JPWO2019156174A1 - Particles, particle-containing compositions and methods for producing particles - Google Patents

Particles, particle-containing compositions and methods for producing particles Download PDF

Info

Publication number
JPWO2019156174A1
JPWO2019156174A1 JP2019571149A JP2019571149A JPWO2019156174A1 JP WO2019156174 A1 JPWO2019156174 A1 JP WO2019156174A1 JP 2019571149 A JP2019571149 A JP 2019571149A JP 2019571149 A JP2019571149 A JP 2019571149A JP WO2019156174 A1 JPWO2019156174 A1 JP WO2019156174A1
Authority
JP
Japan
Prior art keywords
particles
particle
yeast
present
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019571149A
Other languages
Japanese (ja)
Inventor
桂一 小泉
桂一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REVIUS PHARMA LLC.
Original Assignee
REVIUS PHARMA LLC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REVIUS PHARMA LLC. filed Critical REVIUS PHARMA LLC.
Publication of JPWO2019156174A1 publication Critical patent/JPWO2019156174A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants

Abstract

製剤に添加することで硬度、崩壊性等の特性を容易に制御することができ、抗酸化力および免疫活性化力をも有する新しい粒子を提供するため、最大径1nm以上150nm未満の粒子Aまたは最大径が150nm以上1000nm以下の粒子Bを、加熱処理した酵母から得るようにした。By adding to the preparation, properties such as hardness and disintegration can be easily controlled, and in order to provide new particles having antioxidative power and immunostimulatory power, particles A having a maximum diameter of 1 nm or more and less than 150 nm or Particles B having a maximum diameter of 150 nm or more and 1000 nm or less were obtained from heat-treated yeast.

Description

本発明は、熱安定性等の特性に優れるとともに、抗酸化力および免疫活性化力を有する、加熱処理した酵母から得られ、最大径が1nm以上150nm未満または150nm以上1000nm以下である粒子、これらの粒子を含有する組成物および上記粒子の製造方法に関するものである。 The present invention is a particle obtained from heat-treated yeast having excellent thermal stability and other properties, as well as antioxidant power and immunostimulatory power, and having a maximum diameter of 1 nm or more and less than 150 nm or 150 nm or more and 1000 nm or less. The present invention relates to a composition containing the above particles and a method for producing the above particles.

これまで、数多くの微細な粒子が様々な分野で用いられている。このような微細な粒子として、例えば、フラーレンやカーボンナノチューブ等のナノ粒子や、リポソーム等の天然物由来の微細な粒子が知られている。前者は耐熱性や耐溶剤性等の物性があり、後者は天然物由来で人体への適用が容易である等、多種多様な物性や特性が認められている。 So far, many fine particles have been used in various fields. As such fine particles, for example, nanoparticles such as fullerenes and carbon nanotubes and fine particles derived from natural products such as liposomes are known. The former has physical properties such as heat resistance and solvent resistance, and the latter is derived from natural products and is easily applied to the human body, and a wide variety of physical properties and properties are recognized.

しかしながら、各技術分野において、このような微細な粒子の物性や特性は、更なる向上が望まれているのが現状である。また、微細な粒子は、微細化、ナノ化していくほど製造が困難であり、その品質安定性や生産性の向上も望まれている。 However, in each technical field, it is currently desired to further improve the physical characteristics and properties of such fine particles. Further, it is difficult to manufacture fine particles as they become finer and nano-sized, and it is desired to improve their quality stability and productivity.

このような微細な粒子を用いる技術分野のうち、本発明者らは、製剤の技術分野に着目した。すなわち、製剤の技術分野では、製剤化を容易にする、品質の安定化を図る、有用性を高める等の目的で、ほとんどすべての製剤に、賦形剤、安定剤、保存剤、成形助剤等の添加剤が添加されている(特許文献1参照)。しかし、製剤の硬度を高めるための添加剤を用いると、製剤の硬度は高まるものの、崩壊性が低下するという問題が生じる傾向にある。また、逆に製剤の崩壊性を重視すると、所望の硬度を得ることができないという問題が生じる傾向にある。 Among the technical fields using such fine particles, the present inventors have focused on the technical field of formulations. That is, in the technical field of formulations, excipients, stabilizers, preservatives, and molding aids are used in almost all formulations for the purpose of facilitating formulation, stabilizing quality, and enhancing usefulness. And other additives have been added (see Patent Document 1). However, when an additive for increasing the hardness of the preparation is used, the hardness of the preparation is increased, but the disintegration property tends to be lowered. On the contrary, if the disintegration property of the preparation is emphasized, there tends to be a problem that a desired hardness cannot be obtained.

ところで、製剤のなかでも、医師等の処方箋が不要な一般用医薬品は、管理が厳格な医療用医薬品とは異なり、薬局等に陳列され、一般の人が容易に購入できるようになっている。しかしながら、薬局等の店舗構成によっては店内の温度が一定でないため、一般用医薬品は、医療用医薬品に比べ、より耐熱性、耐寒性が求められる傾向にある。また、食品、化粧品等も同様に、より耐熱性、耐寒性が求められる傾向にある。 By the way, among the preparations, over-the-counter drugs that do not require a prescription from a doctor or the like are displayed at pharmacies or the like, unlike medical drugs that are strictly managed, and can be easily purchased by the general public. However, since the temperature inside the store is not constant depending on the store structure of a pharmacy or the like, over-the-counter drugs tend to be required to have higher heat resistance and cold resistance than medical drugs. Similarly, foods, cosmetics, etc. tend to be required to have higher heat resistance and cold resistance.

特開2015−193600JP 2015-193600

本発明は、このような事情に鑑みなされたもので、製剤に添加することで硬度、崩壊性等の特性を容易に制御することができ、しかも、これらの特性を損なうことなく耐熱性、耐寒性を高めることのでき、一般用医薬品に配合しても充分に特性を発揮することのできる、新しい微細な粒子を提供する。 The present invention has been made in view of such circumstances, and by adding it to a preparation, properties such as hardness and disintegration can be easily controlled, and moreover, heat resistance and cold resistance are not impaired without impairing these properties. It provides new fine particles that can enhance the properties and exhibit sufficient properties even when blended in over-the-counter drugs.

上記目的を達成するため、本発明は、以下の[1]〜[8]を要旨とする。
[1]加熱処理した酵母から得られ、最大径が1nm以上150nm未満である粒子。
[2]加熱処理した酵母から得られ、最大径が150nm以上1000nm以下である粒子。
[3]上記粒子が球体である、[1]または[2]の粒子。
[4]上記粒子が糖を主成分としている、[1]〜[3]のいずれかの粒子。
[5][1]〜[4]のいずれかの粒子を含む粒子含有組成物。
[6]上記粒子が組成物全体に対し10〜99重量%含まれる、[5]の粒子含有組成物。
[7][1]〜[4]のいずれかの粒子を製造する方法であって、酵母を加熱する工程と、上記工程により得られた加熱物から粒子を分離する工程とを備える粒子の製造方法。
[8]上記酵母を加熱する工程の加熱が煮沸である、[7]の粒子の製造方法。
In order to achieve the above object, the gist of the present invention is the following [1] to [8].
[1] Particles obtained from heat-treated yeast and having a maximum diameter of 1 nm or more and less than 150 nm.
[2] Particles obtained from heat-treated yeast and having a maximum diameter of 150 nm or more and 1000 nm or less.
[3] The particles of [1] or [2], wherein the particles are spheres.
[4] The particles according to any one of [1] to [3], wherein the particles contain sugar as a main component.
[5] A particle-containing composition containing any of the particles of [1] to [4].
[6] The particle-containing composition of [5], wherein the particles are contained in an amount of 10 to 99% by weight based on the entire composition.
[7] A method for producing particles according to any one of [1] to [4], which comprises a step of heating yeast and a step of separating particles from the heated product obtained by the above step. Method.
[8] The method for producing particles according to [7], wherein the heating in the step of heating the yeast is boiling.

すなわち、本発明者は、様々な用途に適用可能である微細な粒子を得るため、種々の検討を重ねた。その結果、これまで明らかにされていない新しい微細な粒子を見い出した。この粒子は、その後の研究の結果、分散性、耐熱性、耐寒性等に優れるだけでなく、抗酸化力および免疫活性化力を有していることが判明した。 That is, the present inventor has repeated various studies in order to obtain fine particles that can be applied to various uses. As a result, we found new fine particles that have not been clarified so far. As a result of subsequent research, it was found that these particles not only have excellent dispersibility, heat resistance, cold resistance, etc., but also have antioxidant power and immunostimulatory power.

このように、本発明の粒子は、加熱処理した酵母から得られるものであるため、天然の食物繊維に由来する健康面の利益を享受することができる。しかも、最大径が、1〜1000nmと極めて小さく、水系および油系のいずれにも耐溶解性を有し、かつ耐熱性、耐圧性、耐寒性、耐乾燥性等に優れているため、幅広い製剤に配合することができる。また、本発明の粒子を製剤に用いると、硬度、崩壊性等の特性の制御を容易に行うことができ、所望の特性を備えた製剤を得ることができる。さらに、本発明の粒子は、抗酸化力および免疫活性化力を有しているため、上記粒子を含む粒子含有組成物は、活性酸素を抑えるとともに、免疫系の調節を行うことが期待できる。 As described above, since the particles of the present invention are obtained from heat-treated yeast, they can enjoy the health benefits derived from natural dietary fiber. Moreover, the maximum diameter is extremely small, 1 to 1000 nm, it has solubility resistance in both water and oil systems, and it is excellent in heat resistance, pressure resistance, cold resistance, drying resistance, etc., so that a wide range of formulations can be prepared. Can be blended with. Further, when the particles of the present invention are used in a preparation, properties such as hardness and disintegration can be easily controlled, and a preparation having desired properties can be obtained. Furthermore, since the particles of the present invention have antioxidant power and immune activating power, it can be expected that the particle-containing composition containing the particles suppresses active oxygen and regulates the immune system.

なかでも、本発明の粒子が球体であると、流動性、分散性に優れるものとなる。 Among them, when the particles of the present invention are spheres, they are excellent in fluidity and dispersibility.

そして、本発明の粒子が糖を主成分としていると、相対的にアレルゲンとなりやすいタンパク質含量が少ない、あるいは全くなくなるため、服用に際し、より安全性の高いものとすることができる。 When the particles of the present invention contain sugar as a main component, the protein content that tends to become an allergen is relatively low or completely eliminated, so that the particles can be made safer when taken.

