JPWO2019161141A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019161141A5
JPWO2019161141A5 JP2020543367A JP2020543367A JPWO2019161141A5 JP WO2019161141 A5 JPWO2019161141 A5 JP WO2019161141A5 JP 2020543367 A JP2020543367 A JP 2020543367A JP 2020543367 A JP2020543367 A JP 2020543367A JP WO2019161141 A5 JPWO2019161141 A5 JP WO2019161141A5
Authority
JP
Japan
Prior art keywords
terpene synthase
chimeric
seq
optionally
chimeric terpene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020543367A
Other languages
Japanese (ja)
Other versions
JP2021513846A (en
JP7553354B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/018122 external-priority patent/WO2019161141A1/en
Publication of JP2021513846A publication Critical patent/JP2021513846A/en
Publication of JPWO2019161141A5 publication Critical patent/JPWO2019161141A5/ja
Application granted granted Critical
Publication of JP7553354B2 publication Critical patent/JP7553354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (17)

1以上のテルペンを製造する方法であって、該方法は、キメラテルペンシンターゼをコードする核酸分子を含む宿主細胞を培養することを含み、ここで宿主細胞が、以下のテルペン:アルファ-グアイエン、デルタ-カジネン、シス-オイデスム-6-エン-11-オール、ベータ-カリオフィレン、フムレン、および/またはアルファ-カジノールの1以上を製造する、方法。A method of producing one or more terpenes, the method comprising culturing a host cell containing a nucleic acid molecule encoding a chimeric terpene synthase, wherein the host cell comprises the following terpenes: alpha-gueien, delta. -A method for producing one or more of cadinenes, cis-eudesmu-6-en-11-ol, beta-caryophyllene, humulene, and / or alpha-casinohl. キメラテルペンシンターゼが、少なくとも2つのテルペンシンターゼ由来の配列を含み、テルペンシンターゼの少なくとも1つが、植物のテルペンシンターゼであり、所望により、植物が、Hibiscadelphus wilderianus、Leucadendron grandiflorum、Macrostylis villosa、Orbexilum stipulatum、Shorea cuspidata、およびWendlandia angustifoliaからなる群から選択される、請求項1に記載の方法。The chimeric terpene synthase contains sequences from at least two terpene synthases, at least one of the terpene synthases is a plant terpene synthase, and optionally the plants are Hibiscadelphus wilderianus, Leucadendron grandiflorum, Macrostylis villosa, Orbexilum stipulatum, Shorea cuspidata. , And the method of claim 1, selected from the group consisting of Wendlandia angustifolia. キメラテルペンシンターゼが、配列番号17、22、または29と少なくとも95%同一のアミノ酸配列を含むアルファ-グアイエンシンターゼであり、所望により、アルファ-グアイエンシンターゼが、配列番号178、183、および211~214からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase is an alpha-guien synthase comprising an amino acid sequence that is at least 95% identical to SEQ ID NO: 17, 22, or 29, and optionally the alpha-guien synthase is SEQ ID NO: 178, 183, and 211-. The method of claim 1 or 2, comprising one or more sequences derived from a plant terpene synthase selected from the group consisting of 214. キメラテルペンシンターゼが、デルタ-カジネンを製造し、キメラテルペンシンターゼが、配列番号40、41、42、44、45、または47と少なくとも90%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号261、262、263、264、265、267、268、271、275、276、279、296、301、306、307、308、324、および325からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces delta-cadinene, the chimeric terpene synthase contains an amino acid sequence that is at least 90% identical to SEQ ID NO: 40, 41, 42, 44, 45, or 47, and