JPWO2019163657A1 - Embedding agent - Google Patents

Embedding agent Download PDF

Info

Publication number
JPWO2019163657A1
JPWO2019163657A1 JP2020501724A JP2020501724A JPWO2019163657A1 JP WO2019163657 A1 JPWO2019163657 A1 JP WO2019163657A1 JP 2020501724 A JP2020501724 A JP 2020501724A JP 2020501724 A JP2020501724 A JP 2020501724A JP WO2019163657 A1 JPWO2019163657 A1 JP WO2019163657A1
Authority
JP
Japan
Prior art keywords
embedding agent
frozen
synthetic collagen
embedding
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2020501724A
Other languages
Japanese (ja)
Inventor
かおり 牛田
かおり 牛田
直也 浅井
直也 浅井
高橋 雅英
雅英 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Publication of JPWO2019163657A1 publication Critical patent/JPWO2019163657A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

凍結ブロックから薄切りして作製した標本を染色した際に、バックグランドの少ない包埋剤を提供する。凍結切片作製用の包埋剤であって、該包埋剤は、凍結包埋剤と、合成コラーゲンと、を含む、包埋剤で課題を解決できる。Provided is an embedding agent having a low background when a specimen prepared by slicing from a frozen block is stained. An embedding agent for preparing frozen sections, the embedding agent can solve the problem with an embedding agent containing a frozen embedding agent and synthetic collagen.

Description

本開示は包埋剤に関し、特に、合成コラーゲンを含む包埋剤に関するものである。 The present disclosure relates to embedding agents, and in particular to embedding agents containing synthetic collagen.

近年、医療の現場では、手術中に生体組織を採取し、良性か悪性か、また、切除断端への浸潤・リンパ節転移の有無を迅速に検査することが求められている。手術中に当該検査を行うことで、手術中に術式を変更したり切除範囲を適切に決定することができ、手術の精度を上げることができる。 In recent years, in the medical field, it is required to collect living tissue during surgery and quickly inspect whether it is benign or malignant, and whether it is infiltrated into the excised margin or has lymph node metastasis. By performing the examination during the operation, the surgical procedure can be changed and the excision range can be appropriately determined during the operation, and the accuracy of the operation can be improved.

手術中の生体組織の検査は、迅速性や抗原性の保持が優れていることから、一般的には、凍結組織標本を作製し、顕微鏡観察で行われている。凍結組織標本は、採取した生体組織を凍結包埋剤で包埋→凍結(以下、生体組織を凍結包埋剤で包埋して凍結したものを、「凍結ブロック」と記載することがある。)→薄切→染色することで作製できる。凍結包埋剤としては、ポリビニルアルコール(PVA)やポリエチレングリコール(PEG)等のポリマーを用いたものが知られており、凍結包埋剤として市販されている。 Examination of living tissue during surgery is generally performed by preparing a frozen tissue specimen and observing it under a microscope because it is excellent in rapidity and retention of antigenicity. Frozen tissue specimens may be described as "freezing block" in which the collected living tissue is embedded with a freezing embedding agent → frozen (hereinafter, the living tissue is embedded with a freezing embedding agent and frozen. ) → Thinly sliced → Dyed. As the freeze embedding agent, those using polymers such as polyvinyl alcohol (PVA) and polyethylene glycol (PEG) are known, and are commercially available as freeze embedding agents.

しかしながら、市販されている凍結包埋剤を用いて薄切すると、シワ、破れ等が発生し易く、きれいな薄膜(切片)を得ることが困難な場合がある。特に、多くの病院・研究機関では、凍結包埋剤としてO.C.Tコンパウンドが使用されているが、生体組織がO.C.Tコンパウンドとなじみが悪い場合は、薄切が難しいという問題がある。更に、凍結組織標本は、薄切した生体組織の切片をスライドガラスに接着して作製するが、従来の凍結包埋剤を用いた場合は、スライドガラスから剥がれやすいという問題がある。 However, when sliced using a commercially available freeze-embedding agent, wrinkles, tears, etc. are likely to occur, and it may be difficult to obtain a clean thin film (section). In particular, in many hospitals and research institutes, O.D. C. T-compound is used, but the biological tissue is O.D. C. If it is not familiar with the T compound, there is a problem that it is difficult to slice it. Further, a frozen tissue specimen is prepared by adhering a sliced piece of biological tissue to a slide glass, but when a conventional freeze-embedding agent is used, there is a problem that it is easily peeled off from the slide glass.

本発明者らは、水溶液とした際に15℃〜25℃では液体状態で且つ4℃では固体状態となるゼラチンを標本作製用包埋剤として用いる、又は、公知の凍結包埋剤に前記ゼラチンを添加することで、上記問題を解決できることを見出し、特許出願をしている(特許文献1参照)。 The present inventors use gelatin as an embedding agent for sample preparation, which is in a liquid state at 15 ° C. to 25 ° C. and a solid state at 4 ° C. when made into an aqueous solution, or the gelatin is used as a known freeze embedding agent. It has been found that the above problem can be solved by adding the above-mentioned substance, and a patent application has been filed (see Patent Document 1).

国際公開第2015/199195号International Publication No. 2015/199195

ところで、ゼラチンは動物性蛋白質のため、標本を作製する生体組織に馴染みやすい。更に、ゼラチンは粘着性を有する。そのため、特許文献1に記載のゼラチンからなる包埋剤、或いは、凍結包埋剤にゼラチンを添加した包埋剤は、生体組織に入り込んだゼラチンが残渣として残ることから、硬化性基材非浸透標本を作製する際に、生体組織の支持体への密着性が向上するというメリットがある。しかしながら、硬化性基材非浸透標本をヘマトキシリン・エオジン(HE)等を用いて染色した場合、残渣として支持体上に残ったゼラチンも染色される。そのため、染色した標本を画像解析ソフトにより解析する場合、染色されたゼラチンも含めて解析されることから、解析精度が落ちるという問題がある。 By the way, since gelatin is an animal protein, it is easily compatible with the biological tissue in which the specimen is prepared. In addition, gelatin is sticky. Therefore, the embedding agent made of gelatin described in Patent Document 1 or the embedding agent obtained by adding gelatin to the frozen embedding agent leaves gelatin that has entered the living tissue as a residue, so that the curable base material does not penetrate. When preparing a specimen, there is an advantage that the adhesion of living tissue to a support is improved. However, when the curable substrate non-penetrating sample is stained with hematoxylin, eosin (HE) or the like, gelatin remaining on the support as a residue is also stained. Therefore, when the stained sample is analyzed by image analysis software, there is a problem that the analysis accuracy is lowered because the stained gelatin is also analyzed.

