JPWO2019171566A1 - Vacuum heat insulating material and heat insulating box - Google Patents

Vacuum heat insulating material and heat insulating box Download PDF

Info

Publication number
JPWO2019171566A1
JPWO2019171566A1 JP2020504611A JP2020504611A JPWO2019171566A1 JP WO2019171566 A1 JPWO2019171566 A1 JP WO2019171566A1 JP 2020504611 A JP2020504611 A JP 2020504611A JP 2020504611 A JP2020504611 A JP 2020504611A JP WO2019171566 A1 JPWO2019171566 A1 JP WO2019171566A1
Authority
JP
Japan
Prior art keywords
heat insulating
gas barrier
insulating material
vacuum heat
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020504611A
Other languages
Japanese (ja)
Inventor
夕貴 大森
夕貴 大森
一正 藤村
一正 藤村
貴祥 向山
貴祥 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019171566A1 publication Critical patent/JPWO2019171566A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Abstract

真空断熱材は、真空空間を保持する芯材と、水分を吸着する吸着剤と、芯材と吸着剤とを被覆する外包材と、を備え、外包材の内部を減圧密封した真空断熱材であって、外包材は、表面保護層と、少なくとも2種類のガスバリアフィルムを含むガスバリア層と、熱溶着層と、によって構成され、少なくとも2種類のガスバリアフィルムは、100℃で2時間以上加熱したときに、少なくとも2種類のガスバリアフィルムの収縮率の差が2%以内である。The vacuum heat insulating material is a vacuum heat insulating material provided with a core material for holding a vacuum space, an adsorbent for adsorbing moisture, and an outer packaging material for coating the core material and the adsorbent, and the inside of the outer packaging material is vacuum-sealed. The outer packaging material is composed of a surface protective layer, a gas barrier layer containing at least two types of gas barrier films, and a heat-welded layer, and the at least two types of gas barrier films are heated at 100 ° C. for 2 hours or more. In addition, the difference in shrinkage between at least two types of gas barrier films is within 2%.

Description

本発明は、外包材にガスバリア層を有する真空断熱材及び断熱箱に関する。 The present invention relates to a vacuum heat insulating material and a heat insulating box having a gas barrier layer in the outer packaging material.

従来、冷蔵庫などの断熱材として用いられる真空断熱材としては、真空空間を保持する芯材が水蒸気を吸着する吸着剤とともに2枚の外包材によって被覆され、外包材内が減圧密封されて形成された真空断熱材が知られている。 Conventionally, as a vacuum heat insulating material used as a heat insulating material for a refrigerator or the like, the core material that holds the vacuum space is covered with two outer packaging materials together with an adsorbent that adsorbs water vapor, and the inside of the outer packaging material is formed by vacuum sealing. Vacuum heat insulating materials are known.

外包材は、表面保護層と、ガスバリア層と、熱溶着層と、から構成される。外包材によって内部が真空に維持されることにより、真空断熱材の熱伝導率が低減されている。 The outer packaging material is composed of a surface protective layer, a gas barrier layer, and a heat welding layer. The thermal conductivity of the vacuum heat insulating material is reduced by maintaining the inside in a vacuum by the outer packaging material.

既知の技術として、特許文献1では、ガスバリア層を構成する2枚の無機蒸着フィルムにおいて、無機蒸着面を対面して接して重ね合わせる技術が開示されている。また、特許文献2では、フィルムの幅方向と長さ方向との乾熱収縮率が2%以下の真空断熱材用の2軸延伸エチレンビニルアルコールフィルムを用いる技術が開示されている。 As a known technique, Patent Document 1 discloses a technique in which two inorganic vapor-deposited films constituting a gas barrier layer are superposed with the inorganic-deposited surfaces facing each other. Further, Patent Document 2 discloses a technique of using a biaxially stretched ethylene vinyl alcohol film for a vacuum heat insulating material having a dry heat shrinkage rate of 2% or less in the width direction and the length direction of the film.

特開2012−219955号公報Japanese Unexamined Patent Publication No. 2012-219955 特開2005−1240号公報Japanese Unexamined Patent Publication No. 2005-1240

真空断熱材では、内部に水蒸気が侵入することによって真空度が低下し、熱伝導率が増加して断熱性能が低下する。真空断熱材の内部への水蒸気の侵入経路は、外包材の表面からの経路及び2枚の外包材が融着されて形成された熱溶着層からの経路であることが考えられる。 In the vacuum heat insulating material, the degree of vacuum decreases due to the intrusion of water vapor into the inside, the thermal conductivity increases, and the heat insulating performance deteriorates. It is considered that the invasion route of water vapor into the inside of the vacuum heat insulating material is a route from the surface of the outer packaging material and a route from the heat-welding layer formed by fusing the two outer packaging materials.

特許文献1の技術では、ガスバリアフィルムの無機蒸着層が重ね合わせられ、蒸着のばらつきが防止され、水蒸気の侵入の抑制が試みられている。ここで、真空断熱材が加熱乾燥工程を経て製造される。このため、ガスバリアフィルムが収縮して蒸着割れが発生した場合には、真空断熱材の内部の真空状態が長期間にわたって維持されず、熱伝導率の上昇が抑制できない。 In the technique of Patent Document 1, an attempt is made to superimpose inorganic vapor deposition layers of a gas barrier film to prevent variations in vapor deposition and suppress the intrusion of water vapor. Here, the vacuum heat insulating material is manufactured through a heat drying step. Therefore, when the gas barrier film shrinks and vapor deposition cracks occur, the vacuum state inside the vacuum heat insulating material is not maintained for a long period of time, and an increase in thermal conductivity cannot be suppressed.

また、特許文献2の技術では、各ガスバリアフィルムの幅方向と長さ方向との収縮率の差が限定され、蒸着の際のゆがみの抑制が試みられている。しかし、真空断熱材が加熱乾燥工程を経た後にガスバリアフィルムが収縮した際の収縮率の差が大きければ蒸着割れが発生する。この場合にも、真空断熱材の内部の真空状態が長期間にわたって維持されず、熱伝導率の上昇が抑制できない。 Further, in the technique of Patent Document 2, the difference in shrinkage ratio between the width direction and the length direction of each gas barrier film is limited, and an attempt is made to suppress distortion during vapor deposition. However, if the difference in shrinkage rate when the gas barrier film shrinks after the vacuum heat insulating material has undergone the heat drying step is large, thin-film deposition cracking occurs. Also in this case, the vacuum state inside the vacuum heat insulating material is not maintained for a long period of time, and the increase in thermal conductivity cannot be suppressed.

本発明は、上記課題を解決するためのものであり、製造時の加熱による乾燥工程を経た後でも外包材のガスバリア性が低下せず、長期的に断熱性能が維持できる真空断熱材及び断熱箱を提供することを目的とする。 The present invention is for solving the above problems, and is a vacuum heat insulating material and a heat insulating box which can maintain the heat insulating performance for a long period of time without deteriorating the gas barrier property of the outer packaging material even after undergoing the drying process by heating at the time of manufacturing. The purpose is to provide.

本発明に係る真空断熱材は、真空空間を保持する芯材と、水分を吸着する吸着剤と、前記芯材と前記吸着剤とを被覆する外包材と、を備え、前記外包材の内部を減圧密封した真空断熱材であって、前記外包材は、表面保護層と、少なくとも2種類のガスバリアフィルムを含むガスバリア層と、熱溶着層と、によって構成され、前記少なくとも2種類のガスバリアフィルムは、100℃で2時間以上加熱したときに、前記少なくとも2種類のガスバリアフィルムの収縮率の差が2%以内であるものである。 The vacuum heat insulating material according to the present invention includes a core material for holding a vacuum space, an adsorbent for adsorbing moisture, and an outer packaging material for coating the core material and the adsorbent, and the inside of the outer packaging material is provided. The vacuum heat insulating material sealed under reduced pressure, the outer packaging material is composed of a surface protective layer, a gas barrier layer containing at least two types of gas barrier films, and a heat-welding layer, and the at least two types of gas barrier films are When heated at 100 ° C. for 2 hours or more, the difference in shrinkage ratio between the at least two types of gas barrier films is within 2%.

本発明に係る断熱箱は、上記の真空断熱材を備えるものである。 The heat insulating box according to the present invention includes the above vacuum heat insulating material.

本発明に係る真空断熱材及び断熱箱によれば、少なくとも2種類のガスバリアフィルムは、100℃で2時間以上加熱したときに、少なくとも2種類のガスバリアフィルムの収縮率の差が2%以内である。これにより、製造時の加熱による乾燥工程を経た後に、少なくとも2種類のガスバリアフィルムでの収縮量の差が過度に大きく異ならず、蒸着割れなどが抑制される。したがって、製造時の加熱による乾燥工程を経た後でも外包材のガスバリア性が低下せず、長期的に断熱性能が維持できる。 According to the vacuum heat insulating material and the heat insulating box according to the present invention, the difference in shrinkage between the at least two types of gas barrier films is within 2% when heated at 100 ° C. for 2 hours or more. .. As a result, the difference in the amount of shrinkage between the at least two types of gas barrier films does not become excessively large after the drying step by heating at the time of production, and vapor deposition cracking and the like are suppressed. Therefore, the gas barrier property of the outer packaging material does not deteriorate even after the drying step by heating at the time of manufacturing, and the heat insulating performance can be maintained for a long period of time.

