JPWO2019155756A1 - Controller for multi-group multi-phase rotating electric machine and drive for multi-group multi-phase rotating electric machine - Google Patents

Controller for multi-group multi-phase rotating electric machine and drive for multi-group multi-phase rotating electric machine Download PDF

Info

Publication number
JPWO2019155756A1
JPWO2019155756A1 JP2019570319A JP2019570319A JPWO2019155756A1 JP WO2019155756 A1 JPWO2019155756 A1 JP WO2019155756A1 JP 2019570319 A JP2019570319 A JP 2019570319A JP 2019570319 A JP2019570319 A JP 2019570319A JP WO2019155756 A1 JPWO2019155756 A1 JP WO2019155756A1
Authority
JP
Japan
Prior art keywords
group
electric machine
rotating electric
phase
phase rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019570319A
Other languages
Japanese (ja)
Other versions
JP6833077B2 (en
Inventor
義浩 深山
義浩 深山
盛幸 枦山
盛幸 枦山
広大 岡崎
広大 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019155756A1 publication Critical patent/JPWO2019155756A1/en
Application granted granted Critical
Publication of JP6833077B2 publication Critical patent/JP6833077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

機械的空間位相が180/N(Nは2以上の整数)度異なる位置に異なる群の巻線が配置された多群多相回転電機を制御する多群多相回転電機の制御装置1であって、トルク指令値に基づいて各相の初期電流指令値を算出する制御目標演算部410と、多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきに起因する電磁力の空間モードM(Mは0または正の整数)から各群に対応する各群補正係数を算出する補正係数算出部411と、初期電流指令値と前記各群補正係数とに基づいて補正された各相の電流指令値を算出する電流指令値補正部412とを備える。A controller 1 of a multi-group poly-phase rotating electric machine for controlling a multi-group poly-phase rotating electric machine, wherein windings of different groups are arranged at positions having different mechanical spatial phases by 180/N (N is an integer of 2 or more). And a control target calculation unit 410 that calculates an initial current command value of each phase based on the torque command value, and a spatial mode of electromagnetic force due to magnetic flux density variation with respect to rotation periodicity during rotation of the multi-group multi-phase rotating electric machine. A correction coefficient calculation unit 411 for calculating each group correction coefficient corresponding to each group from M (M is 0 or a positive integer), and for each phase corrected based on the initial current command value and each group correction coefficient. A current command value correction unit 412 that calculates a current command value is provided.

Description

この発明は、電動パワーステアリング装置、エレベータの巻上機などに用いられる多群多相回転電機の制御装置および多群多相回転電機の駆動装置に関する。 The present invention relates to an electric power steering device, a control device for a multi-group multi-phase rotating electric machine used in an elevator hoisting machine and the like, and a drive device for the multi-group multi-phase rotating electric machine.

複数の3相インバータを用いて多群多相回転電機を制御する制御装置が開示されている(例えば、特許文献1参照)。また、巻線に軸偏心のある回転電機に発生するトルクリプルを低減するために各相の電流値を補正する制御装置が開示されている(例えば、特許文献2参照)。 A control device for controlling a multi-group multi-phase rotating electric machine using a plurality of three-phase inverters has been disclosed (for example, see Patent Document 1). Further, there is disclosed a control device that corrects the current value of each phase in order to reduce torque ripple that occurs in a rotating electric machine that has a shaft with eccentricity (for example, refer to Patent Document 2).

特表2013−504293号公報(4−5頁、図12)Japanese Patent Publication No. 2013-504293 (page 4-5, FIG. 12) 特開2009−296706号公報(6−7頁、図1)JP, 2009-296706, A (6-7 pages, Drawing 1).

通常、回転電機の製造誤差にともなう偏芯あるいはステータまたはロータの真円度ずれが生じる。このような偏芯または真円度ずれに起因して、ステータとロータとの間のギャップが回転一周期の間で変化する。このため、回転一周期の間で磁束密度のばらつきが生じ、振動および騒音が発生するという問題があった。 Usually, an eccentricity or a circularity deviation of the stator or the rotor occurs due to a manufacturing error of the rotating electric machine. Due to such eccentricity or deviation of circularity, the gap between the stator and the rotor changes during one rotation cycle. Therefore, there is a problem in that the magnetic flux density varies during one rotation cycle, causing vibration and noise.

従来の回転電機の制御方法では、この回転一周期の間に生じる磁束密度のばらつきを補正することができず、振動および騒音の発生を抑制することができない。 With the conventional control method for a rotating electric machine, it is not possible to correct the variation in the magnetic flux density that occurs during one rotation cycle, and it is not possible to suppress the generation of vibration and noise.

この発明は、上記のような課題を解決するためになされたもので、回転電機の製造誤差にともなう偏芯あるいはステータまたはロータの真円度ずれが生じても、回転一周期の間に生じる磁束密度のばらつきを補正することを目的とする。その結果、回転電機の振動および騒音の発生を抑制することができる。 The present invention has been made to solve the above problems, and even if the eccentricity or the circularity deviation of the stator or rotor occurs due to the manufacturing error of the rotating electric machine, the magnetic flux generated during one rotation cycle. The purpose is to correct variations in density. As a result, it is possible to suppress the generation of vibration and noise of the rotary electric machine.

この発明に係る多群多相回転電機の制御装置は、
機械的空間位相が180/N(Nは2以上の整数)度異なる位置に異なる群の巻線が配置された多群多相回転電機を制御する多群多相回転電機の制御装置であって、
トルク指令値に基づいて各相の初期電流指令値を算出する制御目標演算部と、
多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきに起因する電磁力の空間モードM(Mは0または正の整数)から各群に対応する各群補正係数を算出する補正係数算出部と、
初期電流指令値と前記各群補正係数とに基づいて補正された各相の電流指令値を算出する電流指令値補正部と
を備えたものである。
A control device for a multi-group polyphase rotary electric machine according to the present invention,
A controller for a multi-group poly-phase rotating electric machine for controlling a multi-group poly-phase rotating electric machine, wherein windings of different groups are arranged at positions having different mechanical spatial phases by 180/N (N is an integer of 2 or more). ,
A control target calculation unit that calculates an initial current command value for each phase based on the torque command value,
Correction coefficient for calculating each group correction coefficient corresponding to each group from the spatial mode M (M is 0 or a positive integer) of the electromagnetic force caused by the magnetic flux density variation with respect to the rotation periodicity of the multi-group multi-phase rotating electric machine during rotation A calculator,
A current command value correction unit that calculates a current command value for each phase that is corrected based on the initial current command value and each group correction coefficient is provided.