optionally the chimeric terpene synthase. For terpene synthase in plants selected from the group consisting of SEQ ID NOs: 261, 262, 263, 264, 265, 267, 268, 271, 275, 276, 279, 296, 301, 306, 307, 308, 324, and 325. The method of claim 1 or 2, comprising one or more sequences from which it is derived. キメラテルペンシンターゼが、シス-オイデスム-6-エン-11-オールを製造し、キメラテルペンシンターゼが、配列番号36、37、43、46、48、49、50、または51と少なくとも90%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号245、246、247、248、249、255、256、257、258、290、291、292、329、337、338、343、および349からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces cis-eudesm-6-en-11-ol, and the chimeric terpene synthase is an amino acid that is at least 90% identical to SEQ ID NO: 36, 37, 43, 46, 48, 49, 50, or 51. Containing the sequence, optionally, the chimeric terpene synthase comprises SEQ ID NOs: 245, 246, 247, 248, 249, 255, 256, 257, 258, 290, 291, 292, 329, 337, 338, 343, and 349. The method of claim 1 or 2, comprising one or more sequences derived from a plant terpene synthase selected from the group. キメラテルペンシンターゼが、ベータ-カリオフィレンおよび/またはフムレンを製造し、キメラテルペンシンターゼが、配列番号23、24、25、または26と少なくとも90%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号184、185、186、187、188、190、191、194、195、196、および197からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces beta-caryophyllene and / or humulene, the chimeric terpene synthase comprises at least 90% identical amino acid sequence to SEQ ID NO: 23, 24, 25, or 26, and optionally the chimeric terpene synthase. Claim 1 or 2 comprising one or more sequences derived from the terpene synthase of a plant selected from the group consisting of SEQ ID NOs: 184, 185, 186, 187, 188, 190, 191, 194, 195, 196, and 197. The method described in. キメラテルペンシンターゼが、アルファ-カジノールを製造し、キメラテルペンシンターゼが、配列番号30~35のいずれか1つと少なくとも90%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号215、216、217、218、219、221、222、223、228、229、234、および237からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces alpha-casinolu, the chimeric terpene synthase contains at least 90% identical amino acid sequence to any one of SEQ ID NOs: 30-35, and optionally the chimeric terpene synthase is SEQ ID NO: 215, 216. 217, 218, 219, 221, 222, 223, 228, 229, 234, and 237. Method. キメラテルペンシンターゼが、デルタ-カジネンを製造し、キメラテルペンシンターゼが、配列番号1、3、4、5、6、7、または12と少なくとも98%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号119、120、121、122、123、124、125、139、140、141、および172からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces delta-cadinene, the chimeric terpene synthase contains an amino acid sequence that is at least 98% identical to SEQ ID NO: 1, 3, 4, 5, 6, 7, or 12, and optionally the chimeric terpene synthase. 1 comprises one or more sequences derived from a plant terpene synthase selected from the group consisting of SEQ ID NOs: 119, 120, 121, 122, 123, 124, 125, 139, 140, 141, and 172. Or the method according to 2. キメラテルペンシンターゼが、デルタ-カジネンを製造し、キメラテルペンシンターゼが、配列番号11、18、または19と少なくとも97%同一のアミノ酸配列を含み、所望により、キメラテルペンシンターゼが、配列番号171、179、および180からなる群から選択される植物のテルペンシンターゼに由来する1以上の配列を含む、請求項1または2に記載の方法。