JPWO2019163355A1 - Organic electroluminescence element, luminescent thin film, display device and lighting device - Google Patents
Organic electroluminescence element, luminescent thin film, display device and lighting device Download PDFInfo
- Publication number
- JPWO2019163355A1 JPWO2019163355A1 JP2020502081A JP2020502081A JPWO2019163355A1 JP WO2019163355 A1 JPWO2019163355 A1 JP WO2019163355A1 JP 2020502081 A JP2020502081 A JP 2020502081A JP 2020502081 A JP2020502081 A JP 2020502081A JP WO2019163355 A1 JPWO2019163355 A1 JP WO2019163355A1
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- organic
- light emitting
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 36
- 238000005401 electroluminescence Methods 0.000 title claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 237
- 230000002776 aggregation Effects 0.000 claims abstract description 48
- 238000004220 aggregation Methods 0.000 claims abstract description 47
- JLZUZNKTTIRERF-UHFFFAOYSA-N tetraphenylethylene Chemical group C1=CC=CC=C1C(C=1C=CC=CC=1)=C(C=1C=CC=CC=1)C1=CC=CC=C1 JLZUZNKTTIRERF-UHFFFAOYSA-N 0.000 claims description 16
- 125000005647 linker group Chemical group 0.000 claims description 9
- 238000004020 luminiscence type Methods 0.000 abstract description 23
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 260
- -1 mesityl group Chemical group 0.000 description 140
- 238000000034 method Methods 0.000 description 115
- 239000000463 material Substances 0.000 description 68
- 239000010408 film Substances 0.000 description 67
- 239000002019 doping agent Substances 0.000 description 52
- 238000002347 injection Methods 0.000 description 35
- 239000007924 injection Substances 0.000 description 35
- 230000005525 hole transport Effects 0.000 description 33
- 239000000758 substrate Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 31
- 239000002184 metal Substances 0.000 description 31
- 238000007789 sealing Methods 0.000 description 25
- 238000000576 coating method Methods 0.000 description 24
- 230000000903 blocking effect Effects 0.000 description 21
- 125000001424 substituent group Chemical group 0.000 description 21
- 230000006870 function Effects 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 125000000962 organic group Chemical group 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 17
- 230000001070 adhesive effect Effects 0.000 description 17
- 239000012044 organic layer Substances 0.000 description 17
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 125000001931 aliphatic group Chemical group 0.000 description 14
- 239000007850 fluorescent dye Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 239000011521 glass Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 241001432959 Chernes Species 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 125000000623 heterocyclic group Chemical group 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 11
- 239000007772 electrode material Substances 0.000 description 11
- 230000005281 excited state Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- 238000004770 highest occupied molecular orbital Methods 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 238000006862 quantum yield reaction Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 238000007740 vapor deposition Methods 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000003086 colorant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 125000002524 organometallic group Chemical group 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 230000000171 quenching effect Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 238000004776 molecular orbital Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 125000001624 naphthyl group Chemical group 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 5
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 125000002883 imidazolyl group Chemical group 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000005424 photoluminescence Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 125000003373 pyrazinyl group Chemical group 0.000 description 5
- 125000003226 pyrazolyl group Chemical group 0.000 description 5
- 125000000714 pyrimidinyl group Chemical group 0.000 description 5
- 125000000168 pyrrolyl group Chemical group 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 125000005259 triarylamine group Chemical group 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 4
- 150000001716 carbazoles Chemical class 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 150000004696 coordination complex Chemical class 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000007607 die coating method Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 230000005283 ground state Effects 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 125000001041 indolyl group Chemical group 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000002971 oxazolyl group Chemical group 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 125000004076 pyridyl group Chemical group 0.000 description 4
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 125000000542 sulfonic acid group Chemical group 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229920000144 PEDOT:PSS Polymers 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 3
- 150000004982 aromatic amines Chemical class 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000003828 azulenyl group Chemical group 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 3
- 125000004623 carbolinyl group Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical group C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical group C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 3
- 125000005561 phenanthryl group Chemical group 0.000 description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical group OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 125000001725 pyrenyl group Chemical group 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 3
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000000335 thiazolyl group Chemical group 0.000 description 3
- 125000004306 triazinyl group Chemical group 0.000 description 3
- 125000001425 triazolyl group Chemical group 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- GJLPUBMCTFOXHD-UPHRSURJSA-N (11z)-1$l^{2},2$l^{2},3$l^{2},4$l^{2},5$l^{2},6$l^{2},7$l^{2},8$l^{2},9$l^{2},10$l^{2}-decaboracyclododec-11-ene Chemical class [B]1[B][B][B][B][B]\C=C/[B][B][B][B]1 GJLPUBMCTFOXHD-UPHRSURJSA-N 0.000 description 2
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 2
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical class C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 2
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical group N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical group C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- KVUAALJSMIVURS-ZEDZUCNESA-L calcium folinate Chemical compound [Ca+2].C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 KVUAALJSMIVURS-ZEDZUCNESA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 2
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 2
- 150000004826 dibenzofurans Chemical class 0.000 description 2
- 125000004987 dibenzofuryl group Chemical group C1(=CC=CC=2OC3=C(C21)C=CC=C3)* 0.000 description 2
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical class [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 238000001182 laser chemical vapour deposition Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical group C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 2
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 150000003216 pyrazines Chemical class 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical group N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 150000007979 thiazole derivatives Chemical class 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 150000003852 triazoles Chemical group 0.000 description 2
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000005023 xylyl group Chemical group 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- FOYDHUFZVHPHIM-UHFFFAOYSA-N 1-(1-benzofuran-2-yl)-9h-carbazole Chemical group N1C2=CC=CC=C2C2=C1C(C1=CC3=CC=CC=C3O1)=CC=C2 FOYDHUFZVHPHIM-UHFFFAOYSA-N 0.000 description 1
- GTIPCZOHZVHWBR-UHFFFAOYSA-N 10h-[1,3]oxazolo[4,5-a]carbazole Chemical group C12=CC=CC=C2NC2=C1C=CC1=C2N=CO1 GTIPCZOHZVHWBR-UHFFFAOYSA-N 0.000 description 1
- MYKQKWIPLZEVOW-UHFFFAOYSA-N 11h-benzo[a]carbazole Chemical group C1=CC2=CC=CC=C2C2=C1C1=CC=CC=C1N2 MYKQKWIPLZEVOW-UHFFFAOYSA-N 0.000 description 1
- GLYYLMBVQZMMMS-UHFFFAOYSA-N 12h-[1]benzothiolo[3,2-a]carbazole Chemical group S1C2=CC=CC=C2C2=C1C=CC1=C2NC2=CC=CC=C12 GLYYLMBVQZMMMS-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical group C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- QZSOEOINMAIQSE-UHFFFAOYSA-N 1h-[1]benzothiolo[2,3-g]indole Chemical group C1=CC=C2C3=C(NC=C4)C4=CC=C3SC2=C1 QZSOEOINMAIQSE-UHFFFAOYSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- ZIMOURYOOIPWBS-UHFFFAOYSA-N 2-(1-benzofuran-2-yl)-1h-indole Chemical group C1=CC=C2OC(C3=CC4=CC=CC=C4N3)=CC2=C1 ZIMOURYOOIPWBS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- ZBWXZZIIMVVCNZ-UHFFFAOYSA-N 4,5-dihydroacephenanthrylene Chemical group C1=CC(CC2)=C3C2=CC2=CC=CC=C2C3=C1 ZBWXZZIIMVVCNZ-UHFFFAOYSA-N 0.000 description 1
- BGEVROQFKHXUQA-UHFFFAOYSA-N 71012-25-4 Chemical group C12=CC=CC=C2C2=CC=CC=C2C2=C1C1=CC=CC=C1N2 BGEVROQFKHXUQA-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910004542 HfN Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical group CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QKDLQFSLLCQTOH-UHFFFAOYSA-N Trichodonin Natural products C1C(O)C2C3(COC(=O)C)C(C=O)C(C)(C)CCC3OC(=O)C22C(=O)C(=C)C1C2 QKDLQFSLLCQTOH-UHFFFAOYSA-N 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910008322 ZrN Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- RWBMMASKJODNSV-UHFFFAOYSA-N [1]benzothiolo[2,3-g][1]benzothiole Chemical group C1=CC=C2C3=C(SC=C4)C4=CC=C3SC2=C1 RWBMMASKJODNSV-UHFFFAOYSA-N 0.000 description 1
- WIUZHVZUGQDRHZ-UHFFFAOYSA-N [1]benzothiolo[3,2-b]pyridine Chemical group C1=CN=C2C3=CC=CC=C3SC2=C1 WIUZHVZUGQDRHZ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000006193 alkinyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005135 aryl sulfinyl group Chemical group 0.000 description 1
- 125000002908 as-indacenyl group Chemical group C1(=CC=C2C=CC3=CC=CC3=C12)* 0.000 description 1
- 125000000477 aza group Chemical group 0.000 description 1
- SGUXGJPBTNFBAD-UHFFFAOYSA-L barium iodide Chemical compound [I-].[I-].[Ba+2] SGUXGJPBTNFBAD-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- 229940075444 barium iodide Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000006309 butyl amino group Chemical group 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- MOOUSOJAOQPDEH-UHFFFAOYSA-K cerium(iii) bromide Chemical compound [Br-].[Br-].[Br-].[Ce+3] MOOUSOJAOQPDEH-UHFFFAOYSA-K 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical group C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 125000006312 cyclopentyl amino group Chemical group [H]N(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000002897 diene group Chemical group 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000006263 dimethyl aminosulfonyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 1
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000002192 heptalenyl group Chemical group 0.000 description 1
- 125000005143 heteroarylsulfonyl group Chemical group 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002518 isoindoles Chemical class 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- COLNWNFTWHPORY-UHFFFAOYSA-M lithium;8-hydroxyquinoline-2-carboxylate Chemical compound [Li+].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 COLNWNFTWHPORY-UHFFFAOYSA-M 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000006261 methyl amino sulfonyl group Chemical group [H]N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000005184 naphthylamino group Chemical group C1(=CC=CC2=CC=CC=C12)N* 0.000 description 1
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 125000005146 naphthylsulfonyl group Chemical group C1(=CC=CC2=CC=CC=C12)S(=O)(=O)* 0.000 description 1
- 125000005029 naphthylthio group Chemical group C1(=CC=CC2=CC=CC=C12)S* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- GUVXZFRDPCKWEM-UHFFFAOYSA-N pentalene group Chemical group C1=CC=C2C=CC=C12 GUVXZFRDPCKWEM-UHFFFAOYSA-N 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000004675 pentylcarbonyl group Chemical group C(CCCC)C(=O)* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004673 propylcarbonyl group Chemical group 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical group N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 125000004309 pyranyl group Chemical class O1C(C=CC=C1)* 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000004892 pyridazines Chemical class 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000005400 pyridylcarbonyl group Chemical group N1=C(C=CC=C1)C(=O)* 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000004322 quinolinols Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- WEMQMWWWCBYPOV-UHFFFAOYSA-N s-indacene group Chemical group C1=CC=C2C=C3C=CC=C3C=C12 WEMQMWWWCBYPOV-UHFFFAOYSA-N 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本発明は、高い発光効率を示し、発光を長寿命化することも可能な有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置を提供するものである。有機エレクトロルミネッセンス素子は、陽極と、陰極と、前記陽極と前記陰極の間に設けられた発光層と、を備え、前記発光層中に最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物と凝集誘起発光性分子とを含有する。発光性薄膜は、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物と凝集誘起発光性分子とを含有する。表示装置及び照明装置は、発光層中に最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物と凝集誘起発光性分子とを含有する有機エレクトロルミネッセンス素子を具備する。The present invention provides an organic electroluminescence device, a luminescent thin film, a display device, and a lighting device, which exhibit high luminous efficiency and can extend the life of luminescence. The organic electroluminescence element includes an anode, a cathode, and a light emitting layer provided between the anode and the cathode, and the lowest excited single-term energy level and the lowest excited triple-term energy level are provided in the light emitting layer. Contains a compound having an energy difference of 0.5 eV or less and an aggregation-induced luminescent molecule. The luminescent thin film contains a compound having an energy difference of 0.5 eV or less between the lowest excited singlet energy level and the lowest excited triplet energy level and an aggregation-induced luminescent molecule. The display device and the lighting device are organic electros containing a compound having an energy difference of 0.5 eV or less between the lowest excited single-term energy level and the lowest excited triple-term energy level and an aggregation-induced luminescent molecule in the light emitting layer. It is equipped with a luminescence element.
Description
本発明は、有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence device, a luminescent thin film, a display device and a lighting device.
テレビやコンピュータ等の映像表示部であるディスプレイは、現代社会において欠かすことのできない電子デバイスの一つとなっている。ディスプレイは、近年、大型化や薄型化が加速しており、これに伴って有機エレクトロルミネッセンス(以下、「有機EL」ということがある。)素子の開発も盛んになっている。有機EL素子は、構造が比較的単純で視野角にも富んだ自発光型の全固体発光素子であり、ディスプレイの構成要素として理想的な特性を持つため、今後の更なる普及が見込まれている。 A display, which is a video display unit of a television or a computer, has become one of the indispensable electronic devices in modern society. In recent years, displays have been accelerating in size and thickness, and along with this, the development of organic electroluminescence (hereinafter, sometimes referred to as "organic EL") elements has also been active. Organic EL devices are self-luminous all-solid-state light-emitting devices with a relatively simple structure and a rich viewing angle, and have ideal characteristics as display components, so further spread is expected in the future. There is.
一般に、有機EL素子は、陽極と陰極との間に発光層等の機能性薄膜が積層された構造を有している。陽極と陰極との間に設けられる発光層には、発光性を示す有機化合物が用いられている。陽極と陰極との間に電圧が印加されると、陰極から注入された電子と陽極から注入された正孔とが、発光層に含まれる発光性化合物上で再結合して励起子を生じる。この励起子が励起状態から基底状態へと失活する際、エネルギーが光として放出されることによって発光が生じる。 Generally, an organic EL element has a structure in which a functional thin film such as a light emitting layer is laminated between an anode and a cathode. An organic compound exhibiting luminescence is used for the light emitting layer provided between the anode and the cathode. When a voltage is applied between the anode and the cathode, the electrons injected from the cathode and the holes injected from the anode recombine on the luminescent compound contained in the light emitting layer to generate excitons. When these excitons are deactivated from the excited state to the ground state, energy is emitted as light to generate light.
有機EL素子の開発においては、低価格化や量産化、発光効率や素子寿命の向上といった要求が、これまで以上に高まることが予測されている。有機EL素子の低価格化や量産化を実現する方法としては、溶液の塗布や印刷によって機能性薄膜を成膜する湿式塗布法が有効であると考えられている。そこで、現在では、従来主流であった真空蒸着法の代わりに湿式塗布法を用いる製造プロセスの開発が広く進められている。 In the development of organic EL devices, it is predicted that demands for price reduction, mass production, improvement of luminous efficiency and device life will increase more than ever. As a method for realizing low cost and mass production of organic EL devices, a wet coating method for forming a functional thin film by coating or printing a solution is considered to be effective. Therefore, at present, the development of a manufacturing process using a wet coating method instead of the vacuum vapor deposition method, which has been the mainstream in the past, is being widely promoted.
また、発光層に用いる発光性化合物についても、様々な観点から検討がなされている。発光性化合物としては、有機EL素子が開発された当初から、主として蛍光発光性化合物が用いられてきた。しかし、電子と正孔の再結合によると、スピン統計則に従って一重項励起子と三重項励起子とが1:3の比率で生成する。そのため、一重項励起子からの遷移が発光に寄与する蛍光発光性化合物では、内部量子効率が最大でも25%に制限されていた。 In addition, luminescent compounds used for the light emitting layer have also been studied from various viewpoints. As the luminescent compound, a fluorescent luminescent compound has been mainly used since the beginning of the development of the organic EL device. However, according to the recombination of electrons and holes, singlet excitons and triplet excitons are generated at a ratio of 1: 3 according to the spin-statistics rule. Therefore, in the fluorescent compound in which the transition from the singlet exciton contributes to light emission, the internal quantum efficiency is limited to 25% at the maximum.
これに対し、現在では、三重項励起子からの遷移が発光に寄与するリン光発光性化合物によって、理論上、100%の内部量子効率を実現できることが明らかになっている。リン光発光性化合物としては、本来は禁制である一重項励起子から三重項励起子へのエネルギー移動(項間交差:ISCという。)を重原子効果によって容易にした種々のリン光発光性金属錯体が開発されている。しかし、青色のような短波長側の発光色を示すリン光発光性金属錯体は、長波長側の発光色を示す他のリン光発光性金属錯体と比較して発光寿命が短くなる現状があり、これまでに、発光効率と素子寿命とを高水準で両立させた有機EL素子は実現されるに至っていない。 On the other hand, it is now clear that a phosphorescent compound whose transition from triplet excitons contributes to light emission can theoretically achieve 100% internal quantum efficiency. As phosphorescent compounds, various phosphorescent metals that facilitate energy transfer from singlet excitons to triplet excitons (intersystem crossing: called ISC), which is originally prohibited, by the heavy atomic effect. Complexes have been developed. However, the phosphorescent metal complex that exhibits a short wavelength emission color such as blue has a shorter luminous life than other phosphorescent metal complexes that exhibit a long wavelength emission color. So far, an organic EL element having both luminous efficiency and element life at a high level has not been realized.
一方で、本来は遷移確率の非常に低い、三重項励起子から一重項励起子への逆エネルギー移動(逆項間交差:Reverse Intersystem Crossing:RISC)が可能となる過程が知られている。このうち、励起一重項エネルギー準位(S1)と励起三重項エネルギー準位(T1)とのエネルギー差の絶対値(以下、ΔEstという。)を極小化することでエネルギー移動を促進するTADF(Thermally Activated Delayed Fluorescence)機構があり、これらを利用して、励起子の生成効率を向上させる試みがなされている。On the other hand, there is known a process that enables reverse energy transfer (reverse intersystem crossing: RISC) from triplet excitons to singlet excitons, which originally has a very low transition probability. Of these, energy transfer is promoted by minimizing the absolute value (hereinafter referred to as ΔE st ) of the energy difference between the excited singlet energy level (S 1 ) and the excited triplet energy level (T 1). There is a TADF (Thermally Activated Fluorescence) mechanism, and attempts have been made to improve the efficiency of excited element generation by utilizing these mechanisms.
例えば、特許文献1には、有機EL素子の発光層において、蛍光発光性の発光材料と、TADFを示す発光材料(以降、TADF分子という。)とを併用して、有機EL素子の発光効率を向上させる技術が記載されている。特許文献1では、これらの発光材料と共に、分散材としての機能を有する第三の材料が用いられている。分散材としての機能を有する第三の材料を用いると、分子会合を起こし易いTADF分子についてのエネルギー損失が抑えられ、発光素子の効率が向上するとされている(段落0193参照)。
For example, in
有機EL素子の内部量子効率を向上させる観点からは、三重項励起子の輻射遷移を発光に利用するリン光発光性材料が有効である。しかし、リン光発光性材料は、発光寿命が十分な水準に達してなく、多くの場合、希少な貴金属が必要になるという欠点がある。そのため、エネルギー移動の過程にRISCを組み込み、三重項励起子を一重項励起子に変換してから発光させる手法が、代替技術或いは補完技術として有望である。しかし、TADF分子では、通常、ISCの過程とRISCの過程とが競合しているため、ISCの速度定数が高く、三重項励起子が多量に蓄積される場合には、三重項励起子がクエンチされて劣化が進行し易くなる問題がある。 From the viewpoint of improving the internal quantum efficiency of the organic EL device, a phosphorescent material that utilizes the radiation transition of triplet excitons for light emission is effective. However, the phosphorescent material has a drawback that the light emitting life does not reach a sufficient level, and in many cases, a rare precious metal is required. Therefore, a method of incorporating RISC into the process of energy transfer, converting triplet excitons into singlet excitons, and then emitting light is promising as an alternative technique or a complementary technique. However, in TADF molecules, the ISC process and RISC process usually compete with each other. Therefore, when the ISC rate constant is high and a large amount of triplet excitons are accumulated, the triplet excitons are quenched. There is a problem that deterioration is likely to proceed.
このような三重項励起子のクエンチの問題は、特許文献1にも記載されているように、TADF分子を、発光材料としてではなく、RISCを媒介する材料として用いることで、ある程度解消することができる。しかし、従来一般的に用いられている発光性化合物は、分子が孤立している状態では強い発光を示す一方、分子の濃度が高くなって分子同士が凝集すると消光を起こす性質がある。TADF分子を併用したとしても、その化合物からエネルギーを受けた発光性化合物が濃度消光を起こす可能性が依然としてあるため、有機EL素子の発光効率の向上を狙って発光性化合物の濃度を高くしたとしても、高い発光効率を実現するのが困難な現状がある。
As described in
また、発光層を成膜するにあたって湿式塗布法を用いる場合、塗布に用いる溶液中で発光性化合物の濃度が高くなると、分子同士が凝集し易くなるため、成膜される発光層等の機能性薄膜に、局所的な膜密度の低下や均一性の低下を生じ易くなることが知られている。このような凝集に伴う変質も、発光効率の低下をもたらすが、特許文献1に記載されるような分散材によって十分に防止することは容易ではない。
Further, when a wet coating method is used to form a light-emitting layer, if the concentration of the luminescent compound in the solution used for coating is high, the molecules tend to aggregate with each other, so that the functionality of the light-emitting layer to be formed is functional. It is known that a thin film tends to have a local decrease in film density and a decrease in uniformity. Deterioration due to such aggregation also causes a decrease in luminous efficiency, but it is not easy to sufficiently prevent it by a dispersant as described in
そこで、本発明は、高い発光効率を示し、発光を長寿命化することも可能な有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an organic electroluminescence device, a luminescent thin film, a display device, and a lighting device, which exhibit high luminous efficiency and can prolong the life of luminescence.
本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problems according to the present invention are solved by the following means.
1.陽極と、陰極と、前記陽極と前記陰極の間に設けられた発光層と、を備え、前記発光層中に最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物と凝集誘起発光性分子とを含有する有機エレクトロルミネッセンス素子。 1. 1. It includes an anode, a cathode, and a light emitting layer provided between the anode and the cathode, and the energy difference between the lowest excited single-term energy level and the lowest excited triple-term energy level is 0 in the light emitting layer. An organic electroluminescence device containing a compound having a concentration of .5 eV or less and an aggregation-induced luminescent molecule.