また、本発明の粒子含有組成物のうち、上記粒子を組成物全体に対し10〜99重量%含むものは、より本発明の粒子が有する抗酸化力および免疫活性化力の恩恵を被ることができる。 Further, among the particle-containing compositions of the present invention, those containing the above particles in an amount of 10 to 99% by weight based on the entire composition may further benefit from the antioxidant power and immunostimulatory power of the particles of the present invention. it can.

さらに、本発明の粒子を製造する方法であって、酵母を加熱する工程と、上記工程により得られた加熱物から粒子を分離する工程とを備えるものは、より安全に粒子を製造することができる。 Further, the method for producing particles of the present invention, which comprises a step of heating yeast and a step of separating particles from the heated product obtained by the above step, can produce particles more safely. it can.

なかでも、上記酵母を加熱する工程の加熱が煮沸であると、より本発明の粒子の製造効率を高めることができる。 Above all, when the heating in the step of heating the yeast is boiling, the production efficiency of the particles of the present invention can be further improved.

なお、本発明において「主成分」とは、その材料の特性に影響を与える成分の意味であり、その成分の含有量は、通常、材料全体の50重量%以上である。 In the present invention, the "main component" means a component that affects the characteristics of the material, and the content of the component is usually 50% by weight or more of the whole material.

本発明の一実施の形態である粒子Aおよび粒子Bの製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the particle A and the particle B which are one Embodiment of this invention. (a)は上記粒子Aの集合体を示した写真であり、(b)は上記粒子Aの透過型電子顕微鏡写真であり、(c)は上記粒子Bの透過型電子顕微鏡写真であり、(d)は上記粒子Aおよび粒子Bの製造過程における別分画[液体(III)]に含まれる粒子の透過型電子顕微鏡写真であり、(e)は上記粒子Aおよび粒子Bの製造過程における別分画[白色浮遊物(IV)]に含まれる粒子の透過型電子顕微鏡写真である。(A) is a photograph showing an aggregate of the particles A, (b) is a transmission electron micrograph of the particles A, and (c) is a transmission electron micrograph of the particles B. d) is a transmission electron micrograph of the particles contained in the separate fraction [liquid (III)] in the manufacturing process of the particles A and B, and (e) is another in the manufacturing process of the particles A and B. It is a transmission electron micrograph of the particles contained in the fraction [white suspended matter (IV)]. 上記粒子Aの粒子径の分布を示した図である。It is a figure which showed the distribution of the particle diameter of the said particle A. 上記粒子Bの粒子径の分布を示した図である。It is a figure which showed the distribution of the particle diameter of the said particle B. 上記液体(III)に含まれる粒子の粒子径の分布を示した図である。It is a figure which showed the distribution of the particle diameter of the particle contained in the said liquid (III). 上記白色浮遊物(IV)に含まれる粒子の粒子径の分布を示した図である。It is a figure which showed the distribution of the particle diameter of the particle contained in the said white suspended matter (IV). 上記粒子AのRaman分析スペクトルを示した図である。It is a figure which showed the Raman analysis spectrum of the said particle A. (a)は上記粒子Aを超純水に分散させたものを凍結乾燥した状態を示した写真であり、(b)はその粒子Aを再度超純水に分散させた状態を示した写真であり、(c)はその粒子Aの透過型電子顕微鏡写真であり、(d)はその粒子Aの粒子径の分布を示した図である。(A) is a photograph showing the state in which the particles A are dispersed in ultrapure water and dried, and (b) is a photograph showing the state in which the particles A are dispersed in ultrapure water again. Yes, (c) is a transmission electron micrograph of the particle A, and (d) is a diagram showing the distribution of the particle size of the particle A. (a)は凍結乾燥した粒子Aを再度超純水に分散させ、超純水ごとオートクレーブした状態を示した写真であり、(b)はその粒子Aの透過型電子顕微鏡写真であり、(c)はその粒子Aの粒子径の分布を示した図である。(A) is a photograph showing a state in which the freeze-dried particles A are dispersed in ultrapure water again and autoclaved together with the ultrapure water, and (b) is a transmission electron micrograph of the particles A, (c). ) Is a diagram showing the distribution of the particle size of the particle A. (a)は凍結乾燥後の粒子Aを再度超純水に分散させ、一週間経過後の状態を示した写真であり、(b)はその粒子Aの透過型電子顕微鏡写真であり、(c)はその粒子Aの粒子径の分布を示した図である。(A) is a photograph showing the state after one week has passed by dispersing the freeze-dried particles A in ultrapure water again, and (b) is a transmission electron micrograph of the particles A, (c). ) Is a diagram showing the distribution of the particle size of the particle A.

つぎに、本発明を実施するための形態について説明する。但し、本発明は、この実施の形態に限定されるものではない。 Next, a mode for carrying out the present invention will be described. However, the present invention is not limited to this embodiment.

本発明において「酵母」とは、子のう菌類および担子菌類等に属する、単細胞で形がほぼ球形の真核微生物であって、生活環の大部分を単細胞で経過する、いわゆる発酵をおこなう酵母全般をいい、酵母そのものはもちろん、凍結状態および乾燥状態等、各種状態を含むものを意味する。均一性の高い粒子を大量に製造することが容易な点から、とりわけ、サッカロマイセス属やシゾサッカロマイセス属に属する酵母が好ましく用いられる。 In the present invention, the "yeast" is a unicellular, almost spherical eukaryotic microorganism belonging to ascospores, basidiomycetes, etc., and a yeast that undergoes so-called fermentation in which most of the life cycle is unicellular. It refers to the whole, and means not only yeast itself but also various states such as frozen state and dry state. Yeasts belonging to the genus Saccharomyces and Schizosaccharomyces are particularly preferably used because it is easy to produce particles having high uniformity in large quantities.

本発明において「粒子」とは、電子顕微鏡で観察した際、その構造が、2層構造、2重膜構造、多層構造、多重膜構造にも見えるものを意味する。すなわち、本発明の粒子は、少なくとも最外層と内部とは異なる電子密度を有している。 In the present invention, the "particle" means a structure that looks like a two-layer structure, a double-layer structure, a multi-layer structure, or a multi-layer structure when observed with an electron microscope. That is, the particles of the present invention have at least different electron densities from the outermost layer and the inner part.

本発明の一実施の形態である粒子は、最大径が1〜1500nmであり、40〜1000nmであることが好ましく、50〜800nmであることがより好ましく、さらに好適には50〜500nmである。そして、本発明において「粒子の最大径」とは、粒子が球体である場合にはその直径をいい、その他の形状である場合には、その最大長をいう。粒子の径は、例えば、得られた粒子を超純水に分散させ、その分散液を、濃厚系粒径アナライザーを用いて測定することができる。濃厚系粒径アナライザーを用いて粒子径を測定した場合、算出された平均粒子径をその粒子の最大径とし、算出された平均粒子径が、最大径で規定される範囲に入っていればよい。 The particles according to one embodiment of the present invention have a maximum diameter of 1 to 1500 nm, preferably 40 to 1000 nm, more preferably 50 to 800 nm, and even more preferably 50 to 500 nm. In the present invention, the "maximum diameter of the particle" means the diameter of the particle when it is a sphere, and the maximum length of the particle when it has another shape. The diameter of the particles can be measured, for example, by dispersing the obtained particles in ultrapure water and measuring the dispersion using a concentrated particle size analyzer. When the particle size is measured using a concentrated particle size analyzer, the calculated average particle size should be the maximum size of the particles, and the calculated average particle size should be within the range specified by the maximum size. ..

本発明の一実施の形態である粒子は、通常、カーボンナノチューブ等の尖った部分がない形状をしており、好ましくは球体の形状をしている。また、粒子の表面は平滑であり、物理的な接触によって形成された摩耗痕は見られない。上記球体には、真球だけでなく、卵形、楕円体等の形状も含まれる。粒子の形状は、例えば、ネガティブ染色した粒子を、透過型電子顕微鏡で撮影し、その外観を観察することにより判別することができる。例えば、ペレット状に集合した粒子を超純水に分散させ、この分散液をメッシュに吸着させ、その上に染色剤を載せる。そして、余剰の染色液を濾紙で吸い取り、乾燥させたものを、透過型電子顕微鏡で撮影することにより、粒子の外観を観察することができる。 The particles according to one embodiment of the present invention usually have a shape without sharp portions such as carbon nanotubes, and preferably have a spherical shape. In addition, the surface of the particles is smooth, and no wear marks formed by physical contact can be seen. The sphere includes not only a true sphere but also an oval shape, an ellipsoid, and the like. The shape of the particles can be determined, for example, by photographing the negatively stained particles with a transmission electron microscope and observing the appearance thereof. For example, particles collected in pellet form are dispersed in ultrapure water, this dispersion is adsorbed on a mesh, and a dyeing agent is placed on the mesh. Then, the appearance of the particles can be observed by sucking up the excess dyeing solution with a filter paper and drying it with a transmission electron microscope.

本発明の一実施の形態である粒子は、水系の液体に対する分散性が高い。また、その優れた分散性が長期間保たれる。粒子の分散性は、例えば、得られた粒子を超純水に分散させ、その分散液を透過型電子顕微鏡で撮影し、その分散の程度を観察することにより判別することができる。また、上記分散液を、一定期間保存後のものと対比することにより、分散性保持の程度を判別することができる。 The particles according to one embodiment of the present invention have high dispersibility in an aqueous liquid. Moreover, its excellent dispersibility is maintained for a long period of time. The dispersibility of the particles can be determined, for example, by dispersing the obtained particles in ultrapure water, photographing the dispersion with a transmission electron microscope, and observing the degree of dispersion. Further, the degree of maintaining dispersibility can be determined by comparing the dispersion liquid with that after storage for a certain period of time.

本発明の一実施の形態である粒子は、耐圧性および耐熱性に優れ、少なくとも2気圧までの加圧、121℃までの加熱により粒子径の変化がほぼない。粒子の耐圧性、耐熱性は、例えば、超純水に分散させた粒子と、この分散液を加圧および加熱したものとに含まれる粒子について、それぞれ濃厚系粒径アナライザーで粒子径の分布を算出し、両者を対比したときに、両者において粒子径の分布が変動していないことから判別することができる。 The particles according to the embodiment of the present invention are excellent in pressure resistance and heat resistance, and the particle size does not change by pressurization up to at least 2 atm and heating up to 121 ° C. For the pressure resistance and heat resistance of the particles, for example, the particle size distribution of the particles dispersed in ultrapure water and the particles contained in the pressurized and heated dispersion is determined by using a concentrated particle size analyzer. When calculated and compared between the two, it can be determined from the fact that the distribution of the particle size does not fluctuate between the two.