この発明は、
多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきに起因する電磁力の空間モードM(Mは0または正の整数)から各群に対応する各群補正係数を算出する補正係数算出部と、
初期電流指令値と前記各群補正係数とに基づいて補正された各相の電流指令値を算出する電流指令値補正部と
を備えているので、
回転電機の製造誤差にともなう偏芯やステータやロータの真円度ずれが生じても、回転一周期の間に生じる磁束密度のばらつきを補正することができる。
This invention is
Correction coefficient for calculating each group correction coefficient corresponding to each group from the spatial mode M (M is 0 or a positive integer) of the electromagnetic force caused by the magnetic flux density variation with respect to the rotation periodicity of the multi-group multi-phase rotating electric machine during rotation A calculator,
Since it includes a current command value correction unit that calculates the current command value of each phase corrected based on the initial current command value and each group correction coefficient,
Even if the eccentricity or the circularity deviation of the stator or the rotor occurs due to the manufacturing error of the rotating electric machine, it is possible to correct the variation of the magnetic flux density generated during one rotation cycle.

この発明の実施の形態1に係る回転電機の断面模式図である。It is a cross-sectional schematic diagram of the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機とインバータとの接続を示す模式図である。It is a schematic diagram which shows the connection of the rotary electric machine and inverter which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機の制御装置を示す概略図である。1 is a schematic diagram showing a control device for a rotary electric machine according to Embodiment 1 of the present invention. この発明の実施の形態1に係る回転電機の制御装置の処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing of the control device for the rotating electrical machine according to Embodiment 1 of the present invention. この発明の実施の形態1に係る回転電機の制御装置のハードウェア構成を示す構成図である。It is a block diagram which shows the hardware constitutions of the control apparatus of the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る回転電機の断面模式図である。It is a cross-sectional schematic diagram of the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る回転電機の断面模式図である。It is a cross-sectional schematic diagram of the rotary electric machine which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る回転電機の断面模式図である。It is a cross-sectional schematic diagram of the rotary electric machine which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る回転電機の断面模式図である。It is a cross-sectional schematic diagram of the rotary electric machine which concerns on Embodiment 5 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1に係る多群多相回転電機の構造を示す断面模式図である。本実施の形態においては、図1に示す3群3相分布巻きの永久磁石同期型の回転電機を例に挙げて説明する。なお、図1において、回転電機の回転軸方向をz軸とし、z軸に垂直な方向をそれぞれx軸、y軸としている。
Embodiment 1.
1 is a schematic sectional view showing the structure of a multi-group, multi-phase rotating electric machine according to Embodiment 1 of the present invention. In the present embodiment, a permanent magnet synchronous rotary electric machine of three-group three-phase distributed winding shown in FIG. 1 will be described as an example. In FIG. 1, the rotation axis direction of the rotating electric machine is the z axis, and the directions perpendicular to the z axis are the x axis and the y axis, respectively.

図1に示すように、本実施の形態の回転電機2は、ロータ201とステータ202とで構成されている。ロータ201は、ロータ鉄心203、永久磁石204およびシャフト205で構成されている。ロータ鉄心203は、電磁鋼板が積層されて構成されている。ロータ鉄心203には、2つで一組を構成するV字形状の磁石スロット206が周方向に6個等間隔に設けられている。永久磁石204は、磁石スロット206に挿入され、V字1個で1極を構成し、周方向に交互にN極とS極とを構成するように配置されている。シャフト205は、ロータ鉄心203の内径側に構成されており、ロータ鉄心203に圧入されている。 As shown in FIG. 1, the rotary electric machine 2 of the present embodiment includes a rotor 201 and a stator 202. The rotor 201 includes a rotor core 203, a permanent magnet 204, and a shaft 205. The rotor core 203 is formed by laminating electromagnetic steel plates. The rotor core 203 is provided with six V-shaped magnet slots 206, which form a set of two, at equal intervals in the circumferential direction. The permanent magnets 204 are inserted into the magnet slots 206, and one V-shape constitutes one pole, and the permanent magnets 204 are arranged so as to alternately constitute N poles and S poles in the circumferential direction. The shaft 205 is configured on the inner diameter side of the rotor core 203 and is press-fitted into the rotor core 203.

ステータ202は、円環状のステータヨーク207から内径方向に突出した36個のステータティース208と、隣り合うステータティース208の間に構成されるステータスロット209に挿入され周方向に6スロット毎にコイルが配置される分布巻に配置されたステータコイル210とで構成されている。 The stator 202 is inserted into a status lot 209 formed between 36 stator teeth 208 protruding from the annular stator yoke 207 in the inner diameter direction and adjacent stator teeth 208, and a coil is formed every 6 slots in the circumferential direction. It is composed of stator coils 210 arranged in distributed winding.

ステータコイル210は、3群3相に対応して、1群目の3相に対応するU1コイル、V1コイル、W1コイルと、2群目の3相に対応するU2コイル、V2コイル、W2コイルと、3群目の3相に対応するU3コイル、V3コイル、W3コイルとで構成されている。 The stator coil 210 includes U1 coil, V1 coil, and W1 coil corresponding to the third phase of the first group and U2 coil, V2 coil, and W2 coil corresponding to the third phase of the second group, corresponding to the three phases of the third group. And a U3 coil, a V3 coil, and a W3 coil corresponding to the third phase of the third group.

図1において、各ステータコイルの+−表記は電流の向きが紙面垂直方向上向きか下向きかを示している。1群目の3相コイルは36個のステータスロット209のうち、周方向に隣あう12個のステータスロット209に収納される。そして、2群目の3相コイルは1群目の3相コイルが収納された12個のステータスロット209に隣り合う12個のステータスロット209に収納され、3群目の3相コイルは残りの隣り合う12個のステータスロット209に収納される。このようにして、3重3相のコイルは3つの群がそれぞれ、機械的な1回転に対応した機械角360度に対して、120度ずつずれた位置に配置されている。 In FIG. 1, +-notation of each stator coil indicates whether the direction of current is upward or downward in the direction perpendicular to the paper surface. Of the 36 status lots 209, the first group of three-phase coils is housed in 12 status lots 209 adjacent to each other in the circumferential direction. The 3rd phase coil of the 2nd group is housed in 12 status lots 209 adjacent to the 12 status lots 209 in which the 3 phase coil of the 1st group is housed, and the 3rd phase coil of the 3rd group remains It is stored in 12 adjacent status lots 209. In this way, the three groups of the triple three-phase coils are arranged at positions shifted by 120 degrees with respect to the mechanical angle of 360 degrees corresponding to one mechanical rotation.