2.前記化合物が下記一般式(A)で表される共役系化合物である請求項1に記載の有機エレクトロルミネッセンス素子。
3.前記凝集誘起発光性分子が、テトラフェニルエチレン誘導体、又は、シロール誘導体である前記1に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to 1 above, wherein the aggregation-induced luminescent molecule is a tetraphenylethylene derivative or a siror derivative.
4.最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物と凝集誘起発光性分子とを含有する発光性薄膜。 4. A luminescent thin film containing a compound having an energy difference of 0.5 eV or less between the lowest excited singlet energy level and the lowest excited triplet energy level and aggregation-induced luminescent molecules.
5.前記1から前記3のいずれかに記載の有機エレクトロルミネッセンス素子を具備する表示装置。 5. A display device including the organic electroluminescence element according to any one of 1 to 3 above.
前記1から前記3のいずれかに記載の有機エレクトロルミネッセンス素子を具備する照明装置。 A lighting device including the organic electroluminescence element according to any one of 1 to 3 above.
本発明によれば、高い発光効率を示し、発光を長寿命化することも可能な有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence element, a luminescent thin film, a display device and a lighting device, which exhibit high luminous efficiency and can extend the life of luminescence.
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
本発明者らは、有機EL素子や発光性薄膜の発光効率と発光寿命とを両立すべく鋭意検討した結果、凝集により強い発光を示す凝集誘起発光性(aggregation-induced emission:AIE)分子と、ΔEstが小さい化合物とを併用すると、発光性化合物の濃度をある程度高くしたとしても、従来型の蛍光発光性化合物で生じるような濃度消光の問題が軽減し、有機EL素子や発光性薄膜の全体としての発光の寿命が長寿命化して、発光性化合物の全体としての発光効率も向上することを見出した。As a result of diligent studies to achieve both emission efficiency and emission lifetime of organic EL elements and luminescent thin films, the present inventors have found aggregate-induced emission (AIE) molecules that exhibit stronger emission due to aggregation. When used in combination with a compound having a small ΔE st , even if the concentration of the luminescent compound is increased to some extent, the problem of concentration quenching that occurs with conventional fluorescent compounds is alleviated, and the entire organic EL element or luminescent thin film is used. It has been found that the life of the luminescent compound is extended and the luminescence efficiency of the luminescent compound as a whole is also improved.
発光性化合物として従来型の蛍光発光性化合物を用いる場合、発光効率の向上を狙って化合物の濃度を高くすると、濃度消光が起こり、却って発光効率が低下してしまうことが知られている。これに対し、発光性化合物としてAIE分子を用いると、化合物の濃度を高くした場合に、分子同士の凝集によって、寧ろ強い発光を生じる。また、ΔEstが小さい化合物が併用されるため、RISCが促進され、クエンチされ易い三重項励起子の利用効率も高くなる。よって、発光性化合物としてAIE分子とΔEstが小さい化合物とを併用する手法は、発光効率と発光寿命とを両立する有効な手段になると考えられる。When a conventional fluorescent luminescent compound is used as the luminescent compound, it is known that if the concentration of the compound is increased with the aim of improving the luminous efficiency, concentration quenching occurs and the luminous efficiency is rather lowered. On the other hand, when AIE molecules are used as the luminescent compound, when the concentration of the compound is increased, strong luminescence is generated due to the aggregation of the molecules. Further, since a compound having a small ΔE st is used in combination, RISC is promoted, and the utilization efficiency of triplet excitons, which are easily quenched, is also increased. Therefore, techniques using both the AIE molecules and Delta] E st small compound as a luminescent compound is considered to be an effective means to achieve both emission efficiency and emission lifetime.
また、一般には、発光層等に生じる膜構造の経時的変化が、有機EL素子等を劣化させる一因であると知られている。通常、電圧の印加によって発光性化合物の分子が拡散すると、分子の凝集化や結晶化が進み、発光層等の機能性薄膜の膜構造が変化し得る。このような膜構造の変化は、有機EL素子等の全体としての発光効率にも影響すると考えられている。これに対し、AIE分子は、凝集した状態で強い発光を示すことができるため、分子が拡散を始める以前に予め凝集体を形成させておくことによって、電圧の印加による膜構造の変化を少なくすることができる。この手法によると、長期間の駆動を行う場合にも、膜構造を安定に保つことができる利点がある。 Further, it is generally known that a change over time in the film structure that occurs in the light emitting layer or the like is one of the causes of deterioration of the organic EL element or the like. Usually, when the molecules of the luminescent compound are diffused by applying a voltage, the molecules are aggregated and crystallized, and the film structure of the functional thin film such as the light emitting layer can be changed. It is considered that such a change in the film structure also affects the luminous efficiency of the organic EL element or the like as a whole. On the other hand, since AIE molecules can exhibit strong light emission in an aggregated state, changes in the film structure due to application of voltage are reduced by forming aggregates in advance before the molecules start diffusing. be able to. According to this method, there is an advantage that the film structure can be kept stable even when driving for a long period of time.
また、AIE分子は、凝集した状態で強い発光を示すことができるため、予め凝集体を形成させておくことによって、大気中の酸素や水分等との接触を低減することができる。凝集体が形成されることによって、有機EL素子等の劣化因子である酸素や水分等との接触面積が小さくなり、大気下における発光性化合物の安定性が向上すると推察される。よって、有機EL素子等を封止するにあたって、従来よりも低い性能の封止材を採用することが可能になり、低コスト化に繋がることも期待される。 In addition, since AIE molecules can exhibit strong light emission in an aggregated state, it is possible to reduce contact with oxygen, moisture, etc. in the atmosphere by forming aggregates in advance. It is presumed that the formation of the agglomerates reduces the contact area with oxygen, moisture, etc., which are deterioration factors of the organic EL device and the like, and improves the stability of the luminescent compound in the atmosphere. Therefore, when sealing an organic EL element or the like, it is possible to use a sealing material having lower performance than before, which is expected to lead to cost reduction.
《有機EL素子》
はじめに、本実施形態に係る有機EL素子について説明する。本実施形態に係る有機EL素子は、陽極と、陰極と、陽極と陰極との間に配置され、少なくとも発光層を含んで構成された機能性薄膜とを備える。この有機EL素子は、陽極と陰極の間に設けられた発光層中に、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差(ΔEst)が0.5eV以下であり、RISCを生じ易い性質を持つ化合物(以下、RISC化合物という。)と、凝集誘起発光性分子とを含有する。<< Organic EL element >>
First, the organic EL element according to the present embodiment will be described. The organic EL device according to the present embodiment includes an anode, a cathode, and a functional thin film arranged between the anode and the cathode and including at least a light emitting layer. In this organic EL element, the energy difference (ΔE st ) between the lowest excited singlet energy level and the lowest excited triplet energy level is 0.5 eV or less in the light emitting layer provided between the anode and the cathode. , A compound having a property of easily producing RISC (hereinafter referred to as RISC compound) and an aggregation-induced luminescent molecule.
<凝集誘起発光性分子(AIE分子)>
凝集誘起発光性分子(AIE分子)は、液媒体中、分子が凝集することなく溶解又は分散している状態では、量子収率が低いため発光を発さないか、発光強度が弱く、反対に、分子が凝集して集合体を形成している状態では、量子収率が高くなって発光強度が強くなる性質を示す分子である。<Aggregation-induced luminescent molecule (AIE molecule)>
Aggregation-induced luminescent molecules (AIE molecules) do not emit light because the quantum yield is low or the emission intensity is weak when the molecules are dissolved or dispersed in the liquid medium without agglomeration. In a state where the molecules are aggregated to form an aggregate, the molecule exhibits a property that the quantum yield is high and the emission intensity is strong.
本実施形態に係る有機EL素子においては、AIE分子として、前記の性質を示す適宜の分子を用いることができる。AIE分子の種類は、特に制限されるものではない。AIE分子としては、単一の発光層において、一種を単独で用いてもよいし、複数種を併用してもよい。AIE分子の好ましい形態は、芳香族炭化水素環及び芳香族複素環のうち、少なくとも一方を有する分子である。 In the organic EL device according to the present embodiment, an appropriate molecule exhibiting the above-mentioned properties can be used as the AIE molecule. The type of AIE molecule is not particularly limited. As the AIE molecule, one type may be used alone or a plurality of types may be used in combination in a single light emitting layer. A preferred form of the AIE molecule is a molecule having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle.
AIE分子としては、具体的には、ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子、カルボラン系凝集誘起発光性分子、テトラフェニルエチレン系凝集誘起発光性分子、シロール系凝集誘起発光性分子、ローダミン系凝集誘起発光性分子の他、配位子に分子運動を抑制する部位を導入した芳香環含有金属錯体、芳香族複素環を有するその他のヘテロ化合物等が挙げられる。但し、AIE分子の種類は、これらに限定されるものではない。 Specific examples of the AIE molecule include a benzoflo-oxazolo-carbazole-based aggregation-induced luminescent molecule, a carbolan-based aggregation-induced luminescent molecule, a tetraphenylethylene-based aggregation-induced luminescent molecule, a silol-based aggregation-induced luminescent molecule, and a rhodamine-based molecule. In addition to aggregation-induced luminescent molecules, aromatic ring-containing metal complexes in which a site that suppresses molecular movement is introduced into a ligand, other heterocompounds having an aromatic heterocycle, and the like can be mentioned. However, the types of AIE molecules are not limited to these.
(ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子)
ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子としては、下記一般式(1)で表されるベンゾフロ[2,3−c]オキサゾロ[4,5−a]カルバゾール骨格を有するベンゾフロ・オキサゾロ・カルバゾール誘導体を用いることができる。(Benzoflo-oxazolo-carbazole-based aggregation-induced luminescent molecule)
The benzoflo-oxazolo-carbazole-based aggregation-induced luminescent molecule is a benzoflo-oxazolo-carbazole derivative having a benzoflo [2,3-c] oxazolo [4,5-a] carbazole skeleton represented by the following general formula (1). Can be used.
[但し、一般式(1)中、R1及びR2は、それぞれ独立して、水素原子又は置換基を表し、R3及びR4は、それぞれ独立して、置換基を表し、mは、0〜4の整数を表し、nは、0〜4の整数を表す。][However, in the general formula (1), R 1 and R 2 independently represent a hydrogen atom or a substituent, R 3 and R 4 independently represent a substituent, and m is. It represents an integer from 0 to 4, and n represents an integer from 0 to 4. ]
ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基としては、ハメット則による任意の置換基定数を示す各種の電子供与基、電子求引基等が挙げられるが、特に、脂肪族炭化水素基、芳香族炭化水素基、又は、複素環基が好ましい。 Examples of the substituent that replaces the benzoflo-oxazolo-carbazole derivative include various electron donating groups and electron attracting groups that exhibit an arbitrary substituent constant according to Hammett's rule, and in particular, an aliphatic hydrocarbon group and an aromatic group. A hydrocarbon group or a heterocyclic group is preferable.
ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する脂肪族炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等の直鎖状又は分枝状のアルキル基や、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。 Examples of the aliphatic hydrocarbon group substituting the benzoflo-oxazolo-carbazole derivative include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. , Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and other linear or branched alkyl groups, and cyclopentyl group, cyclohexyl group and other cycloalkyl groups.
ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する芳香族炭化水素基としては、例えば、フェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。 Examples of the aromatic hydrocarbon group substituting the benzoflo-oxazolo-carbazole derivative include a phenyl group, a mesityl group, a trill group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, a fluorenyl group, a phenanthryl group and an indenyl group. Examples include a group, a pyrenyl group, a biphenylyl group and the like.
ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する複素環基としては、例えば、ピリジル基、ピリダジル基、ピリミジニル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、チアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、イソオキサゾリル基、イソチアゾリル基、チアジアゾリル基、オキサジアゾリル基、フリル基、フラザニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インダゾリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基、キノキサリニル基、フェナントリジル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等の芳香族複素環基や、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等の非芳香族複素環基が挙げられる。 Examples of the heterocyclic group substituting the benzoflo-oxazolo-carbazole derivative include a pyridyl group, a pyridadyl group, a pyrimidinyl group, a pyrrolyl group, an imidazolyl group, a benzoimidazolyl group, a pyrazolyl group, a pyrazinyl group, a triazolyl group, a tetrazolyl group and an oxazolyl group. Thiazolyl group, benzoxazolyl group, benzothiazolyl group, isooxazolyl group, isothiazolyl group, thiadiazolyl group, oxadiazolyl group, furyl group, frazayl group, thienyl group, quinolyl group, isoquinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, Aromatic heterocyclic groups such as dibenzothienyl group, indazolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group, quinoxalinyl group, phenanthridyl group, pyridadinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, and pyrrolidyl group. , Non-aromatic heterocyclic groups such as imidazolidyl group, morpholic group, oxazolidyl group and the like.
ベンゾフロ・オキサゾロ・カルバゾール誘導体は、例えば、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、シアノ基、ニトロ基、メルカプト基等のその他の置換基を、一般式(1)で表される骨格自体や、その骨格に置換した脂肪族炭化水素基、芳香族炭化水素基、又は、複素環基に有していてもよい。 The benzoflo-oxazolo-carbazole derivative includes, for example, a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphite group, a hydroxyl group, an amino group, an isocyanate group, a silyl group, a halogen atom, an alkyl group, a cycloalkyl group and an alkenyl group. Alkinyl group, cycloalkenyl group, cycloalkynyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group , Carbamoyl group, ureido group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, cyano group, nitro group, mercapto group and other substituents, the skeleton itself represented by the general formula (1). Or, it may have an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group substituted on the skeleton thereof.
(カルボラン系凝集誘起発光性分子)
カルボラン系凝集誘起発光性分子としては、C2B10H12で表される1,2−closo−ジカルバドデカボランの誘導体を用いることができる。カルボラン系凝集誘起発光性分子の特に好ましい形態は、下記一般式(2)で表されるo−カルボランの誘導体である。o−カルボランの誘導体は、π電子が非局在化しているクラスター部分が高い電子求引性を有している。1位や2位の炭素にπ電子共役ユニットを導入したカルボラン誘導体は強い蛍光を発することが、一般的に知られている(K.Kokado,et al.,Macromolecules,2009,42,1418−1420等参照)。(Carborane-based aggregation-induced luminescent molecule)
The carborane-based aggregation induced luminescence molecules, can be used 1, 2-closo radical Bud derivative of decaborane represented by C 2 B 10 H 12. A particularly preferable form of the carborane-based aggregation-induced luminescent molecule is a derivative of o-carborane represented by the following general formula (2). In the derivative of o-carborane, the cluster portion where π electrons are delocalized has high electron attraction. It is generally known that a carborane derivative in which a π-electron conjugated unit is introduced into carbon at the 1-position or 2-position emits strong fluorescence (K. Kokado, et al., Macromolecules, 2009, 42, 1418-1420). Etc.).
[但し、一般式(2)中、R5及びR6は、それぞれ独立して、水素原子、有機基、又は、有機金属基を表し、R5及びR6の少なくとも一方は、π電子共役ユニットを表す。]なお、一般式(2)において、白抜きの丸は、炭素原子を表し、黒丸は、水素原子が結合したホウ素原子を表す。一般式(2)で表されるカルボランは、正二重面体の構造を有するクラスター分子であり、式中では、背面側に位置するホウ素原子や水素原子の図示を省略している。[However, in the general formula (2), R 5 and R 6 independently represent a hydrogen atom, an organic group, or an organometallic group, and at least one of R 5 and R 6 is a π-electron conjugated unit. Represents. ] In the general formula (2), the white circles represent carbon atoms, and the black circles represent boron atoms to which hydrogen atoms are bonded. Carborane represented by the general formula (2) is a cluster molecule having a regular icosahedron structure, and the boron atom and the hydrogen atom located on the back side are not shown in the formula.
カルボランを置換する有機基としては、例えば、アルキル基、シクロアルキル基等の飽和脂肪族炭化水素基や、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキニル基等の不飽和脂肪族炭化水素基や、芳香族炭化水素基や、複素環基等が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。 Examples of the organic group for substituting the carbolane include a saturated aliphatic hydrocarbon group such as an alkyl group and a cycloalkyl group, and an unsaturated aliphatic hydrocarbon group such as an alkenyl group, an alkynyl group, a cycloalkenyl group and a cycloalkynyl group. , Aromatic hydrocarbon group, heterocyclic group and the like. Specific examples of these organic groups include groups similar to the substituents that substitute for the benzoflo-oxazolo-carbazole derivative described above.
カルボランを置換する有機金属基としては、Ir、Pt、Rh、Ru、Ag、Cu、Os、Re等の金属原子が配位結合した有機基が挙げられる。これらの有機基の具体例としては、ピリジン環、ピリダジン環、ピリミジン環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環、ピラジン環、トリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、インダゾール環、キノキサリン環、フェナントリジン環等が挙げられる。 Examples of the organometallic group substituting the carborane include an organometallic group in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinated. Specific examples of these organic groups include a pyridine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, a benzimidazole ring, a pyrazole ring, a pyrazine ring, a triazole ring, a benzoxazole ring, a benzothiazole ring, a quinoline ring, an isoquinoline ring, and an indazole. Rings, quinoxaline rings, phenanthridine rings and the like can be mentioned.
カルボランは、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体と同様、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子等、その他の置換基を、クラスター部分に置換した飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基、複素環基等の有機基や、有機金属基に有していてもよい。 Carborane has other substituents such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphite group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom, like the above-mentioned benzoflo-oxazolo-carbazole derivative. , An organic group such as a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group substituted on the cluster portion, or an organic metal group may be used.
一般式(2)中、R5及びR6は、少なくとも一方がπ電子共役ユニットである限り、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R5及びR6は、互いに縮合して環を形成していてもよい。また、R5及びR6は、電子供与性のπ電子共役ユニットと電子受容性のπ電子共役ユニットとの組み合わせで構成されてもよいし、電子供与性のπ電子共役ユニットと非共役の原子団との組み合わせで構成されてもよい。In the general formula (2), R 5 and R 6 may have the same structure or different structures as long as at least one of them is a π-electron conjugated unit. Further, R 5 and R 6 may be condensed with each other to form a ring. Further, R 5 and R 6 may be composed of a combination of an electron-donating π-electron conjugated unit and an electron-accepting π-electron conjugated unit, or an electron-donating π-electron conjugated unit and a non-conjugated atom. It may be composed in combination with a group.
π電子共役ユニットとしては、例えば、芳香族炭化水素基、芳香族複素環基等の有機基や、有機金属基や、共役ジエン基、エチニレン基、ヘテロ原子等の連結基によって構成される原子団ないし分子鎖が挙げられる。π電子共役ユニットは、そのπ電子共役ユニットの分子運動がカルボランの凝集によって制約され易い点で、平面的な分子鎖ないし原子団で構成されることが好ましい。 The π-electron conjugated unit includes, for example, an atomic group composed of an organic group such as an aromatic hydrocarbon group or an aromatic heterocyclic group, an organic metal group, or a linking group such as a conjugated diene group, an ethynylene group, or a hetero atom. Or a molecular chain. The π-electron conjugated unit is preferably composed of a planar molecular chain or atomic group in that the molecular motion of the π-electron conjugated unit is easily constrained by the aggregation of carborane.
π電子共役ユニットの特に好ましい形態は、カルボランの凝集によって分子運動が制約され易く、エネルギー準位の制御や、分子運動の制御を適切に行える点等から、芳香族炭化水素基、又は、芳香族複素環基である。π電子共役ユニットを構成する芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、フェナントリル基、ピレニル基等が好ましい。また、π電子共役ユニットを構成する芳香族複素環基としては、ピリジル基、ピリミジル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、オキサゾリル基、チアゾリル基、チアジアゾリル基、オキサジアゾリル基、トリアジニル基等が好ましい。具体的には、R5やR6として、9−カルバゾリルフェニル基、γ−カルボニリルフェニル基、トリフェニルシリル基等も好ましく用いることができる。A particularly preferable form of the π-electron conjugated unit is an aromatic hydrocarbon group or an aromatic because the molecular motion is easily restricted by the aggregation of carborane, and the energy level can be controlled and the molecular motion can be appropriately controlled. It is a heterocyclic group. As the aromatic hydrocarbon group constituting the π-electron conjugated unit, a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group and the like are preferable. Examples of the aromatic heterocyclic group constituting the π-electron conjugated unit include a pyridyl group, a pyrimidyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, an oxazolyl group, a thiazolyl group, a thiadiazolyl group, an oxadiazolyl group and a triazinyl group. Is preferable. Specifically, as R 5 and R 6 , a 9-carbazolylphenyl group, a γ-carbonylylphenyl group, a triphenylsilyl group and the like can also be preferably used.
(テトラフェニルエチレン系凝集誘起発光性分子)
テトラフェニルエチレン系凝集誘起発光性分子としては、下記一般式(3)で表されるテトラフェニルエチレン骨格を有するテトラフェニルエチレン誘導体を用いることができる。(Tetraphenylethylene-based aggregation-induced luminescent molecule)
As the tetraphenylethylene-based aggregation-induced luminescent molecule, a tetraphenylethylene derivative having a tetraphenylethylene skeleton represented by the following general formula (3) can be used.
[但し、一般式(3)中、R7、R8、R9及びR10は、それぞれ独立して、有機基、又は、有機金属基を表し、o、p、q及びrは、それぞれ独立して、0〜5の整数を表す。][However, in the general formula (3), R 7 , R 8 , R 9 and R 10 independently represent an organic group or an organometallic group, and o, p, q and r are independent of each other. Then, it represents an integer of 0 to 5. ]
テトラフェニルエチレン誘導体を置換する有機基としては、例えば、脂肪族炭化水素基や、芳香族炭化水素基や、複素環基等が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。 Examples of the organic group that replaces the tetraphenylethylene derivative include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic group. Specific examples of these organic groups include groups similar to the substituents that substitute for the benzoflo-oxazolo-carbazole derivative described above.
テトラフェニルエチレン誘導体を置換する有機金属基としては、Ir、Pt、Rh、Ru、Ag、Cu、Os、Re等の金属原子が配位結合した有機基が挙げられる。これらの有機基の具体例としては、前記のカルボランを置換する有機金属基と同様の基が挙げられる。 Examples of the organometallic group substituting the tetraphenylethylene derivative include an organometallic group in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinated. Specific examples of these organic groups include groups similar to the above-mentioned organometallic groups that replace carborane.
テトラフェニルエチレン誘導体は、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体と同様、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子等、その他の置換基を、テトラフェニルエチレン骨格自体や、その骨格に置換した脂肪族炭化水素基、芳香族炭化水素基、複素環基等の有機基や、有機金属基に有していてもよい。 Like the benzoflo-oxazolo-carbazole derivative, the tetraphenylethylene derivative includes a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphite group, a hydroxyl group, an amino group, an isocyanate group, a silyl group, a halogen atom and the like, and other components. The substituent may be present in the tetraphenylethylene skeleton itself, an organic group such as an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group substituted on the skeleton, or an organic metal group.
