JPWO2019161288A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019161288A5
JPWO2019161288A5 JP2020543643A JP2020543643A JPWO2019161288A5 JP WO2019161288 A5 JPWO2019161288 A5 JP WO2019161288A5 JP 2020543643 A JP2020543643 A JP 2020543643A JP 2020543643 A JP2020543643 A JP 2020543643A JP WO2019161288 A5 JPWO2019161288 A5 JP WO2019161288A5
Authority
JP
Japan
Prior art keywords
silicon
carbon
coated
nanoparticles
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020543643A
Other languages
Japanese (ja)
Other versions
JP2021514917A (en
JP7470043B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/018331 external-priority patent/WO2019161288A1/en
Publication of JP2021514917A publication Critical patent/JP2021514917A/en
Publication of JPWO2019161288A5 publication Critical patent/JPWO2019161288A5/ja
Application granted granted Critical
Publication of JP7470043B2 publication Critical patent/JP7470043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (29)

ケイ素-炭素ナノ複合材料を製造する方法であって、
酸化ケイ素で被覆されたケイ素ナノ粒子(以下、酸化ケイ素-被覆ケイ素ナノ粒子)を準備すること;
炭素材料で被覆された、酸化ケイ素-被覆ケイ素ナノ粒子を形成すること、ここで、炭素材料厚みは0.3~20nmである;
炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子のクラスターを形成すること;及び
すべてあるいは実質的にすべての酸化ケイ素を、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子のクラスターから除去して、ケイ素-炭素ナノ複合材料を形成すること
を含む方法。
A method for producing silicon-carbon nanocomposites,
Preparing silicon nanoparticles coated with silicon oxide (hereinafter referred to as silicon oxide-coated silicon nanoparticles);
Forming silicon oxide-coated silicon nanoparticles coated with carbon material, where the carbon material thickness is 0.3-20 nm;
Forming a cluster of silicon oxide-coated silicon nanoparticles coated with a carbon material; and removing all or substantially all silicon oxide from the cluster of silicon oxide-coated silicon nanoparticles coated with a carbon material. A method comprising forming a silicon-carbon nanocomposite material.
ケイ素-炭素ナノ複合材料を単離すること、及び/又は、ケイ素-炭素ナノ複合材料を洗浄すること、及び/又は、ケイ素-炭素ナノ複合材料を乾燥することをさらに含む、請求項1に記載の方法。 The first aspect of claim 1, further comprising isolating the silicon-carbon nanocomposite and / or cleaning the silicon-carbon nanocomposite and / or drying the silicon-carbon nanocomposite. the method of. ケイ素-炭素ナノ複合材料をリチウム化することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising lithium-forming the silicon-carbon nanocomposite. 炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子が、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子のクラスターを形成する間に焼結される、請求項1に記載の方法。 The method of claim 1, wherein the silicon oxide-coated silicon nanoparticles coated with a carbon material are sintered while forming clusters of silicon oxide-coated silicon nanoparticles coated with a carbon material. 導電性炭素材料が、酸化ケイ素-被覆ケイ素ナノ粒子のクラスターを形成する前に、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子に添加される、請求項1に記載の方法。 The method of claim 1, wherein the conductive carbon material is added to the silicon oxide-coated silicon nanoparticles coated with the carbon material before forming clusters of silicon oxide-coated silicon nanoparticles. ケイ素-炭素ナノ複合材料のケイ素ナノ粒子が、結晶質、多結晶、非晶質、又はそれらの組み合わせである、及び/又は、5~150nmの最長寸法を有する、請求項1に記載の方法。 The method of claim 1, wherein the silicon nanoparticles of the silicon-carbon nanocomposite are crystalline, polycrystalline, amorphous, or a combination thereof, and / or have a maximum dimension of 5 to 150 nm. ケイ素ナノ粒子が、球状、疑似球状、不規則形状、又はそれらの組み合わせである、請求項1に記載の方法。 The method according to claim 1, wherein the silicon nanoparticles are spherical, pseudo-spherical, irregularly shaped, or a combination thereof. 