 50, particularly preferably 1 to 10, most preferably 2 to 10, particularly preferably 3 to 10) to improve the arsenic adsorption power. It is preferable because it has a particularly excellent effect.
 前記ジルコニウム化合物としては、例えば、酸化ジルコニウム(ZrO)、水酸化ジルコニウム、オキシ水酸化ジルコニウム、塩化酸化ジルコニウム(ZrClO)等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the zirconium compound include zirconium oxide (ZrO 4 ), zirconium hydroxide, zirconium oxyhydroxide, and zirconium chloride oxide (ZrCl 2 O). These can be used alone or in combination of two or more.
 前記チタン化合物としては、例えば、塩化チタン、酸化チタン、水酸化チタン、オキシ水酸化チタン等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the titanium compound include titanium chloride, titanium oxide, titanium hydroxide, titanium oxyhydroxide, and the like. These can be used alone or in combination of two or more.
 前記金属化合物としては、ヒ素との親和性に優れ、ヒ素の吸着量を向上する効果に特に優れる点で、塩化酸化ジルコニウム(ZrClO)等のジルコニウム化合物が好ましい。 As the metal compound, a zirconium compound such as zirconium chloride oxide (ZrCl 2 O) is preferable because it has excellent affinity with arsenic and is particularly effective in improving the amount of arsenic adsorbed.
 吸着工程では、水中で微小繊維状セルロースと鉄化合物とを混合し、これらを撹拌することが好ましい。撹拌条件は、特に制限がないが、例えば100rpmで30~120分程度である。また、前記撹拌時の混合液の温度は、例えば25~60℃である。 In the adsorption step, it is preferable to mix the microfibrous cellulose and the iron compound in water and stir them. The stirring conditions are not particularly limited, but are, for example, 100 rpm for about 30 to 120 minutes. Further, the temperature of the mixed liquid during the stirring is, for example, 25 to 60°C.
 前記撹拌時の反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere during the stirring is not particularly limited as long as it does not inhibit the reaction, and may be, for example, any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
 還元工程は、鉄化合物を吸着した微小繊維状セルロースを還元反応に付して、0価の鉄を含む金属粒子を担持した微小繊維状セルロースを得る工程である。 The reduction step is a step in which microfibrous cellulose adsorbed with iron compounds is subjected to a reduction reaction to obtain microfibrous cellulose supporting metal particles containing zero-valent iron.
 前記還元反応は、還元剤を使用して行うことができる。前記還元剤としては、例えば、メチルリチウム、エチルリチウム、t−ブチルリチウム等のC1−5アルキルリチウム;水素化ホウ素リチウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリエチルホウ素ナトリウム、水素化トリ(sec−ブチル)ホウ素リチウム、水素化トリ(sec−ブチル)ホウ素カリウム等の水素化ホウ素酸塩;水素化アルミニウムリチウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム等のアルミニウムのヒドリド化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reduction reaction can be performed using a reducing agent. Examples of the reducing agent include C 1-5 alkyllithium such as methyllithium, ethyllithium, and t-butyllithium; lithium borohydride, sodium borohydride, sodium cyanoborohydride, lithium triethylborohydride, and hydrogen. Borate salts such as sodium triethylborohydride, lithium tri(sec-butyl)borohydride, potassium tri(sec-butyl)borohydride; lithium aluminum hydride, sodium bis(2-methoxyethoxy)aluminum hydride Examples include aluminum hydride compounds such as. These can be used alone or in combination of two or more.
 前記還元剤の使用量は、鉄化合物1モルに対して、例えば0.1~10モル、好ましくは0.1~5モル、特に好ましくは0.3~2モルである。 The amount of the reducing agent used is, for example, 0.1 to 10 mol, preferably 0.1 to 5 mol, particularly preferably 0.3 to 2 mol, per 1 mol of the iron compound.
 前記還元反応は、例えば、微小繊維状セルロースと鉄化合物との混合物中に、還元剤を添加し、撹拌することにより行うことができる。撹拌条件としては、特に制限がないが、例えば、スターラーを用いて1時間程度である。撹拌時の混合液の温度は、例えば25~60℃である。 The reduction reaction can be carried out, for example, by adding a reducing agent to a mixture of microfibrous cellulose and an iron compound, and stirring the mixture. There are no particular restrictions on stirring conditions, but for example, stirring is performed using a stirrer for about 1 hour. The temperature of the mixed liquid during stirring is, for example, 25 to 60°C.
 前記反応の雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The atmosphere for the reaction is not particularly limited as long as it does not inhibit the reaction, and may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.
 前記還元反応を経て、微小繊維状セルロースに吸着した鉄化合物を還元して、微小繊維状セルロース表面に0価の鉄を析出させることができる。 Through the reduction reaction, the iron compound adsorbed on the microfibrous cellulose is reduced, and zero-valent iron can be precipitated on the surface of the microfibrous cellulose.
 前記還元反応終了後、得られた反応生成物は、一般的な、沈殿・洗浄・濾過により分離精製できる。 After the reduction reaction is completed, the obtained reaction product can be separated and purified by conventional precipitation, washing, and filtration.
 乾燥工程
 還元工程を経て得られた0価の鉄を含む金属粒子を担持した微小繊維状セルロースを、乾燥する工程である。乾燥方法としては、周知慣用の方法を採用することができる。乾燥温度は、例えば室温~50℃程度である。乾燥工程を経て、微小繊維状セルロース表面に0価の鉄を含む金属粒子を担持した構成の、粉末状の複合体が得られる。
Drying process This is a process of drying the microfibrous cellulose supporting metal particles containing zero-valent iron obtained through the reduction process. As a drying method, a well-known and commonly used method can be adopted. The drying temperature is, for example, about room temperature to 50°C. Through the drying process, a powdered composite is obtained, which has metal particles containing zero-valent iron supported on the surface of microfibrous cellulose.