一般式(3)中、R7〜R10は、同一の環に置換している置換基の1以上のうちで、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R7〜R10同士は、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R7〜R10は、同一の環に置換している置換基同士で縮合して環を形成していてもよいし、異なる環に置換している置換基同士で縮合して環を形成していてもよい。なお、テトラフェニルエチレン誘導体は、一般式(3)で表されるテトラフェニルエチレン骨格を2個以上含み、これら複数の骨格同士がR7〜R10のいずれかを介して互いに連結した構造であってもよい。In the general formula (3), R 7 to R 10 may have the same structure or different structures from one or more of the substituents substituted on the same ring. .. Further, R 7 to R 10 may have the same structure or different structures from each other. Further, R 7 to R 10 may be fused with substituents substituted on the same ring to form a ring, or condensed with substituents substituted on different rings to form a ring. It may be formed. The tetraphenylethylene derivative contains two or more tetraphenylethylene skeletons represented by the general formula (3), and these plurality of skeletons are connected to each other via any one of R 7 to R 10. You may.
テトラフェニルエチレン系凝集誘起発光性分子の具体例としては、テトラフェニルエチレンや、一般式(3)で表されるテトラフェニルエチレン誘導体のベンゼン環のパラ位に、9−カルバゾリルフェニル基、γ−カルボニリルフェニル基、4,6−ジフェニル−1,3,5−トリアジニル基等が置換した誘導体が挙げられるが、これらに制限されるものではない。 Specific examples of the tetraphenylethylene-based aggregation-induced luminescent molecule include a 9-carbazolylphenyl group and γ at the para-position of the benzene ring of tetraphenylethylene or the tetraphenylethylene derivative represented by the general formula (3). Examples thereof include derivatives in which the −carbonylylphenyl group, 4,6-diphenyl-1,3,5-triazinyl group and the like are substituted, but the present invention is not limited thereto.
(シロール系凝集誘起発光性分子)
シロール系凝集誘起発光性分子としては、シロール環にπ電子共役ユニットが結合したシロール誘導体を用いることができる。シロール系凝集誘起発光性分子の特に好ましい形態は、下記一般式(4)で表されるシロール環の3位及び4位の炭素が置換基を有していてもよいベンゼン環で置換された誘導体である。(Siror-based aggregation-induced luminescent molecule)
As the siror-based aggregation-induced luminescent molecule, a siror derivative in which a π-electron conjugated unit is bonded to a siror ring can be used. A particularly preferable form of the siror-based aggregation-induced luminescent molecule is a derivative in which the carbons at the 3- and 4-positions of the siror ring represented by the following general formula (4) are substituted with a benzene ring which may have a substituent. Is.
[但し、一般式(4)中、R11及びR12は、それぞれ独立して、炭素数が1〜12の炭化水素基を表し、s及びtは、それぞれ独立して、0〜5の整数を表し、R13及びR16は、それぞれ独立して、有機基を表し、R14及びR15は、それぞれ独立して、炭素数が1〜20の有機基を表す。][However, in the general formula (4), R 11 and R 12 each independently represent a hydrocarbon group having 1 to 12 carbon atoms, and s and t are independently integers of 0 to 5. R 13 and R 16 each independently represent an organic group, and R 14 and R 15 each independently represent an organic group having 1 to 20 carbon atoms. ]
シロール誘導体を置換するR11やR12としては、例えば、炭素数が1〜12の飽和脂肪族炭化水素基や、炭素数が1〜12の不飽和脂肪族炭化水素基や、炭素数が1〜12の芳香族炭化水素基が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。R11やR12としては、炭素数が1〜6の炭化水素基がより好ましく、炭素数が1〜4の炭化水素基が更に好ましい。また、sやtは、0又は1であることが好ましく、0であること、すなわちR11やR12がフェニル基であることが特に好ましい。 Examples of R 11 and R 12 that replace the silol derivative include saturated aliphatic hydrocarbon groups having 1 to 12 carbon atoms, unsaturated aliphatic hydrocarbon groups having 1 to 12 carbon atoms, and 1 carbon number. Included are ~ 12 aromatic hydrocarbon groups. Specific examples of these organic groups include groups similar to the substituents that substitute for the benzoflo-oxazolo-carbazole derivative described above. As R 11 and R 12 , hydrocarbon groups having 1 to 6 carbon atoms are more preferable, and hydrocarbon groups having 1 to 4 carbon atoms are further preferable. Further, s and t are preferably 0 or 1, and it is particularly preferable that s and t are 0, that is, R 11 and R 12 are phenyl groups.
シロール誘導体を置換するR13やR16としては、例えば、脂肪族炭化水素基や、芳香族炭化水素基や、複素環基によって構成される原子団ないし分子鎖が挙げられる。これらの有機基の具体例としては、前記のカルボランを置換する置換基と同様の基が挙げられる。R13やR16としては、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、イミダゾール環、イミダゾリン環、ピラゾリル環、ピラジン環、オキサゾール環、チアゾール環、フラン環、及び、チオフェン環のうちの1種以上によって構成されるπ電子共役ユニットがより好ましく、1以上のベンゼン環を含むπ電子共役ユニットが更に好ましく、フェニル基が特に好ましい。 Examples of R 13 and R 16 that replace the silol derivative include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an atomic group or a molecular chain composed of a heterocyclic group. Specific examples of these organic groups include groups similar to the above-mentioned substituents that substitute for carborane. R 13 and R 16 are one of a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, an imidazole ring, an imidazoline ring, a pyrazolyl ring, a pyrazine ring, an oxazole ring, a thiazole ring, a furan ring, and a thiophene ring. The π-electron conjugated unit composed of the above is more preferable, a π-electron conjugated unit containing one or more benzene rings is more preferable, and a phenyl group is particularly preferable.
シロール誘導体を置換するR14やR15としては、例えば、炭素数が1〜20の飽和脂肪族炭化水素基や、炭素数が1〜20の不飽和脂肪族炭化水素基や、炭素数が1〜20の芳香族炭化水素基が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。R14やR15で表される有機基は、炭化水素に限られず、N、O、S、Si等のヘテロ原子を有していてもよい。R14やR15としては、炭素数が1〜12の有機基がより好ましく、フェニル基、又は、炭素数が1〜12のアルキル基が更に好ましい。 Examples of R 14 and R 15 for substituting the silol derivative include a saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, an unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 1 carbon number. Included are ~ 20 aromatic hydrocarbon groups. Specific examples of these organic groups include groups similar to the substituents that substitute for the benzoflo-oxazolo-carbazole derivative described above. The organic group represented by R 14 and R 15 is not limited to hydrocarbons, and may have heteroatoms such as N, O, S, and Si. As R 14 and R 15 , an organic group having 1 to 12 carbon atoms is more preferable, and a phenyl group or an alkyl group having 1 to 12 carbon atoms is further preferable.
(AIE分子の取得法)
以上のAIE分子は、従来一般的に知られている方法を利用して合成することができる。例えば、K.Kokado,et al.,Macromolecules,2009,42,1418−1420、米国特許出願公開第2012/299474号明細書、米国特許出願公開第2013/177991号明細書、米国特許出願公開第2013/89889号明細書、Qin W.,et al.,Chem.Commun.,2015,51,7321−7324、Kim J.Y.,et al.,Adv.Mater.2013,25,2666−2671、Chen B.,et al.,Chem.Eur.J.,2014,20,1931−1939に記載された方法を用いることができる。また、ローダミン系凝集誘起発光性分子としては、例えば、S.Kamino,et al.,Chem.Commun.,2010,46,9013−9015に記載されたものを用いることができる。(How to obtain AIE molecule)
The above AIE molecule can be synthesized by using a conventionally known method. For example, K.K. Kokado, et al. , Macromolecules, 2009, 42, 1418-1420, U.S. Patent Application Publication No. 2012/299474, U.S. Patent Application Publication No. 2013/177991, U.S. Patent Application Publication No. 2013/89889, Qin W. , Et al. , Chem. Commun. , 2015, 51, 7321-7324, Kim J. et al. Y. , Et al. , Adv. Mater. 2013, 25, 2666-2671, Chen B. , Et al. , Chem. Euro. J. , 2014, 20, 1931-1939. Examples of the rhodamine-based aggregation-induced luminescent molecule include S. cerevisiae. Kamino, et al. , Chem. Commun. , 2010, 46, 9013-9015 can be used.
(AIE分子の凝集誘起発光性)
図1は、AIE分子の凝集誘起発光性を説明する概念図である。図1に示すように、凝集誘起発光性を示さない従来型の蛍光発光性化合物は、濃度が増大すると消光を生じて発光強度が低下する。これに対し、AIE分子は、濃度が増大するほど発光強度が高くなる性質を有している。発光性化合物が、このような凝集誘起発光性を有しているか否かは、溶媒中に分子を分散し、濃度毎に観測される発光強度を比較することによって確認することができる。(Aggregation-induced luminescence of AIE molecules)
FIG. 1 is a conceptual diagram illustrating the aggregation-induced luminescence of AIE molecules. As shown in FIG. 1, the conventional fluorescent luminescent compound which does not exhibit aggregation-induced luminescence causes quenching and the luminescence intensity decreases as the concentration increases. On the other hand, the AIE molecule has a property that the emission intensity increases as the concentration increases. Whether or not the luminescent compound has such aggregation-induced luminescence can be confirmed by dispersing the molecules in the solvent and comparing the luminescence intensity observed for each concentration.
具体的には、室温(25℃)の良溶媒中に所定濃度の発光性化合物を分散し、励起した発光性化合物の発光スペクトルを測定し、最大発光波長におけるピーク強度について、希薄分散溶液の場合に対する相対強度を求めることで、凝集誘起発光性を有しているか否かを確認することができる。図1に示すように、濃度0.01mMの分散溶液から検出される最大発光波長λmaxの発光強度をI0、濃度10mMの分散溶液から検出される最大発光波長λmaxの発光強度をI10とするとき、下記の数式(A)を満たす発光性化合物がAIE分子であると定義される。
I10/I0>1 ・・・(A)Specifically, a luminescent compound having a predetermined concentration is dispersed in a good solvent at room temperature (25 ° C.), the emission spectrum of the excited luminescent compound is measured, and the peak intensity at the maximum emission wavelength is determined in the case of a dilute dispersion solution. By determining the relative intensity with respect to the above, it is possible to confirm whether or not the substance has aggregation-induced luminescence. As shown in FIG. 1, the emission intensity of the maximum emission wavelength λmax detected from the dispersion solution having a concentration of 0.01 mM is I 0 , and the emission intensity of the maximum emission wavelength λmax detected from the dispersion solution having a concentration of 10 mM is I 10 . Then, a luminescent compound satisfying the following mathematical formula (A) is defined as an AIE molecule.
I 10 / I 0 > 1 ... (A)
(AIE分子の濃度)
AIE分子は、後記するRISC化合物と併用される限り、発光層中に適宜の濃度で含まれてよい。AIE分子の発光層中の膜中濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。AIE分子の電荷輸送性が良好であれば、このような広範な膜中濃度で発光層を形成しても、高い発光効率を得ることができる。発光層は、AIE分子とRISC化合物のみで構成することも可能であるし、AIE分子とRISC化合物と後記するホスト化合物、その他の発光性ドーパントで構成することも可能である。(Concentration of AIE molecule)
The AIE molecule may be contained in the light emitting layer at an appropriate concentration as long as it is used in combination with the RISC compound described later. The concentration of the AIE molecule in the light emitting layer in the film can be, for example, 0.1% by mass or more and 99.9% by mass or less. If the charge transportability of the AIE molecule is good, high luminous efficiency can be obtained even if the light emitting layer is formed at such a wide range of concentrations in the film. The light emitting layer can be composed of only the AIE molecule and the RISC compound, or can be composed of the AIE molecule, the RISC compound, the host compound described later, and other luminescent dopants.
AIE分子の発光層中の膜中濃度は、好ましくは2質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。AIE分子の膜中濃度が2質量%以上であると、AIE分子の凝集による強い発光が得られ易く、10質量%以上であると、一般的な発光層と比較して、発光性化合物がより凝集した状態で存在するため、凝集したAIE分子による発光が確実に得られると共に、大気中の酸素や水分等による発光性化合物の劣化を避けることができる。また、AIE分子の発光層中の膜中濃度は、70質量%以下としてもよいし、70質量%以上99.9質量%以下としてもよい。AIE分子の膜中濃度が70質量%以下であると、RISC化合物に加えてホスト化合物等を併用したとき、高い発光効率を得ることができる。 The concentration of the AIE molecule in the light emitting layer in the film is preferably 2% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. When the concentration of AIE molecules in the film is 2% by mass or more, strong luminescence due to aggregation of AIE molecules is easily obtained, and when it is 10% by mass or more, the luminescent compound is more luminescent as compared with a general light emitting layer. Since it exists in an agglomerated state, light emission by the agglomerated AIE molecules can be surely obtained, and deterioration of the luminescent compound due to oxygen, moisture, etc. in the atmosphere can be avoided. The concentration of the AIE molecule in the light emitting layer in the film may be 70% by mass or less, or 70% by mass or more and 99.9% by mass or less. When the concentration of the AIE molecule in the film is 70% by mass or less, high luminous efficiency can be obtained when a host compound or the like is used in combination with the RISC compound.
<RISC化合物>
RISC化合物としては、最低励起一重項エネルギー準位(S1)と最低励起三重項エネルギー準位(T1)とのエネルギー差(ΔEst)が0.5eV以下である化合物を、前記のAIE分子と併用することができる。RISC化合物のΔEstは、好ましくは0.3eV以下、より好ましくは0.1eV以下である。RISC化合物は、ΔEstが小さいため、スピン禁制である三重項励起子から一重項励起子への逆項間交差を、常温においても高確率で起こす性質を持つ。<RISC compound>
As the RISC compound, the above-mentioned AIE molecule is a compound in which the energy difference (ΔE st ) between the lowest excited singlet energy level (S 1 ) and the lowest excited triplet energy level (T 1) is 0.5 eV or less. Can be used in combination with. Delta] E st of RISC compound, preferably 0.3eV or less, and more preferably not more than 0.1 eV. Since the RISC compound has a small ΔE st , it has a property of causing an intersystem crossing from a triplet exciton to a singlet exciton, which is spin-forbidden, with a high probability even at room temperature.
一般に、電界励起の下では、理論上、75%の割合で三重項励起子が生成する。しかし、従来型の蛍光発光性化合物では、生成した三重項励起子が容易に無輻射失活するため、理論上、最大で25%の発光量子収率しか実現することができない。これに対し、ΔEstが小さいRISC化合物を用いると、電界励起によって生じた三重項励起子を、逆項間交差によって一重項励起子に反転させることができる。一重項励起子は、瞬時の輻射遷移を生じ得るし、分子間エネルギー移動後に輻射遷移を生じ得るため、発光層にRISC化合物を用いることによって、内部量子効率を向上させることができる。In general, under electric field excitation, triplet excitons are theoretically generated at a rate of 75%. However, in the conventional fluorescent compound, since the triplet excitons generated are easily deradiated without radiation, theoretically, only a maximum emission quantum yield of 25% can be realized. On the other hand, when a RISC compound having a small ΔE st is used, triplet excitons generated by electric field excitation can be inverted into singlet excitons by intersystem crossing. Since singlet excitons can generate an instantaneous radiation transition and can generate a radiation transition after intermolecular energy transfer, the internal quantum efficiency can be improved by using a RISC compound in the light emitting layer.
RISC化合物は、一重項励起子の輻射遷移によって化合物自体が遅延発光を放射してもよいし、一重項励起子を併用するAIE分子にエネルギー移動させてAIE分子を発光させてもよい。併用するAIE分子に発光させる場合、分子間エネルギー移動の速度が、ISCの速度や、T1からの輻射遷移や無輻射遷移の速度よりも十分に速いことが好ましく、蛍光共鳴エネルギー移動(FRET)の効率の観点から、RISC化合物の吸収スペクトルとAIE分子の吸収スペクトルとの重なり積分が大きい組み合わせを用いることが好ましい。The RISC compound may emit delayed emission by the radiation transition of the singlet exciton, or may transfer energy to the AIE molecule in which the singlet exciton is used in combination to cause the AIE molecule to emit light. When the AIE molecule to be used is made to emit light, the rate of intermolecular energy transfer is preferably sufficiently faster than the rate of ISC and the rate of radiation transition and non-radiation transition from T 1 , and fluorescence resonance energy transfer (FRET). From the viewpoint of efficiency, it is preferable to use a combination in which the absorption spectrum of the RISC compound and the absorption spectrum of the AIE molecule have a large overlapping integral.
RISC化合物としては、下記一般式(A)で表されるΠ共役系化合物が特に好ましく用いられる。一般式(A)で表されるΠ共役系化合物によると、分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)とが空間的に分離し、互いの波動関数の重なりが小さくなるため、ΔEstが十分に小さく、常温でRISCを生じ易い化合物を得ることができる。As the RISC compound, a Π-conjugated compound represented by the following general formula (A) is particularly preferably used. According to the Π conjugated system compound represented by the general formula (A), the highest occupied molecular orbital (HOMO) and the lowest empty orbital (LOWEST Unoccuped Molecular Orbital: LUMO) in the molecule are spatially separated. Since the overlap of the wave functions of each other is small, it is possible to obtain a compound in which ΔEst is sufficiently small and RISC is likely to occur at room temperature.
[但し、一般式(A)中、Aは、電子のアクセプター部位を表し、Dは、電子のドナー部位を表し、Lは、2価の連結基を表し、l及びmは、それぞれ独立して、1〜4の整数を表す。] [However, in the general formula (A), A represents an electron acceptor site, D represents an electron donor site, L represents a divalent linking group, and l and m are independent of each other. , Represents an integer of 1-4. ]
アクセプター部位Aとしては、電子求引性が高く、分子内のLUMOやHOMOのエネルギー準位が深くなる原子団ないし分子鎖を用いることができる。アクセプター部位Aとしては、ヒュッケル則に基づいた芳香族性を有する原子団ないし分子鎖が好ましく、窒素原子を有する芳香族複素環を含む原子団ないし分子鎖がより好ましい。アクセプター部位Aの具体例としては、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、サリン環、フタラジン環、プテリジン環、フェナントリジン環、フェナントロリン環や、これらの環構造を含む縮合環が挙げられる。これらのアクセプター部位Aは、置換基を有していてもよい。 As the acceptor site A, an atomic group or a molecular chain having high electron attractability and a deep energy level of LUMO or HOMO in the molecule can be used. As the acceptor site A, an atomic group or a molecular chain having aromaticity based on Hückel's law is preferable, and an atomic group or a molecular chain containing an aromatic heterocycle having a nitrogen atom is more preferable. Specific examples of the acceptor site A include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a sarin ring, a phthalazine ring, a pteridine ring, a phenanthridine ring, a phenanthroline ring, and a condensed ring containing these ring structures. .. These acceptor sites A may have substituents.
ドナー部位Dとしては、電子供与性が高く、分子内のLUMOやHOMOのエネルギー準位が浅くなる原子団ないし分子鎖を用いることができる。ドナー部位Dの具体例としては、電子供与性基で置換されたアリール基(ベンゼン環、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ビフェニレン環、ナフタセン環、ピレン環、ペンタレン環、アセアントリレン環、ヘプタレン環、トリフェニレン環、as−インダセン環、クリセン環、s−インダセン環、プレイアデン環、フェナレン環、フルオランテン環、ペリレン環、アセフェナントリレン環、ビフェニル環、ターフェニル環、及びテトラフェニル環等)や、置換されてもよい電子供与性の複素環基(ピロール環、インドール環、カルバゾール環、インドロインドール環、9,10−ジヒドロアクリジン環、フェノキサジン環、フェノチアジン環、ジベンゾチオフェン環、ベンゾフリルインドール環、ベンゾチエノインドール環、インドロカルバゾール環、ベンゾフリルカルバゾール環、ベンゾチエノカルバゾール環、ベンゾチエノベンゾチオフェン環、ベンゾカルバゾール環、ジベンゾカルバゾール環、アザカルバゾール環、及びジアザカルバゾール環等)、置換されてもよいアミノ基、またはアルキル基である。中でも、高い電子供与性を有することから、置換されてもよい電子供与性の複素環基であることが好ましい。 As the donor site D, an atomic group or a molecular chain having a high electron donating property and a shallow energy level of LUMO or HOMO in the molecule can be used. Specific examples of the donor site D include an aryl group substituted with an electron-donating group (benzene ring, inden ring, naphthalene ring, azulene ring, fluorene ring, phenanthrene ring, anthracene ring, acenaphthylene ring, biphenylene ring, naphthacene ring, etc. Pyrene ring, pentalene ring, acetylene ring, heptalene ring, triphenylene ring, as-indacene ring, chrysen ring, s-indacene ring, pleiaden ring, phenanthrene ring, fluorantene ring, perylene ring, acephenanthrene ring, biphenyl Rings, terphenyl rings, tetraphenyl rings, etc.) and electron-donating heterocyclic groups that may be substituted (pyrrole ring, indole ring, carbazole ring, indroindole ring, 9,10-dihydroacrine ring, phenanthrene ring, etc.) Saddin ring, phenanthidine ring, dibenzothiophene ring, benzofurylindole ring, benzothienoindole ring, indolocarbazole ring, benzofurylcarbazole ring, benzothienocarbazole ring, benzothienobenzothiophene ring, benzocarbazole ring, dibenzocarbazole ring, aza A carbazole ring, a diazacarbazole ring, etc.), an amino group that may be substituted, or an alkyl group. Above all, since it has a high electron donating property, it is preferably an electron donating heterocyclic group which may be substituted.
連結基Lとしては、各部位が形成するΠ共役系を拡張する構造、及び、各部位が形成するΠ共役系を遮断する構造のいずれを用いることもできる。また、基底状態や各励起状態の間で分子構造の変化が小さくなる剛直な構造であってもよいし、分子内電荷移動状態からの逆電荷移動を抑制できる自由度が高い構造であってもよい。連結基Lの具体例としては、炭化水素基、芳香族炭化水素基、芳香族複素環基等で構成される2価以上の基が挙げられる。これらの連結基Lは、置換基を有していてもよい。 As the linking group L, either a structure that extends the Π-conjugated system formed by each site or a structure that blocks the Π-conjugated system formed by each site can be used. Further, it may be a rigid structure in which the change in the molecular structure is small between the ground state and each excited state, or it may be a structure having a high degree of freedom that can suppress the reverse charge transfer from the intramolecular charge transfer state. Good. Specific examples of the linking group L include a divalent or higher valent group composed of a hydrocarbon group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like. These linking groups L may have a substituent.