本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る実施例1及び比較例1の試料における真空断熱材の熱伝導率の増加量を比較した結果を示す表図である。It is a chart which shows the result of having compared the increase amount of the thermal conductivity of the vacuum heat insulating material in the sample of Example 1 and Comparative Example 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る実施例1及び比較例1における外包材の水蒸気透過度と収縮率の差との関係を示す図である。It is a figure which shows the relationship between the difference between the water vapor permeability and the shrinkage rate of the outer packaging material in Example 1 and Comparative Example 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る実施例2の試料における真空断熱材の熱伝導率の増加量を比較した結果を示す表図である。It is a chart which shows the result of having compared the increase amount of the thermal conductivity of the vacuum heat insulating material in the sample of Example 2 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る実施例3の試料における真空断熱材の熱伝導率の増加量を比較した結果を示す表図である。It is a chart which shows the result of having compared the increase amount of the thermal conductivity of the vacuum heat insulating material in the sample of Example 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the heat insulation box which concerns on Embodiment 2 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, those having the same reference numerals are the same or equivalent thereof, and they are common in the entire text of the specification. Further, in the cross-sectional view, hatching is appropriately omitted in view of visibility. Furthermore, the forms of the components shown in the full text of the specification are merely examples and are not limited to these descriptions.

実施の形態1.
<真空断熱材の構成>
図1は、本発明の実施の形態1に係る真空断熱材1の概略構成を示す断面図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係又は形状などが実際のものとは異なる場合がある。各構成材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
Embodiment 1.
<Composition of vacuum heat insulating material>
FIG. 1 is a cross-sectional view showing a schematic configuration of the vacuum heat insulating material 1 according to the first embodiment of the present invention. In the following drawings including FIG. 1, the relationship or shape of the dimensions of each component may differ from the actual one. The specific dimensions of each constituent material should be determined with reference to the following explanation.

図1に示すように、真空断熱材1は、内部を真空にすることで低い熱伝導率を実現する断熱材である。真空断熱材1は、全体として概略長方形平板状の形状である。真空断熱材1は、芯材2と、吸着剤3と、外包材4と、を備える。 As shown in FIG. 1, the vacuum heat insulating material 1 is a heat insulating material that realizes low thermal conductivity by creating a vacuum inside. The vacuum heat insulating material 1 has a substantially rectangular flat plate shape as a whole. The vacuum heat insulating material 1 includes a core material 2, an adsorbent 3, and an outer packaging material 4.

芯材2は、真空空間を保持する。吸着剤3は、少なくとも水分を吸着する。外包材4は、芯材2と吸着剤3とを被覆する。 The core material 2 holds a vacuum space. The adsorbent 3 adsorbs at least water. The outer packaging material 4 covers the core material 2 and the adsorbent 3.

外包材4で密封される内部の真空空間は、開口部から減圧され、開口部をヒートシールなどにより融着されることにより、外包材4の内部が減圧密封される。 The internal vacuum space sealed by the outer packaging material 4 is decompressed from the opening, and the opening is fused by heat sealing or the like, so that the inside of the outer packaging material 4 is decompressed and sealed.

<芯材2の構成>
芯材2は、真空空間を保持する目的で使用される。芯材2としては、グラスウールなどの繊維集合体を用いることが一般的である。また、芯材2を構成する繊維集合体は、加熱加圧成形したものでも、内包材を用いて密封封止したものでも、結合剤により結着したものでもよい。
<Structure of core material 2>
The core material 2 is used for the purpose of maintaining a vacuum space. As the core material 2, it is common to use a fiber aggregate such as glass wool. Further, the fiber aggregate constituting the core material 2 may be one that has been heat-press molded, one that has been hermetically sealed using an encapsulating material, or one that has been bound with a binder.

<吸着剤3の構成>
吸着剤3は、真空断熱材1の内部の水蒸気を吸着し、真空度を保つことによって熱伝達率の上昇を抑制する。吸着剤3には、酸化カルシウムが使用される。酸化カルシウムは、CaOと略称されることもある。
<Structure of Adsorbent 3>
The adsorbent 3 adsorbs the water vapor inside the vacuum heat insulating material 1 and suppresses an increase in the heat transfer coefficient by maintaining the degree of vacuum. Calcium oxide is used as the adsorbent 3. Calcium oxide is sometimes abbreviated as CaO.

<外包材4の構成>
外包材4は、表面保護層41とガスバリア層42と熱溶着層43との多層構造をなす2枚のラミネートフィルムからなる。外包材4では、熱溶着層43同士が融着し、封止部43aにおいて接合されて芯材2と吸着剤3とを被覆する。このとき、外包材4は、1〜3Pa(パスカル)程度の真空度に減圧された状態で封止部43aが融着され、内部を減圧密封される。
<Structure of outer packaging material 4>
The outer packaging material 4 is composed of two laminated films having a multilayer structure of a surface protective layer 41, a gas barrier layer 42, and a heat welding layer 43. In the outer packaging material 4, the heat-welding layers 43 are fused to each other and joined at the sealing portion 43a to coat the core material 2 and the adsorbent 3. At this time, in the outer packaging material 4, the sealing portion 43a is fused in a state where the pressure is reduced to about 1 to 3 Pa (Pascal), and the inside is sealed under reduced pressure.

なお、外包材4は、それぞれの熱溶着層43が異なる厚みでもよい。芯材2と吸着剤3とを被覆する外包材4は、2枚の外包材4を用いてもよく、1枚の外包材4を折りたたんで用いることもできる。芯材2と吸着剤3とを減圧密封することができれば、外包材4の枚数は、限定されない。 The outer packaging material 4 may have different thicknesses of the heat welding layers 43. As the outer packaging material 4 that covers the core material 2 and the adsorbent 3, two outer packaging materials 4 may be used, or one outer packaging material 4 may be folded and used. The number of outer packaging materials 4 is not limited as long as the core material 2 and the adsorbent 3 can be sealed under reduced pressure.

<表面保護層41の構成>
表面保護層41の膜厚は、25μmなどである。表面保護層41の材料としては、融点が150℃以上で耐傷付性に優れた熱可塑性樹脂などであるとよい。たとえば、延伸ナイロンなどの延伸ポリアミド、ポリエチレンテレフタレート又は延伸ポリプロピレンなどを用いることができる。延伸ナイロンは、ONYと略称されることもある。ポリエチレンテレフタレートは、PETと略称されることもある。延伸ポリプロピレンは、OPPと略称されることもある。
<Structure of surface protection layer 41>
The film thickness of the surface protective layer 41 is 25 μm or the like. The material of the surface protective layer 41 is preferably a thermoplastic resin having a melting point of 150 ° C. or higher and excellent scratch resistance. For example, stretched polyamide such as stretched nylon, polyethylene terephthalate, stretched polypropylene, and the like can be used. Stretched nylon may be abbreviated as ONY. Polyethylene terephthalate is sometimes abbreviated as PET. Stretched polypropylene is sometimes abbreviated as OPP.

<ガスバリア層42の構成>
ガスバリア層42は、材料に水蒸気及び空気の遮断性に優れた熱可塑性樹脂が選択される。ガスバリア層42は、たとえば、膜厚が12μmのガスバリアフィルムが2枚積層されて形成される。なお、ガスバリア層42は、少なくとも2種類のガスバリアフィルムを含むものであるとよい。つまり、ガスバリア層42は、2種類の2枚のガスバリアフィルムを積層して形成されるだけでなく、2種類又は3種類以上の3枚以上のガスバリアフィルムを積層して形成されてもよい。
<Structure of gas barrier layer 42>
For the gas barrier layer 42, a thermoplastic resin having excellent water vapor and air blocking properties is selected as the material. The gas barrier layer 42 is formed by, for example, laminating two gas barrier films having a film thickness of 12 μm. The gas barrier layer 42 may include at least two types of gas barrier films. That is, the gas barrier layer 42 may be formed not only by laminating two types of two gas barrier films, but also by laminating two or three or more types of three or more gas barrier films.