形成工程が、ダイセット及び液圧プレスを使用して、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子に圧力をかけて、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子の圧縮クラスターを形成すること、及び、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子の圧縮クラスターを粉砕して、酸化ケイ素-被覆ケイ素ナノ粒子のクラスターを形成することを含む、請求項1に記載の方法。 The forming process uses a die set and a hydraulic press to apply pressure to the carbon material-coated silicon oxide-coated silicon nanoparticles to compress clusters of carbon material-coated silicon oxide-coated silicon nanoparticles. The first aspect of the present invention comprises forming a cluster of silicon oxide-coated silicon nanoparticles by grinding compressed clusters of silicon oxide-coated silicon nanoparticles coated with a carbon material. Method. 炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子に圧力をかけた後であって、圧縮された炭素材料-被覆酸化ケイ素-被覆ケイ素ナノ粒子を粉砕する前に、炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子が焼結される、請求項8に記載の方法。 Silicon Oxide Coated with Carbon Material-Oxidation Coated with Carbon Material After Pressure on Coated Silicon Nanoparticles and Before Crushing Compressed Carbon Material-Silicon Coated Silicon Oxide-Coated Silicon Nanoparticles The method of claim 8, wherein the silicon-coated silicon nanoparticles are sintered. 酸化ケイ素-被覆ケイ素ナノ粒子の炭素材料被覆クラスターの形成が、化学蒸着を使用して実施される、請求項1に記載の方法。 The method of claim 1, wherein the formation of carbon material coated clusters of silicon oxide-coated silicon nanoparticles is performed using chemical vapor deposition. 1又は複数の追加的な炭素コーティング工程をさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising one or more additional carbon coating steps. ケイ素-炭素ナノ複合材料を製造する方法であって、
炭素材料で被覆されたケイ素ナノ粒子を形成すること;
任意で、1つ又は複数の炭素コーティング工程を行うこと、及び
少なくとも一部のケイ素を、前記炭素材料で被覆されたケイ素ナノ粒子から除去して、ケイ素-炭素ナノ複合材料を形成すること
を含む方法。
A method for producing silicon-carbon nanocomposites,
Forming silicon nanoparticles coated with carbon material;
Optionally, include performing one or more carbon coating steps and removing at least a portion of the silicon from the silicon nanoparticles coated with the carbon material to form a silicon-carbon nanocomposite. Method.
ケイ素-炭素ナノ複合材料のケイ素ナノ粒子が、結晶質、多結晶、非晶質、又はそれらの組み合わせである、及び/又は、5~250nmの最長寸法を有する、請求項12に記載の方法。 12. The method of claim 12, wherein the silicon nanoparticles of the silicon-carbon nanocomposite are crystalline, polycrystalline, amorphous, or a combination thereof, and / or have a maximum dimension of 5 to 250 nm. ケイ素ナノ粒子が、球状、疑似球状、不規則形状、又はそれらの組み合わせである、請求項12に記載の方法。 12. The method of claim 12, wherein the silicon nanoparticles are spherical, pseudo-spherical, irregularly shaped, or a combination thereof. 酸化ケイ素-被覆ケイ素ナノ粒子の炭素材料被覆クラスターの形成が、化学蒸着を使用して実施される、請求項12に記載の方法。 25. The method of claim 12, wherein the formation of carbon material coated clusters of silicon oxide-coated silicon nanoparticles is performed using chemical vapor deposition. 炭素材料で被覆された酸化ケイ素-被覆ケイ素ナノ粒子が焼結される、請求項12に記載の方法。 12. The method of claim 12, wherein the silicon oxide-coated silicon nanoparticles coated with a carbon material are sintered. ケイ素ナノ粒子;
連続的な炭素シェル;及び
炭素シェル内の間隙スペース
を含み、ケイ素ナノ粒子が、連続的な炭素シェルに被包されている、ケイ素-炭素ナノ複合材料。
Silicon nanoparticles;
A silicon-carbon nanocomposite material in which silicon nanoparticles are encapsulated in a continuous carbon shell, including a continuous carbon shell; and interstitial spaces within the carbon shell.
ケイ素-炭素ナノ複合材料が、複数の粒子を含み、各粒子が、
ケイ素ナノ粒子;
連続的な炭素シェル;及び
炭素シェル内の間隙スペースを含み、ケイ素ナノ粒子が、連続的な炭素シェルに被包されている、請求項17に記載のケイ素-炭素ナノ複合材料。
The silicon-carbon nanocomposite contains multiple particles, each particle
Silicon nanoparticles;