本明細書における開示は、上記従来の問題を解決するためになされたものであり、鋭意研究を行ったところ、(1)公知の凍結包埋剤への添加剤として合成コラーゲンを用いると、凍結ブロックの薄切性が向上すること、(2)合成コラーゲンは0℃〜常温で液体であることから、標本作製時の水の温度が低くても洗い流しやすく、生体組織を染色した時のバックグラウンドを減少できること、を新たに見出した。 The disclosure in the present specification has been made in order to solve the above-mentioned conventional problems, and as a result of diligent research, (1) when synthetic collagen is used as an additive to a known freeze-embedding agent, it freezes. The thinness of the block is improved, and (2) Synthetic collagen is a liquid at 0 ° C to room temperature, so it is easy to wash off even if the temperature of the water at the time of sample preparation is low, and the background when the biological tissue is stained. It was newly found that it is possible to reduce.

すなわち、本明細書における開示の目的は、公知の凍結包埋剤の薄切性を改善でき、生体組織を染色した時のバックグラウンドが少ない包埋剤を提供することである。 That is, an object of the disclosure in the present specification is to provide an embedding agent that can improve the thinness of a known frozen embedding agent and has a small background when a living tissue is stained.

本明細書における開示は、以下に示す包埋剤に関する。 The disclosure herein relates to the embedding agents shown below.

[1]凍結切片作製用の包埋剤であって、該包埋剤は、
凍結包埋剤と、
合成コラーゲンと、
を含む、包埋剤。
[2]凍結切片の薄切性を改善するためのカルボン酸、
を更に含む、上記[1]に記載の包埋剤。
[3]前記合成コラーゲンが、下記式(1)で表される、
−(Gly−X−Y)n− (1)
上記[1]または[2]に記載の包埋剤。
[4]前記合成コラーゲンが、下記式(2)で表される、
−(Pro−Z−Gly)n− (2)
上記[1]または[2]に記載の包埋剤。
[5]前記式(2)中のZが、プロリン残基(Pro)又はヒドロキシプロリン残基(Hyp)から選択される、
上記[4]に記載の包埋剤。
[1] An embedding agent for preparing a frozen section, the embedding agent is
Frozen embedding agent and
With synthetic collagen
Including embedding agent.
[2] Carboxylic acid for improving sliceability of frozen sections,
The embedding agent according to the above [1], further comprising.
[3] The synthetic collagen is represented by the following formula (1).
-(Gly-XY) n- (1)
The embedding agent according to the above [1] or [2].
[4] The synthetic collagen is represented by the following formula (2).
-(Pro-Z-Gly) n- (2)
The embedding agent according to the above [1] or [2].
[5] Z in the formula (2) is selected from a proline residue (Pro) or a hydroxyproline residue (Hyp).
The embedding agent according to the above [4].

本明細書で開示する包埋剤は、合成コラーゲンの添加により、包埋剤を用いて作製した凍結ブロックの薄切性を向上できる。また、支持体上に生体組織を貼着した後、合成コラーゲンを水で洗い流すことができるので、染色した時のバックグランドが少なくなる。 The embedding agent disclosed in the present specification can improve the sliceability of a frozen block prepared by using the embedding agent by adding synthetic collagen. In addition, since the synthetic collagen can be washed away with water after the biological tissue is attached on the support, the background at the time of staining is reduced.

図1は、図面代用写真で、図1Aは、実施例1及び2、並びに、比較例1の包埋剤を用いて作製した凍結ブロックの写真である。また、図1Bは、凍結ブロックを薄切した凍結切片の写真である。FIG. 1 is a drawing substitute photograph, and FIG. 1A is a photograph of a frozen block prepared by using the embedding agents of Examples 1 and 2 and Comparative Example 1. In addition, FIG. 1B is a photograph of a frozen section obtained by slicing a frozen block. 図2は、図面代用写真で、図2Aは、実施例3及び4、並びに、比較例2の包埋剤を用いて作製した凍結ブロックの写真である。また、図2Bは、凍結ブロックを薄切した凍結切片の写真である。FIG. 2 is a drawing substitute photograph, and FIG. 2A is a photograph of a frozen block prepared by using the embedding agents of Examples 3 and 4 and Comparative Example 2. In addition, FIG. 2B is a photograph of a frozen section obtained by slicing a frozen block. 図3は、図面代用写真で、図3Aは、実施例5で作製したHE染色標本の写真である。図3Bは、比較例3で作製したHE染色標本の写真である。FIG. 3 is a drawing substitute photograph, and FIG. 3A is a photograph of the HE-stained specimen prepared in Example 5. FIG. 3B is a photograph of the HE-stained specimen prepared in Comparative Example 3. 図4は、図面代用写真で、図4Aは実施例6で作製した凍結ブロックの写真、図4Bは凍結ブロックを薄切りした凍結切片の写真である。FIG. 4 is a drawing substitute photograph, FIG. 4A is a photograph of the frozen block prepared in Example 6, and FIG. 4B is a photograph of a frozen section obtained by slicing the frozen block.

以下に、包埋剤の実施形態について詳しく説明する。 The embodiments of the embedding agent will be described in detail below.

本明細書で開示する包埋剤は、凍結包埋剤及び合成コラーゲンを少なくとも含んでいる。なお、本明細書において「合成コラーゲン」とは、発酵や合成から生成したアミノ酸のみを使用して合成した非動物由来型の高分子コラーゲンを意味する。 The embedding agents disclosed herein include at least a frozen embedding agent and synthetic collagen. In addition, in this specification, "synthetic collagen" means non-animal-derived high molecular weight collagen synthesized using only amino acids produced by fermentation or synthesis.

牛、豚、魚等の動物から抽出して得られた動物由来コラーゲンは、臭い成分などの不純物が混入しているため、無臭化することは非常に困難であると言われている。そのため、原料の違いにより、不純物等の比率が異なり、製品間の品質を均質化することは難しい。一方、合成コラーゲンは合成により製造されるため、臭い成分等の不純物が混入することはない。また、合成条件を一定にすることで、所期の分子量の合成コラーゲンを得ることもできる。 It is said that it is very difficult to deodorize animal-derived collagen obtained by extracting from animals such as cows, pigs, and fish because it contains impurities such as odorous components. Therefore, the ratio of impurities and the like differs depending on the difference in raw materials, and it is difficult to homogenize the quality between products. On the other hand, since synthetic collagen is produced by synthesis, impurities such as odorous components are not mixed. In addition, by making the synthetic conditions constant, it is possible to obtain synthetic collagen having a desired molecular weight.

更に、動物由来の材料には夾雑物が混入する恐れがある。そのため、動物由来の材料を含む包埋剤を用いて標本を作製すると、染色の際に夾雑物も染色されバックグラウンドとなる可能性がある。一方、合成コラーゲンには夾雑物が混入する恐れがないことから、染色の際に、包埋剤に起因するバックグラウンドの発生を抑えることができる。 In addition, animal-derived materials may be contaminated with contaminants. Therefore, when a specimen is prepared using an embedding agent containing an animal-derived material, contaminants may also be stained during staining and become a background. On the other hand, since there is no risk of impurities being mixed in the synthetic collagen, it is possible to suppress the generation of background due to the embedding agent at the time of staining.