置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 Examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, etc.). Cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon) Also referred to as a ring group, an aromatic carbocyclic group, an aryl group, etc., for example, a phenyl group, a p-chlorophenyl group, a mesityl group, a trill group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, a fluorenyl group, a phenanthryl group. Group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (eg, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (eg, pyridyl group, pyramidinyl group, biphenylyl group, etc.) 1,2,4-triazole-1-yl group, 1,2,3-triazole-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isooxazolyl group, isothiazolyl group, frazayl group, thienyl Group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carbolin ring of the carbolinyl group is nitrogen. Atomatically replaced), quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholic group, oxazolidyl group, etc.), alkoxy group (eg, , Methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.) , Phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.) Groups, etc.), arylthio groups (eg, phenylthio groups, naphthylthio groups, etc.), alkoxykas Lubonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) , Sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naftylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (eg, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group , Phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (eg, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.) , Amid groups (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonyl Amino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octyl Aminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methyl ureido group, ethyl ureido group, pentyl ureido group) , Cyclohexyl ureido group, octyl ureido group, dodecyl ureido group, phenyl ureido group, naphthyl ureido group, 2-pyridyl amino ureido group, etc.), sulfinyl group (for example, methi) Rusulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (eg, methylsulfonyl) Group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group) Etc.), Amino group (eg, amino group, ethylamino group, dimethylamino group, diphenylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2- Pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), Examples thereof include a cyano group, a nitro group, a hydroxy group, a mercapto group, a silyl group (for example, a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, a phenyldiethylsilyl group, etc.), a phosphono group and the like.
一般式(A)で表されるΠ共役系化合物を置換する置換基としては、これらの中でも、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、又は、シアノ基が好ましい。芳香族炭化水素基や芳香族複素環基の好ましい具体例としては、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等が挙げられる。これらの置換基は、アクセプター部位としても用いることができる。 Among these, the substituents substituting the Π-conjugated compound represented by the general formula (A) include an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkoxy group, an amino group, or a cyano group. Is preferable. Preferred specific examples of the aromatic hydrocarbon group and the aromatic heterocyclic group include an indole ring, an indole ring, a benzothiazole ring, a benzoxazole ring, a benzimidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxalin ring, and an isoindol. Examples thereof include a ring, a naphthylidine ring, a phthalazine ring, a carbazole ring, a carboline ring, a diazacarbazole ring, an aclysine ring, a phenanthridine ring, a phenanthroline ring, a phenazine ring, an azadibenzofuran ring, and an azadibenzothiophene ring. These substituents can also be used as acceptor sites.
RISC化合物としては、連結基Lとしてベンゼン環を有する化合物を好ましく用いることができる。ベンゼン環で構成される連結基Lに対して、アクセプター部位Aとドナー部位Dとは、互いにパラ位で結合することが好ましい。さらに、アクセプター部位Aが結合する結合位置のオルト位の1以上は、水素原子であることが好ましい。また、ドナー部位Dが結合する結合位置のオルト位の1以上は、電子供与性基であることが好ましい。このようなRISC化合物の具体例としては、特開2017−075121号公報に記載された化合物A−1〜A−64が挙げられる。 As the RISC compound, a compound having a benzene ring as the linking group L can be preferably used. It is preferable that the acceptor site A and the donor site D are bonded to each other at the para position with respect to the linking group L composed of the benzene ring. Further, it is preferable that one or more of the ortho positions of the bond positions to which the acceptor site A is bonded are hydrogen atoms. Further, it is preferable that one or more of the ortho positions of the bonding positions to which the donor site D binds are electron-donating groups. Specific examples of such RISC compounds include compounds A-1 to A-64 described in JP-A-2017-075121.
<ΔEstの極小化設計>
一般式(A)で示される化合物のΔEstを小さくするには、分子内において最高被占軌道(HOMO)と最低空軌道(LUMO)との空間的な重なりを小さくすることが最も効果的である。一般的に、分子の電子軌道のうち、HOMOは電子供与性部位に、LUMOは電子求引性部位に分布することが知られている。このため、例えば、「実用化ステージを迎えた有機光エレクトロニクス」応用物理 第82巻、第6号、2013年にも記載されているように、分子内に電子供与性の骨格と電子求引性の骨格とを導入すると、HOMOが局在する部位とLUMOが局在する部位とを遠ざけることができる。<Minimization design of ΔEst>
In order to reduce the ΔEst of the compound represented by the general formula (A), it is most effective to reduce the spatial overlap between the highest occupied orbital (HOMO) and the lowest empty orbital (LUMO) in the molecule. .. In general, it is known that among the electron orbitals of a molecule, HOMO is distributed in an electron donating site and LUMO is distributed in an electron attracting site. Therefore, for example, as described in Applied Physics Vol. 82, No. 6, 2013 of "Organic Optoelectronics Reaching the Practical Use Stage", an electron-donating skeleton and electron-attracting property in a molecule. By introducing the skeleton of HOMO, the site where HOMO is localized and the site where LUMO is localized can be separated.
また、ΔEstを小さくするには、化合物の基底状態と励起状態との分子構造変化を小さくすることも効果的である。分子構造変化を小さくする方法としては、例えば、化合物を剛直にする方法がある。例えば、環同士の結合の自由回転を抑制する方法、π共役面が大きい縮合環を導入する等、分子内で自由に動ける部位を少なくする方法等を用いることができる。特に、化合物中で発光に関与する部位を剛直にすると、励起状態における構造変化を小さくすることが可能である。 Further, in order to reduce ΔEst, it is also effective to reduce the change in the molecular structure between the ground state and the excited state of the compound. As a method of reducing the change in the molecular structure, for example, there is a method of making the compound rigid. For example, a method of suppressing the free rotation of the bond between the rings, a method of introducing a condensed ring having a large π-conjugated surface, or a method of reducing the number of freely movable parts in the molecule can be used. In particular, by making the site involved in light emission rigid in the compound, it is possible to reduce the structural change in the excited state.
<電子密度分布>
化合物中のHOMO及びLUMOの分布状態は、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。分子軌道計算は、汎関数としてB3LYP、基底関数として6−31G(d)を用いて、分子軌道計算用ソフトウェアを使用して行うことができる。なお、分子軌道計算用ソフトウェアの種類は、特に制限されるものではない。分子軌道計算用ソフトウェアとしては、例えば、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010)等を用いることができる。<Electronic density distribution>
The distribution state of HOMO and LUMO in the compound can be obtained from the electron density distribution when the structure is optimized obtained by the calculation of the molecular orbital. The molecular orbital calculation can be performed using the molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function. The type of software for calculating the molecular orbital is not particularly limited. As the software for calculating the molecular orbital, for example, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010) manufactured by Gaussian, USA can be used.
また、化合物のΔEstは、分子軌道計算により構造最適化を行った後、時間依存密度汎関数法(DFT:Time−Dependent)による励起状態エネルギーの計算を実施して、S1のエネルギー準位(E(S1))と、T1のエネルギー準位(E(T1))とを求め、ΔEst=|E(S1)−E(T1)|として算出することができる。算出されるΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。Also, Delta] E st compounds after structural optimization by molecular orbital calculation, time-dependent density functional theory (DFT: Time-Dependent) to perform the calculations of the excited state energy by energy level of S 1 (E (S 1 )) and the energy level of T 1 (E (T 1 )) can be obtained and calculated as ΔE st = | E (S 1 ) -E (T 1 ) |. The smaller the calculated ΔE st, the more separated the HOMO and LUMO.
<最低励起一重項エネルギー準位 S1>
最低励起一重項エネルギー準位(S1)のエネルギー(E(S1))は、以下に示すように、公知の方法に基づいて求めることができる。はじめに、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)で試料の吸収スペクトル(縦軸:吸光度、横軸:波長)を測定する。その後、得られた吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式を用いて算出することができる。<Lowest excited singlet energy level S 1 >
The energy (E (S 1 )) of the lowest excited singlet energy level (S 1 ) can be determined based on a known method as shown below. First, a compound to be measured is vapor-deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of the sample is measured at room temperature (300 K). After that, a tangent line is drawn with respect to the rising edge of the obtained absorption spectrum on the long wavelength side, and the calculation can be performed using a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
但し、測定対象となる化合物の凝集性が比較的高い場合、薄膜の測定では、凝集による誤差を生じる場合がある。化合物のストークスシフトが比較的小さいこと、基底状態と励起状態との分子構造変化が小さいことを条件に、室温(25℃)の溶液状態で測定される最大発光波長のピーク値を近似値として用いることができる。溶媒としては、溶媒効果が小さく、化合物の凝集状態に大きな影響を与えない溶媒、例えば、シクロヘキサン、トルエン等の非極性溶媒等を用いることができる。 However, when the cohesiveness of the compound to be measured is relatively high, an error due to cohesion may occur in the measurement of the thin film. The peak value of the maximum emission wavelength measured in a solution state at room temperature (25 ° C.) is used as an approximate value, provided that the Stokes shift of the compound is relatively small and the molecular structure change between the ground state and the excited state is small. be able to. As the solvent, a solvent having a small solvent effect and not significantly affecting the aggregated state of the compound, for example, a non-polar solvent such as cyclohexane or toluene can be used.
<最低励起三重項エネルギー準位 T1>
最低励起三重項エネルギー準位(T1)のエネルギー(E(T1))は、以下に示すように、薄膜ないし溶液のフォトルミネッセンス(PL)特性に基づいて求めることができる。例えば、測定対象となる化合物の希薄状態の分散物を薄膜にした後、ストリークカメラを用いて過渡PL特性を測定し、蛍光成分とリン光成分との分離を行う。そして、得られたエネルギー差の絶対値をΔEstとし、ΔEstと、予め求めたS1とから算出することができる。PL特性は、例えば、化合物の励起をレーザー光で行い、内部量子効率を絶対PL量子収率測定装置C9920−02(浜松ホトニクス社製)、発光寿命をストリークカメラC4334(浜松ホトニクス社製)等で測定することができる。<Minimum excited triplet energy level T 1 >
The energy (E (T 1 )) of the lowest excited triplet energy level (T 1 ) can be determined based on the photoluminescence (PL) properties of the thin film or solution, as shown below. For example, after thinning a diluted dispersion of the compound to be measured into a thin film, the transient PL characteristics are measured using a streak camera to separate the fluorescence component and the phosphorescence component. Then, the absolute value of the obtained energy difference is defined as ΔE st, and it can be calculated from ΔE st and S 1 obtained in advance. For PL characteristics, for example, the compound is excited by laser light, the internal quantum efficiency is measured by an absolute PL quantum yield measuring device C9920-02 (manufactured by Hamamatsu Photonics), and the emission lifetime is measured by a streak camera C4334 (manufactured by Hamamatsu Photonics). Can be measured.
(RISC化合物の濃度)
RISC化合物は、AIE分子と併用される限り、発光層中に適宜の濃度で含まれてよい。RISC化合物の発光層中の膜中濃度は、例えば、0.1質量%以上50質量%以下、好ましくは1質量%以上30質量%以下、より好ましくは5質量%以上30質量%以下とすることができる。RISC化合物の膜中濃度が1質量%以上であると、三重項励起子を発光に利用することにより、発光効率を有意に向上させることができる。また、RISC化合物の膜中濃度が30質量%以下であれば、濃度消光を生じ難いAIE分子からの発光を効率的に利用することができる。(Concentration of RISC compound)
The RISC compound may be contained in the light emitting layer at an appropriate concentration as long as it is used in combination with the AIE molecule. The concentration of the RISC compound in the light emitting layer is, for example, 0.1% by mass or more and 50% by mass or less, preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 30% by mass or less. Can be done. When the concentration of the RISC compound in the film is 1% by mass or more, the luminous efficiency can be significantly improved by using the triplet excitons for light emission. Further, when the concentration of the RISC compound in the film is 30% by mass or less, the light emission from the AIE molecule, which is unlikely to cause concentration quenching, can be efficiently used.
《有機EL素子の構成層》
本発明に係る有機EL素子は、例えば、基材上に陽極及び陰極を有し、発光層を含む有機構成層が陽極と陰極の間に挟まれた構造として設けることができる。本発明に係る有機EL素子の代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極<< Constituent layer of organic EL element >>
The organic EL device according to the present invention can be provided, for example, as a structure having an anode and a cathode on a base material and an organic constituent layer including a light emitting layer sandwiched between the anode and the cathode. Typical element configurations of the organic EL device according to the present invention include, but are not limited to, the following configurations.
(1) anode / light emitting layer / cathode (2) anode / light emitting layer / electron transport layer / cathode (3) anode / hole transport layer / light emitting layer / cathode (4) anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (6) 7) Anotopium / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
本発明に係る有機EL素子は、電極の外側に、封止層、バリア層、光取出し層等の層が適宜組み合わされて設けられていてもよい。なお、上記の構成中、陽極と陰極を除いた層を「有機層」ともいう。 The organic EL element according to the present invention may be provided on the outside of the electrode by appropriately combining layers such as a sealing layer, a barrier layer, and a light extraction layer. In the above configuration, the layer excluding the anode and the cathode is also referred to as an "organic layer".
発光層は、単層で構成してもよいし、複数層で構成してもよい。発光層が複数層で構成される場合は、各発光層の間に非発光性の中間層を設けてもよい。また、必要に応じて、発光層と陰極との間に、正孔阻止層(正孔障壁層ともいう)や、電子注入層(陰極バッファー層ともいう)を設けてもよい。また、発光層と陽極との間に、電子阻止層(電子障壁層ともいう)や、正孔注入層(陽極バッファー層ともいう)を設けてもよい。 The light emitting layer may be composed of a single layer or a plurality of layers. When the light emitting layer is composed of a plurality of layers, a non-light emitting intermediate layer may be provided between the light emitting layers. Further, if necessary, a hole blocking layer (also referred to as a hole barrier layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. Further, an electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided between the light emitting layer and the anode.
(タンデム構造)
本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。タンデム構造の代表的な素子構成としては、例えば、以下の構成が挙げられる。
(I)陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
(II)陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極(Tandem structure)
The organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated. Typical element configurations of the tandem structure include, for example, the following configurations.
(I) Anode / 1st light emitting unit / 2nd light emitting unit / 3rd light emitting unit / cathode (II) Anode / 1st light emitting unit / intermediate layer / 2nd light emitting unit / intermediate layer / 3rd light emitting unit / cathode
タンデム型の有機EL素子において、複数の発光ユニットは、全て同じ構成であってもよいし、異なる構成であってもよい。また、一部の発光ユニットが同じ構成であり、残りの発光ユニットが異なる構成であってもよい。また、タンデム型の有機EL素子は、二つの発光ユニットで構成してもよいし、第3発光ユニットと陰極との間に発光ユニットや中間層を設けて、四つ以上の発光ユニットで構成してもよい。発光ユニット同士は、隣接して積層されていてもよいし、中間層を介して積層されていてもよい。 In the tandem type organic EL element, the plurality of light emitting units may all have the same configuration or may have different configurations. Further, some light emitting units may have the same configuration, and the remaining light emitting units may have different configurations. Further, the tandem type organic EL element may be composed of two light emitting units, or may be composed of four or more light emitting units by providing a light emitting unit or an intermediate layer between the third light emitting unit and the cathode. You may. The light emitting units may be laminated adjacent to each other, or may be laminated via an intermediate layer.
中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側に隣接する層に電子を、陰極側に隣接する層に正孔を供給する機能を持った層であれば、公知の材料及び構成で設けることができる。 The intermediate layer is also generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulation layer, and electrons are transferred to a layer adjacent to the anode side to a layer adjacent to the cathode side. Any layer having a function of supplying holes can be provided with a known material and composition.
中間層の材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu2O2、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi2O3等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi2O3/Au/Bi2O3、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜や、C60等のフラーレン類、オリゴチオフェン等の導電性有機物層や、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、これらに限定されるものではない。Examples of the material of the intermediate layer include ITO (inorganic / tin oxide), IZO ( inorganic / zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , and CuGaO. 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al and other conductive inorganic compound layers, Au / Bi 2 O 3 and other bilayer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 and O 3 / Au / Bi 2 O 3, TiO 2 / TiN / TiO 2, TiO 2 / ZrN / TiO 2 or the like multilayer film, fullerenes such as C 60, or a conductive organic material layer such as oligothiophene, Examples thereof include, but are not limited to, conductive organic compound layers such as metallic phthalocyanines, metal-free phthalocyanines, metal porphyrins, and metal-free porphyrins.
発光ユニットの好ましい構成としては、例えば、上記の(1)〜(7)のいずれかの素子構成から陽極と陰極を除いた構成等が挙げられるが、これらに限定されるものではない。 A preferable configuration of the light emitting unit includes, for example, a configuration in which the anode and the cathode are excluded from the element configuration according to any one of (1) to (7) above, but the configuration is not limited thereto.
タンデム型の有機EL素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006−228712号、特開2006−24791号、特開2006−49393号、特開2006−49394号、特開2006−49396号、特開2011−96679号、特開2005−340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号、特開2009−076929号、特開2008−078414号、特開2007−059848号、特開2003−272860号、特開2003−045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、これらに限定されるものではない。 Specific examples of the tandem type organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, and US Pat. No. 6,872. , 472, US Patent No. 6,107,734, US Patent No. 6,337,492, International Publication No. 2005/009087, Japanese Patent Application Laid-Open No. 2006-228712, Japanese Patent Application Laid-Open No. 2006-24791, Japanese Patent Application Laid-Open No. 2006- 49393, Japanese Patent Application Laid-Open No. 2006-49394, Japanese Patent Application Laid-Open No. 2006-49396, Japanese Patent Application Laid-Open No. 2011-96679, Japanese Patent Application Laid-Open No. 2005-340187, Japanese Patent No. 4711424, Japanese Patent No. 3496681, Patent No. 38845664, Japanese Patent No. 4213169. , Japanese Patent Application Laid-Open No. 2010-192719, Japanese Patent Application Laid-Open No. 2009-0762929, Japanese Patent Application Laid-Open No. 2008-0784414, Japanese Patent Application Laid-Open No. 2007-059848, Japanese Patent Application Laid-Open No. 2003-272860, Japanese Patent Application Laid-Open No. 2003-045676, International Publication No. 2005/094130. Etc., but the element configuration and constituent materials are not limited thereto.
本発明に係る有機EL素子において、前記のAIE分子とRISC化合物は、同一の発光層で併用されている限り、単層で構成される発光層に含まれてもよいし、複数層で構成される発光層のうちの1以上に含まれてもよい。また、前記のAIE分子とRISC化合物は、同一の発光層で併用されている限り、タンデム型を構成する発光ユニットのうち、単一の発光ユニットに含まれてもよいし、複数の発光ユニットに含まれてもよい。 In the organic EL device according to the present invention, the AIE molecule and the RISC compound may be contained in a light emitting layer composed of a single layer or composed of a plurality of layers as long as they are used in combination in the same light emitting layer. It may be contained in one or more of the light emitting layers. Further, as long as the AIE molecule and the RISC compound are used in combination in the same light emitting layer, they may be contained in a single light emitting unit among the light emitting units constituting the tandem type, or may be included in a plurality of light emitting units. May be included.
本発明に係る有機EL素子は、AIE分子に由来する発光のみが出射される構成、及び、AIE分子に由来する発光とRISC化合物に由来する発光の両方が出射される構成のうち、いずれの構成とされてもよい。AIE分子のエネルギー準位と、RISC化合物のエネルギー準位との関係は、特に制限されるものではない。但し、発光層にホスト化合物を用いる場合は、RISC化合物の最低励起三重項エネルギー準位が、ホスト化合物の最低励起三重項エネルギー準位より深いことが好ましい。 The organic EL device according to the present invention has either a configuration in which only light emitted from an AIE molecule is emitted or a configuration in which both light emitted from an AIE molecule and light emitted from a RISC compound are emitted. May be. The relationship between the energy level of the AIE molecule and the energy level of the RISC compound is not particularly limited. However, when a host compound is used in the light emitting layer, it is preferable that the lowest excited triplet energy level of the RISC compound is deeper than the lowest excited triplet energy level of the host compound.
本発明に係る有機EL素子は、室温(25℃)における発光の外部取り出し量子効率が、1%以上であることが好ましく、5%以上であることがより好ましい。ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 The organic EL device according to the present invention preferably has an external extraction quantum efficiency of light emission at room temperature (25 ° C.) of 1% or more, and more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons passed through the organic EL element × 100.
以下、本発明に係る有機EL素子を構成する各層(正孔注入層、正孔輸送層、正孔阻止層、電子阻止層、電子輸送層、電子注入層、発光層)について説明する。 Hereinafter, each layer (hole injection layer, hole transport layer, hole blocking layer, electron blocking layer, electron transport layer, electron injection layer, light emitting layer) constituting the organic EL device according to the present invention will be described.
《正孔注入層》
正孔注入層は、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層である。正孔注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。正孔注入層は、必要に応じて設けることができる。正孔注入層は、例えば、陽極と発光層との間や、陽極と正孔輸送層との間に設けてよい。《Hole injection layer》
The hole injection layer is a layer provided between the anode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness. For the hole injection layer, refer to Volume 2, Chapter 2, "Electrode Materials" (pages 123-166) of "Organic EL Devices and Their Industrial Frontiers (November 30, 1998, published by NTS)". It is described in detail. The hole injection layer can be provided as needed. The hole injection layer may be provided, for example, between the anode and the light emitting layer or between the anode and the hole transport layer.
正孔注入層については、特開平9−45479号公報、特開平9−260062号公報、特開平8−288069号公報等にも、その詳細が記載されている。 The details of the hole injection layer are also described in JP-A-9-45479, JP-A-9-2660062, JP-A-8-288609, and the like.
正孔注入層の材料としては、例えば、後記する正孔輸送層の材料と同様の材料を用いることができる。正孔注入層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As the material of the hole injection layer, for example, the same material as the material of the hole transport layer described later can be used. As the material of the hole injection layer, one type may be used alone, or a plurality of types may be used in combination.
正孔注入層の材料としては、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Examples of the material of the hole injection layer include phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145, and vanadium oxide. Metal oxides, amorphous carbon, conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometallated complexes typified by tris (2-phenylpyridine) iridium complexes, triarylamine derivatives and the like are preferable.