ガスバリア層42の材料には、無機蒸着ポリエチレンテレフタレート、無機蒸着エチレンビニルアルコール、又はこれらの中から、それぞれ100℃で2時間加熱したときに収縮率の差が2%以内である2種のガスバリアフィルムの組合せなどを用いればよい。そして、ガスバリア層42は、2枚のガスバリアフィルムの無機蒸着を施した表面を対面させて張り合わせている。また、ガスバリア層42は、3枚以上のガスバリアフィルムで構成される場合には、間に挟まるガスバリアフィルムの表裏面に無機蒸着を施し、無機蒸着を施した表面を対面させて張り合わせてもよい。熱可塑性樹脂に蒸着される無機材料は、アルミに限定されず、アルミナ、シリカ、又はこれらの組合せでもよい。エチレンビニルアルコールは、EVOHと略称されることもある。 The material of the gas barrier layer 42 is inorganic-deposited polyethylene terephthalate, inorganic-deposited ethylene vinyl alcohol, or two types of gas barrier films having a shrinkage difference of 2% or less when heated at 100 ° C. for 2 hours. A combination of the above may be used. Then, the gas barrier layer 42 is laminated with the surfaces of the two gas barrier films subjected to inorganic vapor deposition facing each other. When the gas barrier layer 42 is composed of three or more gas barrier films, the front and back surfaces of the gas barrier films sandwiched between the gas barrier layers 42 may be subjected to inorganic vapor deposition, and the surfaces to which the inorganic vapor deposition has been subjected to the inorganic vapor deposition may be faced to each other. The inorganic material deposited on the thermoplastic resin is not limited to aluminum, and may be alumina, silica, or a combination thereof. Ethylene vinyl alcohol is sometimes abbreviated as EVOH.

なお、収縮率は、各ガスバリアフィルムを長さ250mm角に切り、100℃で2時間乾燥させた後の寸法変化から算出した。また、収縮率は、各ガスバリアフィルムにおいて大きさが変化しても、固定値となる。 The shrinkage ratio was calculated from the dimensional change after each gas barrier film was cut into 250 mm square lengths and dried at 100 ° C. for 2 hours. Further, the shrinkage rate is a fixed value even if the size of each gas barrier film changes.

<熱溶着層43の構成>
熱溶着層43の膜厚は30μmなどである。熱溶着層43の材料には、融点が150℃以下の熱可塑性樹脂などが選択される。しかし、熱溶着層43の材料は、特に指定されるものではない。熱溶着層43として、たとえば、低密度ポリエチレン又は直鎖状低密度ポリエチレンなどが用いられる。熱溶着層43として、弾性率が高く、水蒸気の遮断性に優れた高密度ポリエチレン、又は、無延伸ポリプロピレンであれば更によい。低密度ポリエチレンは、LDPEと略称されることがある。直鎖状低密度ポリエチレンは、LLDPEと略称されることがある。高密度ポリエチレンは、HDPEと略称されることがある。無延伸ポリプロピレンは、CPPと略称されることがある。なお、以下の説明では、上記の略称を括弧内に記載する。
<Structure of heat welding layer 43>
The film thickness of the heat welding layer 43 is 30 μm or the like. As the material of the heat welding layer 43, a thermoplastic resin having a melting point of 150 ° C. or lower is selected. However, the material of the heat welding layer 43 is not particularly specified. As the heat welding layer 43, for example, low-density polyethylene or linear low-density polyethylene is used. The heat-welded layer 43 may be made of high-density polyethylene having a high elastic modulus and excellent water vapor blocking property, or unstretched polypropylene. Low density polyethylene is sometimes abbreviated as LDPE. Linear low density polyethylene is sometimes abbreviated as LLDPE. High density polyethylene is sometimes abbreviated as HDPE. Unstretched polypropylene may be abbreviated as CPP. In the following description, the above abbreviations are described in parentheses.

上記積層フィルムは、真空引き前の真空断熱材1であって、少なくとも3辺が熱溶着された状態において、100℃で2時間以上の加熱乾燥を行ったとしても、ガスバリア層42を形成する各ガスバリアフィルムの収縮率の差が2%以内であることが望ましい。 The laminated film is the vacuum heat insulating material 1 before evacuation, and forms the gas barrier layer 42 even if it is heat-dried at 100 ° C. for 2 hours or more in a state where at least three sides are heat-welded. It is desirable that the difference in shrinkage of the gas barrier film is within 2%.

<真空断熱材1の製造工程>
真空断熱材1の製造工程では、まず、表面保護層41と、ガスバリア層42と、熱溶着層43と、の多層構造から成る外包材4によって芯材2が被覆される。そして、芯材2及び外包材4の乾燥が行われる。外包材4で被覆した芯材2が100℃で2時間以上加熱処理されることにより、水分が芯材2及び外包材4から除去される。このとき、ガスバリア層42を形成する少なくとも2層以上のガスバリアフィルムにおいて加熱処理後の収縮率の差が2%以内である。これにより、無機蒸着面のクラック発生が抑制でき、ガスバリア性が低下せずに断熱性能が長期的に維持できる。
<Manufacturing process of vacuum heat insulating material 1>
In the manufacturing process of the vacuum heat insulating material 1, first, the core material 2 is covered with the outer packaging material 4 having a multi-layer structure of the surface protective layer 41, the gas barrier layer 42, and the heat welding layer 43. Then, the core material 2 and the outer packaging material 4 are dried. Moisture is removed from the core material 2 and the outer packaging material 4 by heat-treating the core material 2 coated with the outer packaging material 4 at 100 ° C. for 2 hours or more. At this time, the difference in shrinkage after heat treatment is within 2% in at least two or more gas barrier films forming the gas barrier layer 42. As a result, the occurrence of cracks on the inorganic vapor-filmed surface can be suppressed, and the heat insulating performance can be maintained for a long period of time without deteriorating the gas barrier property.

次に、吸着剤3が芯材2及び外包材4の間に配置される。その後、外包材4の内部が1〜3Pa程度の真空度に減圧され、その減圧状態で外包材4の開口部がヒートシールなどで融着され、外包材4の内部が減圧密封される。 Next, the adsorbent 3 is arranged between the core material 2 and the outer packaging material 4. After that, the inside of the outer packaging material 4 is depressurized to a degree of vacuum of about 1 to 3 Pa, and in the reduced pressure state, the opening of the outer packaging material 4 is fused by a heat seal or the like, and the inside of the outer packaging material 4 is decompressed and sealed.

以上の工程を経て得られた真空断熱材1は、ガスバリア層42を構成する無機蒸着面を対向させて張り合わせた少なくとも2種類のガスバリアフィルムにおいて、加熱処理後の収縮率の差が2%以内である。これにより、無機蒸着層へのクラック発生が抑制でき、真空断熱材1の内部の真空度が維持され、熱伝導率の増加量が抑制された状態が長期間に渡り維持できる。 The vacuum heat insulating material 1 obtained through the above steps has a shrinkage difference of 2% or less after heat treatment in at least two types of gas barrier films in which the inorganic vapor deposition surfaces constituting the gas barrier layer 42 are opposed to each other. is there. As a result, the generation of cracks in the inorganic thin-film deposition layer can be suppressed, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and the state in which the amount of increase in thermal conductivity is suppressed can be maintained for a long period of time.

<実施例と比較例との比較>
実施の形態1の真空断熱材1を作製し、実施例について比較例との比較を行った。以下に、その比較結果について説明する。
<Comparison between Examples and Comparative Examples>
The vacuum heat insulating material 1 of the first embodiment was produced, and the Example was compared with the Comparative Example. The comparison results will be described below.

実施例1.
実施例1では、真空断熱材1の外包材4のガスバリア層42を構成する2枚のガスバリアフィルムとして、アルミ蒸着エチレンビニルアルコール(EVOH)と、シリカ蒸着延伸ナイロン(ONY)と、を用いた。そして、シリカ蒸着延伸ナイロン(ONY)とアルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差による、外包材4の水蒸気透過度の関係と、真空断熱材1としての熱伝導率の増加量の関係と、について調べた。
Example 1.
In Example 1, aluminum-deposited ethylene vinyl alcohol (EVOH) and silica-deposited stretched nylon (ONY) were used as the two gas barrier films constituting the gas barrier layer 42 of the outer packaging material 4 of the vacuum heat insulating material 1. Then, the relationship between the water vapor permeability of the outer packaging material 4 and the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 due to the difference in shrinkage between the silica-deposited stretched nylon (ONY) and the aluminum-deposited ethylene vinyl alcohol (EVOH). I investigated the relationship and.

外包材4の表面保護層41として、膜厚25μmの延伸ナイロン(ONY)を用いた。ガスバリア層42として、無機蒸着面を対向させて張り合わせた膜厚12μmのシリカ蒸着延伸ナイロン(ONY)と膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)とを用いた。熱溶着層43として、膜厚30μmの無延伸ポリプロピレン(CPP)を用いた。真空断熱材1の芯材2をグラスウールで構成した。 As the surface protective layer 41 of the outer packaging material 4, stretched nylon (ONY) having a film thickness of 25 μm was used. As the gas barrier layer 42, silica-deposited stretched nylon (ONY) having a thickness of 12 μm and aluminum-deposited ethylene vinyl alcohol (EVOH) having a thickness of 12 μm were used. As the heat welding layer 43, unstretched polypropylene (CPP) having a film thickness of 30 μm was used. The core material 2 of the vacuum heat insulating material 1 was made of glass wool.