The chimeric terpene synthase produces delta-cadinene, the chimeric terpene synthase contains at least 97% identical amino acid sequence to SEQ ID NO: 11, 18, or 19, and optionally the chimeric terpene synthase is SEQ ID NO: 171 and 179. The method of claim 1 or 2, comprising one or more sequences derived from a plant terpene synthase selected from the group consisting of and 180. 宿主細胞が、真菌細胞、植物細胞、または細菌細胞であり、所望により、真菌細胞が、酵母細胞であり、さらに所望により、酵母細胞が、出芽酵母またはヤロウイア属酵母細胞であり、さらに所望により、出芽酵母細胞が、Saccharomyces cerevisiae細胞である、請求項1~9のいずれか一項に記載の方法。The host cell is a fungal cell, a plant cell, or a bacterial cell, optionally the fungal cell is a yeast cell, and optionally the yeast cell is a budding yeast or a yeast cell of the genus Yeast, and more optionally. The method according to any one of claims 1 to 9, wherein the sprouting yeast cell is a Saccharomyces cerevisiae cell. 1以上のテルペンを抽出することをさらに含む、請求項1~10のいずれか一項に記載の方法。The method according to any one of claims 1 to 10, further comprising extracting one or more terpenes. 1以上のテルペンの少なくとも1つが芳香化合物である、請求項1~11のいずれか一項に記載の方法。The method according to any one of claims 1 to 11, wherein at least one of the one or more terpenes is an aromatic compound. キメラテルペンシンターゼをコードする核酸分子を含む宿主細胞であって、ここでキメラテルペンシンターゼのアミノ酸配列の少なくとも10%が、絶滅した植物に由来する、宿主細胞。A host cell containing a nucleic acid molecule encoding a chimeric terpene synthase, wherein at least 10% of the amino acid sequence of the chimeric terpene synthase is derived from an extinct plant. キメラテルペンシンターゼをコードする核酸分子を含む宿主細胞を培養することを含む、芳香化合物を製造する方法であって、ここでキメラテルペンシンターゼが、少なくとも2つのテルペンシンターゼ由来の配列を含み、テルペンシンターゼの少なくとも1つが、絶滅した植物に由来する、方法。A method of producing an aromatic compound comprising culturing a host cell containing a nucleic acid molecule encoding a chimeric terpene synthase, wherein the chimeric terpene synthase comprises a sequence derived from at least two terpene synthases and comprises a sequence of terpene synthase. A method in which at least one is derived from an extinct plant. キメラテルペンシンターゼのアミノ酸配列の少なくとも10%が、絶滅した植物に由来し、所望により、キメラテルペンシンターゼが、配列番号1~52からなる群から選択されるアミノ酸に少なくとも90%同一のアミノ酸配列を含む、キメラテルペンシンターゼ。At least 10% of the amino acid sequence of the chimeric terpene synthase is derived from an extinct plant, and optionally the chimeric terpene synthase comprises at least 90% identical amino acid sequence to the amino acid selected from the group consisting of SEQ ID NOs: 1-52. , Chimera terpene synthase. 所望により、核酸分子が、配列番号67~118からなる群から選択されるヌクレオチド配列と少なくとも90%同一の配列を含む、請求項15に記載のキメラテルペンシンターゼをコードする核酸分子。The nucleic acid molecule encoding the chimeric terpene synthase according to claim 15, wherein the nucleic acid molecule optionally comprises a sequence that is at least 90% identical to the nucleotide sequence selected from the group consisting of SEQ ID NOs: 67-118. 配列番号119~357からなる群から選択される配列を含む、キメラテルペンシンターゼ。A chimeric terpene synthase comprising a sequence selected from the group consisting of SEQ ID NOs: 119-357.
JP2020543367A 2018-02-14 2019-02-14 Chimeric terpene synthases Active JP7553354B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862630640P 2018-02-14 2018-02-14
US62/630,640 2018-02-14
PCT/US2019/018122 WO2019161141A1 (en) 2018-02-14 2019-02-14 Chimeric terpene synthases