図2は、本実施の形態における回転電機2とインバータ3との接続を示す模式図である。図2に示すように、3つの群の3相コイルはそれぞれ異なる3相インバータ301、302、303に接続されている。3つの群の三相コイルは、3相インバータ301、302、303によりそれぞれ個別に制御される。 FIG. 2 is a schematic diagram showing the connection between rotating electric machine 2 and inverter 3 in the present embodiment. As shown in FIG. 2, the three-phase coils of the three groups are connected to different three-phase inverters 301, 302 and 303, respectively. The three groups of three-phase coils are individually controlled by three-phase inverters 301, 302 and 303.

つぎに、偏芯あるいはステータ202またはロータ201の真円度ずれに対する補正について説明する。 Next, correction for eccentricity or circularity deviation of the stator 202 or the rotor 201 will be described.

図1に示すように、回転電機2のステータ202とロータ201とが相互に偏芯しており、+x方向にステータ202とロータ201とが接近しており、−x方向にステータ202とロータ201が離れているとする。 As shown in FIG. 1, the stator 202 and the rotor 201 of the rotary electric machine 2 are eccentric to each other, the stator 202 and the rotor 201 are close to each other in the +x direction, and the stator 202 and the rotor 201 are in the −x direction. Are distant from each other.

このような状態で従来の電流制御を行なった場合、3群にそれぞれ通電される電流が等しくなるように制御されるため、結果的に+x方向ではギャップ寸法が基準値より小さくなっているためギャップ磁束密度が高くなり、−x方向ではギャップ寸法が基準値より大きくなっているためギャップ磁束密度が小さくなる。このようになると、ギャップ磁束密度の2乗に比例する電磁力に機械角1周期に対して1回増減する高調波が重畳される。なお、ここで基準値とは、回転電機に偏芯およびステータ202またはロータ201の真円度ずれのいずれもがないと仮定したときのギャップ寸法である。 When the conventional current control is performed in such a state, the currents supplied to the three groups are controlled so as to be equal to each other, and as a result, the gap dimension becomes smaller than the reference value in the +x direction. The magnetic flux density becomes high and the gap size becomes larger than the reference value in the −x direction, so the gap magnetic flux density becomes smaller. In this case, the electromagnetic force proportional to the square of the gap magnetic flux density is superposed with the harmonic wave that increases or decreases once per mechanical angle cycle. Here, the reference value is a gap size when it is assumed that the rotating electric machine has neither eccentricity nor deviation of the circularity of the stator 202 or the rotor 201.

図1に示す6極36スロットの回転電機では、機械角1周期は電気角3周期に対応し、そのため、電気角での基本波(電気角空間1次)の電磁力の変形は機械角での空間3次に相当する。このため、この6極36スロットの回転電機では空間3次に対応した変形モードが空間0次を除く最低次の電磁力として発生し、最低周波数の共振となる。一方、上述のように偏芯が発生すると、機械角一周期に対して1回増減する電磁力の高調波が重畳され、上記空間3次の電磁力は空間2次と空間4次とに変調され、共振を起こす。空間2次(モード2)の固有値は空間3次の固有値よりも共振周波数が低く、また、一般に、次数が低い共振周波数の方が共振時の伝達関数が大きいため、振動および騒音として問題になりやすい。 In the 6-pole and 36-slot rotary electric machine shown in FIG. 1, one cycle of mechanical angle corresponds to three cycles of electrical angle. Therefore, the deformation of the electromagnetic force of the fundamental wave (first-order electrical angle space) at the electrical angle occurs at the mechanical angle. It corresponds to the space 3 order. For this reason, in this 6-pole 36-slot rotary electric machine, a deformation mode corresponding to the third-order space is generated as the lowest-order electromagnetic force except the 0th-order space, resulting in resonance at the lowest frequency. On the other hand, when the eccentricity occurs as described above, a harmonic of the electromagnetic force that increases or decreases once per mechanical cycle is superimposed, and the electromagnetic force of the spatial third order is modulated into the spatial second order and the spatial fourth order. And cause resonance. The eigenvalue of the spatial second order (mode 2) has a lower resonant frequency than the eigenvalue of the spatial third order, and in general, the resonant frequency of the lower order has a larger transfer function at resonance, which causes problems as vibration and noise. Cheap.

図3は、本実施の形態に係る回転電機の制御装置を示す概略図である。本実施の形態の制御装置1は、外部から与えられるトルク指令値101に基づいて各群の各相電流初期値102を演算する制御目標演算部410と(図4のステップS1参照)、後述する補正係数算出部411と、各群の各相電流初期値102および補正係数算出部411で算出された補正係数103に基づいて、補正係数103で補正された各群の各相電流指令値104を算出する電流指令値補正部412(図4のステップS3参照)と、各相電流指令値104および実際に通電されている各群の各相の電流値105に基づいて、各相電流指令値104を各群の各相電圧指令値106に変換する電圧変換部413と(図4のステップS4参照)、各相電圧指令値106に基づいてインバータ3に出力するゲート信号107を演算するPWM演算部414と(図4のステップS5参照)を備えている。各群の各相電流初期値102は、偏芯およびステータ202またはロータ201の真円度ずれのいずれもがないとした場合の各群の各相の電流指令値に相当する。 FIG. 3 is a schematic diagram showing the control device for the rotary electric machine according to the present embodiment. The control device 1 of the present embodiment will be described later with a control target calculation unit 410 that calculates the phase current initial value 102 of each group based on the torque command value 101 given from the outside (see step S1 in FIG. 4). Based on the correction coefficient calculation unit 411, the phase current initial value 102 of each group, and the correction coefficient 103 calculated by the correction coefficient calculation unit 411, the phase current command value 104 of each group corrected by the correction coefficient 103 is calculated. Based on the calculated current command value correction unit 412 (see step S3 in FIG. 4), the phase current command value 104 and the current value 105 of each phase of each group that is actually energized, each phase current command value 104 To a phase voltage command value 106 of each group (see step S4 in FIG. 4), and a PWM calculation unit that calculates a gate signal 107 to be output to the inverter 3 based on the phase voltage command value 106. 414 and (see step S5 of FIG. 4). Each phase current initial value 102 of each group corresponds to the current command value of each phase of each group when neither eccentricity nor circularity deviation of the stator 202 or the rotor 201 exists.