《正孔輸送層》
正孔輸送層は、正孔を輸送する機能を有する材料からなり、陽極から注入された正孔を発光層に伝達する機能を有していればよい。《Hole transport layer》
The hole transport layer may be made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
正孔輸送層の厚さの総和は、特に制限されるものではないが、通常、5nm〜5μm、好ましくは2〜500nm、より好ましくは5〜200nmである。 The total thickness of the hole transport layer is not particularly limited, but is usually 5 nm to 5 μm, preferably 2 to 500 nm, and more preferably 5 to 200 nm.
正孔輸送層の材料としては、正孔の注入性、正孔の輸送性、及び、電子の障壁性のいずれかを有していればよく、このような性質を有する公知の化合物を用いることができる。正孔輸送層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As the material of the hole transport layer, it suffices to have any of hole injection property, hole transport property, and electron barrier property, and a known compound having such properties is used. Can be done. As the material of the hole transport layer, one type may be used alone, or a plurality of types may be used in combination.
正孔輸送層の材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、ポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入したポリマー高分子又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 Examples of the material of the hole transport layer include porphyrin derivative, phthalocyanine derivative, oxazole derivative, oxaziazole derivative, triazole derivative, imidazole derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, hydrazone derivative, stillben derivative, and polyarylalkane. A polymer in which a derivative, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an isoindole derivative, an acene derivative such as anthracene or naphthalene, a fluorene derivative, a fluorenone derivative, polyvinylcarbazole, or an aromatic amine is introduced into a main chain or a side chain. Examples thereof include polymers or oligomers, polysilanes, conductive polymers or oligomers (eg, PEDOT: PSS, aniline-based copolymers, polyaniline, polythiophene, etc.).
トリアリールアミン誘導体としては、α−NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミンの連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include a benzidine type represented by α-NPD, a starburst type represented by MTDATA, and a compound having fluorene or anthracene in the connecting core portion of the triarylamine.
また、正孔輸送層の材料としては、特表2003−519432号公報や、特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も用いることができる。 Further, as the material of the hole transport layer, a hexaazatriphenylene derivative as described in JP-A-2003-591432, JP-A-2006-135145 and the like can also be used.
また、正孔輸送層の材料としては、特開平11−251067号公報、J.Huang,et.al.著文献(Applied Physics Letters,80(2002),p.139)に記載されているような、p型−Si、p型−SiC等の無機半導体も用いることができる。また、Ir(ppy)3に代表される中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。Further, as the material of the hole transport layer, JP-A-11-251067, J. Hung, et. al. Inorganic semiconductors such as p-type-Si and p-type-SiC as described in the authored literature (Applied Physics Letters, 80 (2002), p.139) can also be used. Further, an orthometalated organometallic complex having Ir or Pt in the central metal represented by Ir (ppy) 3 is also preferably used.
正孔輸送層は、ドープ材をドープしてp性の高い層として形成してもよい。このような構成の正孔輸送層の具体例としては、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 The hole transport layer may be formed as a layer having a high p property by doping with a doping material. Specific examples of the hole transport layer having such a structure include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Mol. Apple. Phys. , 95, 5773 (2004) and the like.
正孔輸送層の材料としては、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入したポリマーやオリゴマー等が好ましく用いられる。 As the material of the hole transport layer, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organic metal complex, a polymer or an oligomer in which an aromatic amine is introduced into the main chain or a side chain, or the like is preferably used. ..
正孔輸送層の材料の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。Appl.Phys.Lett.,69,2160(1996)、J.Lumin.,72−74,985(1997)、Appl.Phys.Lett.,78,673(2001)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,51,913(1987)、Synth.Met.,87,171(1997)、Synth.Met.,91,209(1997)、Synth.Met.,111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chern.,3,319(1993)、Adv.Mater.,6,677(1994)、Chern.Mater.,15,3148(2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955号、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003−519432号公報、特開2006−135145号公報、米国特許出願番号13/585981号等である。 Specific examples of the material of the hole transport layer include, but are not limited to, the compounds described in the following documents. Apple. Phys. Lett. , 69, 2160 (1996), J. Mol. Lumin. , 72-74, 985 (1997), Appl. Phys. Lett. , 78, 673 (2001), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 51, 913 (1987), Synth. Met. , 87, 171 (1997), Synth. Met. , 91, 209 (1997), Synth. Met. , 111,421 (2000), SID Symposium Digital, 37,923 (2006), J. Mol. Mater. Chern. , 3,319 (1993), Adv. Mater. , 6,677 (1994), Chern. Mater. , 15, 3148 (2003), U.S. Patent Publication No. 20130162053, U.S. Patent Publication No. 20020158222, U.S. Patent Publication No. 20060240279, U.S. Patent Publication No. 20080220265, U.S. Patent No. 5061569, International Publication No. 2007002683, International Publication 2009018009, EP650955, US Patent Publication No. 20080124572, US Patent Publication No. 20070278938, US Patent Publication No. 20080106190, US Patent Publication No. 20080018221, International Publication No. 20121115034, Japanese Patent Publication No. 2003-591432, Special Publication No. 2003-591432 Kai 2006-135145, US Patent Application No. 13/585981, and the like.
《正孔阻止層》
正孔阻止層は、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなる。電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。また、前記の電子輸送層を、必要に応じて正孔阻止層として用いることもできる。正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the probability of recombination of electrons and holes can be improved. Further, the electron transport layer can also be used as a hole blocking layer, if necessary. The hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
正孔阻止層の厚さは、特に制限されるものではないが、好ましくは3〜100nm、より好ましくは5〜30nmである。 The thickness of the hole blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
正孔阻止層の材料としては、後記する電子輸送層の材料や、後記するホスト化合物として用いられる材料が好ましく用いられる。 As the material of the hole blocking layer, the material of the electron transport layer described later and the material used as the host compound described later are preferably used.
《電子阻止層》
電子阻止層は、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなる。正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。また、前記の正孔輸送層を、必要に応じて電子阻止層として用いることもできる。電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。《Electronic blocking layer》
The electron blocking layer is a layer having a function of a hole transporting layer in a broad sense, and is preferably made of a material having a function of transporting holes but having a small ability to transport electrons. By blocking electrons while transporting holes, the probability of recombination between electrons and holes can be improved. Further, the hole transport layer can also be used as an electron blocking layer, if necessary. The electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
電子阻止層の厚さは、特に制限されるものではないが、好ましくは3〜100nm、より好ましくは5〜30nmである。 The thickness of the electron blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
電子阻止層の材料としては、後記する正孔輸送層の材料や、後記するホスト化合物として用いられる材料が好ましく用いられる。 As the material of the electron blocking layer, the material of the hole transport layer described later and the material used as the host compound described later are preferably used.
《電子輸送層》
電子輸送層は、電子を輸送する機能を有する材料からなり、陰極から注入された電子を発光層に伝達する機能を有していればよい。《Electron transport layer》
The electron transport layer may be made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
電子輸送層の厚さの総和は、特に制限されるものではないが、通常、2nm〜5μm、好ましくは2〜500nm、より好ましくは5〜200nmである。 The total thickness of the electron transport layer is not particularly limited, but is usually 2 nm to 5 μm, preferably 2 to 500 nm, and more preferably 5 to 200 nm.
有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極の対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm〜数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。一方で、電子輸送層の厚さを厚くすると電圧が上昇しやすくなるため、特に厚さが厚い場合においては、電子輸送層の電子移動度は10−5cm2/Vs以上であることが好ましい。In the organic EL element, when the light generated in the light emitting layer is taken out from the electrode, the light taken out directly from the light emitting layer and the light taken out after being reflected by the electrode located at the opposite electrode of the electrode that takes out the light interfere with each other. It is known. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total film thickness of the electron transport layer between several nm and several μm. On the other hand, if the thickness of the electron transport layer is increased, the voltage tends to increase. Therefore, especially when the thickness is thick, the electron mobility of the electron transport layer is preferably 10-5 cm 2 / Vs or more. ..
電子輸送層の材料としては、電子の注入性、電子の輸送性、及び、正孔の障壁性のいずれかを有していればよく、このような性質を有する公知の化合物を用いることができる。電子輸送層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As the material of the electron transport layer, it suffices to have any of electron injection property, electron transport property, and hole barrier property, and a known compound having such properties can be used. .. As the material of the electron transport layer, one kind may be used alone, or a plurality of kinds may be used in combination.
電子輸送層の材料としては、例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 Examples of the material of the electron transport layer include a nitrogen-containing aromatic heterocyclic derivative (carbazole derivative, azacarbazole derivative (one or more of carbon atoms constituting the carbazole ring replaced with a nitrogen atom), a pyridine derivative, and pyrimidine. Derivatives, pyrazine derivatives, pyridazine derivatives, triazine derivatives, quinoline derivatives, quinoxalin derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiazazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benz Examples thereof include thiazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, silol derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.).
また、電子輸送層の材料としては、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等や、これらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き換えられた金属錯体が挙げられる。 Further, as the material of the electron transport layer, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) Aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) Etc., Examples thereof include metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb.
また、電子輸送層の材料としては、その他、メタルフリー若しくはメタルフタロシアニン、又は、それらの末端がアルキル基やスルホン酸基等で置換されているものが挙げられる。また、発光層の材料となり得るジスチリルピラジン誘導体も用いることができるし、n型−Si、n型−SiC等の無機半導体も用いることができる。また、これらの材料を高分子鎖に導入した高分子材料や、これらの材料を高分子の主鎖とした高分子材料も用いることができる。 Examples of the material of the electron transport layer include metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like. Further, a distyrylpyrazine derivative that can be used as a material for the light emitting layer can be used, and an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used. Further, a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain can also be used.
電子輸送層は、ドープ材をドープしてn性の高い層として形成してもよい。ドープ材としては、金属錯体や、ハロゲン化金属等の金属化合物をはじめとするn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、特開平4−297076号公報、特開平10−270172号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 The electron transport layer may be formed as a layer having a high n property by doping with a doping material. Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include JP-A-4-2970776, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Mol. Apple. Phys. , 95, 5773 (2004) and the like.
電子輸送層の材料の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl.Phys.Lett.,75,4(1999)、Appl.Phys.Lett.,79,449(2001)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,79,156(2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004080975号、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010−251675号公報、特開2009−209133号公報、特開2009−124114号公報、特開2008−277810号公報、特開2006−156445号公報、特開2005−340122号公報、特開2003−45662号公報、特開2003−31367号公報、特開2003−282270号公報、国際公開第2012115034号等である。 Specific examples of the material of the electron transport layer include, but are not limited to, the compounds described in the following documents. U.S. Patent No. 6528187, U.S. Patent No. 7230107, U.S. Patent Publication No. 20050025993, U.S. Patent Publication No. 20040036077, U.S. Patent Publication No. 200901315316, U.S. Patent Publication No. 20090101870, U.S. Patent Publication No. 20090179554, International Publication No. 200360956, International Publication No. 2008132055, Appl. Phys. Lett. , 75, 4 (1999), Appl. Phys. Lett. , 79,449 (2001), Appl. Phys. Lett. , 81, 162 (2002), Appl. Phys. Lett. , 81, 162 (2002), Appl. Phys. Lett. , 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Publication No. 2009030202, International Publication No. 2004080975, International Publication No. 200463159, International Publication No. 2005085387, International Publication No. 2006067931, International Publication No. 2007086552 , International Publication No. 2008114690, International Publication No. 2009069442, International Publication No. 2009066779, International Publication No. 2009054253, International Publication No. 2011086935, International Publication No. 2010150593, International Publication No. 20100047707, EP23111826, Japanese Patent Application Laid-Open No. 2010- 251675, 2009-209133, 2009-124114, 2008-277810, 2006-156445, 2005-340122, 2003-45662. Japanese Patent Application Laid-Open No. 2003-31367, Japanese Patent Application Laid-Open No. 2003-282270, International Publication No. 20121115034, and the like.
より好ましい電子輸送層の材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。 More preferable materials for the electron transport layer include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
《電子注入層》
電子注入層は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層である。電子注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。電子注入層は、必要に応じて設けることができる。電子注入層は、例えば、陰極と発光層との間や、陰極と電子輸送層との間に設けてよい。《Electron injection layer》
The electron injection layer is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness. The details of the electron injection layer can be found in Volume 2, Chapter 2, "Electrode Materials" (pages 123-166) of "Organic EL Devices and Their Industrial Frontiers (November 30, 1998, published by NTS)". It is described in. The electron injection layer can be provided as needed. The electron injection layer may be provided, for example, between the cathode and the light emitting layer or between the cathode and the electron transport layer.
電子注入層は、極めて薄い膜であることが好ましい。電子注入層の厚さは、好ましくは0.1〜5nmである。電子注入層は、構成材料が断続的に存在する不均一な膜であってもよい。 The electron injection layer is preferably an extremely thin film. The thickness of the electron injection layer is preferably 0.1 to 5 nm. The electron injection layer may be a non-uniform film in which constituent materials are intermittently present.
電子注入層については、特開平6−325871号公報、特開平9−17574号公報、特開平10−74586号公報等にも、その詳細が記載されている。 The details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586 and the like.
電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウムをはじめとする金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウムをはじめとするアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウムをはじめとするアルカリ土類金属化合物、酸化アルミニウムをはじめとする金属酸化物、リチウム8−ヒドロキシキノレート(Liq)をはじめとする金属錯体等が挙げられる。また、前記の電子輸送層の材料と同様の材料を用いることも可能である。電子注入層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 Specific examples of materials preferably used for the electron injection layer include metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride and potassium fluoride, magnesium fluoride and calcium fluoride. Examples thereof include alkaline earth metal compounds such as aluminum oxide, metal oxides such as aluminum oxide, and metal complexes such as lithium 8-hydroxyquinolate (Liq). It is also possible to use the same material as the material of the electron transport layer described above. As the material of the electron injection layer, one type may be used alone, or a plurality of types may be used in combination.
《発光層》
発光層は、発光を生じる場を提供する層である。電極又は隣接する層から注入されてくる電子と正孔は、発光層において再結合し、再結合により生じた励起子の失活に伴って発光が生じる。発光する部位は、発光層の層内であってもよいし、発光層と隣接する層との界面であってもよい。《Light emitting layer》
The light emitting layer is a layer that provides a field for generating light. The electrons and holes injected from the electrode or the adjacent layer are recombined in the light emitting layer, and light emission occurs with the deactivation of excitons generated by the recombination. The portion that emits light may be in the layer of the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
発光層の厚さの総和は、特に制限されるものではないが、形成する膜の均質性を向上させる観点や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性を向上させる観点からは、好ましくは2nm〜5μm、より好ましくは2〜500nm、更に好ましくは5〜200nmである。 The total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the homogeneity of the formed film, preventing the application of an unnecessary high voltage during light emission, and with respect to the driving current. From the viewpoint of improving the stability of the emitted color, it is preferably 2 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
発光層の個々の厚さは、好ましくは2nm〜1μm、より好ましくは2〜200nm、更に好ましくは3〜150nmである。 The individual thickness of the light emitting layer is preferably 2 nm to 1 μm, more preferably 2 to 200 nm, and even more preferably 3 to 150 nm.
発光層は、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。本実施形態に係る有機EL素子においては、前記のAIE分子が、発光ドーパントとして機能する。また、前記のRISC化合物は、輻射遷移の有無にかかわらず、発光ドーパントとして扱われる。 The light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host). In the organic EL device according to the present embodiment, the AIE molecule functions as a light emitting dopant. Further, the RISC compound is treated as a light emitting dopant regardless of the presence or absence of radiation transition.
(1)発光ドーパント
発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)とがある。(1) Light-emitting dopant Examples of the light-emitting dopant include a fluorescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound).
発光層中の発光ドーパントの濃度については、使用されるドーパント及びデバイスの必要条件に基づいて、任意に決定することができる。発光ドーパントは、発光層の膜厚方向に対し、均一な濃度で分布していてもよいし、不均一な任意の濃度で分布していてもよい。 The concentration of the light emitting dopant in the light emitting layer can be arbitrarily determined based on the dopant used and the requirements of the device. The light emitting dopant may be distributed at a uniform concentration with respect to the film thickness direction of the light emitting layer, or may be distributed at an arbitrary non-uniform concentration.
発光ドーパントとしては、前記のAIE分子やRISC化合物の他に、その他の蛍光発光性ドーパントや、リン光発光性ドーパントを併用することも可能である。蛍光発光性ドーパント毎、又は、リン光発光性ドーパント毎について、一種の発光性化合物を用いてもよいし、複数種の発光性化合物を併用してもよい。また、同一の発光層で異なる発光ドーパントを併用してもよいし、異なる発光層毎に異なる発光ドーパントを用いてもよい。このような組み合わせにより、有機EL素子から出射される発光について、任意の発光色を得ることができる。 As the light emitting dopant, in addition to the above-mentioned AIE molecule and RISC compound, other fluorescent light emitting dopants and phosphorescent light emitting dopants can also be used in combination. One kind of luminescent compound may be used for each fluorescent dopant or each phosphorescent dopant, or a plurality of kinds of luminescent compounds may be used in combination. Further, different light emitting dopants may be used in combination in the same light emitting layer, or different light emitting dopants may be used for different light emitting layers. With such a combination, it is possible to obtain an arbitrary emission color for the emission emitted from the organic EL element.
本発明に係る有機EL素子や化合物の発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で定義することができる。
The emission colors of the organic EL element and the compound according to the present invention are shown in FIG. 4.16 on
本発明に係る有機EL素子は、1層又は複数層の発光層が発光色の異なる複数の発光ドーパントを含有し、白色発光を示す素子とされてもよい。白色発光を示す発光ドーパントの組み合わせについては、特に限定されるものではないが、例えば、青と橙の組み合わせや、青と緑と赤の組み合わせ等が挙げられる。 The organic EL device according to the present invention may be an element in which one or more light emitting layers contain a plurality of light emitting dopants having different light emitting colors and exhibit white light emission. The combination of light emitting dopants exhibiting white light emission is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue, green, and red.
本発明に係る有機EL素子が示す白色発光は、色相等が限定されるものではなく、橙色寄りの白色であっても、青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度が、x=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。The white light emission exhibited by the organic EL element according to the present invention is not limited in hue and the like, and may be white closer to orange or white closer to blue, but has a 2 degree viewing angle front luminance. When measured by the above method , the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is within the region of x = 0.39 ± 0.09 and y = 0.38 ± 0.08. preferable.
(1.1)リン光発光性ドーパント
本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物である。具体的には、室温(25℃)においてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義される。リン光発光性ドーパントの好ましいリン光量子収率は、0.1以上である。(1.1) Phosphorescent Dopant The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is defined as a compound that emits phosphorescent light at room temperature (25 ° C.) and has a phosphorescent quantum yield of 0.01 or more at 25 ° C. The preferable phosphorescent quantum yield of the phosphorescent dopant is 0.1 or more.
リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて0.01以上のリン光量子収率が達成されればよい。
The phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition
リン光発光性ドーパントの発光の原理は、二種に大別される。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型である。もう一つは、リン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こってリン光発光性ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。 The principle of light emission of a phosphorescent dopant is roughly divided into two types. One is that carrier recombination occurs on the host compound to which the carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to emit light from the phosphorescent dopant. It is an energy transfer type that obtains. The other is a carrier trap type in which the phosphorescent dopant serves as a carrier trap, and carriers recombine on the phosphorescent dopant to obtain light emission from the phosphorescent dopant. In either case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
本実施形態に係る有機EL素子においては、リン光発光性ドーパントとして、一般的な有機EL素子の発光層に使用される適宜の種類を用いることができる。リン光発光性ドーパントの発光の原理は、前記のいずれの原理によるものであってもよい。但し、本実施形態に係る有機EL素子において、RISC化合物と共にリン光発光性ドーパントを併用すると、発光効率が低くなる場合がある。このような場合には、リン光発光性ドーパントを併用しない構成がより好ましい。 In the organic EL device according to the present embodiment, as the phosphorescent light emitting dopant, an appropriate type used for the light emitting layer of a general organic EL device can be used. The principle of light emission of the phosphorescent dopant may be based on any of the above principles. However, in the organic EL device according to the present embodiment, if a phosphorescent dopant is used in combination with the RISC compound, the luminous efficiency may be lowered. In such a case, a configuration in which a phosphorescent dopant is not used in combination is more preferable.
リン光発光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。Nature,395,151(1998)、Appl.Phys.Lett.,78,1622(2001)、Adv.Mater.,19,739(2007)、Chern.Mater.,17,3532(2005)、Adv.Mater.,17,1059(2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号、Inorg.Chern.,40,1704(2001)、Chern.Mater.,16,2480(2004)、Adv.Mater.,16,2003(2004)、Angew.Chern.lnt.Ed.,2006,45,7800、Appl.Phys.Lett.,86,153505(2005)、Chern.Lett.,34,592(2005)、Chern.Commun.,2906(2005)、Inorg.Chern.,42,1248(2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号、Angew.Chern.lnt.Ed.,47,1(2008)、Chern.Mater.,18,5119(2006)、Inorg.Chern.,46,4308(2007)、Organometallics,23,3745(2004)、Appl.Phys.Lett.,74,1361(1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号、国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012−069737号、特開2012−195554号、特開2009−114086号、特開2003−81988号、特開2002−302671号、特開2002−363552号等である。 Specific examples of the phosphorescent dopant include, but are not limited to, the compounds described in the following documents. Nature, 395, 151 (1998), Appl. Phys. Lett. , 78, 1622 (2001), Adv. Mater. , 19, 739 (2007), Chern. Mater. , 17, 3532 (2005), Adv. Mater. , 17, 1059 (2005), International Publication No. 2009100991, International Publication No. 2008101842, International Publication No. 2003040257, US Patent Publication No. 2006835469, US Patent Publication No. 20060202194, US Patent Publication No. 20070087321, US Patent Publication No. No. 20050244673, Inorg. Chern. , 40, 1704 (2001), Chern. Mater. , 16, 2480 (2004), Adv. Mater. , 16, 2003 (2004), Angew. Chern. lnt. Ed. , 2006, 45, 7800, Appl. Phys. Lett. , 86, 153505 (2005), Chern. Lett. , 34,592 (2005), Chern. Commun. , 2906 (2005), Inorg. Chern. , 42, 1248 (2003), International Publication No. 2009050290, International Publication No. 2002015645, International Publication No. 2009006573, US Patent Publication No. 20020034656, US Pat. No. 73322232, US Patent Publication No. 20090108737, US Patent Publication No. 200900397776, U.S. Patent No. 6921915, U.S. Pat. No. 6687266, U.S. Patent Publication No. 20070190359, U.S. Patent Publication No. 2006008670, U.S. Patent Publication No. 20090165846, U.S. Patent Publication No. 20080015355, U.S. Patent No. 7250226, U.S.A. Patent No. 7396598, U.S. Patent Publication No. 20060263635, U.S. Patent Publication No. 20130138657, U.S. Patent Publication No. 20130152802, U.S. Patent No. 70090928, Angew. Chern. lnt. Ed. , 47, 1 (2008), Chern. Mater. , 18, 5119 (2006), Inorg. Chern. , 46,4308 (2007), Organometallics, 23,3745 (2004), Appl. Phys. Lett. , 74,1361 (1999), International Publication No. 2002002714, International Publication No. 200609024, International Publication No. 2006056418, International Publication No. 20050193773, International Publication No. 2005238373, International Publication No. 2005223873, International Publication No. 2007004380, International Publication No. 2006082742, US Patent Publication No. 20060251923, US Patent Publication No. 20050260441, US Patent No. 73935999, US Patent No. 7534505, US Patent No. 7445855, US Patent Publication No. 20070190359, US Patent Publication No. 20080297033 No., U.S. Patent No. 73338722, U.S. Patent Publication No. 20020134984, U.S. Patent No. 7279704, U.S. Patent Publication No. 2006098120, U.S. Patent Publication No. 2006103874, International Publication No. 2005076380, International Publication No. 20100032663, International Publication No. 2008140115, International Publication No. 2007052431, International Publication No. 2011134013, International Publication No. 2011157339, International Publication No. 2011086089, International Publication No. 20090113646, International Publication No. 2012020327, International Publication No. 2011051404, International Publication No. 2011004639 No., International Publication No. 2011073149, US Patent Publication No. 2012228583, US Patent Publication No. 2012212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application Laid-Open No. 2012-195554, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002-302671 and Japanese Patent Application Laid-Open No. 2002-363552.