上記仕様の表面保護層41と、ガスバリア層42と、熱溶着層43と、が積層されたラミネートフィルムを外包材4として用い、外包材4によって芯材2を被覆し、真空断熱材1を作製した。 A laminated film in which the surface protective layer 41, the gas barrier layer 42, and the heat welding layer 43 of the above specifications are laminated is used as the outer packaging material 4, and the core material 2 is covered with the outer packaging material 4 to prepare the vacuum heat insulating material 1. did.

水蒸気透過度については、100℃で2時間以上乾燥させた外包材4である一片の積層フィルムの40℃90%RH条件での水蒸気透過度を調べた。なお、測定には、GTRテック社製のGTR−1000XAMDを用いた。 Regarding the water vapor permeability, the water vapor permeability of a piece of the laminated film of the outer packaging material 4 dried at 100 ° C. for 2 hours or more was examined under the condition of 40 ° C. and 90% RH. For the measurement, GTR-1000XAMD manufactured by GTR Tech Co., Ltd. was used.

また、熱伝導率の増加量については、真空断熱材1の製造直後の熱伝導率と、真空断熱材1を気温30℃かつ相対湿度60%の雰囲気下で30日間保管した後の熱伝導率と、を調べ、その差を増加量として算出した。 Regarding the amount of increase in thermal conductivity, the thermal conductivity immediately after the production of the vacuum heat insulating material 1 and the thermal conductivity after storing the vacuum heat insulating material 1 in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% for 30 days. And, the difference was calculated as the amount of increase.

実施例1の試料には、ガスバリア層42に、膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)と、アルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差が2%より小さい膜厚12μmのシリカ蒸着延伸ナイロン(ONY)を有する真空断熱材1を用いた。 In the sample of Example 1, the gas barrier layer 42 had a thickness of 12 μm, in which the difference in shrinkage between the aluminum-deposited ethylene vinyl alcohol (EVOH) having a thickness of 12 μm and the aluminum-deposited ethylene vinyl alcohol (EVOH) was smaller than 2%. The vacuum heat insulating material 1 having silica-film-deposited stretched nylon (ONY) was used.

比較例1に用いた試料は、真空断熱材1の外包材4のガスバリア層42に、アルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差が2.2%及び2.3%の膜厚12μmのシリカ蒸着延伸ナイロン(ONY)を用いた。その他の構成及び条件などは、実施例1の試料と同様とした。 In the sample used in Comparative Example 1, the gas barrier layer 42 of the outer packaging material 4 of the vacuum heat insulating material 1 had a thickness difference of 2.2% and 2.3% in shrinkage ratio from aluminum-deposited ethylene vinyl alcohol (EVOH). 12 μm silica vapor deposition stretched nylon (ONY) was used. Other configurations and conditions were the same as those of the sample of Example 1.

図2は、実施の形態1に係る実施例1及び比較例1の試料における真空断熱材1の熱伝導率の増加量を比較した結果を示す表図である。図3は、実施の形態1に係る実施例1及び比較例1における外包材4の水蒸気透過度と収縮率の差との関係を示す図である。 FIG. 2 is a table showing the results of comparing the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 in the samples of Example 1 and Comparative Example 1 according to the first embodiment. FIG. 3 is a diagram showing the relationship between the difference in water vapor permeability and shrinkage rate of the outer packaging material 4 in Example 1 and Comparative Example 1 according to the first embodiment.

図2、図3に示すように、100℃で2時間加熱乾燥を行った後の各ガスバリアフィルムの収縮率は、次のような結果になった。アルミ蒸着エチレンビニルアルコールフィルムは、2.6%の収縮率であった。実施例1の試料のシリカ蒸着延伸ナイロンフィルムは、1.2%及び0.8%の収縮率であった。比較例1の試料のシリカ蒸着延伸ナイロンフィルムは、0.4%及び0.2%の収縮率であった。 As shown in FIGS. 2 and 3, the shrinkage ratio of each gas barrier film after heat-drying at 100 ° C. for 2 hours gave the following results. The aluminum-deposited ethylene-vinyl alcohol film had a shrinkage rate of 2.6%. The silica-deposited stretched nylon film of the sample of Example 1 had shrinkage rates of 1.2% and 0.8%. The silica-deposited stretched nylon film of the sample of Comparative Example 1 had shrinkage rates of 0.4% and 0.2%.

また、実施例1の試料のシリカ蒸着延伸ナイロンフィルムとアルミ蒸着エチレンビニルアルコールフィルムとをガスバリア層42に有した積層フィルムの水蒸気透過度は、2.4mg/(m・day)及び2.5mg/(m・day)であった。比較例1の試料のシリカ蒸着延伸ナイロンフィルムとアルミ蒸着エチレンビニルアルコールフィルムとをガスバリア層42に有した積層フィルムの水蒸気透過度は、7.7mg/(m・day)及び9.6mg/(m・day)であった。Further, the water vapor permeability of the laminated film having the silica-deposited stretched nylon film and the aluminum-deposited ethylene vinyl alcohol film of the sample of Example 1 in the gas barrier layer 42 was 2.4 mg / (m 2 · day) and 2.5 mg. was / (m 2 · day). The water vapor permeability of the laminated film having the silica-deposited stretched nylon film and the aluminum-deposited ethylene vinyl alcohol film of the sample of Comparative Example 1 on the gas barrier layer 42 was 7.7 mg / (m 2 · day) and 9.6 mg / (. It was m 2 · day).

以上の結果から、シリカ蒸着延伸ナイロンフィルムのアルミ蒸着エチレンビニルアルコールフィルムとの収縮率の差が2%を超えると、水蒸気透過度が急激に増加する傾向がみられた。すなわち、図3に示すように、収縮率の差を横軸にとり、水蒸気透過度を縦軸にとったグラフを用いる。図3上に、図2における実施例1での試料の2.4mg/(m・day)の水蒸気透過度をaとプロットする。実施例1での試料の2.5mg/(m・day)の水蒸気透過度をbとプロットする。比較例1での試料の7.7mg/(m・day)の水蒸気透過度をcとプロットする。比較例1での試料の9.6mg/(m・day)の水蒸気透過度をdとプロットする。これらa〜dの点を繋ぎ、収縮率の差との対比を行った。その結果、収縮率の差が2%の箇所を変曲点と推定すると、変曲点から収縮率の差が2%以内では離れたところで水蒸気透過度が緩やかに小さい状態で維持される。一方、収縮率の差が2%の箇所である変曲点付近から収縮率の差が2%を超えていくと、水蒸気透過度が急激に増大する。そのため、収縮率の差が2%の箇所を変曲点として、臨界的意義を有すると考察できる。From the above results, when the difference in shrinkage ratio between the silica-deposited stretched nylon film and the aluminum-deposited ethylene-vinyl alcohol film exceeds 2%, the water vapor permeability tends to increase sharply. That is, as shown in FIG. 3, a graph is used in which the difference in shrinkage ratio is taken on the horizontal axis and the water vapor permeability is taken on the vertical axis. On FIG. 3, the water vapor permeability of 2.4 mg / (m 2 · day) of the sample in Example 1 in FIG. 2 is plotted as a. The water vapor permeability of 2.5 mg / (m 2 · day) of the sample in Example 1 is plotted as b. The water vapor permeability of 7.7 mg / (m 2 · day) of the sample in Comparative Example 1 is plotted as c. The water vapor permeability of 9.6 mg / (m 2 · day) of the sample in Comparative Example 1 is plotted as d. These points a to d were connected and compared with the difference in shrinkage rate. As a result, assuming that the point where the difference in shrinkage rate is 2% is an inflection point, the water vapor permeability is maintained in a gently small state at a distance of 2% or less from the inflection point. On the other hand, when the difference in shrinkage exceeds 2% from the vicinity of the inflection point where the difference in shrinkage is 2%, the water vapor permeability increases sharply. Therefore, it can be considered that the point where the difference in shrinkage rate is 2% is an inflection point and has a critical significance.

図2に示すように、実施例1及び比較例1の真空断熱材1の作製直後の熱伝導率は、1.8mW/(m・K)であった。気温30℃、相対湿度60%の雰囲気下で30日間保管した後における、実施例1の真空断熱材1の熱伝導率の増加量は、0.6mW/(m・K)及び0.7mW/(m・K)であった。気温30℃かつ相対湿度60%の雰囲気下で30日間保管した後における、比較例1の真空断熱材1の熱伝導率は、1.1mW/(m・K)及び1.2mW/(m・K)であった。 As shown in FIG. 2, the thermal conductivity of the vacuum heat insulating material 1 of Example 1 and Comparative Example 1 immediately after production was 1.8 mW / (m · K). The amount of increase in thermal conductivity of the vacuum heat insulating material 1 of Example 1 after storage for 30 days in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% was 0.6 mW / (m · K) and 0.7 mW /. It was (m ・ K). The thermal conductivity of the vacuum heat insulating material 1 of Comparative Example 1 after storage for 30 days in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% was 1.1 mW / (m · K) and 1.2 mW / (m ·). It was K).