本発明の一実施の形態である粒子は、耐寒性および耐乾燥性に優れ、−50から−80℃までの冷却、乾燥により粒子径の変化がほぼない。粒子の耐寒性および耐乾燥性は、例えば、超純水に分散させた粒子と、この分散液を凍結乾燥(−50℃)し、その乾燥物を再度超純水に分散させたものに含まれる粒子について、それぞれ濃厚系粒径アナライザーで粒子径の分布を算出し、両者を対比したときに粒子径の分布が変動していないことから判別することができる。また、上記凍結乾燥物を−80℃で7日間保存後、超純水に分散させたものに含まれる粒子を、同様に対比させても粒子径の分布の変動はない。 The particles according to the embodiment of the present invention are excellent in cold resistance and drying resistance, and the particle size does not change almost by cooling and drying from -50 to -80 ° C. The cold resistance and drying resistance of the particles are included in, for example, the particles dispersed in ultrapure water and the dispersion liquid freeze-dried (-50 ° C.) and the dried product dispersed in ultrapure water again. The particle size distribution of each of these particles is calculated with a concentrated particle size analyzer, and it can be determined from the fact that the particle size distribution does not fluctuate when the two are compared. Further, even if the particles contained in the freeze-dried product after being stored at −80 ° C. for 7 days and then dispersed in ultrapure water are compared in the same manner, the distribution of the particle size does not change.

本発明の一実施の形態である粒子は、優れた抗酸化力を有している。なかでも、最大径が80nm以上、好ましくは150nm以上、1500nm以下、好ましくは1000nm以下、より好ましくは800nm以下の粒子が優れた抗酸化力を有し、80nm以上1500nm以下、好ましくは150nm以上1000nm以下の粒子がより優れた抗酸化力を有し、150nm以上800nm以下の粒子がさらに優れた抗酸化力を有している。上記粒子が抗酸化力を有していることは、例えば、得られた粒子を超純水に分散させ、その分散液をESRスピントラッピング法(以下「ESR法」という)により、体内で発生する活性酸素であるスーパーオキシドラジカル、ヒドロキシルラジカルおよび一重項酸素を消去する能力を測定し、その結果から判別することができる。 The particles according to one embodiment of the present invention have excellent antioxidant power. Among them, particles having a maximum diameter of 80 nm or more, preferably 150 nm or more and 1500 nm or less, preferably 1000 nm or less, more preferably 800 nm or less have excellent antioxidant power, and 80 nm or more and 1500 nm or less, preferably 150 nm or more and 1000 nm or less. Particles have more excellent antioxidant power, and particles of 150 nm or more and 800 nm or less have further excellent antioxidant power. The fact that the particles have antioxidant power is generated in the body by, for example, dispersing the obtained particles in ultrapure water and subjecting the dispersion to an ESR spin trapping method (hereinafter referred to as "ESR method"). The ability to scavenge superoxide radicals, hydroxyl radicals and singlet oxygen, which are active oxygen, can be measured and discriminated from the results.

本発明の一実施の形態である粒子は、優れた免疫活性化力を有している。なかでも、最大径が1nm以上、好ましくは50nm以上、250nm未満、好ましくは150nm未満の粒子が優れた免疫活性化力を有し、1nm以上250nm未満、好ましくは1nm以上150nm未満の粒子がより優れた免疫活性化力を有し、50nm以上150nm未満の粒子がより一層優れた免疫活性化力を有している。上記粒子が免疫活性化力を有していることは、例えば、マクロファージ等の免疫担当細胞を活性化するリポポリサッカライド(LPS)をポジティブコントロールとしたときの、インターフェロンβ(IFNβ)、インターロイキン−6(IL−6)および腫瘍壊死因子α(TNFα)の産生量を測定し、その結果から判別することができる。 The particles according to one embodiment of the present invention have excellent immunostimulatory activity. Among them, particles having a maximum diameter of 1 nm or more, preferably 50 nm or more and less than 250 nm, preferably less than 150 nm have excellent immunostimulatory activity, and particles having a maximum diameter of 1 nm or more and less than 250 nm, preferably 1 nm or more and less than 150 nm are more excellent. It has an immunostimulatory power, and particles having a diameter of 50 nm or more and less than 150 nm have an even more excellent immunostimulatory power. The fact that the particles have immunostimulatory activity means that, for example, when lipopolysaccharide (LPS) that activates immunocompetent cells such as macrophages is used as a positive control, interferon β (IFNβ) and interleukin- The production amounts of 6 (IL-6) and tumor necrosis factor α (TNFα) can be measured and discriminated from the results.

なお、加圧、加熱、冷却、乾燥を行っても、本発明の一実施の形態である粒子の構造は変化しない。このことは、粒子を超純水に分散させたものと、この分散液を加圧および加熱したもの、または冷却および乾燥したものを再度超純水に分散させ、電子顕微鏡でそれらに含まれる粒子の構造を対比観察することにより判別することができる。これらは、従来のナノ粒子である、リポソーム等では得られなかった特性である。 Even if pressurization, heating, cooling, and drying are performed, the structure of the particles according to the embodiment of the present invention does not change. This means that the particles are dispersed in ultrapure water, and the dispersion is pressurized and heated, or cooled and dried, and then dispersed again in ultrapure water, and the particles contained in them are measured with an electron microscope. It can be discriminated by observing the structure of. These are properties that could not be obtained with conventional nanoparticles such as liposomes.

このような粒子は、例えば、酵母を加熱する工程と、上記工程により得られた加熱物から粒子を分離する工程とを備える方法により製造することができる。 Such particles can be produced, for example, by a method including a step of heating yeast and a step of separating the particles from the heated product obtained by the above step.

上記酵母を加熱する工程としては、例えば、酵母を培養液ごと95℃近傍に設定された加熱乾燥室に入れ、加熱と乾燥とを同時に行うことや、酵母を液体に浸漬し、この液体ごと酵母を加熱すること等があげられ、より好ましくは液体ごと酵母を加熱することであり、加熱工程の加熱が煮沸であることがより好ましい。上記液体ごと酵母を加熱することについて、より詳しく説明する。まず、材料となる、酵母を準備する。この酵母はどのような状態であってもよいが、粒子の製造効率を高める点から、乾燥、粉砕されていることが好ましい。上記準備した酵母を別途用意した液体に浸漬し、通常、60℃以上で3分間以上、加熱することにより、上記酵母を構成する成分を液体に溶解させた加熱物を得る。なお、加熱時間が長いほど酵母から得られる粒子の収率が高まる傾向がみられる。上記液体としては、例えば、水、アルコール等の各種溶媒として用いられる液体を単独もしくは2種以上混合して用いることがあげられる。しかし、粒子を服用等することを考慮すると、健康面への配慮の点から、水もしくは水系の液体が好ましく用いられる。 As a step of heating the yeast, for example, the yeast is placed in a heating / drying chamber set at around 95 ° C. together with the culture solution to perform heating and drying at the same time, or the yeast is immersed in a liquid and the yeast is immersed together with the liquid. It is more preferable to heat the yeast together with the liquid, and it is more preferable that the heating in the heating step is boiling. The heating of yeast together with the above liquid will be described in more detail. First, prepare yeast as a material. The yeast may be in any state, but it is preferably dried and pulverized from the viewpoint of increasing the production efficiency of particles. The prepared yeast is immersed in a separately prepared liquid and usually heated at 60 ° C. or higher for 3 minutes or longer to obtain a heated product in which the components constituting the yeast are dissolved in the liquid. The longer the heating time, the higher the yield of particles obtained from yeast. Examples of the liquid include liquids used as various solvents such as water and alcohol, which are used alone or in combination of two or more. However, considering taking particles and the like, water or a water-based liquid is preferably used from the viewpoint of health consideration.

なお、本発明において「酵母を構成する成分を液体に溶解させる」とは、細胞壁の基本骨格と基質とを分離する等して酵母の構造を崩壊させ、液体中に崩壊した酵母の成分が分散した系を形成することをいい、酵母の成分の一つである多糖をサイズの小さいものに分解する等により、液体中に分散させることも含む意味である。 In the present invention, "dissolving the components constituting yeast in a liquid" means that the structure of yeast is disrupted by separating the basic skeleton of the cell wall and the substrate, and the components of the yeast that have collapsed in the liquid are dispersed. It means to form a system of yeast, and it also means to disperse it in a liquid by decomposing a polysaccharide, which is one of the components of yeast, into a small one.

つぎに、上記工程により得られた加熱物から、本発明の粒子を分離する工程としては、例えば、遠心分離、フィルターろ過、限外ろ過、超遠心分離等があげられる。これらは、材料となる細胞壁を有する生物の種類等に応じて、より適するものが用いられる。なかでも、操作の容易性の点から、遠心分離、フィルターろ過が好ましく、精製度を高める点から、これらを組み合わせて用いることが好ましい。
なお、加熱工程を経由した酵母が乾燥状態である場合には、これを液体に浸漬させ、液体中に崩壊した酵母の成分を分散させたものに対し、上記粒子を分離する工程を行うことが好ましい。
Next, examples of the step of separating the particles of the present invention from the heated product obtained by the above step include centrifugation, filter filtration, ultrafiltration, ultracentrifugation and the like. These are more suitable depending on the type of organism having a cell wall as a material and the like. Among them, centrifugation and filter filtration are preferable from the viewpoint of ease of operation, and it is preferable to use them in combination from the viewpoint of increasing the degree of purification.
When the yeast that has passed through the heating step is in a dry state, it is possible to immerse the yeast in a liquid and perform a step of separating the particles from the one in which the components of the yeast that has collapsed in the liquid are dispersed. preferable.

上記遠心分離としては、粒子のサイズにもよるが、例えば、加熱物を1万〜100万Gで遠心分離し、その上清を採取する方法があげられる(粗分離工程)。さらに、より精製度を高めるために、例えば、上記上清をポアサイズ0.22〜0.45μmのフィルターでろ過し、そのろ液を得るようにしてもよい(精密分離工程)。 The centrifugal separation includes, although it depends on the size of the particles, a method of centrifuging the heated product at 10,000 to 1 million G and collecting the supernatant (coarse separation step). Further, in order to further increase the degree of purification, for example, the supernatant may be filtered through a filter having a pore size of 0.22 to 0.45 μm to obtain a filtrate (precision separation step).

このように、本発明の一実施の形態である粒子は、酵母を構成する成分、例えば各種糖類等に対し、末端分子の置換等を行うことを目的とする手法(例えば、苛性ソーダ、塩酸等を用いる手法)を採用していないため、安全性にも優れている。 As described above, the particles according to the embodiment of the present invention can be prepared by using a method (for example, caustic soda, hydrochloric acid, etc.) for the purpose of substituting terminal molecules for components constituting yeast, for example, various sugars. Since it does not use the method used), it is also excellent in safety.