インバータ3は、図2に示した3相インバータ301、302、303で構成されている。インバータ3は電力変換器として動作する。インバータ3は、PWM演算部414から出力されたゲート信号107に基づいて各群の各相の巻線に電流を流す。回転電機2のシャフト205には回転位置を検出してその回転位置の検出値109を制御目標演算部410に送る機能が備えられている。また、回転電機2には、各群の磁束密度のばらつきを検知してその検出値108を補正係数算出部411に送る機能が備えられている。なお、本実施の形態においては、制御装置1とインバータ3とで回転電機2の駆動装置を構成している。 The inverter 3 is composed of the three-phase inverters 301, 302, 303 shown in FIG. The inverter 3 operates as a power converter. The inverter 3 causes a current to flow through the winding of each phase of each group based on the gate signal 107 output from the PWM calculation unit 414. The shaft 205 of the rotary electric machine 2 has a function of detecting a rotational position and sending the detected value 109 of the rotational position to the control target calculation unit 410. Further, the rotary electric machine 2 has a function of detecting a variation in magnetic flux density of each group and sending the detected value 108 to the correction coefficient calculation unit 411. In the present embodiment, the control device 1 and the inverter 3 form a drive device for the rotating electric machine 2.

補正係数算出部411は、各群の磁束密度が平均化されるように平均値と各群の磁束密度との比から補正係数を算出する(図4のステップS2参照)。言い換えると、補正係数算出部411は、回転電機の回転時の回転周期性に対する磁束密度ばらつきに起因する電磁力の空間モードM(Mは0または正の整数)から各群に対応する各群補正係数を算出する。なお、空間モードMとは、回転電機の機械的な1回転に対して、磁束密度が正弦波状にM回変動する状態を示す。また、磁束密度は、例えば、ホールセンサで検出する。 The correction coefficient calculation unit 411 calculates the correction coefficient from the ratio between the average value and the magnetic flux density of each group so that the magnetic flux density of each group is averaged (see step S2 in FIG. 4). In other words, the correction coefficient calculation unit 411 corrects each group from the spatial mode M (M is 0 or a positive integer) of the electromagnetic force caused by the variation in the magnetic flux density with respect to the rotation periodicity of the rotating electric machine during rotation. Calculate the coefficient. The spatial mode M refers to a state in which the magnetic flux density varies sinusoidally M times for one mechanical rotation of the rotating electric machine. The magnetic flux density is detected by, for example, a hall sensor.

電流指令値補正部412は、各群の指令値に補正係数103をかけあわせて、補正された各群の各相電流指令値を算出する(図4のステップS3参照)。 The current command value correction unit 412 multiplies the command value of each group by the correction coefficient 103 to calculate the corrected phase current command value of each group (see step S3 in FIG. 4 ).

図4は、本実施の形態に係る回転電機の制御装置の処理の流れを示すフローチャートである。 FIG. 4 is a flowchart showing a flow of processing of the control device for the rotating electrical machine according to the present embodiment.

図4に示すように、制御装置1においては、ステップS1で、制御目標演算部410が、トルク指令値101および回転電機2の回転位置の検出値109とを受け取り、トルク指令値101および回転位置の検出値109に基づいて、各群の各相電流初期値102を演算する。 As shown in FIG. 4, in the control device 1, in step S1, the control target calculation unit 410 receives the torque command value 101 and the detected value 109 of the rotational position of the rotary electric machine 2, and then receives the torque command value 101 and the rotational position. The initial value 102 of each phase current of each group is calculated based on the detected value 109.

ステップS2では、ステップS1の処理と並行して、補正係数算出部411が、ホールセンサで検出した磁束密度の検出値108を用いて、各群の磁束密度が平均化されるように、各群の磁束密度の検出値108の平均値を求め、当該平均値と各群の磁束密度の検出値108との比から補正係数103を算出する。 In step S2, in parallel with the process of step S1, the correction coefficient calculation unit 411 uses the detected value 108 of the magnetic flux density detected by the Hall sensor so that the magnetic flux density of each group is averaged. The average value of the magnetic flux density detection values 108 is calculated, and the correction coefficient 103 is calculated from the ratio of the average value to the magnetic flux density detection value 108 of each group.

ステップS3では、電流指令値補正部412が、各群の各相電流初期値102と各群の補正係数103とを受け取り、各群の各相電流初期値102と各群の補正係数103とを乗算して、各群の電流指令値104を算出する。 In step S3, the current command value correction unit 412 receives each phase current initial value 102 of each group and the correction coefficient 103 of each group, and outputs each phase current initial value 102 of each group and the correction coefficient 103 of each group. The current command value 104 of each group is calculated by multiplication.

ステップS4では、電圧変換部413が、各群の電流指令値104と検出された各群の電流値105とを受け取り、各群の電流指令値104と各群の電流値105とに基づいて、各群の各相電圧指令値106を算出する。なお、算出方法としては、例えば、電圧変換部413は、各群の電流指令値104と各群の電流値105との差分が0になるまでPI制御を行い、各群の各相電圧指令値106を算出する。 In step S4, the voltage conversion unit 413 receives the current command value 104 of each group and the detected current value 105 of each group, and based on the current command value 104 of each group and the current value 105 of each group, Each phase voltage command value 106 of each group is calculated. As a calculation method, for example, the voltage conversion unit 413 performs PI control until the difference between the current command value 104 of each group and the current value 105 of each group becomes 0, and each phase voltage command value of each group. 106 is calculated.

ステップS5では、PWM演算部414が、各群の各相電圧指令値106に基づいて、インバータ3に出力するゲート信号107を演算して、インバータ3の動作を制御する。 In step S5, the PWM calculation unit 414 calculates the gate signal 107 to be output to the inverter 3 based on each phase voltage command value 106 of each group, and controls the operation of the inverter 3.

図5は、制御装置1のハードウェア構成を示した構成図である。上述したように、制御装置1とインバータ3とで、駆動装置を構成している。駆動装置は、回転電機2を用いて、回転電機2に接続される図示しない負荷を駆動する。制御装置1は、ハードウェア構成として、図5に示すように、プロセッサ501と、記憶装置502とを備えている。図3で示した制御目標演算部410、補正係数算出部411、電流指令値補正部412、電圧変換部413、および、PWM演算部414の各部の機能は、記憶装置502に記憶されたプログラムをプロセッサ501が読み出して実行することにより実現される。 FIG. 5 is a configuration diagram showing a hardware configuration of the control device 1. As described above, the control device 1 and the inverter 3 form a drive device. The drive device uses the rotating electric machine 2 to drive a load (not shown) connected to the rotating electric machine 2. The control device 1 includes a processor 501 and a storage device 502 as a hardware configuration, as shown in FIG. The functions of the control target calculator 410, the correction coefficient calculator 411, the current command value corrector 412, the voltage converter 413, and the PWM calculator 414 shown in FIG. It is realized by the processor 501 reading out and executing it.