以下、リン光発光性ドーパントとして好ましい化合物の具体例を挙げるが、これらに限定されるものではない。 Hereinafter, specific examples of compounds preferable as phosphorescent dopants will be given, but the present invention is not limited thereto.
(1.2)蛍光発光性ドーパント
本発明に係る蛍光発光性ドーパントは、励起一重項からの発光が可能な化合物である。蛍光発光性ドーパントの種類は、励起一重項からの発光が観測される限り、特に限定されるものではない。但し、本実施形態に係る有機EL素子において、AIE分子と共に、凝集誘起発光性を有しない他の蛍光発光性ドーパントを併用すると、発光効率が低くなる虞がある。そのため、その他の蛍光発光性ドーパントを併用しない構成がより好ましい。(1.2) Fluorescent Luminescent Dopant The fluorescent luminescent dopant according to the present invention is a compound capable of emitting light from an excited singlet. The type of the fluorescent dopant is not particularly limited as long as the emission from the excited singlet is observed. However, in the organic EL device according to the present embodiment, if the AIE molecule is used in combination with another fluorescent dopant that does not have aggregation-induced luminescence, the luminous efficiency may decrease. Therefore, a configuration in which no other fluorescent dopant is used in combination is more preferable.
蛍光発光性ドーパントの具体例としては、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンゾアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物等が挙げられる。 Specific examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluorantene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, etc. Examples thereof include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzoanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.
また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、国際公開第2011/156793号、特開2011−213643号、特開2010−93181号等に記載の化合物が挙げられる。 Further, in recent years, light emitting dopants using delayed fluorescence have also been developed, and these may be used. Specific examples of the light emitting dopant using delayed fluorescence include the compounds described in International Publication No. 2011/156793, JP-A-2011-213443, JP-A-2010-93181 and the like.
(2)ホスト化合物
本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない化合物である。好ましくは、室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物であり、より好ましくはリン光量子収率が0.01未満の化合物である。(2) Host Compound The host compound according to the present invention is a compound mainly responsible for injection and transport of electric charges in the light emitting layer, and its own light emission is not substantially observed in the organic EL device. A compound having a phosphorescent quantum yield of less than 0.1 at room temperature (25 ° C.) is preferable, and a compound having a phosphorescent quantum yield of less than 0.01 is more preferable.
ホスト化合物は、発光層に含まれる化合物のうちで、その発光層中における質量比が20%以上であることが好ましい。また、ホスト化合物の励起状態エネルギーは、同一層内に含まれる発光ドーパントの励起状態エネルギーよりも高いことが好ましい。なお、本実施形態に係る有機EL素子においては、発光層を、AIE分子やRISC化合物と共にホスト化合物を併用した構成としてもよいし、ホスト化合物を併用しない構成としてもよい。ホスト化合物を併用した構成の場合、ホスト化合物のS1及びT1は、AIE分子のS1及びT1やRISC化合物のS1及びT1よりも高いことが好ましい。Among the compounds contained in the light emitting layer, the host compound preferably has a mass ratio of 20% or more in the light emitting layer. Further, the excited state energy of the host compound is preferably higher than the excited state energy of the light emitting dopant contained in the same layer. In the organic EL device according to the present embodiment, the light emitting layer may have a configuration in which a host compound is used in combination with an AIE molecule or a RISC compound, or a configuration in which a host compound is not used in combination may be used. For combination with the structures of the host compound, S 1 and T 1 of the host compound is preferably higher than S 1 and T 1 of the S 1 and T 1 and RISC compound of AIE molecules.
ホスト化合物としては、一般的な有機EL素子の発光層に使用される適宜の種類を用いることができる。ホスト化合物は、低分子化合物であってもよいし、繰り返し単位を有する高分子化合物であってもよい。また、ビニル基やエポキシ基のような反応性基を有する化合物であってもよい。ホスト化合物は、一種を単独で用いてもよいし、複数種を併用してもよい。複数種のホスト化合物を併用すると、電荷の移動を容易に調整することができるため、有機EL素子を高効率化することができる。 As the host compound, an appropriate type used for the light emitting layer of a general organic EL element can be used. The host compound may be a low molecular weight compound or a high molecular weight compound having a repeating unit. Further, it may be a compound having a reactive group such as a vinyl group or an epoxy group. As the host compound, one type may be used alone, or a plurality of types may be used in combination. When a plurality of types of host compounds are used in combination, the movement of electric charges can be easily adjusted, so that the efficiency of the organic EL device can be improved.
ホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や駆動による発熱の中で安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。ホスト化合物のガラス転移温度は、好ましくは90℃以上、より好ましくは120℃以上である。なお、このガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。 As the host compound, from the viewpoint of having hole transporting ability or electron transporting ability, preventing the wavelength of light emission from being lengthened, and further operating the organic EL element stably during high temperature driving or heat generation due to driving. Therefore, it is preferable to have a high glass transition temperature (Tg). The glass transition temperature of the host compound is preferably 90 ° C. or higher, more preferably 120 ° C. or higher. The glass transition temperature (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
ホスト化合物の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号、特開2008−074939号公報、特開2007−254297号公報、EP2034538号等である。 Specific examples of the host compound include, but are not limited to, the compounds described in the following documents. JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002. 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003 -3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002- 302516, 2002-305083, 2002-305084, 2002-308837, US Patent Publication No. 201301755553, US Patent Publication No. 20060280965, US Patent Publication No. 20050112407, US Patent Publication No. 20090017330, US Patent Publication No. 20090030202, US Patent Publication No. 20050238919, International Publication No. 200109234, International Publication No. 2009021126, International Publication No. 2008056746, International Publication No. 2004093207, International Publication No. 2005089025, International Publication No. 2007063796, International Publication No. 2007063754, International Publication No. 2004107822, International Publication No. 2005030900, International Publication No. 20061149666, International Publication No. 2009086028, International Publication No. 2009003898, International Publication No. 2012023947, Japanese Patent Application Laid-Open No. 2008-074939 No., Japanese Patent Application Laid-Open No. 2007-254297, EP2034538 and the like.
《含有物》
有機EL素子の有機層は、その他の含有物を更に含んでいてもよい。その他の含有物としては、例えば、臭素、ヨウ素、塩素等の単体のハロゲンやハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属や遷移金属の化合物、金属錯体、塩等が挙げられる。<< Ingredients >>
The organic layer of the organic EL element may further contain other inclusions. Other inclusions include, for example, elemental halogens and halogenated compounds such as bromine, iodine and chlorine, alkali metals such as Pd, Ca and Na, compounds of alkaline earth metals and transition metals, metal complexes and salts. Can be mentioned.
その他の含有物の量は、特に制限されるものではないが、含有物を含む層の全質量に対して、好ましくは1000ppm以下、より好ましくは500ppm以下、更に好ましくは50ppm以下である。但し、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によっては、このような範囲に限定されない。 The amount of the other inclusions is not particularly limited, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less, based on the total mass of the layer containing the contents. However, it is not limited to such a range depending on the purpose of improving the transportability of electrons and holes, the purpose of favoring the energy transfer of excitons, and the like.
《有機層の形成方法》
有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等を用いることができる。<< Method of forming organic layer >>
The method for forming the organic layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) is not particularly limited, and is, for example, a vacuum deposition method or a wet method. A method (also called a wet process) or the like can be used.
湿式法としては、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等が挙げられる。湿式法としては、均質な薄膜が得られ易く、且つ、生産性が高い点で、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式の適性が高い方法が好ましく用いられる。 Examples of the wet method include a spin coating method, a casting method, an inkjet method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, and an LB method (Langmuir-Brojet method). Can be mentioned. As the wet method, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an inkjet method, or a spray coating method is preferable because a homogeneous thin film can be easily obtained and the productivity is high. Used.
有機層の材料を溶解又は分散させる液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル等の脂肪酸エステル類や、ジクロロベンゼン等のハロゲン化炭化水素類や、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類や、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類や、DMF、DMSO等の有機溶媒が挙げられる。有機層の材料を分散させる分散方法としては、超音波分散、高剪断力分散、メディア分散等を用いることができる。 Examples of the liquid medium for dissolving or dispersing the material of the organic layer include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene and mesitylene. , Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO. As a dispersion method for dispersing the material of the organic layer, ultrasonic dispersion, high shear force dispersion, media dispersion and the like can be used.
有機層は、層毎に同じ方法を用いて形成してもよいし、層毎に異なる方法を用いて形成してもよい。真空蒸着法を用いる場合、蒸着条件は、使用する化合物の種類等によって異なるが、一般に、ボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で、適宜の条件とすることができる。The organic layer may be formed by using the same method for each layer, or may be formed by using a different method for each layer. When using a vacuum deposition method, deposition conditions may vary depending on the type of compound used, generally, a boat heating temperature of 50 to 450 ° C., vacuum of 10 -6 to 10 -2 Pa, vapor deposition rate of 0.01 to 50 / Appropriate conditions can be set in the range of seconds, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
有機層は、一回の真空引きで一貫して陽極側の層から陰極側の層までを作製することが好ましい。但し、途中で取り出して異なる製膜法を施してもよい。途中で取り出す場合は、その際の作業を、乾燥不活性ガス雰囲気下で行うことが好ましい。 It is preferable that the organic layer is consistently prepared from the anode side layer to the cathode side layer by a single evacuation. However, it may be taken out in the middle and a different film forming method may be applied. When taking out in the middle, it is preferable to carry out the work at that time in a dry inert gas atmosphere.
《陽極》
陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物、又は、これらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3−ZnO)等のように非晶質で透明導電膜を作製可能な材料を用いてもよい。"anode"
As the anode, a metal having a large work function (4 eV or more, preferably 4.5 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2, and ZnO. Further, a material such as IDIXO (In 2 O 3- ZnO), which is amorphous and can produce a transparent conductive film, may be used.
陽極は、電極物質を蒸着やスパッタリング等で成膜することにより、薄膜として形成することができる。陽極の成膜に際しては、フォトリソグラフィー法により所望の形状のパターンを形成してもよい。また、高いパターン精度を必要としない場合は(100μm以上程度の場合)、電極物質の蒸着やスパッタリング等を行う時にマスクを使用してパターンを形成してもよい。また、有機導電性化合物のように塗布可能な電極物質を用いる場合には、印刷方式、コーティング方式等の湿式法を用いることもできる。 The anode can be formed as a thin film by forming an electrode material into a film by vapor deposition, sputtering, or the like. When forming the anode, a pattern having a desired shape may be formed by a photolithography method. If high pattern accuracy is not required (about 100 μm or more), a mask may be used to form a pattern when vapor deposition or sputtering of an electrode substance is performed. Further, when a coatable electrode substance such as an organic conductive compound is used, a wet method such as a printing method or a coating method can also be used.
有機EL素子の発光を陽極から取り出す場合には、陽極の透過率を10%より大きくすることが好ましい。陽極としてのシート抵抗は、数百Ω/□以下が好ましい。陽極の厚さは、電極材料にもよるが、通常、10nm〜1μm、好ましくは10〜200nmである。 When the light emission of the organic EL element is taken out from the anode, it is preferable to make the transmittance of the anode larger than 10%. The sheet resistance as the anode is preferably several hundred Ω / □ or less. The thickness of the anode depends on the electrode material, but is usually 10 nm to 1 μm, preferably 10 to 200 nm.
《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属という)、合金、電気伝導性化合物、又は、これらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。"cathode"
As the cathode, a metal having a small work function (4 eV or less) (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, indium, a lithium / aluminum mixture, aluminum, and a rare earth metal.
陰極の電極物質としては、電子注入性や、酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等がより好ましい。As the electrode material of the cathode, a mixture of an electron-injectable metal and a secondary metal which has a larger work function value and is a stable metal, for example, magnesium / More preferably, a silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
陰極は、電極物質を蒸着やスパッタリング等で成膜することにより、薄膜として形成することができる。 The cathode can be formed as a thin film by forming an electrode material into a film by vapor deposition, sputtering, or the like.
陰極としてのシート抵抗は、数百Ω/□以下が好ましい。陰極の厚さは、通常、10nm〜5μm、好ましくは50〜200nmである。 The sheet resistance as a cathode is preferably several hundred Ω / □ or less. The thickness of the cathode is usually 10 nm to 5 μm, preferably 50 to 200 nm.
なお、有機EL素子の陽極及び陰極のいずれか一方は、発光した光を透過させて発光輝度を向上させる点から、透明又は半透明であることが好ましい。例えば、陰極の電極物質である金属を1〜20nmの膜厚で成膜した後、その上に、前記の導電性透明材料を成膜することによって、透明又は半透明の陰極を作製することができる。 It should be noted that either the anode or the cathode of the organic EL element is preferably transparent or translucent from the viewpoint of transmitting the emitted light to improve the emission brightness. For example, a transparent or translucent cathode can be produced by forming a metal, which is an electrode material of a cathode, with a film thickness of 1 to 20 nm, and then forming a film of the conductive transparent material on the metal. it can.
《支持基板》
有機EL素子の支持基板(基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等を用いることが可能であり、その種類は特に限定されるものではない。支持基板は、透明であってもよいし、不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。透明な支持基板としては、ガラス、石英、透明樹脂フィルム等が挙げられる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることができる樹脂フィルムである。《Support board》
As the support substrate (also referred to as a substrate, substrate, substrate, support, etc.) of the organic EL element, glass, plastic, or the like can be used, and the type thereof is not particularly limited. The support substrate may be transparent or opaque. When light is taken out from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film that can impart flexibility to the organic EL element.
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルや、ポリエチレン、ポリプロピレンや、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はこれらの誘導体や、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene and polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and cellulose acetate propionate (CAP). ), Cellulose acetate phthalate (TAC), cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether. Ketone, polyimide, polyether sulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name: JSR) ) Or a cycloolefin resin such as Apel (trade name: manufactured by Mitsui Chemicals, Inc.).
樹脂フィルムの表面には、無機物の被膜、有機物の被膜、無機物と有機物のハイブリッド被膜等が形成されていてもよい。樹脂フィルムは、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、JIS K 7126−1987に準拠した方法で測定された酸素透過度が10−3ml/(m2・24h・atm)以下、且つ、水蒸気透過度が10−5g/(m2・24h)以下の高バリア性フィルムであることがより好ましい。An inorganic film, an organic film, a hybrid film of an inorganic substance and an organic substance, or the like may be formed on the surface of the resin film. Resin film, water vapor transmission rate measured by the method based on JIS K 7129-1992 (25 ± 0.5 ℃ , relative humidity (90 ± 2)% RH) is 0.01g / (m 2 · 24h) or less is preferably a barrier film, JIS K oxygen permeability measured in compliance with the method provided in 7126-1987 is 10 -3 ml / (m 2 · 24h · atm) or less and a water vapor permeability of 10 - 5 g / (m 2 · 24h ) and more preferably less which is a high barrier film.
バリア性フィルムに形成するバリア膜の材料としては、水分や酸素等のように有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。バリア膜には、脆弱性を改良するために、無機層と有機層の積層構造を持たせることが好ましい。無機層と有機層の積層順は、特に制限されるものではないが、無機層と有機層を交互に複数回積層することが好ましい。 The material of the barrier film formed on the barrier film may be any material having a function of suppressing the infiltration of substances that cause deterioration of the organic EL element, such as water and oxygen, and for example, silicon oxide, silicon dioxide, and nitrided material. Silicon or the like can be used. It is preferable that the barrier film has a laminated structure of an inorganic layer and an organic layer in order to improve the fragility. The stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable that the inorganic layer and the organic layer are alternately laminated a plurality of times.
バリア膜の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。バリア膜の形成方法としては、特開2004−68143号公報に記載されているような大気圧プラズマ重合法が特に好ましい。 The method for forming the barrier film is not particularly limited, and is, for example, a vacuum vapor deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure. A plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used. As a method for forming the barrier film, an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板やフィルム、樹脂基板、セラミック製の基板等を用いることができる。 As the opaque support substrate, for example, a metal plate such as aluminum or stainless steel, a film, a resin substrate, a ceramic substrate, or the like can be used.
《封止》
有機EL素子を封止する方法としては、例えば、封止部材と、電極や支持基板とを接着剤で接着する方法が挙げられる。封止部材は、有機EL素子の表示領域を覆うように配置されていればよく、凹板状であってもよいし、平板状であってもよい。封止部材を凹状に加工する方法としては、サンドブラスト加工、化学エッチング加工等が挙げられる。封止部材の透明性や電気絶縁性は、特に限定されるものではない。《Seal》
Examples of the method of sealing the organic EL element include a method of adhering the sealing member and the electrode or the support substrate with an adhesive. The sealing member may be arranged so as to cover the display area of the organic EL element, and may have an intaglio shape or a flat plate shape. Examples of the method for processing the sealing member into a concave shape include sandblasting and chemical etching. The transparency and electrical insulation of the sealing member are not particularly limited.
封止部材の具体例としては、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板・フィルムとしては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等で形成されたものが挙げられる。金属板・フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム、タンタル等の金属や合金で形成されたものが挙げられる。 Specific examples of the sealing member include a glass plate, a polymer plate / film, a metal plate / film, and the like. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate / film include those formed of polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like. Examples of the metal plate / film include those formed of metals and alloys such as stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
封止部材としては、有機EL素子を薄膜化できる点から、ポリマーフィルムや、金属フィルムを好ましく用いることができる。ポリマーフィルムとしては、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m2/24h以下、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が1×10−3g/(m2/24h)以下のものが好ましい。As the sealing member, a polymer film or a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. As the polymer film, the oxygen permeability measured by the method according to JIS K 7126-1987 is 1 × 10 -3 ml / m 2 / 24h or less, and the water vapor permeability measured by the method according to JIS K 7129-1992. The degree (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably 1 × 10 -3 g / (m 2 / 24h) or less.
接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化型接着剤や熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型接着剤、エポキシ系等の熱硬化型接着剤や化学硬化型(二液混合)接着剤が挙げられる。また、ポリアミド、ポリエステル、ポリオレフィン等のホットメルト型接着剤や、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤が挙げられる。 Examples of the adhesive include a photocurable adhesive having a reactive vinyl group such as an acrylic acid-based oligomer and a methacrylic acid-based oligomer, a thermosetting adhesive, a moisture-curable adhesive such as 2-cyanoacrylic acid ester, and an epoxy-based adhesive. Examples thereof include thermosetting adhesives and chemically curable (two-component mixed) adhesives. Further, examples thereof include hot melt type adhesives such as polyamide, polyester and polyolefin, and cationic curable type ultraviolet curable epoxy resin adhesives.
接着剤としては、有機EL素子が熱処理によって劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、接着剤は、乾燥剤が分散されたものであってもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使って行ってもよいし、スクリーン印刷のように印刷で行ってもよい。 As the adhesive, since the organic EL element may be deteriorated by heat treatment, an adhesive that can be adhesively cured from room temperature to 80 ° C. is preferable. Further, the adhesive may be one in which a desiccant is dispersed. The adhesive may be applied to the sealing portion by using a commercially available dispenser or by printing as in screen printing.
また、有機EL素子を封止する方法としては、支持基板の反対側に設けられた電極の外側に、有機層及び電極を被覆する封止膜を成膜する方法を用いることもできる。封止膜は、無機物の被膜、有機物の被膜、無機物と有機物のハイブリッド被膜等のいずれによって設けてもよい。封止膜の材料としては、水分や酸素等のように有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。封止膜には、脆弱性を改良するために、無機層と有機層の積層構造を持たせることが好ましい。 Further, as a method of sealing the organic EL element, a method of forming a sealing film covering the organic layer and the electrode on the outside of the electrode provided on the opposite side of the support substrate can also be used. The sealing film may be provided by any of an inorganic film, an organic film, a hybrid film of an inorganic substance and an organic substance, and the like. The material of the sealing film may be any material having a function of suppressing the infiltration of substances that cause deterioration of the organic EL element such as water and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride and the like are used. Can be done. It is preferable that the sealing film has a laminated structure of an inorganic layer and an organic layer in order to improve the brittleness.
封止膜の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming the sealing film is not particularly limited, and for example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and a large method are used. A pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used.
封止部材と有機EL素子の表示領域との間隙には、気相及び液相のいずれについても、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイル等の不活性液体を注入することが好ましい。また、封止部材と有機EL素子の表示領域との間隙は、真空としてもよいし、吸湿性化合物を封入してもよい。 In the gap between the sealing member and the display region of the organic EL element, an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected into both the gas phase and the liquid phase. It is preferable to do so. Further, the gap between the sealing member and the display region of the organic EL element may be a vacuum, or a hygroscopic compound may be sealed.
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類については、無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchlorates (eg, perchloric acid) Barium, magnesium perchlorate, etc.) and the like. Anhydrous salts are preferably used for sulfates, metal halides and perchloric acids.