 (反応2)
 反応2は、水中で微小繊維状セルロースと鉄化合物と塩基性化合物とを混合して、微小繊維状セルロースに3価の鉄コロイドを吸着させる吸着工程、粒子に成長させる成長工程を少なくとも含む。
(Reaction 2)
Reaction 2 includes at least an adsorption step in which microfibrous cellulose, an iron compound, and a basic compound are mixed in water, and a trivalent iron colloid is adsorbed onto the microfibrous cellulose, and a growth step in which the trivalent iron colloid is grown into particles.
 反応2は、前記吸着・成長工程の後に乾燥工程を有していても良い。 Reaction 2 may include a drying step after the adsorption/growth step.
 前記鉄化合物、及び前記微小繊維状セルロースとしては、反応1における鉄化合物、及び前記微小繊維状セルロースと同様のものを使用することができる。 As the iron compound and the microfibrous cellulose, the same ones as the iron compound and the microfibrous cellulose in Reaction 1 can be used.
 微小繊維状セルロースの使用量は、鉄化合物1mmolに対して、例えば10~1000mgである。 The amount of microfibrous cellulose used is, for example, 10 to 1000 mg per 1 mmol of the iron compound.
 吸着・成長工程は、例えば、水中で、微小繊維状セルロースと鉄化合物と塩基性化合物を混合し、撹拌することで、3価の鉄コロイドを微小繊維状セルロースに鉄化合物を吸着させ、吸着した3価の鉄コロイドを成長させ、3価の鉄(水酸化鉄及び/又はオキシ水酸化鉄)を含む金属粒子を析出させることができる。 In the adsorption/growth process, for example, microfibrous cellulose, an iron compound, and a basic compound are mixed in water and stirred to adsorb the trivalent iron colloid onto the microfibrous cellulose. Trivalent iron colloid can be grown to precipitate metal particles containing trivalent iron (iron hydroxide and/or iron oxyhydroxide).
 撹拌条件は、特に制限がないが、例えば100rpmで30~120分程度である。また、前記撹拌時の混合液の温度は、例えば25~60℃である。 The stirring conditions are not particularly limited, but are, for example, 100 rpm for about 30 to 120 minutes. Further, the temperature of the mixed liquid during the stirring is, for example, 25 to 60°C.
 吸着・成長反応系内(若しくは、水中)における鉄化合物の濃度(鉄元素換算値)は、例えば10~0.1重量%である。 The concentration of iron compounds (in terms of iron element) in the adsorption/growth reaction system (or in water) is, for example, 10 to 0.1% by weight.
 塩基性化合物としては、例えば、アンモニア等の有機塩基や、アルカリ金属(例えば、ナトリウム、カリウムなど)の水酸化物等の無機塩基が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the basic compound include organic bases such as ammonia and inorganic bases such as hydroxides of alkali metals (eg, sodium, potassium, etc.). These can be used alone or in combination of two or more.
 吸着・成長反応は、pHを例えば4~13(pHの下限値は好ましくは5、特に好ましくは6である。pHの上限値は好ましくは12、特に好ましくは10、最も好ましくは9である)に調整することが、3価の鉄を含む金属粒子の析出を促進する効果が得られる点で好ましい。pHの調整は、周知慣用のpH調整剤や、緩衝液を使用することができる。 In the adsorption/growth reaction, the pH is set to, for example, 4 to 13 (the lower limit of pH is preferably 5, particularly preferably 6; the upper limit of pH is preferably 12, particularly preferably 10, and most preferably 9). It is preferable to adjust the temperature to 100% because the effect of promoting the precipitation of metal particles containing trivalent iron can be obtained. To adjust the pH, a well-known and commonly used pH adjuster or a buffer solution can be used.
 吸着・成長反応温度は、例えば室温~100℃である。吸着・成長反応時間は、例えば、0.5~10時間である。 The adsorption/growth reaction temperature is, for example, room temperature to 100°C. The adsorption/growth reaction time is, for example, 0.5 to 10 hours.
 前記吸着・成長反応により、3価の鉄(例えば、水酸化鉄及び/又はオキシ水酸化鉄)を含む金属粒子が生成する。 The adsorption/growth reaction produces metal particles containing trivalent iron (for example, iron hydroxide and/or iron oxyhydroxide).
 また、吸着・成長反応系内に、鉄化合物と共に、ジルコニウム化合物、チタン化合物等から選択される少なくとも1種の金属化合物を添加することで、3価の鉄と前記金属化合物を含有する金属粒子が得られる。 Furthermore, by adding at least one metal compound selected from zirconium compounds, titanium compounds, etc. together with the iron compound into the adsorption/growth reaction system, metal particles containing trivalent iron and the metal compound can be formed. can get.
 鉄化合物と前記金属化合物を使用する場合、前記鉄化合物(鉄元素換算値)と前記金属化合物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]が、例えば1~100(好ましくは1~50、特に好ましくは1~10、最も好ましくは2~10、とりわけ好ましくは3~10)となる範囲で使用することが、ヒ素吸着力を向上させる効果に特に優れる点で好ましい。 When using an iron compound and the metal compound, the molar ratio of the iron compound (in terms of iron element) and the metal compound (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is, for example, 1 to 100 (preferably 1 to 50, particularly preferably 1 to 10, most preferably 2 to 10, particularly preferably 3 to 10) to improve the arsenic adsorption power. It is preferable because it has a particularly excellent effect.
 前記ジルコニウム化合物としては、例えば、ZrClO、ZrO等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the zirconium compound include ZrCl 2 O, ZrO 4 and the like. These can be used alone or in combination of two or more.
 前記チタン化合物としては、例えば、塩化チタン、酸化チタン等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the titanium compound include titanium chloride, titanium oxide, and the like. These can be used alone or in combination of two or more.
 前記ジルコニウム化合物とチタン化合物のなかでも、ジルコニウム化合物が、ヒ素との親和性に優れ、ヒ素の吸着量を向上する効果に特に優れる点で好ましい。 Among the zirconium compounds and titanium compounds, zirconium compounds are preferred because they have excellent affinity with arsenic and are particularly effective in improving the amount of arsenic adsorbed.