以上の結果から、シリカ蒸着延伸ナイロンフィルムのアルミ蒸着エチレンビニルアルコールフィルムとの収縮率の差が2%を超えると、熱伝導率の増加量が急激に増加する傾向がみられた。 From the above results, when the difference in shrinkage ratio between the silica-deposited stretched nylon film and the aluminum-deposited ethylene-vinyl alcohol film exceeds 2%, the amount of increase in thermal conductivity tends to increase sharply.

以上のように、実施例1を例とした、100℃で2時間加熱乾燥を行った後のアルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差が2%以内のシリカ蒸着延伸ナイロン(ONY)を用いると、良好な結果が得られた。すなわち、加熱乾燥工程を経た後も高いガスバリア性が維持でき、長期間に渡り低い熱伝達率の増加量が維持できた。 As described above, silica-film-deposited stretched nylon (ONY) having a shrinkage difference of 2% or less from aluminum-deposited ethylene vinyl alcohol (EVOH) after being heat-dried at 100 ° C. for 2 hours using Example 1 as an example. ) Was used, and good results were obtained. That is, a high gas barrier property could be maintained even after the heat-drying step, and a low increase in heat transfer coefficient could be maintained for a long period of time.

実施例2.
実施例2では、真空断熱材1の外包材4のガスバリア層42を構成する2枚のガスバリアフィルムとなるアルミ蒸着エチレンビニルアルコール(EVOH)と、シリカ蒸着ポリエチレンテレフタレート(PET)と、を用いた。そして、実施例2について、実施例1の試料との外包材4の水蒸気透過度及び真空断熱材1としての熱伝導率の増加量の比較を行った。
Example 2.
In Example 2, aluminum-deposited ethylene vinyl alcohol (EVOH) and silica-deposited polyethylene terephthalate (PET), which are two gas barrier films constituting the gas barrier layer 42 of the outer packaging material 4 of the vacuum heat insulating material 1, were used. Then, for Example 2, the amount of increase in the water vapor permeability of the outer packaging material 4 and the thermal conductivity as the vacuum heat insulating material 1 was compared with the sample of Example 1.

外包材4の表面保護層41として、膜厚25μmの延伸ナイロン(ONY)を用いた。ガスバリア層42として、無機蒸着面を対面させて張り合わせた膜厚12μmのシリカ蒸着ポリエチレンテレフタレート(PET)と膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)とを用いた。熱溶着層43として、膜厚30μmの無延伸ポリプロピレン(CPP)を用いた。真空断熱材1の芯材2をグラスウールで構成した。 As the surface protective layer 41 of the outer packaging material 4, stretched nylon (ONY) having a film thickness of 25 μm was used. As the gas barrier layer 42, silica-deposited polyethylene terephthalate (PET) having a film thickness of 12 μm and aluminum-deposited ethylene vinyl alcohol (EVOH) having a film thickness of 12 μm were used. As the heat welding layer 43, unstretched polypropylene (CPP) having a film thickness of 30 μm was used. The core material 2 of the vacuum heat insulating material 1 was made of glass wool.

上記仕様の表面保護層41と、ガスバリア層42と、熱溶着層43と、が積層されたラミネートフィルムを外包材4として用い、外包材4によって芯材2を被覆し、真空断熱材1を作製した。 A laminated film in which the surface protective layer 41, the gas barrier layer 42, and the heat welding layer 43 of the above specifications are laminated is used as the outer packaging material 4, and the core material 2 is covered with the outer packaging material 4 to prepare the vacuum heat insulating material 1. did.

熱伝導率の増加量については、真空断熱材1の製造直後の熱伝導率と、真空断熱材1の気温30℃かつ相対湿度60%の雰囲気下で30日間保管した後の熱伝導率と、を調べ、その差を増加量として算出した。 Regarding the amount of increase in thermal conductivity, the thermal conductivity immediately after the production of the vacuum heat insulating material 1 and the thermal conductivity after storing the vacuum heat insulating material 1 in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% for 30 days are determined. Was investigated, and the difference was calculated as the amount of increase.

実施例2の試料には、ガスバリア層42に、膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)と、アルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差が2%より小さい膜厚12μmのシリカ蒸着ポリエチレンテレフタレート(PET)と、を有した真空断熱材1を用いた。 In the sample of Example 2, the gas barrier layer 42 had a film thickness of 12 μm in which the difference in shrinkage between the aluminum-deposited ethylene vinyl alcohol (EVOH) having a thickness of 12 μm and the aluminum-deposited ethylene vinyl alcohol (EVOH) was smaller than 2%. A vacuum insulating material 1 having silica-deposited polyethylene terephthalate (PET) was used.

図4は、本発明の実施の形態1に係る実施例2の試料における真空断熱材1の熱伝導率の増加量を比較した結果を示す表図である。 FIG. 4 is a table showing the results of comparing the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 in the sample of Example 2 according to the first embodiment of the present invention.

図4に示すように、100℃で2時間加熱乾燥を行った後の各ガスバリアフィルムの収縮率は、次の結果となった。アルミ蒸着エチレンビニルアルコールフィルムは、2.6%の収縮率であった。実施例2の試料のシリカ蒸着ポリエチレンテレフタレートフィルムは、1.4%の収縮率であった。実施例2の試料のシリカ蒸着ポリエチレンテレフタレートフィルムとアルミ蒸着エチレンビニルアルコールフィルムとをガスバリア層42に有した積層フィルムの水蒸気透過度は、2.2mg/(m・day)であった。実施例2の真空断熱材1の作製直後の熱伝導率は、1.8mW/(m・K)であった。気温30℃、相対湿度60%の雰囲気下で30日間保管した後における、実施例2の真空断熱材1の熱伝導率の増加量は、0.5mW/(m・K)であった。As shown in FIG. 4, the shrinkage rate of each gas barrier film after being heat-dried at 100 ° C. for 2 hours was as follows. The aluminum-deposited ethylene-vinyl alcohol film had a shrinkage rate of 2.6%. The silica-deposited polyethylene terephthalate film of the sample of Example 2 had a shrinkage rate of 1.4%. Water vapor permeability of the laminated film having a gas barrier layer 42 of silica deposited polyethylene terephthalate film sample of Example 2 and the aluminum deposited ethylene vinyl alcohol film was 2.2mg / (m 2 · day) . The thermal conductivity of the vacuum heat insulating material 1 of Example 2 immediately after production was 1.8 mW / (m · K). The amount of increase in the thermal conductivity of the vacuum heat insulating material 1 of Example 2 after storage for 30 days in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% was 0.5 mW / (m · K).

実施例2では、図2の実施例1と比較して、基材に延伸ナイロンよりも水蒸気透過度が低いポリエチレンテレフタレートフィルムを用いている。その結果、実施例2では、実施例1よりも高いガスバリア性が維持でき、長期間に渡り低い熱伝達率の増加量が維持できた。 In Example 2, a polyethylene terephthalate film having a lower water vapor permeability than that of stretched nylon is used as a base material as compared with Example 1 in FIG. As a result, in Example 2, a higher gas barrier property than in Example 1 could be maintained, and a low increase in heat transfer coefficient could be maintained over a long period of time.

実施例3.
実施例3では、真空断熱材1の外包材4のガスバリア層42を構成する2枚のガスバリアフィルムとなるアルミ蒸着エチレンビニルアルコール(EVOH)と、アルミナ蒸着ポリエチレンテレフタレート(PET)と、を用いた。実施例3では、実施例2の試料との外包材4の水蒸気透過度及び真空断熱材1としての熱伝導率の増加量の比較を行った。
Example 3.
In Example 3, aluminum-deposited ethylene vinyl alcohol (EVOH) and alumina-deposited polyethylene terephthalate (PET), which are two gas barrier films constituting the gas barrier layer 42 of the outer packaging material 4 of the vacuum heat insulating material 1, were used. In Example 3, the amount of increase in the water vapor permeability of the outer packaging material 4 and the thermal conductivity of the vacuum heat insulating material 1 was compared with the sample of Example 2.

外包材4の表面保護層41として、膜厚25μmの延伸ナイロン(ONY)を用いた。ガスバリア層42として、無機蒸着面を対向させて張り合わせた膜厚12μmのアルミナ蒸着ポリエチレンテレフタレート(PET)と、膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)と、を用いた。熱溶着層43として、膜厚30μmの無延伸ポリプロピレン(CPP)を用いた。真空断熱材1は、芯材2をグラスウールで構成した。 As the surface protective layer 41 of the outer packaging material 4, stretched nylon (ONY) having a film thickness of 25 μm was used. As the gas barrier layer 42, an alumina-deposited polyethylene terephthalate (PET) having a thickness of 12 μm and an aluminum-deposited ethylene vinyl alcohol (EVOH) having a thickness of 12 μm were used. As the heat welding layer 43, unstretched polypropylene (CPP) having a film thickness of 30 μm was used. In the vacuum heat insulating material 1, the core material 2 is made of glass wool.