本発明の一実施の形態である粒子は、例えば、製剤、食品、化粧品等に配合することにより、添加剤として各特性、例えば、硬度や崩壊性等の制御が可能になる。製剤等において、添加剤を検討する際には、添加剤が主剤の配合量に制限を生じさせないことが重要になる。しかし、本発明の粒子は、製剤等を構成する組成物に対し比較的少量の添加で各特性の制御が可能となるため、主剤の配合量に制限を生じさせることがなく、配合の自由度を高めることができる。 By blending the particles according to the embodiment of the present invention into, for example, preparations, foods, cosmetics, etc., it becomes possible to control each property, for example, hardness, disintegration, etc. as an additive. When considering an additive in a formulation or the like, it is important that the additive does not limit the blending amount of the main agent. However, since each characteristic of the particles of the present invention can be controlled by adding a relatively small amount to the composition constituting the preparation or the like, there is no limitation on the blending amount of the main agent, and the degree of freedom of blending is not limited. Can be enhanced.

本発明の一実施の形態である粒子を添加剤として配合する場合には、組成物全体に対し、0.01〜95重量%含まれていることが好ましく、より好ましくは0.01〜90重量%、さらに好ましくは0.1〜50重量%、より一層好ましくは1〜10重量%である。 When the particles according to the embodiment of the present invention are blended as an additive, they are preferably contained in an amount of 0.01 to 95% by weight, more preferably 0.01 to 90% by weight, based on the entire composition. %, More preferably 0.1 to 50% by weight, even more preferably 1 to 10% by weight.

また、本発明の一実施の形態である粒子は、例えば、製剤、食品等に配合することにより、抗酸化作用を有する組成物および免疫活性化作用を有する組成物として利用することができる。
抗酸化作用を有する組成物または免疫活性化作用を有する組成物に上記粒子を配合する場合には、例えば、組成物全体に対して粒子が10重量%以上含まれることが好ましく、20重量%以上含まれることがより好ましく、30重量%以上含まれることがさらに好ましく、40重量%以上含まれることがより一層好ましく、さらに一層好ましくは50重量%以上含まれることである。また、組成物全体に対して粒子含量が99重量%以下であることが好ましく、90重量%以下であることがより好ましく、80重量%以下であることがさらに好ましく、70重量%以下であることがより一層好ましく、さらに一層好ましくは60重量%以下である。含有量が少なすぎると、所望の作用を発揮するために多量の摂取が必要となる傾向がみられ、逆に多すぎると所望の作用を得るためのコントロールがし辛くなる傾向がみられるためである。
In addition, the particles according to one embodiment of the present invention can be used as a composition having an antioxidant effect and a composition having an immunostimulatory effect by blending them in, for example, preparations, foods and the like.
When the above particles are blended in a composition having an antioxidant effect or a composition having an immunostimulatory effect, for example, the particles are preferably contained in an amount of 10% by weight or more, preferably 20% by weight or more, based on the entire composition. It is more preferably contained, more preferably 30% by weight or more, further preferably 40% by weight or more, and even more preferably 50% by weight or more. Further, the particle content is preferably 99% by weight or less, more preferably 90% by weight or less, further preferably 80% by weight or less, and 70% by weight or less with respect to the entire composition. Is even more preferable, and even more preferably 60% by weight or less. If the content is too low, it tends to require a large amount of intake to exert the desired effect, and conversely, if it is too high, it tends to be difficult to control to obtain the desired effect. is there.

つぎに、実施例を説明する。まず、本発明の粒子自体について検討を行い(実施例1)、ついで、これらの粒子を用いた製剤について検討を行った(実施例2)。ただし、本発明は、これに限定されるものではない。 Next, an embodiment will be described. First, the particles of the present invention themselves were examined (Example 1), and then a preparation using these particles was examined (Example 2). However, the present invention is not limited to this.

〔本発明の粒子自体についての検討〕
下記に示す手順で本発明の一実施の形態である粒子Aおよび粒子Bをそれぞれ作製した。そして、得られた粒子Aおよび粒子Bについて、下記のとおりに粒子径の分布の算出を行った。そして、粒子Aについては、外観の観察、構成糖およびリグニンの分析、Raman分析、耐熱性、耐圧性、耐寒性および耐乾燥性の評価、水分散性および保存性の評価を下記の各項目に従い行った。
さらに、粒子Aおよび粒子Bについて、抗酸化力および免疫活性化力について測定し、それぞれ後記の項目に従い評価した。
[Examination of the particles of the present invention]
Particles A and B, which are embodiments of the present invention, were produced by the procedure shown below. Then, the distribution of particle diameters of the obtained particles A and B was calculated as follows. Then, for particle A, observation of appearance, analysis of constituent sugars and lignin, raman analysis, evaluation of heat resistance, pressure resistance, cold resistance and drought resistance, evaluation of water dispersibility and storage stability are performed according to the following items. went.
Furthermore, the antioxidant power and the immunostimulatory power of the particles A and B were measured and evaluated according to the items described below.

〔実施例1〕
酵母(日本ガーリック社製、天然ビール酵母)100gを1Lの95℃の水に浸漬し、3時間加熱を続けて加熱物を得た。この加熱物を13,250Gで遠心分離を行い、比較的大きなサイズの夾雑物を取り除いた上澄を得た。この上澄を140,000Gで遠心分離を行った結果、図1に示すように4つに分画された。
すなわち、図1において、遠心管底部に付着する透明のペレット(I)、このペレットの近傍の遠心間底部に浮遊する白色の泥状物(II)、遠心管中間部の茶色の液体(III)および遠心管上層の白色浮遊物(IV)の4つの分画である。上記透明のペレット(I)は、粒子Aがペレット状に集合したものである。このペレット(I)だけを取り出したものを図2(a)示す。また、上記泥状物(II)は、粒子Bの集合体である。なお、上記液体(III)は、再度超遠心を行うことで、上記ペレット(I)および上記泥状物(II)に分画されるため、上記液体(III)には、上記粒子Aおよび粒子Bが含まれていると考えられる。
得られた粒子Aおよび粒子Bを定法に従い凍結乾燥(東京理科器械社製、EYEL4)して、以下の検討に供した。
[Example 1]
100 g of yeast (natural brewer's yeast manufactured by Nippon Garlic Co., Ltd.) was immersed in 1 L of water at 95 ° C. and heated continuously for 3 hours to obtain a heated product. This heated product was centrifuged at 13,250 G to obtain a supernatant from which impurities of a relatively large size were removed. As a result of centrifuging this supernatant at 140,000 G, it was fractionated into four as shown in FIG.
That is, in FIG. 1, a transparent pellet (I) adhering to the bottom of the centrifuge tube, a white muddy substance (II) floating on the bottom of the centrifuge in the vicinity of the pellet, and a brown liquid (III) in the middle of the centrifuge tube. And four fractions of white suspended matter (IV) in the upper layer of the centrifuge tube. The transparent pellet (I) is a collection of particles A in the form of pellets. FIG. 2A shows a sample obtained by taking out only the pellet (I). The muddy substance (II) is an aggregate of particles B. The liquid (III) is fractionated into the pellets (I) and the muddy substance (II) by performing ultracentrifugation again. Therefore, the liquid (III) includes the particles A and particles. It is considered that B is contained.
The obtained particles A and B were freeze-dried (manufactured by Tokyo Science Instruments Co., Ltd., EYEL4) according to a conventional method and subjected to the following studies.

(粒子径の分布の算出)
上記粒子Aおよび粒子Bについて、これらをそれぞれ超純水に分散し、その分散液を濃厚系粒径アナライザー(大塚電子社製、FPAR−1000)を用いて、ヒストグラム法により粒子径の分布を算出した。図3に粒子Aの粒子径の分布図を示し、図4に粒子Bの粒子径の分布図を示す。これらは、いずれも正規分布を示していた。なお、図3および図4において、正規分布から外れた粒子径の粒子がごく微量現れているが、これらは分画しきれなかったものが混入しているものと考えられる。したがって、粒子Aまたは粒子Bの平均粒子径を算出する際には、これらの混入粒子を除いたもので行うこともできる。
また、上記液体(III)に含まれる粒子および白色浮遊物(IV)に含まれる粒子についても同様に粒子径の分布を算出した。図5に液体(III)に含まれる粒子の粒子径の分布図を示し、図6に白色浮遊物(IV)に含まれる粒子の粒子径の分布図を示す。
(Calculation of particle size distribution)
The particles A and B are each dispersed in ultrapure water, and the dispersion is used to calculate the particle size distribution by the histogram method using a concentrated particle size analyzer (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.). did. FIG. 3 shows a distribution map of the particle size of the particle A, and FIG. 4 shows a distribution map of the particle size of the particle B. All of these showed a normal distribution. In addition, in FIGS. 3 and 4, a very small amount of particles having a particle size deviating from the normal distribution appear, but it is considered that these particles that could not be fractionated are mixed. Therefore, when calculating the average particle diameter of the particles A or B, it is possible to exclude these mixed particles.
In addition, the particle size distribution was calculated in the same manner for the particles contained in the liquid (III) and the particles contained in the white suspended matter (IV). FIG. 5 shows a distribution map of the particle size of the particles contained in the liquid (III), and FIG. 6 shows a distribution map of the particle size of the particles contained in the white suspended matter (IV).

(外観の観察)
上記粒子A、粒子B、上記液体(III)に含まれる粒子および上記白色浮遊物(IV)に含まれる粒子をそれぞれネガティブ染色し、透過型電子顕微鏡により撮影した。粒子Aの写真を図2(b)に示し、粒子Bの写真を図2(C)に示す。また、上記液体(III)に含まれる粒子の写真を図2(d)に示し、白色浮遊物(IV)に含まれる粒子の写真を図2(e)に示す。これらは、得られた各粒子を超純水に分散させ、この分散液をコロジオン貼付メッシュ(日新イーエム社製)に吸着させ、その上に酢酸ウラニル(染色剤)を載せる。そして、余剰の酢酸ウラニルを濾紙で吸い取り、乾燥させたものを、透過型電子顕微鏡(日本電子社製、JEM−1400TC)で撮影したものである。粒子Aの代表的なものは、図2(b)に示されるとおり、その最大径が約70nmの球体であった。また、粒子Bの代表的なものは、図2(c)に示されるとおり、その最大径が約500nmを超える球体であった。
(Observation of appearance)
The particles A and B, the particles contained in the liquid (III), and the particles contained in the white suspended matter (IV) were each negatively stained and photographed with a transmission electron microscope. A photograph of particle A is shown in FIG. 2 (b), and a photograph of particle B is shown in FIG. 2 (C). Further, a photograph of the particles contained in the liquid (III) is shown in FIG. 2 (d), and a photograph of the particles contained in the white suspended matter (IV) is shown in FIG. 2 (e). In these, each of the obtained particles is dispersed in ultrapure water, the dispersion is adsorbed on a collodion-attached mesh (manufactured by Nissin EM), and uranyl acetate (dyeing agent) is placed on the dispersion. Then, the excess uranyl acetate was sucked up with a filter paper and dried, which was photographed with a transmission electron microscope (JEM-1400TC, manufactured by JEOL Ltd.). A typical particle A was a sphere having a maximum diameter of about 70 nm, as shown in FIG. 2 (b). Further, as shown in FIG. 2C, a typical particle B was a sphere having a maximum diameter of more than about 500 nm.