 乾燥工程
 吸着・成長工程を経て得られた3価の鉄を含む金属粒子(例えば、水酸化鉄及び/又はオキシ水酸化鉄を含む金属粒子)を担持した微小繊維状セルロースを、乾燥する工程である。乾燥温度は、例えば室温から50℃程度である。乾燥工程を経て、微小繊維状セルロース表面に3価の鉄を含む金属粒子(例えば、水酸化鉄、オキシ水酸化鉄、及び酸化鉄から選択される少なくとも1種を含む金属粒子)を担持した構成の、粉末状の複合体が得られる。
Drying process The microfibrous cellulose carrying trivalent iron-containing metal particles (for example, iron hydroxide and/or iron oxyhydroxide-containing metal particles) obtained through the adsorption/growth process is dried in the drying process. be. The drying temperature is, for example, from room temperature to about 50°C. A structure in which metal particles containing trivalent iron (for example, metal particles containing at least one selected from iron hydroxide, iron oxyhydroxide, and iron oxide) are supported on the surface of microfibrous cellulose through a drying process. A powdered composite is obtained.
 [ヒ素吸着剤]
 本開示のヒ素吸着剤は、前記複合体を含む。前記ヒ素吸着剤は、前記複合体以外にも他の成分を含有していても良いが、ヒ素吸着剤全量(若しくは、ヒ素吸着剤に含まれる不揮発分全量)における前記複合体の占める割合は、例えば50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。尚、前記ヒ素吸着剤は前記複合体のみからなるものであってもよい。
[Arsenic adsorbent]
The arsenic adsorbent of the present disclosure includes the composite. The arsenic adsorbent may contain other components in addition to the complex, but the proportion of the complex in the total amount of the arsenic adsorbent (or the total amount of nonvolatile content contained in the arsenic adsorbent) is For example, it is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, particularly preferably 95% by weight or more. Note that the arsenic adsorbent may be composed only of the composite.
 尚、本開示において「不揮発分」とは、溶剤(水や有機溶媒を含む)以外の成分の合計重量であり、例えば、1gのヒ素吸着剤を常圧下において100℃で1時間加熱した後に残る成分である。 In the present disclosure, "nonvolatile content" refers to the total weight of components other than the solvent (including water and organic solvents), and for example, the amount remaining after heating 1 g of arsenic adsorbent at 100 ° C. for 1 hour under normal pressure. It is an ingredient.
 前記ヒ素吸着剤の形状としては、本開示の効果を損なわない限り特に制限されるものではないが、水溶液中のヒ素を吸着させた後に、水溶液からの回収が容易な点において、ゲル状、粉末状、又はペレット状が好ましい。 The shape of the arsenic adsorbent is not particularly limited as long as it does not impair the effects of the present disclosure, but it may be gel-like or powdery in that it can be easily recovered from the aqueous solution after adsorbing arsenic therein. or pellet form is preferable.
 本開示のヒ素吸着剤は前記複合体を含むため、水中に溶解したヒ素(V)を吸着して除去する用途に好適に使用することができる。 Since the arsenic adsorbent of the present disclosure contains the above-mentioned complex, it can be suitably used for adsorbing and removing arsenic (V) dissolved in water.
 前記ヒ素吸着剤は、前記複合体の製造方法により複合体を製造し、必要に応じて他の成分を添加し、また必要に応じて成形することで調製することができる。 The arsenic adsorbent can be prepared by manufacturing a composite by the method for manufacturing the composite, adding other components as necessary, and molding as necessary.
 [浄水の製造方法]
 本開示の浄水の製造方法は、ヒ素汚染水(ヒ素で汚染された水であり、ヒ素濃度は、例えば5mM以上である)を、前記ヒ素吸着剤(或いは、前記複合体)で処理して、浄水(例えば、前記汚染水に含まれるヒ素の99重量%以上(更に好ましくは99.9重量%以上)が除去されてなる浄水)を得る方法である。
[Production method of purified water]
The method for producing purified water of the present disclosure includes treating arsenic-contaminated water (water contaminated with arsenic, where the arsenic concentration is, for example, 5 mM or more) with the arsenic adsorbent (or the complex), This is a method for obtaining purified water (for example, purified water in which 99% by weight or more (more preferably 99.9% by weight or more) of arsenic contained in the contaminated water has been removed).
 ヒ素(V)は水溶液中においてはヒ酸イオンとして存在する。そして、前記ヒ素吸着剤(或いは、前記複合体)は、金属粒子に含まれる0価及び/又は3価の鉄が、ヒ酸イオンの水酸基を介して錯形成することによって、ヒ素イオンを吸着し、回収する。 Arsenic (V) exists as arsenate ions in an aqueous solution. The arsenic adsorbent (or the composite) adsorbs arsenic ions by complexing the zero-valent and/or trivalent iron contained in the metal particles with the hydroxyl groups of arsenate ions. ,to recover.
 汚染水を前記ヒ素吸着剤で処理する方法とは、すなわち汚染水に含まれるヒ素を前記ヒ素吸着剤に吸着させる方法である。前記方法としては、特に制限されることがなく、例えば、前記ヒ素吸着剤をカラム等に充填し、そこに汚染水を流す方法や、汚染水中に前記ヒ素吸着剤を加え、撹拌する方法等が挙げられる。 The method of treating contaminated water with the arsenic adsorbent is a method in which arsenic contained in contaminated water is adsorbed onto the arsenic adsorbent. The method is not particularly limited, and examples include a method in which the arsenic adsorbent is packed in a column or the like and contaminated water is poured therein, a method in which the arsenic adsorbent is added to contaminated water, and the mixture is stirred. Can be mentioned.
 前記ヒ素吸着剤で処理する際には、汚染水のpHを例えば10以下(例えば1~10、好ましくは2~10)、好ましくは8以下に調整することが、ヒ素をより一層効率よく回収することができる点で好ましい。尚、前記pH調整は、周知慣用のpH調整剤を用いて行うことができる。 When treating with the arsenic adsorbent, adjusting the pH of contaminated water to, for example, 10 or less (for example, 1 to 10, preferably 2 to 10), preferably 8 or less, recovers arsenic more efficiently. This is preferable because it can be done. In addition, the said pH adjustment can be performed using a well-known and commonly used pH adjuster.