合成コラーゲンは、上記の通り、発酵や合成から生成したアミノ酸のみを使用して合成した非動物由来型の高分子コラーゲンであれば、特に制限はない。例えば、一型コラーゲン分子は、式(1)で表す三アミノ酸残基の繰り返しを含む一次構造を有する。このポリペプチドは、同じ向きに3本寄り集って形成された三重らせんの三次構造をとることが知られている。
−(Gly−X−Y)n− (1)
As described above, the synthetic collagen is not particularly limited as long as it is a non-animal-derived high molecular weight collagen synthesized using only amino acids produced by fermentation or synthesis. For example, the type 1 collagen molecule has a primary structure containing repetitions of the three amino acid residues represented by the formula (1). It is known that this polypeptide has the tertiary structure of a triple helix formed by gathering three of them in the same direction.
-(Gly-XY) n- (1)

上記式(1)中、X及びYは、夫々独立して以下のアミノ酸残基から選択される。
Ala:L−アラニン残基、
Arg:L−アルギニン残基
Asn:L−アスパラギン残基
Asp:L−アスパラギン酸残基
Cys:L−システイン残基
Gln:L−グルタミン残基
Glu:L−グルタミン酸残基
His:L−ヒスチジン残基
Hyp:L−ヒドロキシプロリン残基
Ile:L−イソロイシン残基
Leu:L−ロイシン残基
Lys:L−リジン残基
Met:L−メチオニン残基
Phe:L−フェニルアラニン残基
Pro:L−プロリン残基
Sar:サルコシン残基
Ser:L−セリン残基
Thr:L−トレオニン残基
Trp:L−トリプトファン残基
Tyr:L−チロシン残基
Val:L−バリン残基
In the above formula (1), X and Y are independently selected from the following amino acid residues.
Ala: L-alanine residue,
Arg: L-arginine residue Asn: L-asparagin residue Asp: L-aspartic acid residue Cys: L-cysteine residue Gln: L-glutamine residue Glu: L-glutamic acid residue His: L-histidine residue Hyp: L-hydroxyproline residue Ile: L-isoleucine residue Leu: L-leucine residue Lys: L-lysine residue Met: L-methionine residue Phe: L-phenylalanine residue Pro: L-proline residue Sar: Sarcosin residue Ser: L-serine residue Thr: L-threonine residue Trp: L-tryptophan residue Tyr: L-tyrosine residue Val: L-valine residue

上記の通り、X、Yは任意の組み合わせであるが、XがPro、YがHypの場合が好ましい。式(1)で表される合成コラーゲンは、公知の製造方法により製造すればよい。例えば、−(Gly−X−Y)−の繰り返し単位を含むペプチドオリゴマーを、ジメチルスルホキシド中やエチレンジアミンを含む水系溶媒等中で縮合反応させることで合成できる。なお、水系溶媒中で縮合反応を行う場合、溶媒中のリン酸イオン濃度を調節することで、分子量を調整できる(特開2017−8094号公報参照)。また、合成コラーゲンの側鎖がアミノ基を持つ場合は、必要に応じて、公知の方法によりサクシニル化、フタル化、アセチル化してもよい。遊離アミノ基を無くすことで、合成コラーゲンが固まり難くなる。 As described above, X and Y are any combination, but it is preferable that X is Pro and Y is Hyp. The synthetic collagen represented by the formula (1) may be produced by a known production method. For example, it can be synthesized by subjecting a peptide oligomer containing a repeating unit of − (Gly—XY) − to a condensation reaction in dimethyl sulfoxide, an aqueous solvent containing ethylenediamine, or the like. When the condensation reaction is carried out in an aqueous solvent, the molecular weight can be adjusted by adjusting the phosphate ion concentration in the solvent (see JP-A-2017-8094). When the side chain of synthetic collagen has an amino group, it may be succinylated, phthalylated, or acetylated by a known method, if necessary. By eliminating the free amino group, synthetic collagen is less likely to clot.

また、式(1)以外の合成コラーゲンとしては、以下の式(2)で表す三アミノ酸残基の繰り返しからなるものも知られている。
−(Pro−Z−Gly)n− (2)
Further, as synthetic collagen other than the formula (1), one consisting of repeating three amino acid residues represented by the following formula (2) is also known.
-(Pro-Z-Gly) n- (2)

上記式(2)中、Zはプロリン残基(Pro)又はヒドロキシプロリン残基(Hyp)から選択される。つまり、上記式(2)で表される合成コラーゲンは、
(Pro−Pro−Gly)単位からなる、ポリ(Pro−Pro−Gly)、
(Pro−Hyp−Gly)単位からなる、ポリ(Pro−Hyp−Gly)、
(Pro−Pro−Gly)単位、及び、(Pro−Hyp−Gly)単位が、任意の順番で縮合したポリ(Pro−Pro又はHyp−Gly)、
の態様が含まれる。
In the above formula (2), Z is selected from a proline residue (Pro) or a hydroxyproline residue (Hyp). That is, the synthetic collagen represented by the above formula (2) is
Poly (Pro-Pro-Gly), consisting of (Pro-Pro-Gly) units,
Poly (Pro-Hyp-Gly), consisting of (Pro-Hyp-Gly) units,
Poly (Pro-Pro or Hyp-Gly) in which the (Pro-Pro-Gly) unit and the (Pro-Hyp-Gly) unit are condensed in any order,
Aspects are included.

式(1)及び(2)の繰り返し数nは、目的の分子量や、共存する配列に応じて適宜設定することができる。例えば、繰り返し数nの下限値は、10以上、20以上、30以上、40以上、50以上等が挙げられ、上限値は、50000以下、5000以下、1000以下、750以下、500以下、250以下等が挙げられる。 The number n of repetitions of the formulas (1) and (2) can be appropriately set according to the target molecular weight and the coexisting sequences. For example, the lower limit of the number of repetitions n is 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, and the upper limit is 50,000 or less, 5000 or less, 1000 or less, 750 or less, 500 or less, 250 or less. And so on.

合成コラーゲンは、公知の方法を用いて製造してもよいし、市販されているものを用いてもよい。市販されている合成コラーゲンとしては、ハイブリッドコラーゲン(ユニクス株式会社製)、ピュアコラ(JNC株式会社製)等が挙げられる。 The synthetic collagen may be produced by a known method, or a commercially available one may be used. Examples of commercially available synthetic collagen include hybrid collagen (manufactured by Unix Co., Ltd.) and pure collagen (manufactured by JNC Corporation).