17. The silicon-carbon nanocomposite of claim 17, wherein the silicon nanoparticles are encapsulated in a continuous carbon shell, including a continuous carbon shell; and interstitial spaces within the carbon shell.
ケイ素-炭素ナノ複合材料が、ケイ素-炭素ナノ複合材料の総重量に基づいて、少なくとも75重量%のケイ素を有する、及び/又は、ケイ素-炭素ナノ複合材料のケイ素ナノ粒子が、5~150nmの最長寸法を有する、請求項18に記載のケイ素-炭素ナノ複合材料。 The silicon-carbon nanocomposite has at least 75% by weight of silicon based on the total weight of the silicon-carbon nanocomposite, and / or the silicon nanoparticles of the silicon-carbon nanocomposite are 5 to 150 nm. The silicon-carbon nanocomposite of claim 18, which has the longest dimensions. 連続的な炭素シェルが、0.3~20nmの厚みを有する、請求項17に記載のケイ素-炭素ナノ複合材料。 17. The silicon-carbon nanocomposite of claim 17, wherein the continuous carbon shell has a thickness of 0.3-20 nm. 連続的な炭素シェルが、100%非晶質ではない、及び/又は、欠陥の無いグラフェンではない、請求項17に記載のケイ素-炭素ナノ複合材料。 17. The silicon-carbon nanocomposite of claim 17, wherein the continuous carbon shell is not 100% amorphous and / or defect-free graphene. 連続的な炭素シェルが、0.7~2のD(sp3炭素)/G(sp2炭素)比のラマンスペクトルを示す炭素材料を含む、請求項17に記載のケイ素-炭素ナノ複合材料。 17. The silicon-carbon nanocomposite of claim 17, wherein the continuous carbon shell comprises a carbon material exhibiting a Raman spectrum with a D (sp 3 carbon) / G (sp 2 carbon) ratio of 0.7-2. 連続的な炭素シェルが、観察可能なG’ピーク及び0.1~0.7のG’/G比も示すラマンスペクトルを示す炭素材料を含む、請求項22に記載のケイ素-炭素ナノ複合材料。 22. The silicon-carbon nanocomposite of claim 22, wherein the continuous carbon shell comprises a carbon material exhibiting a Raman spectrum that also exhibits an observable G'peak and a G'/ G ratio of 0.1-0.7. .. 間隙スペースとケイ素ナノ粒子体積の体積比([間隙体積+ケイ素ナノ粒子体積]/ケイ素体積)が、3~5である、請求項17に記載のケイ素-炭素材料。 The silicon-carbon material according to claim 17, wherein the volume ratio of the gap space to the volume of silicon nanoparticles ([gap volume + volume of silicon nanoparticles] / volume of silicon) is 3 to 5. 請求項17に記載のケイ素ナノ複合材料を含む、イオン伝導性バッテリー用のアノード。 An anode for an ion conductive battery comprising the silicon nanocomposite of claim 17. さらに、1又は複数のバインダー、及び/又は、1又は複数のカーボン添加剤を含む、請求項25に記載のアノード。 25. The anode according to claim 25, further comprising one or more binders and / or one or more carbon additives. アノードが、3,500mA/gの電流で、少なくとも1,000サイクルの間、少なくとも1,000mAh/gのアノード容量、又は、400mA/gの電流で、少なくとも50サイクルあるいは少なくとも250サイクルの間、少なくとも2,000mAh/gのアノード容量を示す、請求項25に記載のアノード。 The anode has an anode capacity of at least 1,000 mAh / g at a current of 3,500 mA / g for at least 1,000 cycles, or at least 50 cycles or at least 250 cycles at a current of 400 mA / g. 25. The anode according to claim 25, which exhibits an anode capacity of 2,000 mAh / g. 請求項17に記載のケイ素ナノ複合材料、及び任意で、1又は複数の電解質、及び/又は、1又は複数の集電体、及び/又は、1又は複数のさらなる構成成分を含む、イオン伝導性バッテリー。 Ionic conductivity comprising the silicon nanocomposite of claim 17, and optionally one or more electrolytes and / or one or more current collectors and / or one or more additional components. battery. 1~500のセルを含み、各セルが、請求項25に記載のアノードを1つ又は複数、及び任意で、1又は複数のカソード、1又は複数の電解質、及び1又は複数の集電体を含んでいる、イオン伝導性バッテリー。 1 to 500 cells, each cell having one or more anodes according to claim 25, and optionally one or more cathodes, one or more electrolytes, and one or more current collectors. Includes an ion conductive battery.
JP2020543643A 2018-02-15 2019-02-15 Silicon-carbon nanomaterials, their production method and their uses Active JP7470043B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862631039P 2018-02-15 2018-02-15
US62/631,039 2018-02-15
PCT/US2019/018331 WO2019161288A1 (en) 2018-02-15 2019-02-15 Silicon-carbon nanomaterials, method of making same, and uses of same