 また、ヒ素吸着剤にヒ素を吸着させた後は、ヒ素を吸着したヒ素吸着剤を燃焼させることによって、顕著に減容することができ、処分にかかる費用を軽減することができる。 Furthermore, after arsenic is adsorbed onto the arsenic adsorbent, by burning the arsenic adsorbent that has adsorbed arsenic, the volume can be significantly reduced and the cost of disposal can be reduced.
 本開示の浄水の製造方法によれば、ヒ素で汚染された水から効率よくヒ素を除去することができ、ヒ素汚染のない浄水を効率よく製造することができる。 According to the method for producing purified water of the present disclosure, arsenic can be efficiently removed from water contaminated with arsenic, and purified water without arsenic contamination can be efficiently produced.
 [浄水装置]
 本開示の浄水装置は、前記ヒ素吸着剤(或いは、前記複合体)を備える。
[Water purification device]
The water purification device of the present disclosure includes the arsenic adsorbent (or the composite).
 ヒ素吸着剤の装備方法としては、特に制限がない。例えば、ヒ素吸着剤をカラム等に充填した状態で装備する方法が挙げられる。 There are no particular restrictions on the method of installing the arsenic adsorbent. For example, there is a method in which a column or the like is filled with an arsenic adsorbent.
 従って、前記浄水装置は、上記ヒ素吸着剤を充填したカラムを備えるものであってよい。 Therefore, the water purification device may include a column filled with the arsenic adsorbent.
 前記浄水装置は、上記ヒ素吸着剤の他、ヒ素吸着剤に浄化前の水を供給するための装置や、ヒ素吸着剤により浄化された後の水を排出する装置等、必要な構成を備えることができる。 In addition to the arsenic adsorbent, the water purification device may include necessary configurations such as a device for supplying unpurified water to the arsenic adsorbent and a device for discharging water after being purified by the arsenic adsorbent. I can do it.
 前記浄水装置は、上記ヒ素吸着剤を備えるため、ヒ素で汚染された水から効率よくヒ素を除去することができ、ヒ素汚染のない浄水を効率よく製造することができる。 Since the water purification device includes the arsenic adsorbent, it can efficiently remove arsenic from arsenic-contaminated water, and can efficiently produce purified water free of arsenic contamination.
 以上、本開示の各構成及びそれらの組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本開示は、実施形態によって限定されることはなく、請求の範囲の記載によってのみ限定される。 The above configurations and combinations thereof of the present disclosure are merely examples, and additions, omissions, substitutions, and changes to the configurations can be made as appropriate without departing from the gist of the present disclosure. Furthermore, the present disclosure is not limited by the embodiments, but only by the claims.
 以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではない。 Hereinafter, the present disclosure will be explained more specifically using Examples, but the present disclosure is not limited to these Examples.
 実施例1
 100mLフラスコに、セルロースナノファイバー(以後、「CNF」と称する場合がある)(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10g、10%FeCl・6HOを10mL入れ、室温下において、スターラーで1時間撹拌した。
 その後、溶液を撹拌しながら、フラスコ内に、1mMのNaBHを7.0mL加えて、室温下において、スターラーで1時間撹拌した。
 その後、メンブランフィルター(ニトロセルロース、孔径:0.45μm)を使用した吸引ろ過により固形分を得、得られた固形分を40℃で乾燥させた。これにより、0価の鉄粒子がセルロースナノファイバーに担持されてなる複合体(1)(Fe−CNF)(体積相当径:1μm以上)を得た。
Example 1
In a 100 mL flask, add cellulose nanofiber (hereinafter sometimes referred to as "CNF") (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 μm, product name "Filtration Meijin", Daicel 0.10 g (manufactured by Millize Co., Ltd.) and 10 mL of 10% FeCl 3 .6H 2 O were added thereto, and the mixture was stirred with a stirrer at room temperature for 1 hour.
Thereafter, 7.0 mL of 1 mM NaBH 4 was added into the flask while stirring the solution, and the mixture was stirred with a stirrer at room temperature for 1 hour.
Thereafter, a solid content was obtained by suction filtration using a membrane filter (nitrocellulose, pore size: 0.45 μm), and the obtained solid content was dried at 40°C. As a result, a composite (1) (Fe 0 -CNF) in which zero-valent iron particles were supported on cellulose nanofibers (volume equivalent diameter: 1 μm or more) was obtained.
 (評価1)
 複合体(1)、又は比較例1としての0価の鉄粉(富士フイルム和光純薬(株)製)0.010gを水10mLに分散させ、スターラーで10分撹拌して分散性を目視で確認した。
 その結果、複合体(1)は凝集が抑制され、分散状体が維持された。このことから、複合体(1)は、水中において、ヒ素吸着に寄与する0価の鉄粒子の表面積を広く保持できることが分かる。
 一方、0価の鉄粉は、水中において凝集して、沈殿した。
(Rating 1)
0.010 g of composite (1) or zero-valent iron powder (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as Comparative Example 1 was dispersed in 10 mL of water, stirred with a stirrer for 10 minutes, and visually checked for dispersibility. confirmed.
As a result, aggregation of the complex (1) was suppressed and the dispersion was maintained. This shows that the composite (1) can maintain a wide surface area of zero-valent iron particles that contribute to arsenic adsorption in water.
On the other hand, zero-valent iron powder coagulated and precipitated in water.
 (評価2)
 複合体(1)について、As(V)水溶液のpHを2~12まで変化させてヒ素吸着率を求めて、pH依存性を評価した。結果を図1に示す。
(Evaluation 2)
Regarding the complex (1), the pH dependence of the As(V) aqueous solution was determined by changing the pH of the As(V) aqueous solution from 2 to 12 to determine the arsenic adsorption rate. The results are shown in Figure 1.
 図1から、複合体(1)は、pH10以下において90%を超えるヒ素吸着率を示すことが分かる。そして、pH8以下においては、100%に近いヒ素吸着率を示すことが分かる。 From FIG. 1, it can be seen that the composite (1) exhibits an arsenic adsorption rate of over 90% at pH 10 or lower. It can be seen that at pH 8 or lower, the arsenic adsorption rate is close to 100%.