本明細書で開示する包埋剤に含まれる凍結包埋剤としては、公知の凍結包埋剤を用いればよい。例えば、O.C.Tコンパウンド(サクラファインテック社製)、ホワイトティシュコート(ユーアイ化成社製)、FSC22(ライカ社製)、クリオマウント(低粘度及び高粘度;武藤化学社製)、クリオマトリックス(サーモフィッシャーサイエンティフィック)、SCAM(SECTION−LAB)等が挙げられる。 As the freeze embedding agent contained in the embedding agent disclosed in the present specification, a known freeze embedding agent may be used. For example, OCT compound (manufactured by Sakura Finetech), White Tish Coat (manufactured by UI Kasei), FSC22 (manufactured by Leica), Cliomount (low viscosity and high viscosity; manufactured by Muto Chemical Co., Ltd.), Cliomatrix (Thermo Fisher Scientific), SCAM (SECTION-LAB) and the like.

合成コラーゲンを凍結包埋剤に添加することで、凍結ブロックの薄切性を向上することができる。また、凍結ブロックから凍結切片を作製した後は、凍結切片中の合成コラーゲンは、水で簡単に流すことができる。したがって、凍結包埋剤に対する合成コラーゲンの添加量は、所期の薄切性能が得られ、凍結包埋剤の凍結包埋機能を喪失しない範囲内であれば特に制限はない。特に制限はされないが、例えば、凍結包埋剤100重量部に対し、合成コラーゲンは、0.001〜1.0重量%程度添加されていればよい。 By adding synthetic collagen to the freeze-embedding agent, the sliceability of the frozen block can be improved. Further, after the frozen section is prepared from the frozen block, the synthetic collagen in the frozen section can be easily flushed with water. Therefore, the amount of synthetic collagen added to the freeze-embedding agent is not particularly limited as long as the desired slicing performance can be obtained and the freeze-embedding function of the freeze-embedded agent is not lost. Although not particularly limited, for example, about 0.001 to 1.0% by weight of synthetic collagen may be added to 100 parts by weight of the freeze-embedding agent.

本明細書で開示する包埋剤を用いて生体組織を包埋し、凍結・薄切することで「硬化性基材浸透標本」及び「硬化性基材非浸透標本」を作製することができる。「硬化性基材浸透標本」とは、標本上の組織が長期間保存しても壊れないように永久的に固定するため、ホルマリン、パラフォルムアルデヒド、グルタルアルデヒド等の公知の固定液により固定化した生体組織を脱脂・脱水などの処理をした後に、パラフィン、エポキシ樹脂、メタクリレート、アルカリ系ポリエステル等の硬化性基材を、組織の内部まで浸透させて生体組織を硬化した標本を意味する。代表的なものとしてパラフィン標本が挙げられる。標本は公知の方法により作製すればよい。 By embedding a living tissue using the embedding agent disclosed in the present specification, freezing and slicing it, a "curable base material penetrating specimen" and a "curable base material non-penetrating specimen" can be prepared. .. A "curable substrate-penetrated specimen" is fixed with a known fixative such as formalin, paraformaldehyde, or glutaaldehyde in order to permanently fix the tissue on the specimen so that it will not be damaged even after long-term storage. This means a specimen obtained by permeating a curable base material such as paraffin, epoxy resin, methacrylate, or alkaline polyester into the inside of the tissue to cure the biological tissue after degreasing / dehydrating the living tissue. A paraffin specimen is a typical example. The specimen may be prepared by a known method.

そして、「硬化性基材非浸透標本」とは、上記「硬化性基材」を使用せずに作製した標本を意味する。例えば、上記の固定液で固定化した生体組織、または、未固定生体組織を、包埋剤等を用いて硬度を持たせ、薄切して得られた切片を支持体に貼着した標本が挙げられる。代表的なものとして凍結標本が挙げられる。 The "curable base material non-penetrating specimen" means a specimen prepared without using the above-mentioned "curable base material". For example, a specimen obtained by slicing a biological tissue immobilized with the above-mentioned fixative or an unfixed biological tissue to have hardness using an embedding agent or the like and attaching a slice obtained to the support is obtained. Can be mentioned. A typical example is a frozen specimen.

硬化性基材非浸透標本を用いて病理検査を行う例として、(1)水で硬化性基材非浸透標本を洗うことで、支持体上に付着している包埋剤を洗い流し、(2)HE染色、脂肪染色等の染色法、又は、酵素抗体法(DAB)、蛍光抗体法等の免疫染色法等、公知の方法で染色し、(3)顕微鏡観察する、手順が挙げられる。当該手順(1)において、包埋剤(或いは薄切性改善剤)としてゼラチンを用いた場合、水で洗いきれずに残渣として付着したゼラチンが染色されるという問題があった。一方、合成コラーゲンは0℃〜常温で液体である。そのため、水の温度が低くても、支持体上に残渣として付着する合成コラーゲンが少なくなり、染色時のバックグラウンドを低くできる。 As an example of performing a pathological examination using a non-penetrating specimen of a curable substrate, (1) washing the non-penetrating specimen of a curable substrate with water washes away the embedding agent adhering to the support, and (2) ) Staining by a known method such as a staining method such as HE staining or fat staining, or an immunostaining method such as an enzyme antibody method (DAB) or a fluorescent antibody method, and (3) observing under a microscope. In the procedure (1), when gelatin was used as an embedding agent (or a thin-slicing improving agent), there was a problem that gelatin that had adhered as a residue could not be washed with water and was stained. On the other hand, synthetic collagen is liquid at 0 ° C. to room temperature. Therefore, even if the temperature of water is low, the amount of synthetic collagen adhering as a residue on the support is reduced, and the background during staining can be lowered.

なお、「硬化性基材非浸透標本」を作製する際には、薄切して得られた切片を支持体に貼着した後に、固定液で生体組織を固定する場合がある。その際に、固定液として遊離アミノ基を架橋するアルデヒド系固定液(例えば、ホルマリン)を用いるとゼラチンも固定され、固定化工程後にゼラチンを洗い流すことはできなかった。一方、遊離アミノ基を有しない合成コラーゲンを用いた場合は、アルデヒド系固定液で固定されない。したがって、遊離アミノ基を有しない合成コラーゲンを用いると、合成コラーゲンを含んだ状態で生体組織をアルデヒド系固定液による固定化工程を行った場合でも、固定化工程後に合成コラーゲンを洗い流すことができ、染色のバックグラウンドを低くできる。 When preparing a "curable base material non-penetrating sample", a slice obtained by slicing may be attached to a support, and then the biological tissue may be fixed with a fixative. At that time, when an aldehyde-based fixative (for example, formalin) that crosslinks free amino groups was used as the fixative, gelatin was also fixed, and gelatin could not be washed away after the immobilization step. On the other hand, when synthetic collagen having no free amino group is used, it is not fixed with an aldehyde-based fixative. Therefore, if synthetic collagen having no free amino group is used, the synthetic collagen can be washed away after the immobilization step even when the biological tissue is immobilized with an aldehyde-based fixative in a state containing the synthetic collagen. The background of dyeing can be lowered.