Publications (3)

Publication Number Publication Date
JP2021513846A JP2021513846A (en) 2021-06-03
JPWO2019161141A5 true JPWO2019161141A5 (en) 2022-02-22
JP7553354B2 JP7553354B2 (en) 2024-09-18

Family

ID=65685968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543367A Active JP7553354B2 (en) 2018-02-14 2019-02-14 Chimeric terpene synthases

Country Status (5)

Country Link
US (1) US12077799B2 (en)
EP (1) EP3752624A1 (en)
JP (1) JP7553354B2 (en)
KR (1) KR20200121331A (en)
WO (1) WO2019161141A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins
AU2021353004A1 (en) 2020-09-30 2023-04-13 Nobell Foods, Inc. Recombinant milk proteins and food compositions comprising the same
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants
CN112245424B (en) * 2020-10-19 2021-09-21 中国医学科学院医药生物技术研究所 Application of bisabolane sesquiterpene structural analogue in preparation of anti-coronavirus medicines
WO2023097167A1 (en) * 2021-11-24 2023-06-01 Ginkgo Bioworks, Inc. Engineered sesquiterpene synthases

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531303B1 (en) 1998-07-06 2003-03-11 Arkion Life Sciences Llc Method of producing geranylgeraniol
IL145767A (en) 2001-10-04 2006-10-31 Israel State Microbicidal formulation comprising an essential oil or its derivatives
ATE546521T1 (en) 2002-10-04 2012-03-15 Firmenich & Cie SESQUITERPENE SYNTHASES AND METHODS OF USE
JP2007517496A (en) 2003-09-02 2007-07-05 ステート オブ イスラエル、ミニストリー オブ アグリカルチャー、 アグリカルチュラル リサーチ オーガナイゼイション Citrus sesquiterpene synthase, method for its production, and method of use
WO2005052163A2 (en) 2003-11-26 2005-06-09 Firmenich Sa Sesquiterpene synthases from patchouli
US8828684B2 (en) 2004-07-27 2014-09-09 The Regents Of The University Of California Genetically modified host cells and use of same for producing isoprenoid compounds
WO2006133013A2 (en) 2005-06-03 2006-12-14 The Regents Of The University Of California Methods of generating protein variants with altered function
US7790413B2 (en) 2005-06-17 2010-09-07 Firmenich Sa Sesquiterpene synthases and methods of their use
US8699711B2 (en) 2007-07-18 2014-04-15 Interdigital Technology Corporation Method and apparatus to implement security in a long term evolution wireless device
CN101896607A (en) 2007-09-11 2010-11-24 蓝宝石能源公司 Produce molecule by photosynthetic organism
EP2255005A4 (en) 2008-02-28 2012-01-25 Univ California Use of synthetic scaffolds for the production of biosynthetic pathway products
US9297004B2 (en) 2008-03-06 2016-03-29 Firmenich Sa Method for producing α-santalene
WO2011141855A1 (en) 2010-05-10 2011-11-17 Firmenich Sa Method for producing patchoulol and 7 - epi - alpha - slinene
JP2013544084A (en) 2010-10-29 2013-12-12 アリリクス・インコーポレイテッド Modified valencene synthase polypeptide, coding nucleic acid molecule and uses thereof
EP2670846B1 (en) * 2011-02-02 2015-08-19 Amyris, Inc. Methods of developing terpene synthase variants
US9222096B2 (en) 2011-05-23 2015-12-29 Agriculture Victoria Services Pty Ltd Fungi and products thereof
WO2013000660A1 (en) 2011-06-27 2013-01-03 Firmenich Sa Modified microorganisms and use thereof for terpene production
WO2014081963A2 (en) 2012-11-21 2014-05-30 Nair, Ramesh Engineering plants to produce farnesene and other terpenoids
WO2014206412A1 (en) 2013-06-28 2014-12-31 Københavns Universitet Heterologous production of patchoulol, beta-santalene, and sclareol in moss cells
CN103352034A (en) 2013-07-12 2013-10-16 中国医学科学院药用植物研究所 Agilawood sesquiterpenoid synthase protein ASS4 and encoding gene and application thereof
CN112176000B (en) 2013-09-19 2024-09-10 弗门尼舍有限公司 Method for producing aromatic alcohols
WO2015153501A2 (en) 2014-03-31 2015-10-08 Allylix, Inc. Modified santalene synthase polypeptides, encoding nucleic acid molecules and uses thereof
US20170088852A1 (en) 2014-05-28 2017-03-30 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
JP2016154502A (en) * 2015-02-25 2016-09-01 神戸天然物化学株式会社 Production of oxidized sesquiterpene and use thereof
US10400254B1 (en) 2015-03-12 2019-09-03 National Technology & Engineering Solutions Of Sandia, Llc Terpene synthases for biofuel production and methods thereof
GB201516911D0 (en) 2015-09-24 2015-11-11 Givaudan Sa Perfume compositions
EP3368673B1 (en) 2015-10-29 2020-07-29 Amyris, Inc. Compositions and methods for production of myrcene
WO2018053507A2 (en) 2016-09-19 2018-03-22 Evolva Sa Production of sesquiterpene products and related molecules
EP3495489A1 (en) * 2017-12-05 2019-06-12 Givaudan SA Production of guaiene and rotundone
GB201804289D0 (en) 2018-03-16 2018-05-02 Innes John Centre Method
GB201808663D0 (en) 2018-05-25 2018-07-11 Innes John Centre Method
JP2022500018A (en) 2018-09-06 2022-01-04 マナス バイオ インコーポレイテッド Rotundone microbial production
US20210348204A1 (en) 2018-10-16 2021-11-11 Trait Biosciences, Inc. Systems, Methods, And Compositions For The Production of Water-Soluble Terpenes Derived From Cannabis Plants
WO2020176547A1 (en) 2019-02-25 2020-09-03 Ginkgo Bioworks, Inc. Biosynthesis of cannabinoids and cannabinoid precursors
WO2020225820A1 (en) 2019-05-08 2020-11-12 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Terpene synthases and transporters
CN112921024B (en) 2021-04-22 2022-10-14 杭州师范大学 Alpha-guaialene synthetase, gene and application
WO2022240995A1 (en) 2021-05-11 2022-11-17 Manus Bio Inc. Enzymes, host cells, and methods for production of rotundone and other terpenoids
NL2031120B1 (en) 2022-02-16 2023-08-22 Sestina Bio Llc Engineered alpha-guaiene synthases