記憶装置502は、図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備える。不揮発性の補助記憶装置の代わりにハードディスク等の補助記憶装置を備えても良い。 Although not shown, the storage device 502 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Instead of the non-volatile auxiliary storage device, an auxiliary storage device such as a hard disk may be provided.

プロセッサ501に、記憶装置502の補助記憶装置から揮発性記憶装置を介してプログラムが入力される。プロセッサ501は、記憶装置502から入力されたプログラムを実行する。また、プロセッサ501は、演算結果等のデータを記憶装置502の揮発性記憶装置に出力するか、あるいは、揮発性記憶装置を介して補助記憶装置に出力してデータを保存する。 A program is input to the processor 501 from an auxiliary storage device of the storage device 502 via a volatile storage device. The processor 501 executes the program input from the storage device 502. Further, the processor 501 outputs data such as a calculation result to a volatile storage device of the storage device 502, or outputs it to an auxiliary storage device via the volatile storage device to store the data.

なお、制御目標演算部410、補正係数算出部411、電流指令値補正部412、電圧変換部413、PWM演算部414は、システムLSI等の処理回路により実現しても良い。 The control target calculation unit 410, the correction coefficient calculation unit 411, the current command value correction unit 412, the voltage conversion unit 413, and the PWM calculation unit 414 may be realized by a processing circuit such as a system LSI.

このように構成された制御装置1においては、偏芯あるいはステータ202またはロータ201の真円度ずれによってギャップ寸法にばらつきが生じた状態を検出もしくは推定し、ばらつきにともない電磁力に低次のモードが発生するのを抑制する。図1に示す例では、偏芯によりギャップ寸法が小さくなった方(+x方向)にある群の各相電流指令値を小さくするように補正し、ギャップ寸法が大きくなった方(−x方向)にある群の各相電流指令値を大きくなるように補正する。 In the control device 1 configured as described above, a state in which the gap dimension varies due to the eccentricity or the circularity deviation of the stator 202 or the rotor 201 is detected or estimated, and the electromagnetic force has a low-order mode due to the variation. Suppress the occurrence of. In the example shown in FIG. 1, the direction in which each phase current command value in the group in which the gap size is reduced due to eccentricity (+x direction) is corrected to be smaller, and the gap size is increased (-x direction) The current command value for each phase of the group in is corrected so as to be large.

このように構成された制御装置1で制御された回転電機では、ギャップの磁束密度分布に低次の波形が発生しないため、低次の変形を発生させる電磁力が発生せず、低い周波数の共振の発生や応答の大きな共振の発生を防ぐことができる。 In the rotating electric machine controlled by the control device 1 configured as described above, since the low-order waveform does not occur in the magnetic flux density distribution in the gap, the electromagnetic force that causes the low-order deformation does not occur, and the resonance of the low frequency occurs. It is possible to prevent the occurrence of resonance and the occurrence of resonance with a large response.

本実施の形態では3群の3相巻線を機械角で120度置きに配置しているため120度ずれた3つの(偏芯)ベクトルでギャップ磁束密度のばらつきを検出することができる。そのため、機械角1周期に対して1回変形する加振力と2回変形する加振力を抑制することができる。1回変形する加振力は偏芯により発生し、2回変形する加振力は楕円変形によって発生するため、本実施の形態の制御装置1では偏芯および楕円変形をそれぞれ補正することができる。また、偏芯と楕円変形とが同時に発生した場合でも、重ね合わせとして検出することができるので、両者を同時に補正することができる。 In the present embodiment, since three groups of three-phase windings are arranged at mechanical angles of 120 degrees, it is possible to detect variations in the gap magnetic flux density with three (eccentricity) vectors that are offset by 120 degrees. Therefore, it is possible to suppress the exciting force that is deformed once and the exciting force that is deformed twice for one cycle of the mechanical angle. Since the exciting force that deforms once is generated by eccentricity and the exciting force that deforms twice is generated by elliptic deformation, the control device 1 of the present embodiment can correct eccentricity and elliptic deformation, respectively. .. Further, even when the eccentricity and the elliptical deformation occur at the same time, they can be detected as the superposition, so that both can be corrected at the same time.

次に、補正するための磁束密度ばらつきの検出方法について説明する。1つの検出方法として、磁気を検出して電気出力する磁電デバイスを使う方法がある。磁電デバイスとしては、ホールセンサ、TMR(トンネル磁気 抵抗効果)素子、GMR(巨大磁気抵抗)素子、サーチコイルなどがある。 Next, a method of detecting the magnetic flux density variation for correction will be described. As one detection method, there is a method of using a magnetoelectric device that detects magnetism and outputs it electrically. Magnetoelectric devices include Hall sensors, TMR (tunnel magnetoresistive effect) elements, GMR (giant magnetoresistive) elements, and search coils.

例えば、ホールセンサを機械角120度おきに各群の中心位置に等間隔に回転電機2のステータティース208の先端部(ギャップ面)に配置する。このようにするとギャップ磁束密度のばらつきを検出することができるので、検出した磁束密度を基にばらつきを低減するように、磁束密度が高いセンサに対応した場所に位置する群には電流指令値を小さくする補正値を、磁束密度が低いセンサに対応した場所に位置する群には電流指令値を大きくする補正値を算出する。他の磁電デバイスを用いても同様の効果がある。なお、120度おきセンサを配置するとしたが、3つ以上のセンサを用いて検出ピッチを小さくして検出してもよい。 For example, the Hall sensors are arranged at the center position of each group at a mechanical angle of 120 degrees and are equidistantly arranged at the tips (gap surfaces) of the stator teeth 208 of the rotary electric machine 2. In this way, it is possible to detect the variation in the gap magnetic flux density, so to reduce the variation based on the detected magnetic flux density, set the current command value for the group located at the location corresponding to the sensor with high magnetic flux density. A correction value for decreasing the correction value for increasing the current command value is calculated for a group located at a location corresponding to a sensor having a low magnetic flux density. The same effect can be obtained by using other magnetoelectric devices. Although the sensors are arranged every 120 degrees, three or more sensors may be used to reduce the detection pitch for detection.