遊離アミノ基を有しない合成コラーゲンを得るためには、上記のとおり、遊離アミノ基をサクシニル化、フタル化、アセチル化すればよい。或いは、式(2)の合成コラーゲンを用いればよい。なお、アルコール固定等、固定液として遊離アミノ基を架橋しない固定液を用いる場合は、遊離アミノ基がある合成コラーゲンでもよい。したがって、合成コラーゲンとしては、遊離アミノ基の有無に関係なく用いることができるが、多様な標本作成方法に対応できるとの観点からは、遊離アミノ基を有しない合成コラーゲンを用いることが好ましい。 In order to obtain synthetic collagen having no free transamination group, the free transamination group may be succinylated, phthalylated, or acetylated as described above. Alternatively, the synthetic collagen of the formula (2) may be used. When a fixative that does not crosslink free amino groups is used as the fixative, such as alcohol fixation, synthetic collagen having free amino groups may be used. Therefore, although synthetic collagen can be used regardless of the presence or absence of a free amino group, it is preferable to use synthetic collagen having no free amino group from the viewpoint of being compatible with various sample preparation methods.

本明細書で開示する包埋剤は、必要に応じて、水溶性物質を加えてもよい。例えば、糖類、塩類、エキス類、ビタミン類、pH調整剤類、色素類、界面活性剤類からなる群から選択される水溶性物質が挙げられる。 Water-soluble substances may be added to the embedding agents disclosed herein, if necessary. For example, a water-soluble substance selected from the group consisting of sugars, salts, extracts, vitamins, pH adjusters, pigments, and surfactants can be mentioned.

前記水溶性物質についてより具体的に記載すると、糖類(例えば、アガロース、スクロース、ソルビト−ル、マルチト−ル、水飴、乳糖、果糖、オリゴ糖等);加工澱粉類(例えば、焙焼デキストリン、酵素変性デキストリン等のデキストリン);塩類(例えば、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリウム等);エキス類(例えば、牛、豚、貝、野菜由来のエキス等);ビタミン類(例えば、ビタミンC、ビタミンCナトリウム、ビタミンB1塩酸塩等);pH調整剤類(例えば、クエン酸、クエン酸ナトリウム、コハク酸、フタル酸、塩酸、硫酸、酢酸、リンゴ酸、酒石酸等);色素類(例えば、赤色2号,3号,102号,105号,106号、黄色4号,5号、青色2号等);界面活性剤類(例えば、蔗糖脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコ−ル脂肪酸エステル等)が挙げられ、それぞれ単独で用いても良いし2種以上併用しても良い。 More specifically, the water-soluble substance is described as a sugar (for example, agarose, sucrose, sorbitol, multitor, water candy, lactose, fructose, oligosaccharide, etc.); processed starch (for example, roasted dextrin, enzyme). Dextrin such as modified dextrin); Salts (eg, sodium chloride, calcium chloride, magnesium chloride, sodium sulfate, etc.); Extracts (eg, extracts derived from cows, pigs, shellfish, vegetables, etc.); Vitamin (eg, vitamin C) , Vitamin C sodium, vitamin B1 hydrochloride, etc.); pH adjusters (eg, citric acid, sodium citrate, sucrose, phthalic acid, hydrochloric acid, sulfuric acid, acetic acid, malic acid, tartrate, etc.); pigments (eg, tartaric acid, etc.) Red Nos. 2, 3, 102, 105, 106, Yellow Nos. 4, 5, Blue No. 2, etc.); Surfactants (eg, sucrose fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, propylene glyco -Lu fatty acid ester, etc.), and each may be used alone or in combination of two or more.

標本を作製する際の支持体としては、薄切した生体組織の切片を貼着し顕微鏡観察できるものであれば特に制限は無く、スライドガラスや光透過性の樹脂フィルム等が挙げられる。 The support for preparing the specimen is not particularly limited as long as it can be observed under a microscope by attaching sliced pieces of biological tissue, and examples thereof include slide glass and a light-transmitting resin film.

作製した硬化性基材非浸透標本を用いての病理検査は、上記のとおりである。また、作製した硬化性基材浸透標本を用いて病理検査する場合は、HE染色、PAS染色、アルシアン青染色、等の染色法、又は、酵素抗体法(DAB)、蛍光抗体法等の免疫染色法等、公知の方法で染色し、顕微鏡観察すればよい。 The pathological examination using the prepared non-penetrating base material specimen is as described above. When pathological examination is performed using the prepared curable substrate penetrating specimen, a staining method such as HE staining, PAS staining, Alcian blue staining, or immunostaining such as enzyme antibody method (DAB) or fluorescent antibody method is performed. It may be stained by a known method such as a method and observed under a microscope.

また、標本作製用試料が脂肪組織の場合、脂肪組織が凍結する温度まで冷却しても凍結ブロックの良好な薄切性が得られる必要がある。その場合、必要に応じて、包埋剤にカルボン酸を添加してもよい。カルボン酸化合物としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸等のモノカルボン酸化合物;シュウ酸、マロン酸、コハク酸、グルタル酸等のジカルボン酸化合物;クエン酸等のトリカルボン酸化合物;安息香酸、フタル酸等の芳香族カルボン酸化合物;乳酸、リンゴ酸等のヒドロキシ酸化合物;クロロ酢酸等のハロゲンで置換されたカルボン酸化合物;等が挙げられる。カルボン酸化合物の添加量は、薄切性が改善する量であれば特に制限は無く、包埋剤やカルボン酸化合物の種類に応じて適宜調整すればよい。 Further, when the sample for sample preparation is adipose tissue, it is necessary to obtain good sliceability of the frozen block even when cooled to a temperature at which the adipose tissue freezes. In that case, carboxylic acid may be added to the embedding agent, if necessary. Examples of the carboxylic acid compound include monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, and caproic acid; dicarboxylic acid compounds such as oxalic acid, malonic acid, succinic acid, and glutaric acid; and tricarboxylic acids such as citric acid. Compounds; aromatic carboxylic acid compounds such as benzoic acid and phthalic acid; hydroxy acid compounds such as lactic acid and malic acid; carboxylic acid compounds substituted with halogen such as chloroacetic acid; and the like. The amount of the carboxylic acid compound added is not particularly limited as long as it improves the sliceability, and may be appropriately adjusted according to the type of embedding agent or carboxylic acid compound.

以下に実施例を掲げ、包埋剤の実施形態を具体的に説明するが、この実施例は単に実施形態の具体的な態様の参考のために提供されているものである。これらの例示は、発明の範囲を限定したり、あるいは制限することを表すものではない。 Hereinafter, embodiments of the embedding agent will be specifically described with reference to examples, but the embodiments are provided merely as a reference for specific embodiments of the embodiments. These examples do not represent limiting or limiting the scope of the invention.