 (評価3)
 10μMのAs(V)水溶液(pH3)に、複合体(1)0.02gを加えて撹拌した。
 また、10μMのAs(V)水溶液(pH3)に、陰イオン溶液(Cl、SO 2−、又はHPO )を0.1mM、1mM、又は100mM添加し、ここに複合体(1)0.02gを加えて撹拌した。
 前記撹拌後の溶液中のヒ素イオン濃度を測定し、ヒ素(V)の吸着率を算出して、実施例で得られた複合体(1)の、陰イオン共存下におけるヒ素吸着率の変化を確認した。結果を図2に示す。
(Rating 3)
0.02 g of complex (1) was added to a 10 μM As(V) aqueous solution (pH 3) and stirred.
In addition, 0.1 mM, 1 mM, or 100 mM of an anion solution (Cl , SO 4 2− , or H 2 PO 4 ) was added to a 10 μM As(V) aqueous solution (pH 3), and the complex ( 1) 0.02g was added and stirred.
The arsenic ion concentration in the solution after stirring was measured, the adsorption rate of arsenic (V) was calculated, and the change in the arsenic adsorption rate of the complex (1) obtained in the example in the presence of anions was calculated. confirmed. The results are shown in Figure 2.
 図2から、複合体(1)は、陰イオンが共存しても(特に、ヒ素と化学的性質が近似するリンが存在しても)、陰イオンが共存しない時と変わらず、ヒ素(V)を効率よく吸着することが分かる。 From Figure 2, it can be seen that even when anions coexist (in particular, phosphorus, which has similar chemical properties to arsenic), complex (1) remains the same as when no anions coexist, including arsenic (V ) can be efficiently adsorbed.
 実施例2
 10重量%FeCl・6HOと緩衝液との混合液に、NaOHを添加してpH6に調整して、鉄化合物溶液(1)を得た。
 100mLフラスコに、前記鉄化合物溶液(1)10mLを仕込み、更にセルロースナノファイバー(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10gを加え、室温下、スターラーを用いて1.0時間撹拌した。その後、吸引ろ過により固形分を得、得られた固形分を乾燥させた。
 これにより、酸化鉄(Fe)粒子がセルロースナノファイバーに担持されてなる複合体(2)(FeIII−CNF)(体積相当径:1μm以上)を得た。得られた複合体(2)のSEM画像を図3に示す。
Example 2
NaOH was added to a mixed solution of 10% by weight FeCl 3 .6H 2 O and a buffer solution to adjust the pH to 6 to obtain an iron compound solution (1).
Pour 10 mL of the above iron compound solution (1) into a 100 mL flask, and add cellulose nanofibers (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 μm, product name "Filtration Meijin", Daicel 0.10 g of Millize Co., Ltd.) was added thereto, and the mixture was stirred for 1.0 hour using a stirrer at room temperature. Thereafter, a solid content was obtained by suction filtration, and the obtained solid content was dried.
Thereby, a composite (2) (Fe III -CNF) in which iron oxide (Fe 2 O 3 ) particles were supported on cellulose nanofibers (volume equivalent diameter: 1 μm or more) was obtained. A SEM image of the obtained composite (2) is shown in FIG.
 実施例3
 10重量%FeCl・6HOとNH緩衝液を加えた溶液に、NaOHを添加してpH9に調整して、鉄化合物溶液(2)を得た。
 鉄化合物溶液(1)に代えて鉄化合物溶液(2)を使用した以外は実施例2と同様にして、酸化鉄(Fe)粒子がセルロースナノファイバーに担持されてなる複合体(3)(FeIII−CNF)(体積相当径:1μm以上)を得た。
Example 3
NaOH was added to a solution containing 10% by weight FeCl 3 .6H 2 O and NH 4 buffer to adjust the pH to 9 to obtain an iron compound solution (2).
A composite (3) in which iron oxide (Fe 2 O 3 ) particles are supported on cellulose nanofibers was prepared in the same manner as in Example 2 except that the iron compound solution (2) was used instead of the iron compound solution (1). ) (Fe III -CNF) (volume equivalent diameter: 1 μm or more) was obtained.
 実施例4
 100mLフラスコに、10重量%FeCl・6HO 10mL、1.0重量%ZrClO 10mL、及びGood’s bufferを加え、スターラーを用いて30分撹拌した。次に、溶液を60℃に加熱しながらNaOHを滴下し、pHを6.0に調整した。その後さらに30分撹拌し、酸化鉄/酸化ジルコニア含有粒子(Fe/Zr(モル比)=7/1)の分散液を得た。
 100mLフラスコに、セルロースナノファイバー(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10g、及び前記酸化鉄/酸化ジルコニア含有粒子の分散液10mLを加え、スターラーで1時間撹拌して、前記粒子をセルロースナノファイバーに担持させた。その後、吸引ろ過により固形分を得、得られた固形分を乾燥させた。これにより、酸化鉄と酸化ジルコニアを含有する粒子がセルロースナノファイバーに担持されてなる複合体(4)(FeIII/Zr−CNF;Fe/Zr(モル比)=7/1)(体積相当径:1μm以上)を得た。
Example 4
10 mL of 10 wt% FeCl 3 .6H 2 O, 10 mL of 1.0 wt % ZrCl 2 O, and Good's buffer were added to a 100 mL flask, and the mixture was stirred using a stirrer for 30 minutes. Next, while heating the solution to 60° C., NaOH was added dropwise to adjust the pH to 6.0. Thereafter, the mixture was further stirred for 30 minutes to obtain a dispersion of iron oxide/zirconia oxide containing particles (Fe/Zr (molar ratio) = 7/1).
In a 100 mL flask, 0.10 g of cellulose nanofiber (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 μm, product name "Furoku Meijin", manufactured by Daicel Millize Co., Ltd.), and the above. 10 mL of a dispersion of particles containing iron oxide/zirconia oxide was added and stirred for 1 hour using a stirrer to support the particles on the cellulose nanofibers. Thereafter, a solid content was obtained by suction filtration, and the obtained solid content was dried. As a result, a composite (4) in which particles containing iron oxide and zirconia oxide are supported on cellulose nanofibers (Fe III /Zr-CNF; Fe/Zr (molar ratio) = 7/1) (volume equivalent diameter : 1 μm or more).