また、サーチコイルの代わりに、ステータコイルを用いて検出してもよい。このようにすれば、検出専用の部材を追加することなく、ギャップ磁束密度のばらつきを検出することができる。 Further, instead of the search coil, a stator coil may be used for detection. By doing so, it is possible to detect the variation in the gap magnetic flux density without adding a member dedicated to the detection.

なお、上述の補正方法は、運転時に継続的に磁束密度ばらつきの検出を実施して補正係数を随時修正してもよいし、初期時に磁束密度ばらつきの検出を実施して補正係数を算出してその値を用いて運転時に磁束ばらつきを推定してもよい。偏芯や真円からのずれは経時的に大きく変化しないため、初期に補正係数を算出して使用すれば制御装置の演算不可を低減することができる。一方、振れ回りの偏芯は経時的に大きく変化する場合は、継続的に磁束密度ばらつきを検出して補正係数を随時修正した方がよい。 In the correction method described above, the magnetic flux density variation may be continuously detected during operation to correct the correction coefficient at any time, or the magnetic flux density variation may be detected at the initial stage to calculate the correction coefficient. The value may be used to estimate the magnetic flux variation during operation. Since the eccentricity and the deviation from the perfect circle do not change significantly with time, it is possible to reduce the calculation inability of the control device by calculating and using the correction coefficient in the initial stage. On the other hand, when the eccentricity of whirling changes greatly with time, it is better to continuously detect variations in magnetic flux density and correct the correction coefficient as needed.

他の検出方法として、電流指令値に対する実際の各群の通電電流ばらつきを検出し、補正係数を算出する方法がある。あるいは、無負荷誘起電圧の各群の通電ばらつきを検出し、補正係数を算出する方法がある。 As another detection method, there is a method of calculating the correction coefficient by detecting the actual variation in the energization current of each group with respect to the current command value. Alternatively, there is a method of detecting the energization variation of each group of the no-load induced voltage and calculating the correction coefficient.

本実施の形態で説明した磁束密度ばらつきを補正する方法は、ステータ202またはロータ201が周方向に分割されたコアの組合せで構成される場合、および、直線状に打ち抜いたコアを曲げて円環状に構成する場合に特に有効である。また、フレームなどのステータ202またはロータ201に接する部品を平板状の部品を曲げて円環状に構成し、それらの部品をステータ202またはロータ201に対して、焼きバメ、圧入などの方法で組み立てる場合にも特に有効である。なぜなら、これらの方法で構成されるステータおよびロータ201では、真円度ずれが生じやすいからである。 The method of correcting the magnetic flux density variation described in the present embodiment is applied when the stator 202 or the rotor 201 is composed of a combination of cores divided in the circumferential direction, and when a core punched in a straight line is bent to form an annular shape. It is especially effective when it is configured as. In addition, when a component such as a frame that is in contact with the stator 202 or the rotor 201 is formed into an annular shape by bending a flat plate component, and these components are assembled to the stator 202 or the rotor 201 by a method such as shrinkage fitting or press fitting. It is especially effective for This is because the stator and the rotor 201 configured by these methods are likely to be out of roundness.

本実施の形態においては、偏芯を3つ以上の検出点から検出しているので、偏芯量と偏芯方向とを算出する、つまり偏芯ベクトルを算出することができる。この偏芯ベクトルを用いて回転位置の検出値109の補正を行ってもよい。補正には予め用意した偏芯ベクトルに対する補正値の対応表を用いる。初期補正のみ適用してもよいし、継続的に補正を適用してもよい。 In the present embodiment, since the eccentricity is detected from three or more detection points, the eccentricity amount and the eccentric direction can be calculated, that is, the eccentricity vector can be calculated. The detected value 109 of the rotational position may be corrected using this eccentricity vector. For correction, a correspondence table of correction values for eccentricity vectors prepared in advance is used. Only the initial correction may be applied, or the correction may be applied continuously.

このようにすれば、偏芯による回転位置の検出誤差を低減することができ、電流指令値の理想値(偏芯や真円度ずれがない場合の電流指令値)からのずれによる加振力またはトルク脈動による振動および騒音を低減することができる。 In this way, the rotational position detection error due to eccentricity can be reduced, and the excitation force due to the deviation of the current command value from the ideal value (current command value when there is no eccentricity or circularity deviation) Alternatively, vibration and noise due to torque pulsation can be reduced.

なお、機械角1周期に対して3回等間隔かつ等しい振幅で変形(三角形変形)する加振力に関しては、本実施の形態の制御装置では各群での補正値が等しくなってしまうため補正できないが、これに偏芯が重畳されたものに関しては補正可能である。 Note that the control device of the present embodiment corrects the excitation force that deforms (triangularly deforms) three times at equal intervals and with the same amplitude for one cycle of the mechanical angle, because the correction values are the same in each group. It is not possible, but it is possible to correct the eccentricity superimposed on this.

また、機械角1周期に対して4回変形する加振力に関しては、補正自由度が足りないため本実施の形態の制御装置では正確に補正することができない。 Further, the excitation force that is deformed four times with respect to one cycle of the mechanical angle cannot be accurately corrected by the control device of the present embodiment because the degree of freedom in correction is insufficient.

実施の形態2.
図6は、この発明を実施するための実施の形態2に係る多群多相回転電機の構造を示す断面模式図である。本実施の形態においては、図6に示す4群3相集中巻きの永久磁石同期型の回転電機を例に挙げて説明する。
Embodiment 2.
FIG. 6 is a schematic sectional view showing the structure of a multi-group, multi-phase rotating electric machine according to Embodiment 2 of the present invention. In the present embodiment, a permanent magnet synchronous rotary electric machine of four-group three-phase concentrated winding shown in FIG. 6 will be described as an example.

図6に示すように、本実施の形態の回転電機2は、8極12スロットの4群3相の集中巻の回転電機である。各群の相コイルはステータティース208に巻きつけるように配置され、順にU相コイル、V相コイル、W相コイルが配置される。電気角1周期は機械角90度にあたり、1極対3スロットごとに、順に1群、2群、3群、4群と巻線が配置されている。 As shown in FIG. 6, the rotary electric machine 2 of the present embodiment is a 4-group 3-phase concentrated winding rotary electric machine having 8 poles and 12 slots. The phase coils of each group are arranged so as to be wound around the stator teeth 208, and the U-phase coil, the V-phase coil, and the W-phase coil are arranged in that order. One cycle of the electrical angle corresponds to a mechanical angle of 90 degrees, and the first group, the second group, the third group, and the fourth group and the windings are arranged in sequence for each one pole pair and three slots.