[包埋剤の作製]
<実施例1>
凍結包埋剤として、O.C.Tコンパウンド(サクラファインテック社製)を用い、合成コラーゲンとして、0.5%ハイブリッドコラーゲン(ユニクス社製)を用いた。そして、凍結包埋剤:合成コラーゲンを、9:1の割合で混合することで包埋剤を作製した。なお、0.5%ハイブリッドコラーゲンに含まれる合成コラーゲンの量は0.5重量%である。したがって、O.C.Tコンパウンドに対する合成コラーゲンの添加量は、9:0.005となり、凍結包埋剤100重量部に対する合成コラーゲンの添加量は、0.056重量となる。
[Preparation of embedding agent]
<Example 1>
As a freeze embedding agent, O.D. C. A T compound (manufactured by Sakura Finetech) was used, and 0.5% hybrid collagen (manufactured by Unix) was used as synthetic collagen. Then, a frozen embedding agent: synthetic collagen was mixed at a ratio of 9: 1 to prepare an embedding agent. The amount of synthetic collagen contained in 0.5% hybrid collagen is 0.5% by weight. Therefore, O. C. The amount of synthetic collagen added to the T compound is 9: 0.005, and the amount of synthetic collagen added to 100 parts by weight of the freeze-embedding agent is 0.056 weight.

<実施例2>
実施例1で作製した包埋剤1gに、酢酸(Wako社製)30μlを添加することで、酢酸を添加した包埋剤を作製した。
<Example 2>
An acetic acid-added embedding agent was prepared by adding 30 μl of acetic acid (manufactured by Wako) to 1 g of the embedding agent prepared in Example 1.

<実施例3>
O.C.Tコンパウンド(サクラファインテック社製)に代え、ホワイトティシュコートFL(ユーアイ化成社製)を用いた以外は、実施例1と同様の手順で包埋剤を作製した。
<Example 3>
O. C. An embedding agent was prepared in the same procedure as in Example 1 except that White Tish Coat FL (manufactured by Ui Kasei Co., Ltd.) was used instead of T compound (manufactured by Sakura Finetech Co., Ltd.).

<実施例4>
実施例3で作製した包埋剤1gに、酢酸(Wako社製)30μlを添加することで、酢酸を添加した包埋剤を作製した。
<Example 4>
An acetic acid-added embedding agent was prepared by adding 30 μl of acetic acid (manufactured by Wako) to 1 g of the embedding agent prepared in Example 3.

<比較例1>
合成コラーゲンを添加していないO.C.Tコンパウンドのみを、比較例1の包埋剤とした。
<Comparative example 1>
O. without the addition of synthetic collagen. C. Only the T compound was used as the embedding agent of Comparative Example 1.

<比較例2>
合成コラーゲンを添加していないホワイトティシュコートFLのみを、比較例2の包埋剤とした。
<Comparative example 2>
Only White Tishcoat FL to which synthetic collagen was not added was used as the embedding agent of Comparative Example 2.

[凍結切片の作製]
次に、実施例1〜4及び比較例1〜2の包埋剤を用いて、以下の手順で凍結切片を作製した。
(1)予め、アルミブロック超低温層Micro Cool MC−100(TOMY社製)内に、銅ブロック(70×110×30mm)、凍結切片作製用金属チャック、及び、金属重りを、−50℃で冷却した。
(2)試料としてヒト脂肪を用い、作製した包埋剤を気泡が入らないように試料に馴染ませた。
(3)クリオモルド3号(サクラファインテックジャパン社製)の底部をくり抜いたものを銅ブロック上に置き、上記(2)の試料と包埋剤をクリオモルド3号内に置いた。次に、凍結切片作製用金属チャックを被せ、さらに金属重りを載せて、Micro Coolの蓋をし、試料及び包埋剤の凍結ブロックを作製した。
(4)金属重り及びクリオモルドを外し、クライオスタットミクロトーム(ライカ社製CM3050)を用いて凍結ブロックの薄切を行い、厚さ約5μmの凍結切片を得た。
[Preparation of frozen sections]
Next, using the embedding agents of Examples 1 to 4 and Comparative Examples 1 and 2, frozen sections were prepared by the following procedure.
(1) In advance, a copper block (70 × 110 × 30 mm), a metal chuck for preparing frozen sections, and a metal weight are cooled at −50 ° C. in an aluminum block ultra-low temperature layer Micro Cool MC-100 (manufactured by TOMY). did.
(2) Human fat was used as a sample, and the prepared embedding agent was blended into the sample so as not to contain air bubbles.
(3) The hollowed-out bottom of Cliomold No. 3 (manufactured by Sakura Finetech Japan Co., Ltd.) was placed on a copper block, and the sample and embedding agent of (2) above were placed in Cliomold No. 3. Next, a metal chuck for preparing a frozen section was covered, a metal weight was further placed, and a Micro Cool lid was placed to prepare a frozen block of a sample and an embedding agent.
(4) The metal weight and the cryomold were removed, and the frozen block was sliced using a cryostat microtome (CM3050 manufactured by Leica) to obtain a frozen section having a thickness of about 5 μm.

図1Aは、実施例1及び2、並びに、比較例1の包埋剤を用いて作製した凍結ブロックの写真である。また、図1Bは、凍結ブロックを薄切りした凍結切片の写真である。 FIG. 1A is a photograph of a frozen block prepared by using the embedding agents of Examples 1 and 2 and Comparative Example 1. In addition, FIG. 1B is a photograph of a frozen section obtained by slicing a frozen block.

図2Aは、実施例3及び4、並びに、比較例2の包埋剤を用いて作製した凍結ブロックの写真である。また、図2Bは、凍結ブロックを薄切りした凍結切片の写真である。 FIG. 2A is a photograph of a frozen block prepared using the embedding agents of Examples 3 and 4 and Comparative Example 2. In addition, FIG. 2B is a photograph of a frozen section obtained by slicing a frozen block.