 実施例5
 1.0重量%ZrClO 10mLに代えて、10重量%TiCl0.10mLを使用した以外は実施例4と同様にして、酸化鉄/酸化チタン含有粒子がセルロースナノファイバーに担持されてなる複合体(5)(FeIII/Ti−CNF;(Fe/Ti(モル比)=7/1)(体積相当径:1μm以上)を得た。
Example 5
Iron oxide/titanium oxide containing particles were supported on cellulose nanofibers in the same manner as in Example 4 except that 0.10 mL of 10 wt% TiCl 2 was used instead of 10 mL of 1.0 wt % ZrCl 2 O. A composite (5) (Fe III /Ti-CNF; (Fe/Ti (molar ratio) = 7/1) (volume equivalent diameter: 1 μm or more) was obtained.
 比較例2
 フラスコに、10重量%FeClを10mL、1重量%ZrClO 10mL、及び緩衝液を加え、室温下、スターラーを使用して0.5時間撹拌した。そこへ、NaOHを加えてpHを6.0に調整し、スターラーを使用して、60℃で0.5時間撹拌した。これにより、酸化鉄と酸化ジルコニウムを含有する粒子(FeIII/Zr粒子;Fe/Zr(モル比)=7/1)を得た。
Comparative example 2
10 mL of 10 wt% FeCl 3 , 10 mL of 1 wt % ZrCl 2 O, and a buffer solution were added to the flask, and the mixture was stirred at room temperature using a stirrer for 0.5 hour. NaOH was added thereto to adjust the pH to 6.0, and the mixture was stirred at 60° C. for 0.5 hour using a stirrer. Thereby, particles containing iron oxide and zirconium oxide (Fe III /Zr particles; Fe/Zr (molar ratio) = 7/1) were obtained.
 (評価4)
 実施例で得られた複合体について、下記方法で減容率を測定した。
 複合体0.102g(w1)を800℃で1時間燃焼させ、燃焼後に残存した灰分の重量(w2)を測定し、下記式から減容率を算出した。
 減容率(%)=(w1−w2)/w1×100
(Rating 4)
The volume reduction rate of the composites obtained in Examples was measured by the following method.
0.102 g (w1) of the composite was burned at 800° C. for 1 hour, the weight (w2) of the ash remaining after combustion was measured, and the volume reduction rate was calculated from the following formula.
Volume reduction rate (%) = (w1-w2)/w1×100
 (評価5−1)
 実施例1~5で得られた複合体、又は比較例1,2の粒子を使用して、下記方法でヒ素(V)の吸着容量を求めた。
 100mLの遠沈管に、1000mg/LのAs(V)水溶液10mLと、ヒ素吸着剤0.010gを加え、25℃において、振盪機で20分撹拌した。
 メンブランフィルター(ニトロセルロース、孔径:0.45μm)を用いてろ過し、濾液中のヒ素イオン濃度(Ce:μmol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。溶液中のヒ素イオンの初期濃度をC(μmol/L)、加えた液量をVo(L)、使用した複合体又は粒子の重量をm(g)とし、下記式から吸着容量(μmol/g)を算出した。
 吸着容量=(C−Ce)×V/m
(Rating 5-1)
Using the composites obtained in Examples 1 to 5 or the particles of Comparative Examples 1 and 2, the adsorption capacity of arsenic (V) was determined by the following method.
10 mL of a 1000 mg/L As(V) aqueous solution and 0.010 g of arsenic adsorbent were added to a 100 mL centrifuge tube, and the mixture was stirred for 20 minutes with a shaker at 25°C.
It was filtered using a membrane filter (nitrocellulose, pore size: 0.45 μm), and the arsenic ion concentration (Ce: μmol/L) in the filtrate was determined using an ICP emission spectrometer (iCAP6300 manufactured by Thermo Fischer Scientific). Let the initial concentration of arsenic ions in the solution be C 0 (μmol/L), the amount of liquid added Vo (L), the weight of the composite or particle used m (g), and calculate the adsorption capacity (μmol/L) from the following formula. g) was calculated.
Adsorption capacity = (C 0 - Ce) x V 0 /m
 (評価5−2)
 実施例で得られた複合体をカラムに充填し、ヒ素濃度5μMの水溶液を前記カラムに連続的に流した。その結果、水溶液中の99.9重量%のヒ素が除去できた。
(Rating 5-2)
A column was filled with the complex obtained in the example, and an aqueous solution having an arsenic concentration of 5 μM was continuously flowed through the column. As a result, 99.9% by weight of arsenic in the aqueous solution could be removed.
 評価4,5の結果を下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
The results of evaluations 4 and 5 are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
 上記表1より、微小繊維状セルロースの表面に、鉄を含む金属粒子を担持すると、ヒ素吸着量が有意に向上することが分かる。また、微小繊維状セルロースの表面に、鉄と共にジルコニウムやチタンを含む金属粒子を担持すると、ヒ素吸着力がより一層向上することが分かる。
 そして、本開示の複合体は、溶液中のヒ素を効率よく吸着して回収することができ、溶液中のヒ素濃度を大幅に低減させることができ、前記複合体にヒ素を吸着させた後は、焼成することで大幅に減容することができ、埋め立て等の処分にかかる費用を大幅に削減できることが分かる。
From Table 1 above, it can be seen that when metal particles containing iron are supported on the surface of microfibrous cellulose, the amount of arsenic adsorption is significantly improved. It is also found that when metal particles containing iron as well as zirconium and titanium are supported on the surface of microfibrous cellulose, the arsenic adsorption power is further improved.
The complex of the present disclosure can efficiently adsorb and recover arsenic in a solution, and can significantly reduce the arsenic concentration in the solution, and after adsorbing arsenic to the complex, It can be seen that by firing, the volume can be significantly reduced, and the cost of disposal such as landfilling can be significantly reduced.