(構成糖の分析)
上記粒子Aについて、その構成糖の分析を行った。構成糖の分析は以下の通り行った。すなわち、まず、ペレット状に集合し精製度が高まった粒子Aを真空乾燥機にて60℃で約1日乾燥させたものを供試試料(無水ベース)とし、この供試試料の適量(約0.3g)を天秤でビーカーへ量り取り、72%硫酸3mLを加え、30℃で撹拌しながら1時間放置した。この反応液を精製水84mLと混釈しながら耐圧瓶に完全に移した後、120℃で1時間オートクレーブで加熱分解した。加熱分解後、分解液と残渣をろ別し、ろ液と残渣の洗液を加えて100mLに定容したものを検液とした。また、分解時の糖の過分解を補正するために、単糖を用いた回収率試験を並行して行った。検液中の単糖(ラムノース、リボース、キシロース、アラビノース、フルクトース、マンノース、グルコース、ガラクトース)については、高速液体クロマトグラフ法(蛍光検出器)により定量を行った。分析に使用した装置は、ジーエルサイエンス社製、GL−7400 HPLC systemである。得られた分解液の単糖濃度と試料分解量から、試料中の構成糖量を算出した。得られた結果を下記の表1に示す。なお、表1の結果は、単糖の回収率試験より求めた分解時の糖過分解補正係数(Sf)を用い構成糖量を補正したものである。また、フルクトースは過分解されやすいため、Sfが大きな値となり、含まれる誤差が大きい。よって、過分解補正後のフルクトース量は参考値扱い(例えば表1中では「※2」として記載)としている。
(Analysis of constituent sugars)
The constituent sugars of the particles A were analyzed. The analysis of the constituent sugars was performed as follows. That is, first, particles A that have been assembled into pellets and have an increased degree of purification are dried in a vacuum dryer at 60 ° C. for about 1 day to prepare a test sample (anhydrous base), and an appropriate amount (about) of this test sample is used. 0.3 g) was weighed into a beaker with a balance, 3 mL of 72% sulfuric acid was added, and the mixture was left to stand for 1 hour with stirring at 30 ° C. This reaction solution was completely transferred to a pressure-resistant bottle while being mixed with 84 mL of purified water, and then decomposed by heating in an autoclave at 120 ° C. for 1 hour. After decomposition by heating, the decomposition solution and the residue were separated by filtration, the filtrate and the washing solution of the residue were added, and the volume was adjusted to 100 mL as a test solution. In addition, in order to correct the overdecomposition of sugar during decomposition, a recovery rate test using monosaccharide was conducted in parallel. The monosaccharides (rhamnose, ribose, xylose, arabinose, fructose, mannose, glucose, galactose) in the test solution were quantified by a high-speed liquid chromatograph method (fluorescence detector). The device used for the analysis is a GL-7400 HPLC system manufactured by GL Sciences. The amount of constituent sugar in the sample was calculated from the monosaccharide concentration of the obtained decomposition liquid and the amount of sample decomposition. The results obtained are shown in Table 1 below. The results in Table 1 are obtained by correcting the amount of constituent sugars using the sugar overdecomposition correction coefficient (Sf) at the time of decomposition obtained from the recovery rate test of monosaccharides. Further, since fructose is easily over-decomposed, Sf becomes a large value, and the included error is large. Therefore, the amount of fructose after over-decomposition correction is treated as a reference value (for example, it is described as "* 2" in Table 1).

上記表1に示される結果よりわかるように、上記粒子Aの構成糖は、ほぼ全量がグルコースである。この結果は、酵母の細胞壁が主にβ−グルカンで構成され、ヘミセルロースおよびリグニンをほぼ含有していないことに相関すると思われる。しかしながら、粒子Aの構成糖には、ガラクトース、ラムノース、マンノース等も含まれていることから、粒子Aが単なる成分の単離物でない。 As can be seen from the results shown in Table 1 above, almost all of the constituent sugars of the particles A are glucose. This result seems to correlate with the fact that the yeast cell wall is composed mainly of β-glucan and contains almost no hemicellulose and lignin. However, since the constituent sugars of the particle A also contain galactose, rhamnose, mannose and the like, the particle A is not a mere isolate of the component.

(リグニンの分析)
上記粒子Aのリグニンの分析は、以下のとおり行った。本来、リグニン測定は、試料中の可溶分(油分、タンニン、ポリフェノール等)を有機溶剤等で事前に除去するのが定法であるが、上記リグニンの分析では抽出を行っていない。すなわち、上記リグニンの分析では、酸不溶性リグニンの定量として、上記構成糖分析でろ別し得られた残渣を105℃で乾燥し重量をはかり分解残渣率を算出し、さらに、残渣中の灰分を測定し補正することで、酸不溶性リグニン濃度を算出した。また、酸可溶性リグニンの定量として、上記構成糖分析でろ別し得られたろ液を、ダブルビーム分光光度計(日立ハイテクサイエンス社製、U−2001型)を用いて210nmの波長で測定し、下記の式(1)に従い、カバ(植物名)の酸可溶性リグニンの吸光係数を用いて濃度を算出した。得られた結果を下記の表2に示す。なお、カバのリグニンの吸光係数は110L・g-1cm-1近傍であることが知られている。
(Analysis of lignin)
The analysis of the lignin of the particle A was performed as follows. Originally, in the measurement of lignin, it is a standard method to remove soluble components (oil, tannin, polyphenol, etc.) in the sample in advance with an organic solvent or the like, but the above analysis of lignin does not perform extraction. That is, in the above-mentioned lignin analysis, as a quantification of acid-insoluble lignin, the residue obtained by filtration in the above-mentioned constituent sugar analysis was dried at 105 ° C., weighed, the decomposition residue ratio was calculated, and the ash content in the residue was measured. The acid-insoluble lignin concentration was calculated by the correction. Further, as a quantification of acid-soluble lignin, the filtrate obtained by filtration through the above constituent sugar analysis was measured at a wavelength of 210 nm using a double-beam spectrophotometer (Hitachi High-Tech Science Co., Ltd., U-2001 type), and the following The concentration was calculated using the extinction coefficient of acid-soluble lignin of hippo (plant name) according to the formula (1) of. The results obtained are shown in Table 2 below. It is known that the extinction coefficient of hippopotamus lignin is around 110 L · g -1 cm -1 .

上記表2に示されるとおり、上記粒子Aには、リグニンが僅かであるが含まれることがわかった。 As shown in Table 2 above, it was found that the particles A contained a small amount of lignin.

(Raman分析)
上記粒子AのRaman分析は、粒子Aを少量(0.5mm四方程度)スライドガラスに載せたものに対し、inVia Reflexラマンマイクロスコープを用い、下記の条件により行った。すなわち、LD励起グレーンレーザー(波長532nm)を用い、使用対物レンズ50倍、照射レーザービーム径1.5μm、照射レーザーパワー1mW以下、測光ラマンシフト範囲4000〜150cm-1、波数分解能6cm-1、積算回数10回とし、データベースとのスペクトル波形比較照合によるライブラリー検索により分析を行った。得られたスペクトルを図7に示す。
(Raman analysis)
The Raman analysis of the particles A was carried out under the following conditions using an inVia Reflex Raman microscope on a small amount (about 0.5 mm square) of the particles A placed on a slide glass. That is, using the LD pumped grains laser (wavelength 532 nm), using an objective lens 50 times, the irradiation diameter of the laser beam 1.5 [mu] m, less illumination laser power 1 mW, photometric Raman shift range 4000~150Cm -1, wavenumber resolution 6 cm -1, accumulating The number of times was set to 10 times, and the analysis was performed by searching the library by comparing and collating the spectrum wavelength with the database. The obtained spectrum is shown in FIG.

上記分析の結果、上記粒子Aは、意外なことにでんぷんに近いスペクトルを有することがわかった。また、図7においても、主に水酸基に帰属する3500〜3300cm-1を中心とした幅の広いピークがみられ、C−H結合に帰属する2900cm-1近傍のピークがみられた。なお、上記粒子Aをヨウ素デンプン反応に付したところ、反応はみられなかった。したがって、粒子Aが、でんぷんではないことは確認されている。As a result of the above analysis, it was found that the particle A surprisingly has a spectrum close to that of starch. Also in FIG. 7, mainly broad peak around the 3500~3300Cm -1 attributable to the hydroxyl group was observed, the peak in the vicinity of 2900 cm -1 attributable to the C-H bond was observed. When the particles A were subjected to an iodine-starch reaction, no reaction was observed. Therefore, it has been confirmed that the particles A are not starch.

<耐熱性、耐圧性、耐寒性および耐乾燥性>
まず、上記粒子Aを超純水に分散させたものを凍結乾燥した〔図8(a)〕。そして、その凍結乾燥物を再度超純水に分散させたもの〔図8(b)〕を、上記外観の観察と同様にして観察し〔図8(c)〕、上記濃厚系粒径アナライザーで粒子径の分布を算出した〔図8(d)〕。
つぎに、上記凍結乾燥物を超純水に分散させたもの〔図9(a)〕を、さらにオートクレーブにより加熱加圧(2気圧、121℃、20分間)し、上記外観の観察と同様に観察し〔図9(b)〕、上記濃厚系粒径アナライザーで粒子径の分布を算出した〔図9(c)〕。
これらの結果を対比させて考察した結果、凍結乾燥を行っても、加熱加圧を行っても、粒子Aの外観および粒子径に大きな変化はみられず、粒子Aは、耐熱性、耐寒性および耐乾燥性に優れることがわかった。粒子Bについても、粒子Aと同様の実験を行ったが、粒子Aと同様に優れた耐熱性、耐寒性および耐乾燥性を有していた。
<Heat resistance, pressure resistance, cold resistance and drying resistance>
First, the particles A dispersed in ultrapure water were freeze-dried [FIG. 8 (a)]. Then, the freeze-dried product dispersed in ultrapure water again [FIG. 8 (b)] was observed in the same manner as the observation of the appearance [FIG. 8 (c)], and the concentrated particle size analyzer was used. The distribution of particle size was calculated [Fig. 8 (d)].
Next, the freeze-dried product dispersed in ultrapure water [FIG. 9 (a)] is further heated and pressurized by an autoclave (2 atm, 121 ° C., 20 minutes) in the same manner as in the observation of the appearance. After observing [FIG. 9 (b)], the particle size distribution was calculated by the above-mentioned concentrated particle size analyzer [FIG. 9 (c)].
As a result of comparing and considering these results, no significant change was observed in the appearance and particle size of the particles A regardless of whether freeze-drying or heating and pressurization was performed, and the particles A had heat resistance and cold resistance. And it was found to be excellent in drought resistance. The same experiment as that for particle A was carried out for particle B, but it had excellent heat resistance, cold resistance and drying resistance as well as particle A.