図1B及び図2Bの写真から明らかなように、比較例1及び2の凍結包埋剤のみで作製した凍結切片は、試料部分の抜けが多かった。一方、合成コラーゲンを添加した実施例1〜4の包埋剤を用いて作製した凍結切片は、比較例1及び2より、試料の抜けは少なかった。更に、凍結包埋剤に合成コラーゲン及び酢酸を添加した方が、試料の抜けが少なくなると共に、凍結切片のしわが少なくなった。以上の結果より、凍結包埋剤に合成コラーゲンを添加することで、凍結ブロックの薄切性、特に、試料部分の薄切性が向上し、更に酢酸を添加することで、試料部分の薄切性がより向上することが明らかとなった。 As is clear from the photographs of FIGS. 1B and 2B, the frozen sections prepared only with the freeze-embedding agents of Comparative Examples 1 and 2 had many omissions in the sample portion. On the other hand, the frozen sections prepared by using the embedding agents of Examples 1 to 4 to which synthetic collagen was added showed less sample omission than those of Comparative Examples 1 and 2. Furthermore, when synthetic collagen and acetic acid were added to the frozen embedding agent, the sample was less likely to come off and the frozen sections were less wrinkled. Based on the above results, the addition of synthetic collagen to the freeze-embedding agent improves the thinness of the frozen block, especially the thinness of the sample portion, and the addition of acetic acid further improves the thinness of the sample portion. It became clear that the sex was further improved.

[染色性の比較]
<実施例5>
試料としてマウスの腎臓、包埋剤として実施例1の包埋剤を用い、液体窒素で冷却したイソペンタンにて凍結ブロックを作製後、クライオスタットで薄切をし、凍結切片を得た。次に、以下の手順で染色を行った。
(a)得られた凍結切片を、スライドガラスを押し当て貼着することで硬化性基材非浸透標本を作製した。
(b)得られた硬化性基材非浸透標本を水道水で濯ぐことで、スライドガラス上の合成コラーゲンを洗い流した。次いでヘマトキシリン・エオジン(メルク社製)を用い、HE染色を行った。図3Aは、実施例5で作製したHE染色標本の写真である。
[Comparison of stainability]
<Example 5>
Using mouse kidney as a sample and the embedding agent of Example 1 as an embedding agent, a frozen block was prepared with isopentane cooled in liquid nitrogen, and then sliced with a cryostat to obtain a frozen section. Next, staining was performed according to the following procedure.
(A) A curable base material non-penetrating sample was prepared by pressing and attaching a slide glass to the obtained frozen section.
(B) The obtained curable base material non-penetrating sample was rinsed with tap water to wash away the synthetic collagen on the slide glass. Then, HE staining was performed using hematoxylin and eosin (manufactured by Merck & Co., Inc.). FIG. 3A is a photograph of the HE-stained specimen prepared in Example 5.

<比較例3>
包埋剤として、魚由来のゼラチンであるMAX−F(株式会社ニッピ社製)水溶液(濃度は5重量%)とO.C.Tコンパウンドを1:1の割合で混合したものを用いた以外は、上記<実施例5>と同様の手順で、HE染色した硬化性基材非浸透標本を作製した。図3Bは、比較例3で作製したHE染色標本の写真である。
<Comparative example 3>
As an embedding agent, MAX-F (manufactured by Nippi Co., Ltd.) aqueous solution (concentration: 5% by weight) of gelatin derived from fish and O.D. C. A HE-stained curable substrate non-penetrating specimen was prepared in the same procedure as in <Example 5> above, except that a mixture of T-compounds at a ratio of 1: 1 was used. FIG. 3B is a photograph of the HE-stained specimen prepared in Comparative Example 3.

図3Bから明らかなように、ゼラチンを含む包埋剤を用いて作製したHE染色標本は、組織周辺がHEにより染色されていた。これは、硬化性基材非浸透標本を水道水で濯いだ際に、水で流れずに残ったゼラチンの影響と考えられる。一方、図3Aから明らかなように、合成コラーゲンを含む包埋剤を用いて作製したHE染色標本は、組織周辺にHE染色のバックグラウンドは確認されなかった。 As is clear from FIG. 3B, the HE-stained specimen prepared by using the embedding agent containing gelatin had the tissue periphery stained with HE. This is considered to be due to the effect of gelatin remaining without flowing in water when the curable base material non-penetrating specimen was rinsed with tap water. On the other hand, as is clear from FIG. 3A, in the HE-stained specimen prepared by using the embedding agent containing synthetic collagen, the background of HE-staining was not confirmed around the tissue.

以上の結果より、合成コラーゲンはゼラチンと同様、凍結包埋剤に添加することで、凍結ブロックから凍結切片を作製する際に、生体組織部分も含めた薄切性を向上するという効果を有することが明らかとなった。一方、硬化性基材非浸透標本後に水道水で濯いだ際に、ゼラチンと比較して合成コラーゲンは非常に流れやすい。その結果、合成コラーゲンを凍結包埋剤に添加すると、凍結ブロックの薄切性の向上に加え、染色によるバックグラウンドを低減できるという顕著な効果を奏することが明らかとなった。 Based on the above results, synthetic collagen, like gelatin, has the effect of improving sliceability, including the biological tissue portion, when preparing frozen sections from frozen blocks by adding it to a freeze-embedding agent. Became clear. On the other hand, when rinsing with tap water after a non-penetrating sample of a curable base material, synthetic collagen is much easier to flow than gelatin. As a result, it was clarified that the addition of synthetic collagen to the freeze-embedding agent has a remarkable effect of improving the sliceability of the frozen block and reducing the background due to staining.

[シュウ酸を用いた包埋剤]
<実施例6>
凍結包埋剤として、ホワイトティシュコートFL(ユーアイ化成社製)を9.5g、合成コラーゲンとして、0.5%ハイブリッドコラーゲン(ユニクス社製)を0.5g、10%シュウ酸(片山化学工業株式会社製)を300μl混合することで、包埋剤を作製した。次に、生体組織としてヒト脂肪を用い、作製した包埋剤を用いて、上記[凍結切片の作製]と同様の手順で、凍結切片を作製した。図4Aは凍結ブロックの写真、図4Bは凍結ブロックを薄切りした凍結切片の写真である。図4Bから明らかなように、シュウ酸を用いた場合も、生体試料部分の薄切性が良好な凍結切片が得られた。実施例2、4、及び6の結果より、凍結包埋剤及び合成コラーゲンに加え、カルボン酸化合物を更に添加することで、脂肪組織が凍結する温度まで凍結ブロックの温度を下げても、凍結切片の薄切性を向上できることを確認した。
[Oxalic acid-based embedding agent]
<Example 6>
9.5 g of White Tish Coat FL (manufactured by Ui Kasei Co., Ltd.) as a freeze embedding agent, 0.5 g of 0.5% hybrid collagen (manufactured by Unix Co., Ltd.) as synthetic collagen, 10% oxalic acid (Katayama Chemical Industry Co., Ltd.) An embedding agent was prepared by mixing 300 μl of (manufactured by the company). Next, a frozen section was prepared by using human adipose tissue as a living tissue and using the prepared embedding agent in the same procedure as in the above-mentioned [Preparation of frozen section]. FIG. 4A is a photograph of a frozen block, and FIG. 4B is a photograph of a frozen section obtained by slicing a frozen block. As is clear from FIG. 4B, even when oxalic acid was used, frozen sections having good sliceability of the biological sample portion were obtained. From the results of Examples 2, 4, and 6, frozen sections were frozen even when the temperature of the freezing block was lowered to the temperature at which the adipose tissue was frozen by further adding the carboxylic acid compound in addition to the freeze-embedding agent and synthetic collagen. It was confirmed that the sliceability of collagen can be improved.