上記仕様の表面保護層41と、ガスバリア層42と、熱溶着層43と、が積層されたラミネートフィルムを外包材4として用い、外包材4によって芯材2を被覆し、真空断熱材1を作製した。 A laminated film in which the surface protective layer 41, the gas barrier layer 42, and the heat welding layer 43 of the above specifications are laminated is used as the outer packaging material 4, and the core material 2 is covered with the outer packaging material 4 to prepare the vacuum heat insulating material 1. did.

熱伝導率の増加量については、真空断熱材1の製造直後の熱伝導率と、真空断熱材1の気温30℃かつ相対湿度60%の雰囲気下で30日間保管した後の熱伝導率と、を調べ、その差を増加量として算出した。 Regarding the amount of increase in thermal conductivity, the thermal conductivity immediately after the production of the vacuum heat insulating material 1 and the thermal conductivity after storing the vacuum heat insulating material 1 in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% for 30 days are determined. Was investigated, and the difference was calculated as the amount of increase.

実施例3の試料には、ガスバリア層42に、膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)と、アルミ蒸着エチレンビニルアルコール(EVOH)との収縮率の差が2%より小さい膜厚12μmのアルミナ蒸着ポリエチレンテレフタレート(PET)と、を有した真空断熱材1を用いた。 In the sample of Example 3, the gas barrier layer 42 had a film thickness of 12 μm in which the difference in shrinkage between the aluminum-deposited ethylene vinyl alcohol (EVOH) having a thickness of 12 μm and the aluminum-deposited ethylene vinyl alcohol (EVOH) was smaller than 2%. A vacuum insulating material 1 having alumina-deposited polyethylene terephthalate (PET) was used.

図5は、本発明の実施の形態1に係る実施例3の試料における真空断熱材1の熱伝導率の増加量を比較した結果を示す表図である。 FIG. 5 is a table showing the results of comparing the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 in the sample of Example 3 according to the first embodiment of the present invention.

図5に示すように、100℃で2時間加熱乾燥を行った後の各ガスバリアフィルムの収縮率は、次の結果となった。アルミ蒸着エチレンビニルアルコールフィルムは、2.6%の収縮率であった。実施例3の試料のアルミナ蒸着ポリエチレンテレフタレートフィルムは、1.2%の収縮率であった。実施例3の試料のアルミナ蒸着ポリエチレンテレフタレートフィルムとアルミ蒸着エチレンビニルアルコールフィルムとをガスバリア層42に有した積層フィルムの水蒸気透過度は、1.9mg/(m・day)であった。実施例3の真空断熱材1の作製直後の熱伝導率は1.8mW/(m・K)であった。気温30℃かつ相対湿度60%の雰囲気下で30日間保管した後における実施例3の真空断熱材1の熱伝導率の増加量は、0.3mW/(m・K)であった。As shown in FIG. 5, the shrinkage ratio of each gas barrier film after being heat-dried at 100 ° C. for 2 hours was as follows. The aluminum-deposited ethylene-vinyl alcohol film had a shrinkage rate of 2.6%. The alumina-deposited polyethylene terephthalate film of the sample of Example 3 had a shrinkage rate of 1.2%. The water vapor permeability of the laminated film having the alumina-deposited polyethylene terephthalate film and the aluminum-deposited ethylene vinyl alcohol film of the sample of Example 3 in the gas barrier layer 42 was 1.9 mg / (m 2 · day). The thermal conductivity of the vacuum heat insulating material 1 of Example 3 immediately after production was 1.8 mW / (m · K). The amount of increase in the thermal conductivity of the vacuum heat insulating material 1 of Example 3 after storage for 30 days in an atmosphere of a temperature of 30 ° C. and a relative humidity of 60% was 0.3 mW / (m · K).

実施例3では、図4の実施例2と比較して、蒸着にシリカよりも水蒸気透過度が低いアルミナを用いた。その結果、実施例3では、実施例2よりも高いガスバリア性が維持でき、長期間に渡り低い熱伝達率の増加量が維持できた。 In Example 3, alumina having a lower water vapor permeability than silica was used for vapor deposition as compared with Example 2 in FIG. As a result, in Example 3, a higher gas barrier property than in Example 2 could be maintained, and a low increase in heat transfer coefficient could be maintained over a long period of time.

<実施の形態1の効果>
実施の形態1によれば、真空断熱材1は、真空空間を保持する芯材2を備える。真空断熱材1は、水分を吸着する吸着剤3を備える。真空断熱材1は、芯材2と吸着剤3とを被覆する外包材4を備える。真空断熱材1は、外包材4の内部を減圧密封している。外包材4は、表面保護層41と、少なくとも2種類のガスバリアフィルムを含むガスバリア層42と、熱溶着層43と、によって構成されている。少なくとも2種類のガスバリアフィルムは、100℃で2時間以上加熱したときに、当該少なくとも2種類のガスバリアフィルムの収縮率の差が2%以内である。
<Effect of Embodiment 1>
According to the first embodiment, the vacuum heat insulating material 1 includes a core material 2 that holds a vacuum space. The vacuum heat insulating material 1 includes an adsorbent 3 that adsorbs moisture. The vacuum heat insulating material 1 includes an outer packaging material 4 that covers the core material 2 and the adsorbent 3. The vacuum heat insulating material 1 seals the inside of the outer packaging material 4 under reduced pressure. The outer packaging material 4 is composed of a surface protective layer 41, a gas barrier layer 42 including at least two types of gas barrier films, and a heat welding layer 43. When the at least two types of gas barrier films are heated at 100 ° C. for 2 hours or more, the difference in shrinkage ratio between the at least two types of gas barrier films is within 2%.

この構成によれば、製造時の加熱による乾燥工程を経た後に、少なくとも2種類のガスバリアフィルムでの収縮量の差が過度に大きく異ならない。すなわち、製造時の加熱による乾燥工程を経た後に、ガスバリア層42の無機蒸着に蒸着割れなどが発生し難く、ガスバリア性が低下しない。そのため、真空断熱材1の内部の真空度が維持され、熱伝達率の上昇が抑制できる。したがって、製造時の加熱による乾燥工程を経た後でも外包材4のガスバリア性が低下せず、長期的に断熱性能が維持できる。 According to this configuration, the difference in the amount of shrinkage between at least two types of gas barrier films does not differ excessively after undergoing the drying step by heating during production. That is, after the drying step by heating at the time of production, the inorganic vapor deposition of the gas barrier layer 42 is less likely to cause vapor deposition cracks and the like, and the gas barrier property is not deteriorated. Therefore, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and an increase in the heat transfer coefficient can be suppressed. Therefore, the gas barrier property of the outer packaging material 4 does not deteriorate even after the drying step by heating at the time of production, and the heat insulating performance can be maintained for a long period of time.

実施の形態1によれば、ガスバリア層42は、少なくとも2種類のガスバリアフィルムの無機蒸着を施した表面を対面させて張り合わせている。 According to the first embodiment, the gas barrier layer 42 is laminated with the surfaces of at least two types of gas barrier films subjected to inorganic vapor deposition facing each other.

この構成によれば、製造時の加熱による乾燥工程を経た後に、ガスバリア層42の表面を対面させて張り合わせた無機蒸着に蒸着割れが発生し難く、ガスバリア性が低下しない。そのため、真空断熱材1の内部の真空度が維持され、熱伝達率の上昇が抑制できる。 According to this configuration, after the drying step by heating at the time of production, vapor deposition cracks are less likely to occur in the inorganic vapor deposition in which the surfaces of the gas barrier layer 42 are faced to each other and laminated, and the gas barrier property is not deteriorated. Therefore, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and an increase in the heat transfer coefficient can be suppressed.

実施の形態1によれば、ガスバリア層42は、無機蒸着を施したエチレンビニルアルコール(EVOH)と、無機蒸着を施した延伸ナイロン(ONY)と、によって構成されている。 According to the first embodiment, the gas barrier layer 42 is composed of ethylene vinyl alcohol (EVOH) which has been subjected to inorganic vapor deposition and stretched nylon (ONY) which has been subjected to inorganic vapor deposition.

この構成によれば、製造時の加熱による乾燥工程を経た後に、2種類のガスバリアフィルムでの収縮率の差が小さくなる。これにより、ガスバリア層42の無機蒸着に蒸着割れが発生し難く、ガスバリア性が低下しない。そのため、真空断熱材1の内部の真空度が維持され、熱伝達率の上昇が抑制できる。 According to this configuration, the difference in shrinkage between the two types of gas barrier films becomes small after the drying step by heating at the time of production. As a result, vapor deposition cracks are less likely to occur in the inorganic vapor deposition of the gas barrier layer 42, and the gas barrier property is not deteriorated. Therefore, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and an increase in the heat transfer coefficient can be suppressed.

実施の形態1によれば、ガスバリア層42は、無機蒸着を施したエチレンビニルアルコール(EVOH)と、無機蒸着を施したポリエチレンテレフタレート(PET)と、によって構成されている。 According to the first embodiment, the gas barrier layer 42 is composed of ethylene vinyl alcohol (EVOH) which has been subjected to inorganic vapor deposition and polyethylene terephthalate (PET) which has been subjected to inorganic vapor deposition.