Publications (3)

Publication Number Publication Date
JP2021514917A JP2021514917A (en) 2021-06-17
JPWO2019161288A5 true JPWO2019161288A5 (en) 2022-02-21
JP7470043B2 JP7470043B2 (en) 2024-04-17

Family

ID=67618814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543643A Active JP7470043B2 (en) 2018-02-15 2019-02-15 Silicon-carbon nanomaterials, their production method and their uses

Country Status (7)

Country Link
US (1) US20210114886A1 (en)
EP (1) EP3752287A4 (en)
JP (1) JP7470043B2 (en)
KR (1) KR20200128403A (en)
CN (1) CN111902210A (en)
MX (1) MX2020008494A (en)
WO (1) WO2019161288A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764346B2 (en) 2019-10-07 2023-09-19 Enevate Corporation Method and system for silicon-dominant lithium-ion cells with controlled utilization of silicon
US11843110B2 (en) * 2019-10-30 2023-12-12 GM Global Technology Operations LLC Methods for controlling formation of multilayer carbon coatings on silicon-containing electroactive materials for lithium-ion batteries
WO2021134197A1 (en) * 2019-12-30 2021-07-08 上海杉杉科技有限公司 Silicon-based negative electrode material and preparation method therefor, and lithium ion battery
US20230216030A1 (en) * 2020-05-22 2023-07-06 Fastcap Systems Corporation Si-containing composite anode for energy storage devices
US11584653B2 (en) 2020-11-13 2023-02-21 Ionobell, Inc. Silicon material and method of manufacture
US11066305B1 (en) 2020-11-13 2021-07-20 ionobell Inc Porous silicon manufactured from fumed silica
CN112645332B (en) * 2020-12-08 2022-07-12 东莞烯事达新材料有限公司 Graphene paper thermal interface material containing SIC fluff
CN115010137B (en) * 2021-03-05 2023-12-19 中国科学院过程工程研究所 Method for rapidly preparing silicon nanowires by using cut waste silicon powder and application
WO2022251358A1 (en) * 2021-05-25 2022-12-01 Ionobell, Inc. Silicon material and method of manufacture
CN113540422B (en) * 2021-07-14 2022-09-16 路华置富电子(深圳)有限公司 Silicon-carbon shell nano composite material, preparation method and lithium ion battery electrode
WO2023064395A1 (en) 2021-10-12 2023-04-20 Ionobell, Inc Silicon battery and method for assembly
US11945726B2 (en) 2021-12-13 2024-04-02 Ionobell, Inc. Porous silicon material and method of manufacture
WO2023159327A1 (en) * 2022-02-25 2023-08-31 Universal Matter Inc. Graphene and silicon based anodes for lithium-ion batteries
US20230275230A1 (en) * 2022-02-25 2023-08-31 Enevate Corporation Aqueous based polymers for silicon anodes
CN114361458B (en) * 2022-03-10 2022-07-15 宁德时代新能源科技股份有限公司 Positive electrode material and preparation method thereof, positive electrode piece, secondary battery, battery module, battery pack and electric device
CN116936750A (en) * 2023-09-18 2023-10-24 季华实验室 Lithium ion battery negative electrode plate, preparation method thereof, negative electrode plate slurry and lithium ion battery
CN118016866A (en) * 2024-04-10 2024-05-10 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798061B1 (en) * 2009-06-25 2017-11-16 삼성전자주식회사 Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery
CN102630355A (en) * 2009-11-03 2012-08-08 安维亚系统公司 High capacity anode materials for lithium ion batteries
US8912083B2 (en) * 2011-01-31 2014-12-16 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
JP5898572B2 (en) * 2012-06-13 2016-04-06 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US10873074B2 (en) * 2013-10-04 2020-12-22 The Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
CA2946280A1 (en) * 2014-04-18 2015-10-22 The Research Foundation For The State University Of New York Composite nanomaterials and micromaterials, films of same, and methods of making and uses of same
JP2017526144A (en) * 2014-08-29 2017-09-07 日本電気株式会社 Anode materials for lithium-ion batteries
CN105226249A (en) * 2015-09-11 2016-01-06 王晓亮 A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap
KR20180071147A (en) * 2015-11-12 2018-06-27 주식회사 동진쎄미켐 High performance electrodes
US20170222219A1 (en) * 2016-01-28 2017-08-03 Dong Sun Ordered nano-porous carbon coating on silicon or silicon/graphene composites as lithium ion battery anode materials
JP7133914B2 (en) * 2016-09-19 2022-09-09 三星電子株式会社 Porous silicon composite clusters, carbon composites using the same, and electrodes, lithium batteries, field emission devices, biosensors, semiconductor devices and thermoelectric devices containing the same
CN106935817B (en) * 2017-03-07 2019-05-31 浙江工业大学 A kind of preparation method of secondary cluster structure Silicon Based Anode Materials for Lithium-Ion Batteries
EP3656008B1 (en) * 2017-07-21 2022-06-15 Imerys Graphite & Carbon Switzerland Ltd. Carbon-coated silicon oxide / graphite composite particles, as well as preparation methods and applications of the same