<水分散性および保存性>
上記凍結乾燥物を超純水に分散させたもの〔図8(b)〕を、4℃で1週間保存したものを図10(a)に示す。また、この保存後の分散液に含まれる粒子Aを、上記外観の観察と同様に観察したものを図10(b)に示す。そして、この保存後の分散液に含まれる粒子Aを上記濃厚系粒径アナライザーで粒子径の分布を算出したものを図10(c)に示す。これらの結果は、いずれも経時によって粒子Aの外観および粒子径に大きな変化はみられないことを示しており、長期保存によっても、粒子Aは水分散性が保たれ、保存性に優れることがわかった。また、粒子Bについても、粒子Aと同様の実験を行ったが、粒子Aと同様に優れた水分散性および保存性を有していた。
<Water dispersibility and storage stability>
FIG. 10 (a) shows a lyophilized product dispersed in ultrapure water [FIG. 8 (b)] stored at 4 ° C. for 1 week. Further, FIG. 10B shows particles A contained in the dispersion liquid after storage observed in the same manner as in the above-mentioned observation of appearance. Then, the distribution of the particle size of the particles A contained in the dispersion liquid after storage calculated by the above-mentioned concentrated particle size analyzer is shown in FIG. 10 (c). All of these results indicate that the appearance and diameter of the particles A do not change significantly with time, and the particles A can be kept water-dispersible even after long-term storage and have excellent storage stability. all right. Further, the same experiment as that for particle A was carried out for particle B, but it had excellent water dispersibility and storage stability as well as particle A.

<抗酸化力>
実施例1で作製した粒子Aおよび粒子Bについて、(1)スーパーオキシドラジカル消去活性値(units SOD/g)を測定した。
また、実施例1で作製した粒子Bについて、(2)ヒドロキシルラジカル消去活性値(μmoL DMSO/g)および(3)一重項酸素消去活性値(μmoL Histidine/g)を測定した。
なお、上記(1)〜(3)の測定は、いずれもESRスピントラッピング(ESR)法により行い、それらの測定条件はそれぞれ以下に示すとおりである。
<Antioxidant power>
For the particles A and B prepared in Example 1, (1) superoxide radical scavenging activity value (units SOD / g) was measured.
Further, with respect to the particles B prepared in Example 1, (2) hydroxyl radical scavenging activity value (μmoL DMSO / g) and (3) singlet oxygen scavenging activity value (μmoL histidine / g) were measured.
The measurements (1) to (3) above are all performed by the ESR spin trapping (ESR) method, and the measurement conditions thereof are as shown below.

(1)スーパーオキシドラジカル消去活性値(units SOD/g)
実施例1で作製した粒子Aおよび粒子Bのそれぞれについて、スーパーオキシドラジカル消去活性値(units SOD/g)を測定した。結果を後記の表3に示す。なお、測定方法および測定条件は以下に示すとおりである。
(1) Superoxide radical scavenging activity value (units SOD / g)
The superoxide radical scavenging activity value (units SOD / g) was measured for each of the particles A and B prepared in Example 1. The results are shown in Table 3 below. The measurement method and measurement conditions are as shown below.

[測定方法]
ヒポキサンチンとキサンチンオキシダーゼとを反応させることによりスーパーオキシドラジカルを産生し、そのスーパーオキシドラジカルの周波数に共鳴するフリーラジカルが粒子Aまたは粒子Bを含有する試験液中にどのくらい存在するかを測定することにより行った。すなわち、スーパーオキシドラジカル捕捉剤としてジメチルスルホキシド(DMSO)を用い、以下のプロトコールを用いて上記各試験液のスーパーオキシドラジカル消去活性の測定を行った。
・試験液(40重量%):50μL
・8.55M 5,5−ジメチル−1−ピロリン−N−オキシド(DMPO):30μL・1.25mM ヒポキサンチン:50μL
・4.37mM DMSO:20μL
・0.1U/mLキサンチンオキシダーゼ50μLを加え、撹拌後60秒間反応させ測定した。
[測定条件]
調製した試験液をESRフラットセルに回収し、以下の測定条件でESR測定した。
・Field:335±5mT
・Power:3mW
・Modulation Width:0.079mT
・Time Constant:0.1sec
・Sweep Time:1min
・Amplify:250
[Measuring method]
To produce superoxide radicals by reacting hypoxanthine with xanthine oxidase, and to measure how much free radicals resonating with the frequency of the superoxide radicals are present in the test solution containing particles A or B. Was done by. That is, dimethyl sulfoxide (DMSO) was used as a superoxide radical scavenger, and the superoxide radical scavenging activity of each of the above test solutions was measured using the following protocols.
-Test solution (40% by weight): 50 μL
8.55M 5,5-dimethyl-1-pyrroline-N-oxide (DMPO): 30 μL · 1.25 mM hypoxanthine: 50 μL
4.37 mM DMSO: 20 μL
50 μL of 0.1 U / mL xanthine oxidase was added, and the mixture was reacted for 60 seconds after stirring for measurement.
[Measurement condition]
The prepared test solution was collected in an ESR flat cell, and ESR measurement was performed under the following measurement conditions.
・ Field: 335 ± 5mT
・ Power: 3mW
-Modulation Width: 0.079mT
-Time Constant: 0.1 sec
・ Sweep Time: 1min
-Amplify: 250

表3の結果より、粒子Aおよび粒子Bはいずれも優れたスーパーオキシドラジカル消去活性を有することがわかった。なかでも、粒子径の大きな粒子Bのスーパーオキシドラジカル消去活性がより優れていた。 From the results in Table 3, it was found that both Particle A and Particle B had excellent superoxide radical scavenging activity. Among them, the superoxide radical scavenging activity of the particles B having a large particle size was more excellent.

(2)ヒドロキシルラジカル消去活性値(μmoL DMSO/g)
粒子Bのヒドロキシルラジカル消去活性値(μmoL DMSO/g)を測定し、データベースに登録されているレモンの値と対比した。結果を下記の表4に示す。なお、測定方法および測定条件は以下に示すとおりである。
(2) Hydroxyl radical scavenging activity value (μmoL DMSO / g)
The hydroxyl radical scavenging activity value (μmoL DMSO / g) of particle B was measured and compared with the value of lemon registered in the database. The results are shown in Table 4 below. The measurement method and measurement conditions are as shown below.

[測定方法]
過酸化水素に紫外線を照射することによりヒドロキシルラジカルを産生し、そのヒドロキシルラジカルの周波数に共鳴するフリーラジカルが粒子Bを含有する試験液中にどのくらい存在するかを測定することにより行った。すなわち、ヒドロキシルラジカル捕捉剤としてDMSOを用い、以下のプロトコールを用いて上記試験液のヒドロキシルラジカル消去活性の測定を行った。
・試験液(25重量%):50μL
・5.7M DMPO:20μL
・2.5mM 過酸化水素:90μL
・紫外線を30秒間照射した後、測定した。
[測定条件]
調製した試験液をESRフラットセルに回収し、以下の測定条件でESR測定した。
・Field:335±5mT
・Power:3mW
・Modulation Width:0.1mT
・Time Constant:0.1sec
・Sweep Time:1min
・Amplify:50
[Measuring method]
Hydroxyl radicals were generated by irradiating hydrogen peroxide with ultraviolet rays, and the amount of free radicals resonating with the frequency of the hydroxyl radicals was measured in the test solution containing the particles B. That is, DMSO was used as a hydroxyl radical scavenger, and the hydroxyl radical scavenging activity of the above test solution was measured using the following protocol.
-Test solution (25% by weight): 50 μL
5.7M DMPO: 20μL
-2.5 mM hydrogen peroxide: 90 μL
-Measurement was performed after irradiation with ultraviolet rays for 30 seconds.
[Measurement condition]
The prepared test solution was collected in an ESR flat cell, and ESR measurement was performed under the following measurement conditions.
・ Field: 335 ± 5mT
・ Power: 3mW
・ Modulation With: 0.1mT
-Time Constant: 0.1 sec
・ Sweep Time: 1min
・ Amplify: 50

表4の結果より、粒子Bは抗酸化力の高いとされているレモンおよび赤パプリカよりもはるかに優れたヒドロキシルラジカル消去活性を有することがわかった。 From the results in Table 4, it was found that particle B has much better hydroxyl radical scavenging activity than lemon and red paprika, which are said to have high antioxidant power.

(3)一重項酸素消去活性値(μmoL Histidine/g)
粒子Bの一重項酸素消去活性値(μmoL Histidine/g)を測定し、データベースに登録されているレモンおよび赤パプリカの値と対比した。結果を下記の表5に示す。なお、測定方法および測定条件は以下に示すとおりである。
(3) Singlet oxygen scavenging activity value (μmoL histidine / g)
The singlet oxygen scavenging activity value (μmoL histidine / g) of particle B was measured and compared with the values of lemon and red paprika registered in the database. The results are shown in Table 5 below. The measurement method and measurement conditions are as shown below.