 以上のまとめとして、本開示の構成及びそのバリエーションを以下に付記する。
[1] 微小繊維状セルロース表面に、0価及び/又は3価の鉄を含む金属粒子を担持した構成を有する複合体。
[2] 微小繊維状セルロースと0価及び/又は3価の鉄を含む金属粒子の合計1g当たりの0価及び3価の鉄の合計担持量(鉄元素換算値)が1~100mmolである、[1]に記載の複合体。
[3] 微小繊維状セルロースがミクロフィブリル化セルロースである、[1]又は[2]に記載の複合体。
[4] 前記金属粒子の体積相当球の粒子直径が1μm以上である、[1]~[3]の何れか1つに記載の複合体。
[5] 前記金属粒子が、0価及び/又は3価の鉄と共に、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、
前記鉄(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]が1~100である、[1]~[4]の何れか1つに記載の複合体。
[6] 前記3価の鉄が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物である、[1]~[5]の何れか1つに記載の複合体。
[7] 下記反応1又は反応2を経て、[1]~[6]の何れか1つに記載の複合体を製造する、複合体の製造方法。
[反応1]水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させ、吸着した鉄化合物を還元する
[反応2]水中で微小繊維状セルロースと鉄化合物と塩基性化合物とを混合して、微小繊維状セルロースに3価の鉄コロイドを吸着させ、粒子に成長させる
[8] [1]~[6]の何れか1つに記載の複合体を含むヒ素吸着剤。
[9] [1]~[6]の何れか1つに記載の複合体のヒ素吸着剤としての使用。
[10] ヒ素汚染水を、[8]に記載のヒ素吸着剤で処理して浄水を得る、浄水の製造方法。
[11] ヒ素汚染水を、[1]~[6]の何れか1つに記載の複合体で処理して浄水を得る、浄水の製造方法。
[12] [8]に記載のヒ素吸着剤を備えた浄水装置。
[13] [1]~[6]の何れか1つに記載の複合体を備えた浄水装置。
As a summary of the above, the configuration of the present disclosure and its variations are additionally described below.
[1] A composite having a structure in which metal particles containing zero-valent and/or trivalent iron are supported on the surface of microfibrous cellulose.
[2] The total supported amount of zero-valent and trivalent iron (in terms of iron element) per 1 g of the metal particles containing microfibrous cellulose and zero-valent and/or trivalent iron is 1 to 100 mmol, The complex according to [1].
[3] The composite according to [1] or [2], wherein the microfibrous cellulose is microfibrillated cellulose.
[4] The composite according to any one of [1] to [3], wherein the volume-equivalent sphere of the metal particles has a particle diameter of 1 μm or more.
[5] The metal particles contain zero-valent and/or trivalent iron as well as an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium,
The molar ratio of the iron (in terms of iron element) and the oxide, hydroxide, or oxyhydroxide of the metal (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is 1 to 100, the complex according to any one of [1] to [4].
[6] The trivalent iron according to any one of [1] to [5], wherein the trivalent iron is at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide. complex.
[7] A method for producing a composite, which comprises producing the composite according to any one of [1] to [6] through Reaction 1 or Reaction 2 below.
[Reaction 1] Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound [Reaction 2] Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles [8] Contains the composite described in any one of [1] to [6] Arsenic adsorbent.
[9] Use of the composite according to any one of [1] to [6] as an arsenic adsorbent.
[10] A method for producing purified water, comprising treating arsenic-contaminated water with the arsenic adsorbent according to [8] to obtain purified water.
[11] A method for producing purified water, comprising treating arsenic-contaminated water with the complex according to any one of [1] to [6] to obtain purified water.
[12] A water purification device comprising the arsenic adsorbent according to [8].
[13] A water purification device comprising the composite according to any one of [1] to [6].
 本開示の複合体やヒ素吸着剤は、水中に溶解したヒ素を効率よく吸着して回収することができる。そして、ヒ素を吸着させたあとは燃焼させて減容することにより、埋め立て等の処分に係る費用を大幅に削減することができる。そのため、ヒ素で汚染された水の浄化処理用途に好適に使用することができる。 The composite and arsenic adsorbent of the present disclosure can efficiently adsorb and recover arsenic dissolved in water. After arsenic has been adsorbed, it is burned to reduce its volume, thereby significantly reducing the cost of disposal such as landfilling. Therefore, it can be suitably used for purifying water contaminated with arsenic.

Claims (10)

  1.  微小繊維状セルロース表面に、0価及び/又は3価の鉄を含む金属粒子を担持した構成を有する複合体。 A composite having a structure in which metal particles containing zero-valent and/or trivalent iron are supported on the surface of microfibrous cellulose.
  2.  微小繊維状セルロース1g当たりの0価及び3価の鉄の合計担持量(鉄元素換算値)が1~100mmolである、請求項1に記載の複合体。 The composite according to claim 1, wherein the total amount of zero-valent and trivalent iron supported per gram of microfibrous cellulose (in terms of iron element) is 1 to 100 mmol.
  3.  微小繊維状セルロースがミクロフィブリル化セルロースである、請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the microfibrous cellulose is microfibrillated cellulose.
  4.  前記金属粒子が、0価及び/又は3価の鉄と共に、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、
    前記鉄(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]が1~100である、請求項1又は2に記載の複合体。
    The metal particles contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium, along with zero-valent and/or trivalent iron,
    The molar ratio of the iron (in terms of iron element) and the oxide, hydroxide, or oxyhydroxide of the metal (in terms of metal element; if two or more are contained, the total amount) [iron/(zirconium + titanium)] )] is 1 to 100, the composite according to claim 1 or 2.
  5.  前記3価の鉄が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物である、請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the trivalent iron is at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide.
  6.  前記金属粒子の体積相当球の粒子直径が1μm以上である、請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the particle diameter of the volume-equivalent sphere of the metal particles is 1 μm or more.