《用途》
本発明に係る有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源としては、例えば、照明装置(家庭用照明、車内照明)、時計用バックライト、液晶用バックライト、看板広告の光源、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。特に、液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。《Use》
The organic EL element according to the present invention can be used as a display device, a display, and various light emitting light sources. Examples of the light emitting light source include a lighting device (household lighting, interior lighting), a clock backlight, a liquid crystal backlight, a signage advertisement light source, a signal light source, an optical storage medium light source, and an electrophotographic copying machine light source. Examples thereof include a light source of an optical communication processor and a light source of an optical sensor. In particular, it can be effectively used as a backlight of a liquid crystal display device and a light source for lighting.
(表示装置)
本発明に係る有機EL素子は、具体的には、表示装置の画素として用いることができる。表示装置は、単色表示装置であってもよいし、多色表示装置であってもよい。以下では、本発明の有機EL素子を具備する表示装置の一例として、多色表示装置について説明する。(Display device)
Specifically, the organic EL element according to the present invention can be used as a pixel of a display device. The display device may be a single-color display device or a multi-color display device. Hereinafter, a multicolor display device will be described as an example of a display device including the organic EL element of the present invention.
表示装置に備えられる有機EL素子の構成は、前記の素子構成例をはじめとして各種の構成を採ることができる。多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光を観測することができる。交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光を観測することができる。なお、印加する交流の波形は、特に制限されるものではない。 As the configuration of the organic EL element provided in the display device, various configurations can be adopted including the above-mentioned element configuration example. When a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. When an AC voltage is applied, light emission can be observed only when the anode is in the + state and the cathode is in the-state. The AC waveform to be applied is not particularly limited.
多色表示装置は、例えば、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイスや、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。表示デバイス、ディスプレイにおいて、青発光、赤発光及び緑発光の三種類の有機EL素子を用いるとフルカラーの表示が可能である。静止画像や動画像を再生する表示装置としての使用が可能であり、動画像の再生を行う場合の駆動方式としては、単純マトリクス(パッシブマトリクス)方式、アクティブマトリクス方式のいずれであってもよい。 The multicolor display device can be used as, for example, a display device, a display, and various light emitting light sources. Examples of display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In display devices and displays, full-color display is possible by using three types of organic EL elements, which emit blue light, red light, and green light. It can be used as a display device for reproducing a still image or a moving image, and the driving method for reproducing a moving image may be either a simple matrix (passive matrix) method or an active matrix method.
図2は、有機EL素子から構成される表示装置の一例を示した模式図である。この表示装置は、有機EL素子の発光により画像情報の表示を行う。ディスプレイ1は、複数の画素を有する表示部Aと、画像情報に基づいて表示部Aの画像走査を行う制御部Bと、表示部Aと制御部Bとの間を電気的に接続する配線部等を備えている。
FIG. 2 is a schematic view showing an example of a display device composed of an organic EL element. This display device displays image information by emitting light from an organic EL element. The
制御部Bは、複数の画素のそれぞれに、外部からの画像情報に基づいて走査信号と画像データ信号とを送る。そして、走査信号によって走査線毎の画素が画像データ信号に応じて順次発光し、表示部Aによって画像情報が表示される。 The control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Then, the pixels of each scanning line emit light in sequence according to the image data signal by the scanning signal, and the image information is displayed by the display unit A.
図3は、表示部Aの模式図である。表示部Aは、基板上に、複数の画素3と、複数の走査線5と、複数のデータ線6とを有している。図3においては、各画素3からの光が下方向(白矢印方向)へ取り出される場合が示されている。
FIG. 3 is a schematic view of the display unit A. The display unit A has a plurality of
配線部の走査線5及びデータ線6は、それぞれ導電材料からなる。走査線5とデータ線6とは、互いに格子状に直交し、直交する位置で各画素3に接続している。画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光色が赤色の画素、緑色の画素及び青色の画素のそれぞれを、適宜、基板上に配列させることによってフルカラーの表示が可能となる。
The
図4は、画素の模式図である。画素3は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。基板上に備えられる複数の画素3には、赤色、緑色及び青色の各発光色の有機EL素子10が用いられる。
FIG. 4 is a schematic diagram of pixels. The
図4において、スイッチングトランジスタ11のドレインには、制御部Bからデータ線6を介して画像データ信号が印加される。そして、制御部Bからスイッチングトランジスタ11のゲートに、走査線5を介して走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号が、コンデンサー13と駆動トランジスタ12のゲートに伝達される。
In FIG. 4, an image data signal is applied from the control unit B to the drain of the switching
画像データ信号の伝達によって、コンデンサー13が画像データ信号の電位に応じて充電されると共に、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続されており、ソースが有機EL素子10の電極に接続されている。有機EL素子10には、ゲートに印加された画像データ信号の電位に応じて電源ライン7から電流が供給される。
By transmitting the image data signal, the
制御部Bが順次走査を行い、走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしても、コンデンサー13は、充電された画像データ信号の電位を保持する。そのため、駆動トランジスタ12の駆動は、オン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。そして、順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動し、有機EL素子10が発光する。
When the control unit B performs sequential scanning and the scanning signal moves to the
このように有機EL素子10の発光は、複数の画素3にそれぞれ用いられる有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12とを設けることによって、複数の画素毎に行われる方式で構成することができる。このような発光方式は、アクティブマトリクス方式と呼ばれる。
In this way, the light emission of the
なお、有機EL素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフによる発光でもよい。また、コンデンサー13の電位は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
The light emission of the
なお、表示装置の発光方式は、以上のアクティブマトリクス方式に制限されるものではなく、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式としてもよい。 The light emitting method of the display device is not limited to the above active matrix method, and may be a passive matrix method in which the organic EL element emits light in response to the data signal only when the scanning signal is scanned.
図5は、パッシブマトリクス方式フルカラー表示装置の模式図である。図5において、複数の走査線5と、複数の画像データ線6とは、画素3を挟んで対向して格子状に設けられている。順次走査により走査線5の走査信号が印加されたとき、走査線5に接続している画素3が画像データ信号に応じて発光する。パッシブマトリクス方式によると、画素3にアクティブ素子を設ける必要がなく、製造コストが低減する。
FIG. 5 is a schematic view of a passive matrix type full-color display device. In FIG. 5, the plurality of
<照明装置>
本発明に係る有機EL素子は、具体的には、各種の照明装置の光源として用いることができる。照明装置としては、適宜の光源色を生じる装置であってよいが、白色の光源色を生じる装置とすることが好ましい。<Lighting device>
Specifically, the organic EL element according to the present invention can be used as a light source for various lighting devices. The lighting device may be a device that produces an appropriate light source color, but a device that produces a white light source color is preferable.
白色の発光は、複数の発光性化合物によって複数の発光色を同時に発光させて、混色することで得ることができる。発光色の組み合わせとしては、赤色、緑色及び青色の三原色の組み合わせであってもよいし、青色と黄色、青緑色と橙色等の補色の関係の組み合わせであってもよい。また、発光性化合物からの光を励起光として発光する色素を併用してもよいし、カラーフィルターを利用してもよい。 White luminescence can be obtained by simultaneously emitting a plurality of luminescent colors with a plurality of luminescent compounds and mixing the colors. The combination of emission colors may be a combination of the three primary colors of red, green and blue, or a combination of complementary colors such as blue and yellow and blue-green and orange. Further, a dye that emits light from a luminescent compound as excitation light may be used in combination, or a color filter may be used.
照明装置においては、各色の発光色を生じる有機EL素子をアレイ上に配列して白色の発光を生成してもよいし、有機EL素子自体の発光色を白色化してもよい。有機EL素子自体の発光色を白色にする場合には、発光層等のみについてパターニングを行い、電極等については一面に一括して成膜してもよい。 In the lighting device, organic EL elements that generate emission colors of each color may be arranged on an array to generate white emission, or the emission color of the organic EL element itself may be whitened. When the emission color of the organic EL element itself is white, patterning may be performed only on the light emitting layer or the like, and the electrodes or the like may be collectively formed on one surface.
図6は、照明装置の概略図である。また、図7は、照明装置の模式図である。照明装置は、例えば、本発明に係る有機EL素子101を、厚み300μm程度のガラスカバー102等で覆うことにより形成することができる。一対の電極105,107と、有機層106とを、周囲にシール材を塗布したガラスカバー102等で封止することによって、有機層106等が大気中の酸素や水分で劣化するのを防ぐことができる。例えば、封止を、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行い、ガラスカバー102内に窒素ガス等の不活性ガス108を充填したり、捕水剤109等を設置したりすることが可能である。
FIG. 6 is a schematic view of the lighting device. Further, FIG. 7 is a schematic view of the lighting device. The lighting device can be formed, for example, by covering the
なお、以上の本実施形態に係る有機EL素子は、その構成、製法、用途等が、前記の説明に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、その他の公知の構成や製法を適用することができるし、本発明をその他の用途に用いることもできる。例えば、有機EL素子の公知の構成、製法、用途等に関して、特開2013−089608号公報、特開2014−120334号公報、特開2015−201508号公報等を参照してもよい。 The structure, manufacturing method, use, etc. of the organic EL device according to the above embodiment are not limited to the above description, and other known configurations and other known configurations are used as long as the gist of the present invention is not deviated. The manufacturing method can be applied, and the present invention can be used for other purposes. For example, Japanese Patent Application Laid-Open No. 2013-089608, Japanese Patent Application Laid-Open No. 2014-120334, Japanese Patent Application Laid-Open No. 2015-201508, and the like may be referred to with respect to known configurations, manufacturing methods, uses, and the like of organic EL devices.
《発光性薄膜》
次に、本実施形態に係る発光性薄膜について説明する。本実施形態に係る発光性薄膜は、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位とのエネルギー差が0.5eV以下である化合物(RISC化合物)と凝集誘起発光性分子(AIE分子)とを含有する。例えば、基材上に、RISC化合物とAIE分子とを含む機能性薄膜を成膜することによって、各種の用途に使用可能な発光性の機能薄膜を形成することができる。AIE分子の発光性薄膜中の濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。また、RISC化合物の発光性薄膜中の濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。《Luminescent thin film》
Next, the luminescent thin film according to this embodiment will be described. The luminescent thin film according to the present embodiment is composed of a compound (RISC compound) in which the energy difference between the lowest excited singlet energy level and the lowest excited triplet energy level is 0.5 eV or less (RISC compound) and an aggregation-induced luminescent molecule (AIE molecule). ) And. For example, by forming a functional thin film containing a RISC compound and an AIE molecule on a substrate, a luminescent functional thin film that can be used for various purposes can be formed. The concentration of the AIE molecule in the luminescent thin film can be, for example, 0.1% by mass or more and 99.9% by mass or less. The concentration of the RISC compound in the luminescent thin film can be, for example, 0.1% by mass or more and 99.9% by mass or less.
本実施形態に係る発光性薄膜は、例えば、有機EL素子、光電変換素子、有機機能性薄膜等の材料として用いることができる。また、前記の表示装置や照明装置を構成する発光素子として用いることもできる。本発明の発光性薄膜の形成方法は、特に制限されるものではなく、従来公知の真空蒸着法、湿式法等による形成方法を用いることができる。形成する発光性薄膜には、RISC化合物とAIE分子に加えて、その他の発光性化合物やホスト化合物を配合してもよい。 The luminescent thin film according to the present embodiment can be used as a material for, for example, an organic EL element, a photoelectric conversion element, an organic functional thin film, and the like. It can also be used as a light emitting element constituting the display device or the lighting device. The method for forming the luminescent thin film of the present invention is not particularly limited, and a conventionally known forming method such as a vacuum vapor deposition method or a wet method can be used. In addition to the RISC compound and the AIE molecule, other luminescent compounds and host compounds may be blended in the luminescent thin film to be formed.
湿式法としては、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等が挙げられる。湿式法としては、均質な薄膜が得られ易く、且つ、生産性が高い点で、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式の適性が高い方法が好ましく用いられる。 Examples of the wet method include a spin coating method, a casting method, an inkjet method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, and an LB method (Langmuir-Brojet method). Can be mentioned. As the wet method, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an inkjet method, or a spray coating method is preferable because a homogeneous thin film can be easily obtained and the productivity is high. Used.
RISC化合物やAIE分子を溶解又は分散させる液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル等の脂肪酸エステル類や、ジクロロベンゼン等のハロゲン化炭化水素類や、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類や、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類や、DMF、DMSO等の有機溶媒が挙げられる。材料を分散させる分散方法としては、超音波分散、高剪断力分散、メディア分散等を用いることができる。 Examples of the liquid medium for dissolving or dispersing the RISC compound and AIE molecule include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene and xylene, and the like. Examples include aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO. As a dispersion method for dispersing the material, ultrasonic dispersion, high shear force dispersion, media dispersion and the like can be used.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例における「%」は、特に記載がない限り「質量%」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, "%" in an Example means "mass%" unless otherwise specified.
(蛍光発光性化合物)
実施例で使用した蛍光発光性化合物(A−1,A−2)を以下に示す。なお、化合物A−1及び化合物A−2は、凝集誘起発光性が無い従来型の蛍光発光性化合物である。(Fluorescent compound)
The fluorescent compounds (A-1, A-2) used in the examples are shown below. Compound A-1 and Compound A-2 are conventional fluorescent compounds having no aggregation-induced luminescence.
(RISC化合物)
実施例で使用したRISC化合物(B−1,B−2,B−3)を以下に示す。なお、RISC化合物B−1のΔEstは0.09eV、RISC化合物B−2のΔEstは0.11eV、RISC化合物B−3のΔEstは0.25eVである。(RISC compound)
The RISC compounds (B-1, B-2, B-3) used in the examples are shown below. Incidentally, Delta] E st of RISC Compound B-1 is 0.09 eV, Delta] E st of RISC Compound B-2 is 0.11 eV, Delta] E st of RISC Compound B-3 is 0.25 eV.
(正孔輸送材料)
実施例で使用した正孔輸送材料(HT−1)を以下に示す。(Hole transport material)
The hole transport material (HT-1) used in the examples is shown below.
(電子輸送材料)
実施例で使用した電子輸送材料(ET−1,ET−2)を以下に示す。(Electronic transport material)
The electron transport materials (ET-1, ET-2) used in the examples are shown below.
(ホスト化合物)
実施例で使用したホスト化合物(H−1,H−2)を以下に示す。(Host compound)
The host compounds (H-1, H-2) used in the examples are shown below.
(AIE分子)
実施例で使用したAIE分子(AIE−1,AIE−2,AIE−3,AIE−4)を以下に示す。なお、AIE分子は凝集して集合体を形成することにより強い蛍光を発光する、蛍光発光性化合物である。(AIE molecule)
The AIE molecules (AIE-1, AIE-2, AIE-3, AIE-4) used in the examples are shown below. The AIE molecule is a fluorescent compound that emits strong fluorescence by aggregating to form an aggregate.
なお、実施例で使用した化合物のうち、AIE−1とAIE−2は、刊行物(Qin W.,et al.,Chem.Commun.,2015,51,7321−7324)に記載された方法に基づいて合成した。また、AIE−3は、刊行物(Kim J.Y.,et al.,Adv.Mater.2013,25,2666−2671)に記載された方法に基づいて合成した。また、AIE−4は、刊行物(Chen B.,et al.,Chem.Eur.J.,2014,20,1931−1939)に記載された方法に基づいて合成した。その他の化合物については、市販品(和光純薬工業社製)を用いた。 Among the compounds used in the examples, AIE-1 and AIE-2 are described in the methods described in publications (Qin W., et al., Chem. Commun., 2015, 51, 7321-7324). Synthesized based on. In addition, AIE-3 was synthesized based on the method described in the publication (Kim JY, et al., Adv. Mater. 2013, 25, 2666-2671). In addition, AIE-4 was synthesized based on the method described in publications (Chen B., et al., Chem. Eur. J., 2014, 20, 1931-1939). For other compounds, commercially available products (manufactured by Wako Pure Chemical Industries, Ltd.) were used.
[実施例1]
正孔輸送層に後架橋型の化合物HT−1、発光層に表1に示す発光性化合物を用いて有機EL素子を作製し、発光効率の評価を行った。[Example 1]
An organic EL device was prepared using the post-crosslinked compound HT-1 for the hole transport layer and the luminescent compound shown in Table 1 for the light emitting layer, and the luminous efficiency was evaluated.
<有機EL素子1−1の作製>
(陽極の作製)
100mm×100mm×1.1mmの透明支持基板(NHテクノグラス社製、NA−45)上に、陽極としてITO(インジウムチンオキシド)を約100nmの厚さで成膜し、パターニングを行った。次いで、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後に、UVオゾン洗浄を5分間行った。<Manufacturing of organic EL element 1-1>
(Manufacturing of anode)
ITO (indium tin oxide) was formed as an anode on a 100 mm × 100 mm × 1.1 mm transparent support substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) to a thickness of about 100 nm, and patterning was performed. Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
(正孔輸送層の作製)
続いて、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT:PSS、へレウス社製、商品名:CLEVIOS P VP AI 4083)を純水で70%に希釈して得た溶液を、透明支持基板に作製した陽極上に、3000rpm、30秒の条件でスピンコート法により成膜した。そして、200℃において1時間乾燥し、膜厚30nmの第1正孔輸送層を形成した。次いで、この基板を窒素雰囲気下に移し、9.0mgの化合物HT−1を1.1gのクロロベンゼンに溶解させて得た塗布液を、第1正孔輸送層上に、1500rpm、30秒の条件でスピンコート法により成膜した。そして、180秒間紫外光を照射し、後架橋型の化合物HT−1の光重合・架橋を行い、膜厚約20nmの第2正孔輸送層を形成した。(Preparation of hole transport layer)
Subsequently, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS, manufactured by Heleus, trade name: CLEVIOS P VP AI 4083) with pure water to 70% was prepared. , A film was formed on the anode prepared on the transparent support substrate by the spin coating method under the conditions of 3000 rpm and 30 seconds. Then, it was dried at 200 ° C. for 1 hour to form a first hole transport layer having a film thickness of 30 nm. Next, this substrate was transferred to a nitrogen atmosphere, and a coating solution obtained by dissolving 9.0 mg of compound HT-1 in 1.1 g of chlorobenzene was placed on the first hole transport layer at 1500 rpm for 30 seconds. The film was formed by the spin coating method. Then, it was irradiated with ultraviolet light for 180 seconds to perform photopolymerization and cross-linking of the post-crosslinking compound HT-1 to form a second hole transport layer having a film thickness of about 20 nm.
(発光層の作製)
続いて、6.75mgのホスト化合物H−1と1.69mgの蛍光発光性化合物A−1を窒素雰囲気下で1.1gのクロロベンゼンに溶解させて得た塗布液を、第2正孔輸送層上に、1500rpm、30秒の条件でスピンコート法により成膜した。そして、真空下、130℃で加熱乾燥することにより溶媒を完全に除去し、膜厚約50nmの発光層を形成した。(Preparation of light emitting layer)
Subsequently, a coating film obtained by dissolving 6.75 mg of the host compound H-1 and 1.69 mg of the fluorescent luminescent compound A-1 in 1.1 g of chlorobenzene under a nitrogen atmosphere was applied to the second hole transport layer. A film was formed on the film by the spin coating method under the conditions of 1500 rpm and 30 seconds. Then, the solvent was completely removed by heating and drying at 130 ° C. under vacuum to form a light emitting layer having a film thickness of about 50 nm.
(電子輸送層の作製)
続いて、発光層を成膜した透明支持基板を真空蒸着装置に取り付けた後、真空槽を4×10−4Paまで減圧し、発光層上に、化合物ET−1を0.1nm/秒で蒸着して、膜厚約35nmの電子輸送層を形成した。(Preparation of electron transport layer)
Subsequently, after attaching the transparent support substrate on which the light emitting layer was formed to the vacuum vapor deposition apparatus, the vacuum chamber was depressurized to 4 × 10 -4 Pa, and the compound ET-1 was placed on the light emitting layer at 0.1 nm / sec. By vapor deposition, an electron transport layer having a film thickness of about 35 nm was formed.
(電子注入層・陰極の作製)
続いて、真空蒸着装置を使用して、電子輸送層上に、フッ化リチウムを蒸着して、膜厚約1.0nmの電子注入層を形成した。次いで、電子注入層上に、アルミニウムを蒸着して、膜厚約110nmの陰極を形成した。(Preparation of electron injection layer / cathode)
Subsequently, using a vacuum vapor deposition apparatus, lithium fluoride was vapor-deposited on the electron transport layer to form an electron injection layer having a film thickness of about 1.0 nm. Next, aluminum was vapor-deposited on the electron-injected layer to form a cathode having a film thickness of about 110 nm.
(封止)
封止用のガラスカバーの周縁部に、酸素や水分を吸着する吸湿性化合物を配合したエポキシ系光硬化型接着剤(東亞合成社製、ラックストラックLC0629B)を塗布し、このガラスカバーで、透明支持基板上に形成した電極と有機層を覆い、シール材としてのエポキシ系光硬化型接着剤を塗布した周縁部と透明支持基板とを密着させた。その後、電極や有機層が成膜されていない部分に、透明支持基板側からUV光を照射し、接着剤を硬化させることにより、封止された有機EL素子1−1を得た。(Sealing)
An epoxy-based photo-curing adhesive (Lux Track LC0629B, manufactured by Toa Synthetic Co., Ltd.) containing a hygroscopic compound that adsorbs oxygen and moisture is applied to the peripheral edge of the sealing glass cover, and the glass cover is transparent. The electrode and the organic layer formed on the support substrate were covered, and the peripheral portion coated with the epoxy-based photocurable adhesive as a sealing material was brought into close contact with the transparent support substrate. Then, UV light was irradiated from the transparent support substrate side to the portion where the electrode and the organic layer were not formed, and the adhesive was cured to obtain a sealed organic EL element 1-1.
<有機EL素子1−2の作製>
発光層を成膜する塗布液に8.01mgのホスト化合物H−1と0.42mgのRISC化合物B−1を用いたこと以外は有機EL素子1−1と同様にして、有機EL素子1−2を作製した。<Manufacturing of organic EL element 1-2>
The organic EL device 1- is the same as the organic EL device 1-1 except that 8.01 mg of the host compound H-1 and 0.42 mg of the RISC compound B-1 are used as the coating liquid for forming the light emitting layer. 2 was prepared.