Similar Documents

Publication Publication Date Title
JPWO2019161288A5 (en)
Song et al. Oligolayered Ti 3 C 2 T x MXene towards high performance lithium/sodium storage
CN107785560B (en) High-performance silicon-carbon negative electrode material and preparation method thereof
CN109742383B (en) Sodium ion battery hard carbon negative electrode material based on phenolic resin and preparation method and application thereof
Yu et al. A low-cost NiSe2 derived from waste nickel foam as a high-performance anode for sodium ion batteries
JP7470043B2 (en) Silicon-carbon nanomaterials, their production method and their uses
CN107528048B (en) Silicon-carbon composite, method for preparing the same, electrode material and battery comprising the same
KR101167744B1 (en) Nanocarbon composite structure having ruthenium oxide trapped therein
JP2022507401A (en) Silicon-Carbon Composite Anode Material
EP3021385B1 (en) Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
US20140030590A1 (en) Solvent-free process based graphene electrode for energy storage devices
US20160079591A1 (en) SiOx/Si/C Composite Material and Process of Producing thereof, and Anode for Lithium Ion Battery Comprising Said Composite Material
US20140302396A1 (en) Nano silicon-carbon composite material and preparation method thereof
WO2017007091A1 (en) Conductive single crystal silicon particles comprising micropores and having highly conductive carbon and ultra-thin metal film coated thereon, negative electrode active material for high capacity secondary battery comprising same, and method for preparing same
CN107207257B (en) Carbonized coconut shell-based anode for lithium ion capacitor
Liu et al. Pseudocapacitance contribution to three-dimensional micro-sized silicon@ Fe3O4@ few-layered graphene for high-rate and long-life lithium ion batteries
Liao et al. Carbon-encapsulated Sb6O13 nanoparticles for an efficient and durable sodium-ion battery anode
EP4092785A1 (en) Micron silicon-carbon composite negative electrode material, preparation method therefor, negative electrode plate, and lithium ion battery
CN111807345A (en) Silicon-carbon composite material, preparation method thereof, lithium battery negative electrode material and lithium battery
US11489164B2 (en) Highly dispersed silicon-carbon solid sol, preparation method and application thereof
CN107732195A (en) A kind of graphite modified method and graphite/silicon composite
Wang et al. Ultrasonication-assisted fabrication of porous ZnO@ C nanoplates for lithium-ion batteries
CN111088513A (en) Silver nanoparticle modified TiO2Preparation method and application of nanotube array
CN108306002B (en) Li applied to negative electrode of lithium ion battery21Si5Preparation of graphene composite material
CN107256951B (en) CoO/reduced graphene oxide composite negative electrode material and preparation method thereof