この構成によれば、製造時の加熱による乾燥工程を経た後に、2種類のガスバリアフィルムでの収縮率の差が小さくなる。これにより、ガスバリア層42の無機蒸着に蒸着割れが発生し難く、ガスバリア性が低下しない。そのため、真空断熱材1の内部の真空度が維持され、熱伝達率の上昇が抑制できる。 According to this configuration, the difference in shrinkage between the two types of gas barrier films becomes small after the drying step by heating at the time of production. As a result, vapor deposition cracks are less likely to occur in the inorganic vapor deposition of the gas barrier layer 42, and the gas barrier property is not deteriorated. Therefore, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and an increase in the heat transfer coefficient can be suppressed.

実施の形態1によれば、無機蒸着される材料は、アルミ、アルミナ、シリカ又はこれらの組合せである。 According to the first embodiment, the material to be inorganically vapor-deposited is aluminum, alumina, silica, or a combination thereof.

この構成によれば、製造時の加熱による乾燥工程を経た後に、無機蒸着に蒸着割れが発生し難い。 According to this configuration, thin-film deposition cracks are unlikely to occur in the inorganic vapor deposition after the drying step by heating during manufacturing.

実施の形態2.
図6は、本発明の実施の形態2に係る断熱箱100の概略構成を示す断面図である。断熱箱100は、長期間にわたる断熱性能が求められる、たとえば、冷蔵庫又は冷凍装置などである。
Embodiment 2.
FIG. 6 is a cross-sectional view showing a schematic configuration of the heat insulating box 100 according to the second embodiment of the present invention. The heat insulating box 100 is required to have heat insulating performance for a long period of time, for example, a refrigerator or a freezing device.

図6に示すように、断熱箱100は、内箱110と外箱120とを有する。内箱110と外箱120との間の空間には、実施の形態1にて説明した真空断熱材1が配置されている。真空断熱材1は、内箱110と外箱120との間で断熱を行う。真空断熱材1が配置される位置は、たとえば内箱110の外壁面に密着した位置などである。真空断熱材1は、内箱110と外箱120との間で断熱できる位置に配置されるとよい。 As shown in FIG. 6, the heat insulating box 100 has an inner box 110 and an outer box 120. The vacuum heat insulating material 1 described in the first embodiment is arranged in the space between the inner box 110 and the outer box 120. The vacuum heat insulating material 1 insulates between the inner box 110 and the outer box 120. The position where the vacuum heat insulating material 1 is arranged is, for example, a position in close contact with the outer wall surface of the inner box 110. The vacuum heat insulating material 1 may be arranged at a position where heat insulation can be performed between the inner box 110 and the outer box 120.

以上の構成のように、断熱箱100には、熱伝導率の低い真空断熱材1が設けられている。これにより、内箱110と外箱120との間の熱伝導率が低い状態が維持される。このため、断熱箱100の断熱性能が長期間にわたり高く維持できる。断熱箱100を備えた冷蔵庫又は冷凍装置などでは、消費電力の削減につながる。 As described above, the heat insulating box 100 is provided with the vacuum heat insulating material 1 having a low thermal conductivity. As a result, the state in which the thermal conductivity between the inner box 110 and the outer box 120 is low is maintained. Therefore, the heat insulating performance of the heat insulating box 100 can be maintained high for a long period of time. A refrigerator or a refrigerating device provided with a heat insulating box 100 leads to a reduction in power consumption.

真空断熱材1は、発泡ウレタン断熱材130などと比較して高い断熱性能を有する。このため、断熱箱100では、発泡ウレタン断熱材130のみを用いた断熱箱よりも高い断熱性能が得られる。また、内箱110と外箱120との間の空間のうち、真空断熱材1の配置箇所以外の部分には、発泡ウレタン断熱材130が充填されていてもよい。 The vacuum heat insulating material 1 has higher heat insulating performance than the urethane foam heat insulating material 130 and the like. Therefore, the heat insulating box 100 can obtain higher heat insulating performance than the heat insulating box using only the urethane foam heat insulating material 130. Further, in the space between the inner box 110 and the outer box 120, the portion other than the place where the vacuum heat insulating material 1 is arranged may be filled with the urethane foam heat insulating material 130.

上記の説明では、断熱箱100の真空断熱材1が内箱110の外壁面に密着している。しかし、真空断熱材1は、外箱120の内壁面に密着していてもよい。真空断熱材1は、スペーサなどを用いることにより、内箱110と外箱120との間の空間に、内箱110及び外箱120のいずれにも密着しないように配置されてもよい。 In the above description, the vacuum heat insulating material 1 of the heat insulating box 100 is in close contact with the outer wall surface of the inner box 110. However, the vacuum heat insulating material 1 may be in close contact with the inner wall surface of the outer box 120. The vacuum heat insulating material 1 may be arranged in the space between the inner box 110 and the outer box 120 so as not to be in close contact with either the inner box 110 or the outer box 120 by using a spacer or the like.

なお、上記の説明において、一般的な冷蔵庫などに用いられる断熱箱と同等である部分については、図示及び説明を省略している。 In the above description, the illustration and description of the portion equivalent to the heat insulating box used in a general refrigerator or the like are omitted.

<実施の形態2の効果>
実施の形態2によれば、断熱箱100は、上記の真空断熱材1を備える。
<Effect of Embodiment 2>
According to the second embodiment, the heat insulating box 100 includes the vacuum heat insulating material 1 described above.

この構成によれば、上記の真空断熱材1を備える断熱箱100では、真空断熱材1において、製造時の加熱による乾燥工程を経た後でも外包材4のガスバリア性が低下せず、長期的に断熱性能が維持できる。 According to this configuration, in the heat insulating box 100 provided with the vacuum heat insulating material 1, the gas barrier property of the outer packaging material 4 does not deteriorate even after the vacuum heat insulating material 1 has undergone the drying step by heating at the time of manufacture, and the gas barrier property of the outer packaging material 4 does not deteriorate for a long period of time. Insulation performance can be maintained.

<その他>
なお、本発明に係る真空断熱材1は、上述の実施の形態に限らず種々の変形が可能であり、上述の実施の形態又は実施例は、互いに組み合わせて実施してもよい。
<Others>
The vacuum heat insulating material 1 according to the present invention is not limited to the above-described embodiment and can be variously modified, and the above-described embodiments or examples may be carried out in combination with each other.

たとえば、上記では、製造工程において芯材2及び外包材4の乾燥は100℃で2時間の加熱処理により行われていることを例示している。しかし、加熱処理の温度及び時間は、芯材2及び外包材4の水分が除去できる温度及び時間であればこれに限定されない。 For example, in the above, it is illustrated that the core material 2 and the outer packaging material 4 are dried by heat treatment at 100 ° C. for 2 hours in the manufacturing process. However, the temperature and time of the heat treatment are not limited as long as the temperature and time can remove the water content of the core material 2 and the outer packaging material 4.

また、芯材2及び外包材4の乾燥は、芯材2を外包材4で被覆した状態で行っている。しかし、芯材2と外包材4の乾燥を別々に行った後に、芯材2を外包材4で被覆してもよい。 Further, the core material 2 and the outer packaging material 4 are dried in a state where the core material 2 is covered with the outer packaging material 4. However, the core material 2 may be coated with the outer packaging material 4 after the core material 2 and the outer packaging material 4 are dried separately.

また、上述の実施の形態1に係る真空断熱材1の製造工程において、芯材2及び外包材4を乾燥した後に吸着剤3を芯材2と外包材4との間に配置している。しかし、芯材2及び外包材4を乾燥する前に吸着剤3を配置してもよい。 Further, in the manufacturing process of the vacuum heat insulating material 1 according to the first embodiment, the adsorbent 3 is arranged between the core material 2 and the outer packaging material 4 after the core material 2 and the outer packaging material 4 are dried. However, the adsorbent 3 may be placed before the core material 2 and the outer packaging material 4 are dried.

また、上述の実施の形態2では、冷熱源を備える冷蔵庫の断熱箱100に真空断熱材1が用いられた構成を例に挙げた。しかし、本発明はこれに限られない。真空断熱材1は、温熱源を備える保温庫の断熱箱又は冷熱源及び温熱源を備えない断熱箱、すなわち、クーラーボックスなどに用いることもできる。また、真空断熱材1は、断熱箱100だけでなく、空気調和装置、車両用空調機、給湯機などの冷熱機器又は温熱機器の断熱部材として用いてもよい。加えて、真空断熱材1の形状は、所定の形状ではなく、変形自在な外袋及び内袋を備えた断熱袋又は断熱容器などに用いてもよい。 Further, in the second embodiment described above, the configuration in which the vacuum heat insulating material 1 is used for the heat insulating box 100 of the refrigerator provided with the cold heat source is given as an example. However, the present invention is not limited to this. The vacuum heat insulating material 1 can also be used for a heat insulating box of a heat insulating chamber provided with a heat source or a heat insulating box not provided with a cold heat source and a heat source, that is, a cooler box or the like. Further, the vacuum heat insulating material 1 may be used not only as the heat insulating box 100 but also as a heat insulating member of a cooling device such as an air conditioner, a vehicle air conditioner, a water heater, or a heating device. In addition, the shape of the vacuum heat insulating material 1 is not a predetermined shape, and may be used for a heat insulating bag or a heat insulating container provided with a deformable outer bag and inner bag.