<有機EL素子1−3の作製>
発光層を成膜する塗布液に6.33mgのホスト化合物H−1と0.42mgのRISC化合物B−1と1.69mgの蛍光発光性化合物A−1を用いたこと以外は有機EL素子1−1と同様にして、有機EL素子1−3を作製した。<Manufacturing of organic EL elements 1-3>
<有機EL素子1−4〜1−7の作製>
発光性化合物の種類を表1に示す化合物に置き換えたこと以外は有機EL素子1−3と同様にして、有機EL素子1−4〜1−7を作製した。<Manufacturing of organic EL elements 1-4 to 1-7>
Organic EL devices 1-4 to 1-7 were produced in the same manner as the organic EL devices 1-3 except that the types of luminescent compounds were replaced with the compounds shown in Table 1.
<発光効率の評価>
室温(25℃)において、2.5mA/cm2の定電流密度で有機EL素子を点灯させて、分光放射輝度計CS−2000(コニカミノルタ社製)により発光輝度を測定し、発光効率(外部取り出し量子効率)を求めた。その結果を表1に示す。表中の発光効率は、有機EL素子1−3の測定値を100とした相対値を表す。<Evaluation of luminous efficiency>
At room temperature (25 ° C.), the organic EL element is lit at a constant current density of 2.5 mA / cm 2, the emission brightness is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta), and the luminous efficiency (external). Extraction quantum efficiency) was calculated. The results are shown in Table 1. The luminous efficiency in the table represents a relative value with the measured value of the organic EL element 1-3 as 100.
表1に示すように、発光性化合物として凝集誘起発光性が無い蛍光発光性化合物A−1のみを20質量%の濃度で用いた有機EL素子1−1や、RISC化合物B−1のみを20質量%の濃度で用いた有機EL素子1−2では、発光が略見られず、化合物の凝集によって濃度消光が生じたと考えられる。発光性化合物としてRISC化合物B−1と蛍光発光性化合物A−1とを併用した有機EL素子1−3では、蛍光発光性化合物A−1やRISC化合物B−1を単独で用いた有機EL素子1−1〜1−2と比較すると、発光効率がある程度向上した。 As shown in Table 1, 20 organic EL elements 1-1 using only the fluorescent luminescent compound A-1 having no aggregation-induced quenching as the luminescent compound and 20 using only the RISC compound B-1 at a concentration of 20% by mass. In the organic EL element 1-2 used at a concentration of mass%, light emission was not substantially observed, and it is considered that concentration quenching occurred due to the aggregation of the compounds. In the organic EL element 1-3 in which the RISC compound B-1 and the fluorescent compound A-1 are used in combination as the light emitting compound, the organic EL element in which the fluorescent compound A-1 or the RISC compound B-1 is used alone is used. Compared with 1-1 to 1-2, the light emission efficiency was improved to some extent.
これに対し、AIE分子を蛍光発光性化合物A−1の代わりに同濃度添加し、RISC化合物と併用した有機EL素子1−4〜1−7では、有機EL素子1−3と比較して、更なる発光効率の向上が見られた。この結果から、従来型の蛍光発光性化合物では凝集状態となり、消光が生じる程度の高濃度であっても、AIE分子であれば十分に発光させることが可能であり、RISC化合物との併用によって発光効率が大きく向上することが確認された。 On the other hand, in the organic EL devices 1-4 to 1-7 in which the AIE molecule was added at the same concentration instead of the fluorescent compound A-1 and used in combination with the RISC compound, the organic EL devices 1-4 to 1-7 were compared with the organic EL devices 1-3. Further improvement in luminous efficiency was observed. From this result, the conventional fluorescent luminescent compound is in an aggregated state, and even if the concentration is high enough to cause quenching, the AIE molecule can sufficiently emit light, and when used in combination with the RISC compound, it emits light. It was confirmed that the efficiency was greatly improved.
[実施例2]
実施例1で発光を生じた成分を確認するため、実施例1と同様の発光性化合物を用いて発光性薄膜のサンプルを作製し、発光スペクトルの評価を行った。[Example 2]
In order to confirm the component that caused light emission in Example 1, a sample of a light emitting thin film was prepared using the same light emitting compound as in Example 1, and the emission spectrum was evaluated.
<サンプル2−1の作製>
300mm×300mm×1.1mmのガラス基板に、UVオゾン洗浄処理を10分間行った。その後、窒素雰囲気下において、有機EL素子1−1の発光層の形成に用いた塗布液を、基板上に、1000rpm、30秒の条件でスピンコート法により成膜した。そして、有機EL素子1−1と同様の手順で封止を行って、サンプル2−1とした。<Preparation of sample 2-1>
A glass substrate of 300 mm × 300 mm × 1.1 mm was subjected to UV ozone cleaning treatment for 10 minutes. Then, in a nitrogen atmosphere, the coating liquid used for forming the light emitting layer of the organic EL element 1-1 was formed on the substrate by a spin coating method under the conditions of 1000 rpm and 30 seconds. Then, sealing was performed in the same procedure as for the organic EL element 1-1 to obtain sample 2-1.
<サンプル2−2の作製>
有機EL素子1−2の発光層の形成に用いた塗布液を使用し、蛍光発光性化合物A−1をRISC化合物B−1に置き換えた以外はサンプル2−1と同様にして、サンプル2−2を作製した。<Preparation of sample 2-2>
Sample 2-Similar to Sample 2-1 except that the coating liquid used to form the light emitting layer of the organic EL element 1-2 was used and the fluorescent light emitting compound A-1 was replaced with RISC compound B-1. 2 was prepared.
<サンプル2−3の作製>
RISC化合物B−1をRISC化合物B−2に置き換えた以外はサンプル2−2と同様にして、サンプル2−3を作製した。<Preparation of sample 2-3>
Sample 2-3 was prepared in the same manner as in Sample 2-2 except that RISC compound B-1 was replaced with RISC compound B-2.
<サンプル2−4〜2−5の作製>
蛍光発光性化合物A−1をAIE−1又はAIE−2に置き換えた以外はサンプル2−1と同様にして、サンプル2−4〜2−5を作製した。<Preparation of samples 2-4 to 2-5>
Samples 2-4 to 2-5 were prepared in the same manner as in Sample 2-1 except that the fluorescent compound A-1 was replaced with AIE-1 or AIE-2.
<サンプル2−6〜2−9の作製>
有機EL素子1−4〜1−7の発光層の形成に用いた塗布液を使用し、発光性化合物の種類を表2に示す化合物に置き換えた以外はサンプル2−1と同様にして、サンプル2−6〜2−9を作製した。<Preparation of samples 2-6 to 2-9>
Samples were used in the same manner as in Sample 2-1 except that the coating liquid used for forming the light emitting layer of the organic EL elements 1-4 to 1-7 was used and the type of the light emitting compound was replaced with the compound shown in Table 2. 2-6 to 2-9 were prepared.
<スペクトルの評価>
表2に示す励起方法を用いてサンプルを発光させて、分光蛍光光度計(日立ハイテクサイエンス社製、F−7000)により室温下で発光スペクトルを測定し、発光極大波長を確認した。サンプル2−1〜2−5については、可視光領域を含む波長領域の光で光励起し、サンプル2−6〜2−9については、2.5mA/cm2で電流励起した。<Evaluation of spectrum>
The sample was made to emit light using the excitation method shown in Table 2, and the emission spectrum was measured at room temperature with a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.) to confirm the maximum emission wavelength. Samples 2-1 to 2-5 were photoexcited with light in the wavelength region including the visible light region, and samples 2-6 to 2-9 were current-excited at 2.5 mA / cm 2.
その結果、発光性化合物としてRISC化合物とAIE分子とを併用したサンプル2−6〜2−9の発光極大波長は、AIE分子のみを用いたサンプル2−4や2−5の発光極大波長とそれぞれ一致した。サンプル2−6〜2−9で、AIE分子由来の発光が検出されたことから、励起子がRISC化合物からAIE分子にエネルギー移動した可能性が推測された。 As a result, the emission maximum wavelengths of the samples 2-6 to 2-9 in which the RISC compound and the AIE molecule were used together as the luminescent compound were the emission maximum wavelengths of the samples 2-4 and 2-5 using only the AIE molecule, respectively. It matched. Since luminescence derived from the AIE molecule was detected in the samples 2-6 to 2-9, it was speculated that the excitons may have transferred energy from the RISC compound to the AIE molecule.
[実施例3]
正孔輸送層に後架橋型の化合物HT−1、発光層に表3に示す発光性化合物を用いて有機EL素子を作製し、発光効率の評価を行った。[Example 3]
An organic EL device was prepared using the post-crosslinked compound HT-1 for the hole transport layer and the luminescent compound shown in Table 3 for the light emitting layer, and the luminous efficiency was evaluated.
<有機EL素子3−1〜3−5の作製>
発光性化合物の種類を表3に示す化合物に置き換えた以外は有機EL素子1−1と同様にして、有機EL素子3−1〜3−5を作製した。<Manufacturing of organic EL elements 3-1 to 3-5>
Organic EL devices 3-1 to 3-5 were produced in the same manner as the organic EL devices 1-1 except that the types of luminescent compounds were replaced with the compounds shown in Table 3.
<発光効率の評価>
実施例1と同様に、室温(25℃)において、2.5mA/cm2の定電流密度で有機EL素子を点灯させて、分光放射輝度計CS−2000(コニカミノルタ社製)により発光輝度を測定し、発光効率(外部取り出し量子効率)を求めた。その結果を表3に示す。表中の発光効率は、有機EL素子3−3の測定値を100とした相対値を表す。<Evaluation of luminous efficiency>
Similar to Example 1, the organic EL element is lit at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and the luminous brightness is measured by a spectral radiance meter CS-2000 (manufactured by Konica Minolta). Luminous efficiency (external extraction quantum efficiency) was determined by measurement. The results are shown in Table 3. The luminous efficiency in the table represents a relative value with the measured value of the organic EL element 3-3 as 100.
表3に示すように、発光性化合物として凝集誘起発光性が無い蛍光発光性化合物A−2のみを20質量%の濃度で用いた有機EL素子3−1では、発光が略見られなかった。これに対し、AIE分子を蛍光発光性化合物A−2の代わりに同濃度添加し、RISC化合物と併用した有機EL素子3−4〜3−5では、有機EL素子3−3と比較して、高い発光効率が得られた。よって、発光効率を向上させる目的で蛍光発光性化合物の濃度を高くする場合、AIE分子を併用する手法が有効であると推察される。 As shown in Table 3, no light emission was substantially observed in the organic EL device 3-1 using only the fluorescent compound A-2 having no aggregation-induced luminescence as the luminescent compound at a concentration of 20% by mass. On the other hand, in the organic EL devices 3-4 to 3-5 in which the AIE molecule was added at the same concentration instead of the fluorescent compound A-2 and used in combination with the RISC compound, the organic EL devices 3-4 to 3-5 were compared with the organic EL device 3-3. High luminous efficiency was obtained. Therefore, when increasing the concentration of the fluorescent compound for the purpose of improving the luminous efficiency, it is presumed that the method of using the AIE molecule in combination is effective.
[実施例4]
実施例3で発光を生じた成分を確認するため、実施例3と同様の発光性化合物を用いて発光性薄膜のサンプルを作製し、発光スペクトルの評価を行った。[Example 4]
In order to confirm the component that caused light emission in Example 3, a sample of a light emitting thin film was prepared using the same light emitting compound as in Example 3, and the emission spectrum was evaluated.
<サンプル4−1の作製>
実施例2と同様にして、300mm×300mm×1.1mmのガラス基板に、UVオゾン洗浄処理を10分間行った。その後、窒素雰囲気下において、有機EL素子3−1の発光層の形成に用いた塗布液を、基板上に、1000rpm、30秒の条件でスピンコート法により成膜した。そして、有機EL素子1−1と同様の手順で封止を行って、サンプル4−1とした。<Preparation of sample 4-1>
In the same manner as in Example 2, a glass substrate of 300 mm × 300 mm × 1.1 mm was subjected to UV ozone cleaning treatment for 10 minutes. Then, in a nitrogen atmosphere, the coating liquid used for forming the light emitting layer of the organic EL element 3-1 was formed on the substrate by a spin coating method under the conditions of 1000 rpm and 30 seconds. Then, sealing was performed in the same procedure as for the organic EL element 1-1 to obtain sample 4-1.
<サンプル4−2の作製>
有機EL素子3−2の発光層の形成に用いた塗布液を使用し、蛍光発光性化合物A−2をRISC化合物B−3に置き換えた以外はサンプル4−1と同様にして、サンプル4−2を作製した。<Preparation of sample 4-2>
The coating liquid used for forming the light emitting layer of the organic EL element 3-2 was used, and the same as that of sample 4-1 except that the fluorescent compound A-2 was replaced with RISC compound B-3, and sample 4- 2 was prepared.
<サンプル4−3〜4−4の作製>
蛍光発光性化合物A−2をAIE−3又はAIE−4に置き換えた以外はサンプル4−1と同様にして、サンプル4−3〜4−4を作製した。<Preparation of samples 4-3-4-4>
Samples 4-3-4-4 were prepared in the same manner as in Sample 4-1 except that the fluorescent compound A-2 was replaced with AIE-3 or AIE-4.
<サンプル4−5〜4−6の作製>
有機EL素子3−4〜3−5の発光層の形成に用いた塗布液を使用し、発光性化合物の種類を表4に示す化合物に置き換えた以外はサンプル4−1と同様にして、サンプル4−5〜4−6を作製した。<Preparation of samples 4-5-4-6>
A sample was used in the same manner as in Sample 4-1 except that the coating liquid used for forming the light emitting layer of the organic EL elements 3-4 to 3-5 was used and the type of the luminescent compound was replaced with the compound shown in Table 4. 4-5-4-6 were prepared.
<スペクトルの評価>
実施例2と同様にして、表4に示す励起方法を用いてサンプルを発光させて、分光蛍光光度計(日立ハイテクサイエンス社製、F−7000)により室温下で発光スペクトルを測定し、発光極大波長を確認した。サンプル4−1〜4−4については、可視光領域を含む波長領域の光で光励起し、サンプル4−5〜4−6については、2.5mA/cm2で電流励起した。<Evaluation of spectrum>
In the same manner as in Example 2, the sample was made to emit light using the excitation method shown in Table 4, and the emission spectrum was measured at room temperature with a spectrofluorometer (Hitachi High-Tech Science Co., Ltd., F-7000) to maximize the emission. The wavelength was confirmed. Samples 4-1 to 4-4 were photoexcited with light in a wavelength region including the visible light region, and samples 4-5 to 4-6 were current-excited at 2.5 mA / cm 2.
その結果、発光性化合物としてRISC化合物とAIE分子とを併用したサンプル4−5の発光極大波長は、RISC化合物B−3のみを用いたサンプル4−2の発光極大波長や、AIE分子のみを用いたサンプル4−3の発光極大波長と近似する2箇所にあることが確認された。また、発光性化合物としてRISC化合物とAIE分子とを併用したサンプル4−6についても、同様に、サンプル4−2の発光極大波長や、サンプル4−4の発光極大波長と近似する2箇所にあることが確認された。よって、RISC化合物に生じた三重項励起子は、全てがAIE分子にエネルギー移動している訳ではなく、一部は、RISC化合物上で発光を生じさせている可能性が推察される。 As a result, as the emission maximum wavelength of the sample 4-5 in which the RISC compound and the AIE molecule are used in combination as the luminescent compound, the emission maximum wavelength of the sample 4-2 using only the RISC compound B-3 or only the AIE molecule is used. It was confirmed that the samples were located at two locations close to the maximum emission wavelength of the sample 4-3. Similarly, the sample 4-6 in which the RISC compound and the AIE molecule are used in combination as the luminescent compound is also located at two locations that are close to the emission maximum wavelength of the sample 4-2 and the emission maximum wavelength of the sample 4-4. It was confirmed that. Therefore, it is inferred that not all of the triplet excitons generated in the RISC compound are energy-transferred to the AIE molecule, and some of them may cause light emission on the RISC compound.
[実施例5]
発光性化合物としてAIE分子を含む有機EL素子を作製し、水分や酸素に対する耐性の評価を行った。[Example 5]
An organic EL device containing an AIE molecule as a luminescent compound was prepared, and resistance to water and oxygen was evaluated.
<有機EL素子5−1の作製>
電子輸送層の形成に用いた化合物ET−1を化合物ET−2に置き換え、ホスト化合物H−1をホスト化合物H−2に置き換え、封止を行わず素子を完成させたこと以外は有機EL素子1−3と同様にして、有機EL素子5−1を作製した。<Manufacturing of organic EL element 5-1>
The organic EL device except that the compound ET-1 used for forming the electron transport layer was replaced with the compound ET-2, the host compound H-1 was replaced with the host compound H-2, and the device was completed without sealing. The organic EL element 5-1 was produced in the same manner as in 1-3.
<有機EL素子5−2の作製>
電子輸送層の形成に用いた化合物ET−1を化合物ET−2に置き換え、ホスト化合物H−1をホスト化合物H−2に置き換え、封止を行わず素子を完成させたこと以外は有機EL素子1−4と同様にして、有機EL素子5−2を作製した。<Manufacturing of organic EL element 5-2>
The organic EL device except that the compound ET-1 used for forming the electron transport layer was replaced with the compound ET-2, the host compound H-1 was replaced with the host compound H-2, and the device was completed without sealing. The organic EL element 5-2 was manufactured in the same manner as in 1-4.
<水分や酸素に対する耐性の評価>
作製直後の有機EL素子の発光効率と、大気中で24時間放置した後の有機EL素子の発光効率とをそれぞれ求めて、発光効率の低下に基づいて水分や酸素に対する耐性を評価した。なお、発光効率(外部取り出し量子効率)は、実施例1と同様にして求めた。その結果を表5に示す。表中の発光効率は、各有機EL素子について、作製直後(0時間後)の測定値を100とした相対値を表す。<Evaluation of resistance to moisture and oxygen>
The luminous efficiency of the organic EL element immediately after production and the luminous efficiency of the organic EL element after being left in the air for 24 hours were determined, respectively, and the resistance to moisture and oxygen was evaluated based on the decrease in luminous efficiency. The luminous efficiency (external extraction quantum efficiency) was determined in the same manner as in Example 1. The results are shown in Table 5. The luminous efficiency in the table represents a relative value with the measured value immediately after fabrication (0 hours later) as 100 for each organic EL element.
表5に示すように、発光層にAIE分子を含む有機EL素子5−2では、大気中で放置した後においても、高い発光効率が確認された。この要因は明らかではないが、AIE分子が凝集体を形成することにより、個々の発光体の径が大きくなり、劣化の原因となる水分子や酸素との接触面積や衝突回数が減少したためであると推測できる。なお、この際に用いるリン光発光性金属錯体は、本明細書記載のDp−1〜Dp−59を用いた場合にも同様の結果が得られた。 As shown in Table 5, in the organic EL element 5-2 containing AIE molecules in the light emitting layer, high luminous efficiency was confirmed even after being left in the atmosphere. This factor is not clear, but it is because the diameter of each luminescent material is increased by forming aggregates of AIE molecules, and the contact area and the number of collisions with water molecules and oxygen that cause deterioration are reduced. Can be inferred. Similar results were obtained when Dp-1 to Dp-59 described in the present specification were used as the phosphorescent metal complex used in this case.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部1
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018027884 | 2018-02-20 | ||
JP2018027884 | 2018-02-20 | ||
PCT/JP2019/001612 WO2019163355A1 (en) | 2018-02-20 | 2019-01-21 | Organic electroluminescent element, luminescent thin film, display device, and luminescent device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2019163355A1 true JPWO2019163355A1 (en) | 2021-03-18 |
Family
ID=67687673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020502081A Pending JPWO2019163355A1 (en) | 2018-02-20 | 2019-01-21 | Organic electroluminescence element, luminescent thin film, display device and lighting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019163355A1 (en) |
WO (1) | WO2019163355A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110698332B (en) * | 2019-09-29 | 2022-04-19 | 桂林理工大学 | Tetraphenyl ethylene alkyne phenyl alkoxy bridging alkoxy benzophenanthrene binary compound and preparation method thereof |
CN112608217B (en) * | 2020-12-28 | 2022-04-22 | 华南理工大学 | Assembly and regulation fluorescence-enhanced aggregation-induced emission material, micro-nanosphere and preparation method and application |
-
2019
- 2019-01-21 WO PCT/JP2019/001612 patent/WO2019163355A1/en active Application Filing
- 2019-01-21 JP JP2020502081A patent/JPWO2019163355A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2019163355A1 (en) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6975639B2 (en) | π-conjugated compound, organic electroluminescence element material, light emitting material, luminescent thin film, organic electroluminescence element, display device and lighting device | |
JP6761662B2 (en) | Organic electroluminescence elements, display devices and lighting devices | |
JP5765223B2 (en) | MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT | |
JP5458890B2 (en) | Organic electroluminescence element, display device and lighting device | |
KR102241439B1 (en) | Organic electroluminescent element, method for manufacturing the same, display device, and lighting device | |
JP6876042B2 (en) | Organic electroluminescence elements, display devices, lighting devices | |
WO2010044342A1 (en) | Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device | |
WO2017126370A1 (en) | Organic electroluminescence element, display device, and lighting device | |
JPWO2006100888A1 (en) | Organic EL element material, organic EL element, display device and lighting device | |
JP7081898B2 (en) | Organic electroluminescence elements, display devices and lighting devices | |
JP6686748B2 (en) | Organic electroluminescence device, display device, lighting device, π-conjugated compound | |
JP6942127B2 (en) | Organic electroluminescence elements, display devices, lighting devices | |
JP2010165768A (en) | Organic electroluminescent element, display, illuminating device, and organic electroluminescent element material | |
JP2007169541A (en) | Material for organic electroluminescent element, organic electroluminescent element, display device and illuminating device | |
JP5636630B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP2017162872A (en) | Charge transporting thin film, electronic device including the same, organic electroluminescent element, display device, and lighting device | |
JP6911223B2 (en) | Organometallic complex, organic electroluminescence device and its manufacturing method, display device and lighting device | |
JP2009076826A (en) | Organic electroluminescent element, display device, and lighting system | |
JPWO2019163355A1 (en) | Organic electroluminescence element, luminescent thin film, display device and lighting device | |
WO2013140885A1 (en) | Organic electroluminescence element and illumination device | |
WO2018221173A1 (en) | Organic electroluminescent element, display device, and lighting device | |
JP6717150B2 (en) | Organic electronic device and electronic device | |
WO2016194865A1 (en) | Organic electroluminescent element | |
JP6809468B2 (en) | Cyclic heteroaromatic compounds, materials for organic electronics devices, organic electronics devices, and electronic devices | |
WO2016047661A1 (en) | Organic electroluminescence element |