本実施の形態においては、実施の形態1の図3に示した制御装置と同様の制御装置に接続されている。ただし、インバータ3は、4つの群にそれぞれ対応した4つの3相のインバータで構成されている。各群の各相の巻線に流れる電流は、それぞれ異なる補正係数で補正されている。 In the present embodiment, it is connected to the same control device as the control device shown in FIG. 3 of the first embodiment. However, the inverter 3 is composed of four three-phase inverters corresponding to the four groups, respectively. The currents flowing through the windings of each phase of each group are corrected with different correction coefficients.

このように構成された制御装置においては、偏芯あるいはステータまたはロータ201の真円度ずれだけでなく、三角形変形にも対応して補正することができる。その結果、回転電機の振動や騒音の発生を抑制することができる。 In the control device configured as described above, not only eccentricity or deviation of circularity of the stator or the rotor 201 but also triangular deformation can be corrected. As a result, it is possible to suppress the generation of vibration and noise of the rotating electric machine.

実施の形態3.
図7は、この発明を実施するための実施の形態3に係る多群多相回転電機の構造を示す断面模式図である。本実施の形態においては、図7に示す2群3相分布巻きの永久磁石同期型の回転電機を例に挙げて説明する。
Embodiment 3.
FIG. 7 is a schematic sectional view showing the structure of a multi-group, multi-phase rotating electric machine according to Embodiment 3 of the present invention. In the present embodiment, a permanent magnet synchronous rotary electric machine of two-group three-phase distributed winding shown in FIG. 7 will be described as an example.

図7に示すように、本実施の形態の回転電機2は、8極48スロットの2群3相分布巻の回転電機である。4極24スロットごとに周方向に1群の巻線が施され、次に2群の巻線が施されている。 As shown in FIG. 7, the rotary electric machine 2 of the present embodiment is a 2-group 3-phase distributed winding rotary electric machine having 8 poles and 48 slots. One group of windings is provided in the circumferential direction for each of the four poles and 24 slots, and then two groups of windings are provided.

本実施の形態においては、実施の形態1の図3に示した制御装置と同様の制御装置に接続されている。ただし、インバータ3は、2つの群にそれぞれ対応した2つの3相のインバータで構成されている。各群の各相の巻線に流れる電流は、それぞれ異なる補正係数で補正されている。 In the present embodiment, it is connected to the same control device as the control device shown in FIG. 3 of the first embodiment. However, the inverter 3 is composed of two three-phase inverters respectively corresponding to the two groups. The currents flowing through the windings of each phase of each group are corrected with different correction coefficients.

このように構成された制御装置においては、機械的に180度対向した位置に配置される巻線が常に異なる群になるので、偏芯した際にステータとロータ201とが近づく方向と遠ざかる方向が検出でき、偏芯を補正することができる。その結果、回転電機の振動および騒音の発生を抑制することができる。 In the control device configured in this way, the windings mechanically arranged at 180-degree opposite positions are always different groups, so that when eccentric, the stator and the rotor 201 approach and move away from each other. It can be detected and eccentricity can be corrected. As a result, it is possible to suppress the generation of vibration and noise of the rotary electric machine.

ただし、本実施の形態の回転電機において、コアが楕円変形している場合は、180度対向した位置では同じように近づいたり遠ざかったりするため補正することができない。 However, in the rotary electric machine according to the present embodiment, when the core is deformed in an elliptical manner, it cannot be corrected because the cores approach and move away at positions opposite to each other by 180 degrees.

実施の形態4.
図8は、この発明を実施するための実施の形態4に係る多群多相回転電機の構造を示す断面模式図である。本実施の形態においては、図8に示す2群3相分布巻きの永久磁石同期型の回転電機を例に挙げて説明する。
Fourth Embodiment
FIG. 8 is a schematic sectional view showing the structure of a multi-group, multi-phase rotating electric machine according to Embodiment 4 for carrying out the present invention. In the present embodiment, a permanent magnet synchronous rotary electric machine of two-group three-phase distributed winding shown in FIG. 8 will be described as an example.

図8に示すように、本実施の形態の回転電機2は、8極48スロットの2群3相分布巻の回転電機である。2極12スロットごとに周方向に1群の巻線が施され、次に2群の巻線が施され、次に1群の巻線、そして2群の巻線というように1群巻線と2群巻線が機械角90度ごとに交互に2回配置されている。 As shown in FIG. 8, the rotary electric machine 2 of the present embodiment is a 2-group 3-phase distributed winding rotary electric machine with 8 poles and 48 slots. One group of windings is provided in the circumferential direction for every two poles and twelve slots, then two groups of windings, then one group of windings, and then two groups of windings. And the second group winding are alternately arranged twice every 90 degrees of mechanical angle.

本実施の形態においては、実施の形態1の図3に示した制御装置と同様の制御装置に接続されている。ただし、インバータ3は、2つの群にそれぞれ対応した2つの3相のインバータで構成されている。各群の各相の巻線に流れる電流は、それぞれ異なる補正係数で補正されている。 In the present embodiment, it is connected to the same control device as the control device shown in FIG. 3 of the first embodiment. However, the inverter 3 is composed of two three-phase inverters respectively corresponding to the two groups. The currents flowing through the windings of each phase of each group are corrected with different correction coefficients.

このように構成された制御装置においては、機械的に90度対向した位置に配置される巻線が常に異なる群になるので、楕円変形した際に近づく方向と遠ざかる方向(短軸方向と長軸方向)が検出でき、楕円変形を補正することができる。その結果、回転電機の振動や騒音の発生を抑制することができる。 In the control device configured in this way, the windings mechanically arranged at 90-degree opposite positions are always in different groups, so that the approaching direction and the distant direction (minor axis direction and major axis direction) when elliptical deformation occurs. Direction) can be detected and elliptical deformation can be corrected. As a result, it is possible to suppress the generation of vibration and noise of the rotating electric machine.

ただし、本実施の形態の回転電機においては、180度対向した位置で同じ群が配置されるように構成されている。そのため、偏芯に対しては同じ群の巻線で平均化するようになるため、1群と2群とで偏芯に対する差が発生しにくいため、補正することができない。 However, in the rotary electric machine of the present embodiment, the same group is arranged at a position facing each other by 180 degrees. Therefore, since the eccentricity is averaged by the windings of the same group, a difference with respect to the eccentricity is unlikely to occur between the first group and the second group, and the correction cannot be performed.