1 真空断熱材、2 芯材、3 吸着剤、4 外包材、41 表面保護層、42 ガスバリア層、43 熱溶着層、43a 封止部、100 断熱箱、110 内箱、120 外箱、130 発泡ウレタン断熱材。 1 Vacuum heat insulating material, 2 core material, 3 adsorbent, 4 outer packaging material, 41 surface protective layer, 42 gas barrier layer, 43 heat welding layer, 43a sealing part, 100 heat insulating box, 110 inner box, 120 outer box, 130 foam Urethane heat insulating material.

Claims (6)

真空空間を保持する芯材と、
水分を吸着する吸着剤と、
前記芯材と前記吸着剤とを被覆する外包材と、
を備え、
前記外包材の内部を減圧密封した真空断熱材であって、
前記外包材は、表面保護層と、少なくとも2種類のガスバリアフィルムを含むガスバリア層と、熱溶着層と、によって構成され、
前記少なくとも2種類のガスバリアフィルムは、100℃で2時間以上加熱したときに、前記少なくとも2種類のガスバリアフィルムの収縮率の差が2%以内である真空断熱材。
The core material that holds the vacuum space and
An adsorbent that adsorbs water and
An outer packaging material that coats the core material and the adsorbent,
With
A vacuum heat insulating material in which the inside of the outer packaging material is sealed under reduced pressure.
The outer packaging material is composed of a surface protective layer, a gas barrier layer containing at least two types of gas barrier films, and a heat welding layer.
The at least two types of gas barrier films are vacuum heat insulating materials in which the difference in shrinkage ratio between the at least two types of gas barrier films is within 2% when heated at 100 ° C. for 2 hours or more.
前記ガスバリア層は、前記少なくとも2種類のガスバリアフィルムの無機蒸着を施した表面を対面させて張り合わせる請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the gas barrier layer is formed by facing the surfaces of at least two types of gas barrier films subjected to inorganic vapor deposition and sticking them together. 前記ガスバリア層は、無機蒸着を施したエチレンビニルアルコール(EVOH)と、無機蒸着を施した延伸ナイロン(ONY)と、によって構成される請求項1又は2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein the gas barrier layer is composed of ethylene vinyl alcohol (EVOH) subjected to inorganic vapor deposition and stretched nylon (ONY) subjected to inorganic vapor deposition. 前記ガスバリア層は、無機蒸着を施したエチレンビニルアルコール(EVOH)と、無機蒸着を施したポリエチレンテレフタレート(PET)と、によって構成される請求項1又は2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein the gas barrier layer is composed of ethylene vinyl alcohol (EVOH) subjected to inorganic vapor deposition and polyethylene terephthalate (PET) subjected to inorganic vapor deposition. 前記無機蒸着される無機材料は、アルミ、アルミナ、シリカ又はこれらの組合せである請求項2〜4のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 2 to 4, wherein the inorganic material to be inorganically vapor-deposited is aluminum, alumina, silica, or a combination thereof. 請求項1〜5のいずれか1項に記載の真空断熱材を備える断熱箱。 A heat insulating box provided with the vacuum heat insulating material according to any one of claims 1 to 5.
JP2020504611A 2018-03-09 2018-03-09 Vacuum heat insulating material and heat insulating box Pending JPWO2019171566A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009165 WO2019171566A1 (en) 2018-03-09 2018-03-09 Vacuum heat-insulation material and heat-insulating box

Publications (1)

Publication Number Publication Date
JPWO2019171566A1 true JPWO2019171566A1 (en) 2021-01-14

Family

ID=67846518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504611A Pending JPWO2019171566A1 (en) 2018-03-09 2018-03-09 Vacuum heat insulating material and heat insulating box

Country Status (5)

Country Link
JP (1) JPWO2019171566A1 (en)
CN (1) CN111801525B (en)
AU (1) AU2018412205B2 (en)
TW (1) TWI697413B (en)
WO (1) WO2019171566A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084784A1 (en) * 2021-11-15 2023-05-19 三菱電機株式会社 Refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133568A (en) * 2016-01-26 2017-08-03 大日本印刷株式会社 Vacuum heat insulation material and equipment with vacuum heat insulation material
JP2018025300A (en) * 2015-12-28 2018-02-15 大日本印刷株式会社 External capsule material for vacuum heat insulation material, vacuum heat insulation material and item with vacuum heat insulation material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI244911B (en) * 1999-02-25 2005-12-11 Matsushita Electric Ind Co Ltd Vacuum heat insulator, hot insulating device using vacuum heat insulator, and electric water heater
CN1157284C (en) * 1999-06-30 2004-07-14 松下电器产业株式会社 Vacuum thermal insulating material, insulated equipment and electric water heater using said material
JP2005001240A (en) * 2003-06-12 2005-01-06 Kuraray Co Ltd Biaxially oriented film of ethylene-vinyl alcohol copolymer and vacuum insulation body
EP2080613B1 (en) * 2006-11-16 2016-03-16 Mitsubishi Plastics, Inc. Gas barrier film laminate
KR101486634B1 (en) * 2012-07-03 2015-01-27 (주)엘지하우시스 Vacuum insulation panel improved explosion defect and the method for manufacturing the same
JP6749079B2 (en) * 2014-07-11 2020-09-02 株式会社クラレ Vapor-deposited film, packaging material and vacuum insulation
CN104329540B (en) * 2014-09-01 2016-08-24 李载润 A kind of vacuum heat-insulating plate of high-isolation bag not bound edge
JP2016089962A (en) * 2014-11-05 2016-05-23 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator using vacuum heat insulation material
CN107001642B (en) * 2014-12-04 2020-07-24 三井化学东赛璐株式会社 Gas barrier polymer, gas barrier film, and gas barrier laminate
JP2016114215A (en) * 2014-12-17 2016-06-23 旭ファイバーグラス株式会社 Vacuum heat insulation material
CN106662286B (en) * 2015-04-28 2018-03-23 松下知识产权经营株式会社 Vacuum insulation part and use its thermally insulated container, house wall, transporting equipment, hydrogen cargo ship and LNG cargo ships
AU2015405840B2 (en) * 2015-08-19 2019-02-21 Mitsubishi Electric Corporation Vacuum thermal insulator and thermal insulation container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025300A (en) * 2015-12-28 2018-02-15 大日本印刷株式会社 External capsule material for vacuum heat insulation material, vacuum heat insulation material and item with vacuum heat insulation material
JP2017133568A (en) * 2016-01-26 2017-08-03 大日本印刷株式会社 Vacuum heat insulation material and equipment with vacuum heat insulation material

Also Published As

Publication number Publication date
AU2018412205A1 (en) 2020-09-03
TWI697413B (en) 2020-07-01
WO2019171566A1 (en) 2019-09-12
AU2018412205B2 (en) 2022-02-17
CN111801525A (en) 2020-10-20
CN111801525B (en) 2021-12-14
TW201938373A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US20160230918A1 (en) Vacuum insulation panel and method for manufacturing the same
JP5998231B2 (en) Sealing material for vacuum insulation panels with excellent impact resistance and non-flammability
JP2015169372A (en) Heat insulation container, and method of manufacturing heat insulation container
JP2008256125A (en) Vacuum heat insulating material and refrigerator using the same
JPWO2019171566A1 (en) Vacuum heat insulating material and heat insulating box
TWI604150B (en) Vacuum heat insulation material and heat insulation box
KR20170090889A (en) Vacuum Insulation Panel
JP2014035011A (en) Laminate for vacuum heat insulation material
JP7077642B2 (en) Laminated material for vacuum heat insulating material and vacuum heat insulating material
JP7062354B2 (en) Exterior material for vacuum heat insulating material
JP2016138638A (en) Laminate for vacuum heat insulation material and vacuum heat insulation material using laminate
JP6775585B2 (en) Vacuum heat insulating material and heat insulating box
KR101749397B1 (en) Vacuum Insulation Panel
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP6094088B2 (en) Laminate for vacuum insulation
KR20160067240A (en) Envelope for vacuum insulation panel and vacuum insulation panel inculding the same
WO2018042612A1 (en) Vacuum heat insulating material and heat insulating box
JP7305922B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP7263781B2 (en) Exterior materials for vacuum insulation materials and vacuum insulation materials
JP4223087B2 (en) Vacuum insulation
JP2023004591A (en) Vacuum heat insulation material and refrigerator
AU2017424996A1 (en) Vacuum insulation material, heat insulation box, and method for producing vacuum insulation material
KR20170053985A (en) Vacuum Insulation Panel And Method for Manufacturing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907