本明細書で開示する包埋剤を用いると、作製した標本を染色した際のバックグラウンドが低くなる。したがって、手術中の迅速病理診断のみならず、医療機関や大学医学部などの研究機関、一般病院等において、硬化性基材非浸透標本及び硬化性基材浸透標本の作製に有用である。 The embedding agents disclosed herein reduce the background when the prepared specimens are stained. Therefore, it is useful not only for rapid pathological diagnosis during surgery, but also for preparation of curable base material non-penetrating specimens and curable base material penetrating specimens at medical institutions, research institutes such as university medical schools, general hospitals, and the like.

Claims (5)

凍結切片作製用の包埋剤であって、該包埋剤は、
凍結包埋剤と、
合成コラーゲンと、
を含む、包埋剤。
An embedding agent for preparing frozen sections, the embedding agent is
Frozen embedding agent and
With synthetic collagen
Including embedding agent.
凍結切片の薄切性を改善するためのカルボン酸、
を更に含む、請求項1に記載の包埋剤。
Carboxylic acid to improve sliceability of frozen sections,
The embedding agent according to claim 1, further comprising.
前記合成コラーゲンが、下記式(1)で表される、
−(Gly−X−Y)n− (1)
請求項1または2に記載の包埋剤。
The synthetic collagen is represented by the following formula (1).
-(Gly-XY) n- (1)
The embedding agent according to claim 1 or 2.
前記合成コラーゲンが、下記式(2)で表される、
−(Pro−Z−Gly)n− (2)
請求項1または2に記載の包埋剤。
The synthetic collagen is represented by the following formula (2).
-(Pro-Z-Gly) n- (2)
The embedding agent according to claim 1 or 2.
前記式(2)中のZが、プロリン残基(Pro)又はヒドロキシプロリン残基(Hyp)から選択される、請求項4に記載の包埋剤。
The embedding agent according to claim 4, wherein Z in the formula (2) is selected from a proline residue (Pro) or a hydroxyproline residue (Hyp).
JP2020501724A 2018-02-21 2019-02-15 Embedding agent Ceased JPWO2019163657A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018029064 2018-02-21
JP2018029064 2018-02-21
PCT/JP2019/005491 WO2019163657A1 (en) 2018-02-21 2019-02-15 Embedding agent

Publications (1)

Publication Number Publication Date
JPWO2019163657A1 true JPWO2019163657A1 (en) 2021-02-12

Family

ID=67687237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501724A Ceased JPWO2019163657A1 (en) 2018-02-21 2019-02-15 Embedding agent

Country Status (2)

Country Link
JP (1) JPWO2019163657A1 (en)
WO (1) WO2019163657A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557159B (en) * 2020-11-26 2023-11-07 华中科技大学同济医学院附属协和医院 Specimen embedding device and frozen slicing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263084A (en) * 1986-05-09 1987-11-16 Honshu Paper Co Ltd Transparent sheet for ink jet recording
JP2010029106A (en) * 2008-07-29 2010-02-12 Biorois Co Ltd Carrier for cell transport and method for transporting cell by using the same
JP2014009194A (en) * 2012-06-29 2014-01-20 Jnc Corp Method for manufacturing collagen-like polypeptides
WO2015199195A1 (en) * 2014-06-27 2015-12-30 国立大学法人名古屋大学 Embedding medium for specimen preparation, method for preparing curable base material non-penetrating specimen, method for preparing curable base material penetrating specimen, curable base material non-penetrating specimen, thin-slice-performance improver for frozen embedding medium, and frozen embedding medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263084A (en) * 1986-05-09 1987-11-16 Honshu Paper Co Ltd Transparent sheet for ink jet recording
JP2010029106A (en) * 2008-07-29 2010-02-12 Biorois Co Ltd Carrier for cell transport and method for transporting cell by using the same
JP2014009194A (en) * 2012-06-29 2014-01-20 Jnc Corp Method for manufacturing collagen-like polypeptides
WO2015199195A1 (en) * 2014-06-27 2015-12-30 国立大学法人名古屋大学 Embedding medium for specimen preparation, method for preparing curable base material non-penetrating specimen, method for preparing curable base material penetrating specimen, curable base material non-penetrating specimen, thin-slice-performance improver for frozen embedding medium, and frozen embedding medium

Also Published As

Publication number Publication date
WO2019163657A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
Zeng et al. Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus)
Huang et al. Isolation and characterization of acid and pepsin-solubilized collagens from the skin of balloon fish (Diodon holocanthus)
US20170160174A1 (en) Embedding medium for specimen preparation, method for preparing curable base material nonpenetrating specimen, method for preparing curable base material penetrating specimen, curable base material nonpenetrating specimen, thin slice performance improver for frozen embedding medium, and frozen embedding medium
AU783878B2 (en) Collagen
CN102844363B (en) Porous silk fibroin material and manufacture method thereof
EP2367847A1 (en) Collagen extraction from aquatic animals
CN109952341A (en) Gelatin copolymer and application thereof derived from natural acclimatization to cold marine species
Vilasoa-Martínez et al. Protein and amino acid contents in the crab, Chionoecetes opilio
JPWO2018043636A1 (en) Method of preparing a sample for skin analysis or observation
JPWO2019163657A1 (en) Embedding agent
US9562836B2 (en) Formalin-free fixation agent for histological stains of tissue samples
Atma Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study
ES2796701T3 (en) Additive to accelerate hybridization
Venier et al. Biotechnologies from marine bivalves
AU2009307661A1 (en) Methods and compositions for preventing artifacts in tissue samples
Sulaiman et al. Characterization of acid soluble collagen (ASC) and pepsin soluble collagen (PSC) extracted from shortfin scad (Decapterus macrosoma) waste
US20170307485A1 (en) Refractive index matching composition for biological tissue
Katow Obstruction of Blastodisc Formation by Cytochalasin B in the Zebrafish, Brachydanio rerio: (ooplasmic segregation/cytochalasin B/blastodisc/ultrastructure)
Wong et al. Sodium dodecyl sulphate as a rapid clearing agent for studying the hard parts of monogeneans and nematodes
WO2006089338A1 (en) Extraction of gelatin
TW202028454A (en) Cell culturing substrate containing collagen derived from barramundi scales
JPH07188640A (en) Adhesive containing adhesive protein obtained from pearl oyster
JP2023177059A (en) Anti-ice nucleation peptide
EP3434102B1 (en) Method for long-term preservation of anatomical material
EP3216458A1 (en) Modified vascular endothelial growth factor a (vegf-a) and its medical use

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230515

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230926