[測定方法]
リボフラビンに紫外線を照射することにより一重項酸素を産生し、その一重項酸素の周波数に共鳴するフリーラジカルが粒子Bを含有する試験液中にどのくらい存在するかを測定することにより行った。すなわち、一重項酸素捕捉剤として2,2,4−トリメチル−1,3−ペンタンジオール(TMPD)を用い、以下のプロトコールを用いて上記試験液の一重項酸素消去活性の測定を行った。
・試験液(11.1重量%):25μL
・44.4mM TMPD:50μL
・2.5mM DMSO:100μL
・55.5mM リボフラビン:50μL
・紫外線を20秒間照射した後、測定した。
[測定条件]
調製した試験液をESRフラットセルに回収し、以下の測定条件でESR測定した。
・Field:336.4±5mT
・Power:3mW
・Modulation Width:0.1mT
・Time Constant:0.1sec
・Sweep Time:1min
・Amplify:250
[Measuring method]
Riboflavin was irradiated with ultraviolet rays to produce singlet oxygen, and the amount of free radicals resonating with the frequency of the singlet oxygen was measured in the test solution containing the particles B. That is, 2,2,4-trimethyl-1,3-pentanediol (TMPD) was used as a singlet oxygen scavenger, and the singlet oxygen scavenging activity of the above test solution was measured using the following protocol.
-Test solution (11.1% by weight): 25 μL
44.4 mM TMPD: 50 μL
2.5 mM DMSO: 100 μL
55.5 mM riboflavin: 50 μL
-Measurement was performed after irradiation with ultraviolet rays for 20 seconds.
[Measurement condition]
The prepared test solution was collected in an ESR flat cell, and ESR measurement was performed under the following measurement conditions.
-Field: 336.4 ± 5 mT
・ Power: 3mW
・ Modulation With: 0.1mT
-Time Constant: 0.1 sec
・ Sweep Time: 1min
-Amplify: 250

表5の結果より、粒子Bは抗酸化力の高いとされているレモンおよび赤パプリカよりもはるかに優れた一重項酸素消去活性を有することがわかった。 From the results in Table 5, it was found that particle B has a singlet oxygen scavenging activity far superior to that of lemon and red paprika, which are said to have high antioxidant power.

<免疫活性化力>
実施例1で作製した粒子AおよびBが、マウスマクロファージ細胞であるRAW264.7細胞(以下「RAW264.7細胞」とする)に対する免疫活性化能力を有するかを検討するため、下記の測定方法および条件に従って、(1)インターフェロンβ(IFNβ)、(2)インターロイキン−6(IL−6)および(3)腫瘍壊死因子α(TNFα)の産生量を測定した。
<Immune activating power>
In order to examine whether the particles A and B prepared in Example 1 have an immunostimulatory ability against RAW264.7 cells (hereinafter referred to as "RAW264.7 cells") which are mouse macrophage cells, the following measurement method and According to the conditions, the production amounts of (1) interferon β (IFNβ), (2) interleukin-6 (IL-6) and (3) tumor necrosis factor α (TNFα) were measured.

[測定方法および条件]
まず、超純水(コントロール)、粒子Aおよび粒子B(いずれも最終濃度10mg/mL)、リポ多糖(LPS:最終濃度1ng/mL)を被験物質として準備した。
つぎに、RAW264.7細胞を、5.0×107cells/mLとなるように培養液に分散させた細胞液を準備し、この細胞液1.8mLに被験物質200μLをそれぞれ添加し、37℃、5%CO2の条件下で、3時間、6時間、9時間、24時間インキュベートした。その後、RLT lysis bufferを用いてこれらの細胞を回収した。上記回収した各細胞からRNAを抽出し、得られたRNAから上記各細胞のcDNAを作製した。
そして、作製したcDNAをRealtime PCRし、IFNβ、IL−6およびTNFαの産生量を測定し、下記の各項目にしたがって評価した。
[Measurement method and conditions]
First, ultrapure water (control), particles A and B (all having a final concentration of 10 mg / mL), and lipopolysaccharide (LPS: final concentration of 1 ng / mL) were prepared as test substances.
Next, a cell solution prepared by dispersing RAW264.7 cells in a culture solution so as to have a concentration of 5.0 × 10 7 cells / mL was prepared, and 200 μL of the test substance was added to 1.8 mL of this cell solution, respectively, and 37 Incubated for 3 hours, 6 hours, 9 hours and 24 hours under the conditions of ° C. and 5% CO 2 . These cells were then harvested using an RLT lysis buffer. RNA was extracted from each of the collected cells, and cDNA for each of the cells was prepared from the obtained RNA.
Then, the prepared cDNA was subjected to Realtime PCR, the production amounts of IFNβ, IL-6 and TNFα were measured, and evaluated according to each of the following items.

(1)インターフェロンβ(IFNβ)
粒子AをRAW264.7細胞に作用させたものと、LPSをRAW264.7細胞に作用させたものとを対比した。その結果を下記の表6に示す。なお、表6は、超純水(コントロール)の上清中に産生されたIFNβ量を1としたときの、粒子AおよびLPSそれぞれの上清中に産生されたIFNβ量を示している。
(1) Interferon β (IFNβ)
Particle A was allowed to act on RAW264.7 cells and LPS was allowed to act on RAW264.7 cells. The results are shown in Table 6 below. Table 6 shows the amount of IFNβ produced in the supernatant of each of the particles A and LPS, where 1 is the amount of IFNβ produced in the supernatant of ultrapure water (control).

表6の結果より、粒子Aは、IFNβ産生に際してポジティブコントロールであるLPSよりも高い活性を有することがわかる。すなわち、粒子AはIFNβ産生を促し、抗腫瘍性を高める能力を有している。 From the results in Table 6, it can be seen that particle A has higher activity in IFNβ production than LPS, which is a positive control. That is, particle A has the ability to promote IFNβ production and enhance antitumor properties.

(2)インターロイキン−6(IL−6)
粒子AをRAW264.7細胞に作用させたものと、LPSをRAW264.7細胞に作用させたものとを対比した。対比した結果を下記の表7に示す。なお、表7は、超純水(コントロール)の上清中に産生されたIL−6量を1としたときの、LPSおよび粒子Aのそれぞれの上清中に産生されたIL−6量を示している。
(2) Interleukin-6 (IL-6)
Particle A was allowed to act on RAW264.7 cells and LPS was allowed to act on RAW264.7 cells. The comparison results are shown in Table 7 below. Table 7 shows the amount of IL-6 produced in each of the supernatants of LPS and particle A, where 1 is the amount of IL-6 produced in the supernatant of ultrapure water (control). Shown.

表7の結果より、粒子Aは、IL−6産生に際してポジティブコントロールであるLPSよりも極めて高い活性を有することがわかる。すなわち、粒子AはIL−6産生を促し、抗ウイルス性を高める能力が極めて高い。 From the results in Table 7, it can be seen that particle A has much higher activity in IL-6 production than LPS, which is a positive control. That is, particle A has an extremely high ability to promote IL-6 production and enhance antiviral properties.

(3)腫瘍壊死因子α(TNFα)
粒子Aまたは粒子BをRAW264.7細胞に作用させたものと、LPSをRAW264.7細胞に作用させたものとを対比した。その結果を下記の表8に示す。なお、表10は、超純水(コントロール)の上清中に産生されたTNFα量を1としたときの、LPS、粒子Aおよび粒子Bのそれぞれの上清中に産生されたTNFα量を示している。
(3) Tumor necrosis factor α (TNFα)
The one in which particle A or particle B was allowed to act on RAW264.7 cells was compared with the one in which LPS was allowed to act on RAW264.7 cells. The results are shown in Table 8 below. Table 10 shows the amount of TNFα produced in each of the supernatants of LPS, particle A, and particle B, where 1 is the amount of TNFα produced in the supernatant of ultrapure water (control). ing.

表8の結果より、粒子Aおよび粒子Bは、いずれもTNFα産生に際してポジティブコントロールであるLPSよりも高い活性を有することがわかる。すなわち、本発明の粒子は、その粒径の大小に関わらずTNFα産生を促し、抗腫瘍性を高める能力を有している。 From the results in Table 8, it can be seen that both particle A and particle B have higher activity in TNFα production than LPS, which is a positive control. That is, the particles of the present invention have the ability to promote TNFα production and enhance antitumor properties regardless of the size of the particles.

〔本発明の粒子を用いた製剤についての検討〕
つぎに、実施例1で作製した粒子Aを用いた製剤(実施例2)と、本発明の粒子を用いない製剤(比較例1)とを作製し、それぞれの溶出率(%)を算出した。また、これらに対して、硬度および崩壊性の測定も行った。
[Study on Formulation Using Particles of the Present Invention]
Next, a preparation using the particles A prepared in Example 1 (Example 2) and a preparation using no particles of the present invention (Comparative Example 1) were prepared, and the elution rate (%) of each was calculated. .. In addition, hardness and disintegration property were also measured for these.

〔実施例2、比較例1〕
実施例1で作製した粒子Aおよび下記の材料を準備し、これらの材料を撹拌混合し得られた混合物を、打錠機(市橋精機社製、HANDTAB−100)を用いて8kNで圧縮し、200mgの製剤(直径8mm、曲率半径12mm)である実施例2を得た。また、比較例1として、粒子Aの代わりに乳糖を用いた以外は実施例2と同様にして200mgの製剤(本発明の粒子を用いない製剤)を作製した。下記の表9に、実施例2および比較例1の配合を示す。
[Example 2, Comparative Example 1]
The particles A prepared in Example 1 and the following materials were prepared, and the mixture obtained by stirring and mixing these materials was compressed at 8 kN using a tableting machine (HANDTAB-100, manufactured by Ichihashi Seiki Co., Ltd.). Example 2 was obtained as a 200 mg formulation (diameter 8 mm, radius of curvature 12 mm). Further, as Comparative Example 1, a 200 mg preparation (a preparation not using the particles of the present invention) was prepared in the same manner as in Example 2 except that lactose was used instead of the particles A. Table 9 below shows the formulations of Example 2 and Comparative Example 1.

(溶出率(%)の算出)
溶出試験器(富山産業社製、NTR−3000)を用いて、第16改正日本薬局方溶出試験法にしたがってその溶出率(%)を算出した。なお、上記試験は、試験液として精製水900mLを用い、パドル法にて行った。そして、試験開始70分後まで定期的に試験液をサンプリングし、0.45μmのメンブランフィルターを通したものを測定試料とした。得られた各測定試料の275nmにおける吸光度を、紫外可視吸光光度計(島津製作所社製、UV−1800)を用いて測定した。得られた吸光度を下記の式(2)に当てはめ、試験開始t分後における溶出率(%)を算出した。その結果を下記の表10に示す。
溶出率(%)=試験開始t分後の吸光度/試験開始70分後の吸光度×100…(2)
(Calculation of elution rate (%))
The dissolution rate (%) was calculated according to the 16th revised Japanese Pharmacopoeia dissolution test method using an dissolution tester (NTR-3000 manufactured by Toyama Sangyo Co., Ltd.). The above test was carried out by the paddle method using 900 mL of purified water as a test solution. Then, the test solution was periodically sampled until 70 minutes after the start of the test, and the sample passed through a 0.45 μm membrane filter was used as the measurement sample. The absorbance of each of the obtained measurement samples at 275 nm was measured using an ultraviolet-visible spectrophotometer (UV-1800, manufactured by Shimadzu Corporation). The obtained absorbance was applied to the following formula (2) to calculate the elution rate (%) t minutes after the start of the test. The results are shown in Table 10 below.
Elution rate (%) = Absorbance t minutes after the start of the test / Absorbance 70 minutes after the start of the test x 100 ... (2)

上記表10に示された結果より、混合物全体に対し、わずか10重量%の粒子Aの添加で、試験開始から5分後の時点から40分後の時点まで、約2倍の溶出率の亢進が確認できた。これより、粒子Aは、速溶解・崩壊型錠剤の添加剤としての機能を有していることがわかった。 From the results shown in Table 10 above, the addition of only 10% by weight of particles A to the entire mixture increased the elution rate by about 2 times from the time point 5 minutes after the start of the test to the time point 40 minutes after the start of the test. Was confirmed. From this, it was found that the particles A have a function as an additive for the fast-dissolving / disintegrating tablet.