Similar Documents

Publication Publication Date Title
Somssich et al. Differential early activation of defense-related genes in elicitor-treated parsley cells
Goulding et al. Ebb and flow of the chloroplast inverted repeat
Zhang et al. Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species
Feng et al. Complete chloroplast genomes of four Physalis species (Solanaceae): lights into genome structure, comparative analysis, and phylogenetic relationships
Smit et al. Plant biosynthetic gene clusters in the context of metabolic evolution
JPWO2019161141A5 (en)
Mishra et al. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing Hl WRKY1 and Hl WDR1 transcription factors
Mizia et al. Comparative plastomes analysis reveals the first infrageneric evolutionary hotspots of Orthotrichum sl (Orthotrichaceae, Bryophyta)
Djennane et al. CRISPR/Cas9 editing of Downy mildew resistant 6 (DMR6-1) in grapevine leads to reduced susceptibility to Plasmopara viticola
Tambarussi et al. In silico analysis of simple sequence repeats from chloroplast genomes of Solanaceae species
Venkatachalam et al. Current perspectives on application of biotechnology to assist the genetic improvement of rubber tree (Hevea brasiliensis Muell. Arg.): An Overview
CN105002194B (en) A kind of eucalyptus TPS genes, rna interference vector and application
CN105602967A (en) Applications of rice antisense-qGL3.2 gene to improvements of rice grain shape and 1000-kernel-mass traits
Zhang et al. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution
Ezura et al. Research tools for functional genomics in melon (Cucumis melo L.): Current status and prospects
US20210238619A1 (en) Guayule with increased rubber production and yield
Dai et al. Screening and analysis of soda saline-alkali stress induced up-regulated genes in sugar sorghum
Smith et al. The renaissance of comparative biochemistry
Rodríguez-Alvarez et al. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci
Wu et al. Differential miRNA expression profiling reveals a correlation between hbr-miR156 and laticifer differentiation in rubber trees
Wenzel Biotechnology in potato improvement
EP4083207A1 (en) Method for suppressing methylation of target dna in plant
Raju et al. In silico study in mitochondrial and chloroplast genomes of plants
Jo et al. Transcriptomic landscape of chrysanthemums infected by Chrysanthemum stunt viroid
Balilashaki et al. Unraveling Omics Based Technologies in Enhancing Abiotic Stress in Genus Rosa: Progress and Prospects