  7.  下記反応1又は反応2を経て、請求項1又は2に記載の複合体を製造する、複合体の製造方法。
    [反応1]水中で微小繊維状セルロースと鉄化合物とを混合して、微小繊維状セルロースに鉄化合物を吸着させ、吸着した鉄化合物を還元する
    [反応2]水中で微小繊維状セルロースと鉄化合物と塩基性化合物とを混合して、微小繊維状セルロースに3価の鉄コロイドを吸着させ、粒子に成長させる
    A method for producing a composite, which comprises producing the composite according to claim 1 or 2 through reaction 1 or reaction 2 below.
    [Reaction 1] Mixing microfibrous cellulose and an iron compound in water, allowing the iron compound to be adsorbed onto the microfibrous cellulose, and reducing the adsorbed iron compound [Reaction 2] Mixing microfibrous cellulose and an iron compound in water and a basic compound to adsorb trivalent iron colloid to microfibrous cellulose and grow it into particles.
  8.  請求項1又は2に記載の複合体を含むヒ素吸着剤。 An arsenic adsorbent comprising the composite according to claim 1 or 2.
  9.  ヒ素汚染水を、請求項8に記載のヒ素吸着剤で処理して浄水を得る、浄水の製造方法。 A method for producing purified water, comprising treating arsenic-contaminated water with the arsenic adsorbent according to claim 8 to obtain purified water.
  10.  請求項8に記載のヒ素吸着剤を備えた浄水装置。 A water purification device comprising the arsenic adsorbent according to claim 8.
PCT/JP2022/019877 2022-04-28 2022-04-28 Complex and manufacturing method therefor WO2023210025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/019877 WO2023210025A1 (en) 2022-04-28 2022-04-28 Complex and manufacturing method therefor
PCT/JP2023/016989 WO2023210831A1 (en) 2022-04-28 2023-04-28 Complex and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019877 WO2023210025A1 (en) 2022-04-28 2022-04-28 Complex and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2023210025A1 true WO2023210025A1 (en) 2023-11-02

Family

ID=88518267

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/019877 WO2023210025A1 (en) 2022-04-28 2022-04-28 Complex and manufacturing method therefor
PCT/JP2023/016989 WO2023210831A1 (en) 2022-04-28 2023-04-28 Complex and method for producing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016989 WO2023210831A1 (en) 2022-04-28 2023-04-28 Complex and method for producing same

Country Status (1)

Country Link
WO (2) WO2023210025A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229551A (en) * 2006-02-27 2007-09-13 Toda Kogyo Corp Adsorbent
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2016097351A (en) * 2014-11-20 2016-05-30 大成建設株式会社 Purification method and purification device for slurry including arsenic
JP2016185499A (en) * 2015-03-27 2016-10-27 株式会社ネオス Heavy metal recovery material
WO2019172164A1 (en) * 2018-03-07 2019-09-12 島根県 Arsenic-adsorbent cellulose material
JP2020011211A (en) * 2018-07-20 2020-01-23 株式会社フジタ Method for producing adsorbent
JP2021171729A (en) * 2020-04-28 2021-11-01 東レ株式会社 Hollow fiber adsorbent, water purifier, and method for producing pure water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229551A (en) * 2006-02-27 2007-09-13 Toda Kogyo Corp Adsorbent
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2016097351A (en) * 2014-11-20 2016-05-30 大成建設株式会社 Purification method and purification device for slurry including arsenic
JP2016185499A (en) * 2015-03-27 2016-10-27 株式会社ネオス Heavy metal recovery material
WO2019172164A1 (en) * 2018-03-07 2019-09-12 島根県 Arsenic-adsorbent cellulose material
JP2020011211A (en) * 2018-07-20 2020-01-23 株式会社フジタ Method for producing adsorbent
JP2021171729A (en) * 2020-04-28 2021-11-01 東レ株式会社 Hollow fiber adsorbent, water purifier, and method for producing pure water

Also Published As

Publication number Publication date
WO2023210831A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
Tiwari et al. Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium (II) and lead (II)
Pandey et al. Facile approach to synthesize chitosan based composite—characterization and cadmium (II) ion adsorption studies
CN101712489B (en) Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
AU2019201645A1 (en) High surface area layered double hydroxides
CN112313179A (en) Water purification composition and method for producing same
CN105164766B (en) Carbon body and ferromagnetic carbon body
JP2012504546A (en) Zirconium phosphate particles with improved adsorption capacity and method for synthesizing the zirconium phosphate particles
WO2012120711A1 (en) Metal particles, catalyst for exhaust gas purification containing same, and production method therefor
Borgo et al. Zirconium phosphate dispersed on a cellulose fiber surface: preparation, characterization, and selective adsorption of Li+, Na+, and K+ from aqueous solution
JP2012509169A (en) Porous block nanofiber composite filter
CN108585101A (en) A kind of recovery method of the multiporous biological matter microballoon of heavy metal-polluted water process inorganic material hydridization
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
Attol et al. Synthesis of silica-salen derivative from rice husk ash and its use for extraction of divalent metal ions Co (II), Ni (II) and Cu (II)
WO2023210025A1 (en) Complex and manufacturing method therefor
JP2013095653A (en) Zeolite having copper and alkali metal
CN105964289B (en) Room temperature is except formaldehyde catalyst and preparation method thereof
WO2023210024A1 (en) Complex and manufacturing method therefor
CN113877549A (en) Selective composite microsphere adsorption material and preparation method and application thereof
JP2006289248A (en) Material for removing nitrogen oxide
JP6644804B2 (en) Adsorbent particles and granulated adsorbent
CN110508261B (en) Preparation method of calcium-based magnesium hydroxide for adsorbing heavy metal copper
JP6926521B2 (en) Silver-supported zeolite molded product
CN114797787A (en) Preparation and application of iron-loaded coconut shell activated carbon chitosan composite microspheres
KR102126227B1 (en) Zerovalent iron catalyst supported on surface of coal combustion by-product modified by alkaline treatment and manufacturing method thereof
CN111439782B (en) Synchronous protection NH 3 /SO 2 Preparation method of zirconium hydroxide protective material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940297

Country of ref document: EP

Kind code of ref document: A1