また、実施例2および比較例1について、下記の項目にしたがって硬度および崩壊時間の測定を行った。その結果を後記の表11に示す。 Further, for Example 2 and Comparative Example 1, the hardness and the decay time were measured according to the following items. The results are shown in Table 11 below.

(硬度の測定)
ロードセル式錠剤硬度計(岡田精工社製、ポータブルチェッカーPC−30)を用い、製剤の直径方向に徐々に荷重を加え、製剤が破砕した時の荷重をその製剤の硬度として測定した。測定はn=5で行い、その平均を製剤の硬度として採用した。
(Measurement of hardness)
Using a load cell type tablet hardness tester (portable checker PC-30 manufactured by Okada Seiko Co., Ltd.), a load was gradually applied in the diameter direction of the preparation, and the load when the preparation was crushed was measured as the hardness of the preparation. The measurement was performed at n = 5, and the average was adopted as the hardness of the preparation.

(崩壊時間の測定)
崩壊試験器(富山産業社製、NT−200)を用い、第16改正日本薬局方崩壊試験法にしたがってその崩壊時間(崩壊性)を測定した。なお、上記試験においては、試験液として精製水1000mLを使用し、測定温度は37±2℃とした。製剤が試験液に崩壊・分散するまでに要した時間を崩壊時間とした。
(Measurement of collapse time)
Using a disintegration tester (manufactured by Toyama Sangyo Co., Ltd., NT-200), the disintegration time (collapse property) was measured according to the 16th revised Japanese Pharmacopoeia disintegration test method. In the above test, 1000 mL of purified water was used as the test solution, and the measurement temperature was 37 ± 2 ° C. The time required for the preparation to disintegrate and disperse in the test solution was defined as the disintegration time.

上記表11に示された結果より、実施例2は、比較例1に対し硬度が高いことがわかった。しかしながら、実施例2は硬度が高いにもかかわらず、比較例1に対し製剤の崩壊までの時間が短くなっている。すなわち、本発明の粒子を製剤に用いると、硬度、崩壊性、および薬物の溶出性等の特性を制御する、今までにない非常に優れた添加剤になり得ることがわかった。粒子Bについても、粒子Aと同様に良好な溶出率等が見られ、非常に優れた添加剤になり得ることがわかった。 From the results shown in Table 11 above, it was found that Example 2 had a higher hardness than Comparative Example 1. However, although the hardness of Example 2 is high, the time required for the preparation to disintegrate is shorter than that of Comparative Example 1. That is, it has been found that when the particles of the present invention are used in a formulation, they can be an extremely excellent additive that controls properties such as hardness, disintegration property, and drug dissolution property. Similar to the particle A, the particle B also showed a good elution rate and the like, and it was found that the particle B could be a very excellent additive.

上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 Although the specific embodiments of the present invention have been shown in the above examples, the above examples are merely examples and are not to be interpreted in a limited manner. Various variations apparent to those skilled in the art are intended to be within the scope of the present invention.

本発明の粒子は、代表的には、製剤、食品、化粧品等の添加剤に適している。また、抗酸化剤および免疫活性化剤として用いることができる。 The particles of the present invention are typically suitable as additives for formulations, foods, cosmetics and the like. It can also be used as an antioxidant and an immunostimulatory agent.

A 粒子
B 粒子
A particle B particle

Claims (8)

加熱処理した酵母から得られ、最大径が1nm以上150nm未満であることを特徴とする粒子。 Particles obtained from heat-treated yeast and having a maximum diameter of 1 nm or more and less than 150 nm. 加熱処理した酵母から得られ、最大径が150nm以上1000nm以下であることを特徴とする粒子。 Particles obtained from heat-treated yeast and having a maximum diameter of 150 nm or more and 1000 nm or less. 上記粒子が球体である請求項1または2記載の粒子。 The particle according to claim 1 or 2, wherein the particle is a sphere. 上記粒子が糖を主成分としている請求項1〜3のいずれか一項に記載の粒子。 The particle according to any one of claims 1 to 3, wherein the particle contains sugar as a main component. 請求項1〜4のいずれか一項に記載の粒子を含むことを特徴とする粒子含有組成物。 A particle-containing composition comprising the particles according to any one of claims 1 to 4. 上記粒子が組成物全体に対し10〜99重量%含まれる請求項5記載の粒子含有組成物。 The particle-containing composition according to claim 5, wherein the particles are contained in an amount of 10 to 99% by weight based on the entire composition. 請求項1〜4のいずれか一項に記載の粒子を製造する方法であって、酵母を加熱する工程と、上記工程により得られた加熱物から粒子を分離する工程とを備えることを特徴とする粒子の製造方法。 The method for producing particles according to any one of claims 1 to 4, wherein the method comprises a step of heating yeast and a step of separating particles from the heated product obtained by the above steps. How to make particles. 上記酵母を加熱する工程の加熱が、煮沸である請求項7記載の粒子の製造方法。 The method for producing particles according to claim 7, wherein the heating in the step of heating the yeast is boiling.
JP2019571149A 2018-02-09 2019-02-07 Particles, particle-containing compositions and methods for producing particles Pending JPWO2019156174A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018022501 2018-02-09
JP2018022501 2018-02-09
PCT/JP2019/004445 WO2019156174A1 (en) 2018-02-09 2019-02-07 Particles, particle-containing composition, and method for producing particles

Publications (1)

Publication Number Publication Date
JPWO2019156174A1 true JPWO2019156174A1 (en) 2021-01-28

Family

ID=67548280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019571149A Pending JPWO2019156174A1 (en) 2018-02-09 2019-02-07 Particles, particle-containing compositions and methods for producing particles

Country Status (3)

Country Link
JP (1) JPWO2019156174A1 (en)
CN (1) CN111699246A (en)
WO (1) WO2019156174A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022045371A1 (en) * 2020-08-31 2022-03-03
TW202400194A (en) * 2022-04-28 2024-01-01 學校法人帝京大學 Immunoactivator, vaccine adjuvant, and method for inducing immunity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504131A (en) * 1989-11-09 1993-07-01 ダンジス、バイロン エー insoluble yeast extract
JP2006129834A (en) * 2004-11-09 2006-05-25 Takeda-Kirin Foods Corp Yeast essence highly containing 5'-ribonucleotide and method for producing the same
CN101709077A (en) * 2009-12-16 2010-05-19 江南大学 Method for crudely extracting saccharomyces cerevisiae glutathione
JP2014136692A (en) * 2013-01-17 2014-07-28 Nagase & Co Ltd Epithelium barrier function enhancer
CN106892978A (en) * 2017-04-18 2017-06-27 天津世传生物科技有限公司 Compound, protein and the preparation method of the two

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062343A1 (en) * 2016-09-30 2018-04-05 合同会社レビアスファーマ Particles and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504131A (en) * 1989-11-09 1993-07-01 ダンジス、バイロン エー insoluble yeast extract
JP2006129834A (en) * 2004-11-09 2006-05-25 Takeda-Kirin Foods Corp Yeast essence highly containing 5'-ribonucleotide and method for producing the same
CN101709077A (en) * 2009-12-16 2010-05-19 江南大学 Method for crudely extracting saccharomyces cerevisiae glutathione
JP2014136692A (en) * 2013-01-17 2014-07-28 Nagase & Co Ltd Epithelium barrier function enhancer
CN106892978A (en) * 2017-04-18 2017-06-27 天津世传生物科技有限公司 Compound, protein and the preparation method of the two

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARBOHYDRATE RESEARCH, 1991, VOL. 219, PP. 203-213, JPN6022053562, ISSN: 0004947515 *

Also Published As

Publication number Publication date
CN111699246A (en) 2020-09-22
WO2019156174A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP2023063411A (en) Particles and method of manufacturing the same
CN110697681B (en) Method for preparing carbon dots from broad beans, carbon dots and application thereof
WO2022116807A1 (en) Method for preparing ganoderma lucidum extract oil rich in ganoderma lucidum triterpene
CN105254779B (en) A kind of method for extraction and purification of macromolecule hyaluronic acid
JP2009531330A (en) Extracts and methods comprising ganoderma species
JPWO2019156174A1 (en) Particles, particle-containing compositions and methods for producing particles
Sun et al. Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine
WO2022062380A1 (en) Tibetan ganoderma lucidum polysaccharide glp-1 with antioxidant effect, preparation method and use
CN112868850A (en) Preparation method of lucid ganoderma sporocarp drinking tablet tea capable of improving polysaccharide dissolution rate
CN106491644A (en) A kind of fullerene soft capsule and preparation method
CN108250320B (en) Low-ash ganoderma lucidum polysaccharide extract and preparation method thereof
Dong et al. Carbon dots nanozyme for anti-inflammatory therapy via scavenging intracellular reactive oxygen species
CN111249338A (en) Cistanche deserticola extract and industrial preparation method and application thereof
CN108936666A (en) A kind of preparation method of inoxidizability astaxanthin soft capsule
CN103766913B (en) A kind of method extracting total stilbene compound from seed of Flos Moutan
CN111320706A (en) Low molecular weight hericium erinaceus polysaccharide and preparation method and application thereof
Yang et al. Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging
Biswajit et al. Optimization and Characterization of Purified Polysaccharide from Terminalia Belarica Gum as Pharmaceutical Excipient.
CN111053793A (en) Pure ganoderma lucidum powder tablet and preparation method thereof
CN105502339A (en) Method for hydro-thermal synthesis of carbon quantum dots with fresh ginger as raw material
Al-Graiti et al. Evaluation of some eco-friendly food residues for removal of methylene blue dye from aqueous solutions
KR20140090863A (en) Method for preparing red panax ginseng extract with enhanced nonpolar ginsenosides contents
CN105860972A (en) Preparation method of P-doped carbon dots and application of P-doped carbon dots to cell imaging
CN114848548B (en) Peach blossom extract-fullerene compound and preparation method and application thereof
CN115581745A (en) Anti-depression carbon nano-particles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230220

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230724

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231227

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240123