実施の形態5.
図9は、この発明を実施するための実施の形態5に係る多群多相回転電機の構造を示す断面模式図である。本実施の形態においては、図9に示す2群3相集中巻きの永久磁石同期型の回転電機を例に挙げて説明する。
Embodiment 5.
FIG. 9 is a schematic sectional view showing the structure of a multi-group, multi-phase rotating electric machine according to Embodiment 5 of the present invention. In the present embodiment, a permanent magnet synchronous rotary electric machine of two-group three-phase concentrated winding shown in FIG. 9 will be described as an example.

図9に示すように、本実施の形態の回転電機2は、10極12スロットの2重3相集中巻の回転電機である。ステータティース208に対し周方向1ティースごとに1群巻線と2群巻線が交互に配置されている。 As shown in FIG. 9, the rotary electric machine 2 according to the present embodiment is a double-phase three-phase concentrated winding rotary electric machine with 10 poles and 12 slots. The first group winding and the second group winding are alternately arranged for each tooth in the circumferential direction with respect to the stator tooth 208.

本実施の形態においては、実施の形態1の図3に示した制御装置と同様の制御装置に接続されている。ただし、インバータ3は、2つの群にそれぞれ対応した2つの3相のインバータで構成されている。各群の各相の巻線に流れる電流は、それぞれ異なる補正係数で補正されている。 In the present embodiment, it is connected to the same control device as the control device shown in FIG. 3 of the first embodiment. However, the inverter 3 is composed of two three-phase inverters respectively corresponding to the two groups. The currents flowing through the windings of each phase of each group are corrected with different correction coefficients.

このように構成された制御装置においては、機械的に180度対向した位置に異なる群の巻線が配置されているため、偏芯により発生する低次の電磁力の発生を抑制することができる。その結果、回転電機の振動および騒音の発生を抑制することができる。 In the control device configured as described above, since different groups of windings are mechanically arranged at positions opposite to each other by 180 degrees, it is possible to suppress generation of low-order electromagnetic force generated due to eccentricity. .. As a result, it is possible to suppress the generation of vibration and noise of the rotary electric machine.

1 制御装置、2 回転電機、3 インバータ、201 ロータ、202 ステータ、203 ロータ鉄心、204 永久磁石、205 シャフト、206 磁石スロット、207 ステータヨーク、208 ステータティース、209 ステータスロット、210 ステータコイル、410 制御目標演算部、411 補正係数算出部、412 電流指令値補正部、413 電圧変換部、414 PWM演算部。 DESCRIPTION OF SYMBOLS 1 control device, 2 rotary electric machine, 3 inverter, 201 rotor, 202 stator, 203 rotor core, 204 permanent magnet, 205 shaft, 206 magnet slot, 207 stator yoke, 208 stator teeth, 209 status lot, 210 stator coil, 410 control Target calculation unit, 411 correction coefficient calculation unit, 412 current command value correction unit, 413 voltage conversion unit, 414 PWM calculation unit.

Claims (10)

機械的空間位相が180/N(Nは2以上の整数)度異なる位置に異なる群の巻線が配置された多群多相回転電機を制御する多群多相回転電機の制御装置であって、
トルク指令値に基づいて各相の初期電流指令値を算出する制御目標演算部と、
前記多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきに起因する電磁力の空間モードM(Mは0または正の整数)から各群に対応する各群補正係数を算出する補正係数算出部と、
前記初期電流指令値と前記各群補正係数とに基づいて補正された前記各相の電流指令値を算出する電流指令値補正部と
を備えたことを特徴とする多群多相回転電機の制御装置。
A controller for a multi-group multi-phase rotating electric machine for controlling a multi-group multi-phase rotating electric machine, wherein windings of different groups are arranged at positions having different mechanical spatial phases by 180/N (N is an integer of 2 or more). ,
A control target calculation unit that calculates an initial current command value for each phase based on the torque command value,
Correction for calculating each group correction coefficient corresponding to each group from the spatial mode M (M is 0 or a positive integer) of the electromagnetic force caused by the magnetic flux density variation with respect to the rotation periodicity during rotation of the multi-group multi-phase rotary electric machine A coefficient calculation unit,
A control of a multi-group multi-phase rotating electric machine, comprising: a current command value correction unit that calculates a current command value of each phase corrected based on the initial current command value and each group correction coefficient. apparatus.
補正係数算出部は、前記多群多相回転電機の各群の磁束ばらつきの検出値を用いて各群補正係数を算出する
ことを特徴とする請求項1に記載の多群多相回転電機の制御装置。
The correction coefficient calculation unit calculates each group correction coefficient by using the detected value of the magnetic flux variation of each group of the multi-group multi-phase rotating electric machine. Control device.
前記多群多相回転電機の各群の磁束ばらつきの検出値は、前記多群多相回転電機のロータとステータとの間のギャップの複数の箇所で検出されたものである
ことを特徴とする請求項2に記載の多群多相回転電機の制御装置。
The detection value of the magnetic flux variation of each group of the multi-group poly-phase rotating electric machine is detected at a plurality of locations in the gap between the rotor and the stator of the multi-group multi-phase rotating electric machine. The control device for a multi-group polyphase rotating electric machine according to claim 2.
前記多群多相回転電機の各群の磁束ばらつきの検出値は、前記多群多相回転電機のロータとステータとの間のギャップの3つ以上の箇所で検出された偏芯ベクトルから算出されたものである
ことを特徴とする請求項2に記載の多群多相回転電機の制御装置。
The detection value of the magnetic flux variation of each group of the multi-group poly-phase rotating electric machine is calculated from the eccentricity vector detected at three or more points in the gap between the rotor and the stator of the multi-group multi-phase rotating electric machine. The control device for a multi-group multi-phase rotating electric machine according to claim 2, wherein
前記多群多相回転電機の各群の磁束ばらつきの検出値は前記多群多相回転電機のステータコイルを用いて、無負荷誘起電圧のばらつきから算出されたものである
ことを特徴とする請求項2記載の多群多相回転電機の制御装置。
The detected value of the magnetic flux variation of each group of the multi-group multi-phase rotating electric machine is calculated from the variation of the no-load induced voltage by using the stator coil of the multi-group multi-phase rotating electric machine. Item 2. A control device for a multi-group polyphase rotating electric machine according to Item 2.
補正係数算出部は、前記多群多相回転電機の各群の磁束ばらつきの推定値を用いて各群補正係数を算出する
ことを特徴とする請求項1に記載の多群多相回転電機の制御装置。
The correction coefficient calculation unit calculates each group correction coefficient by using an estimated value of the magnetic flux variation of each group of the multi-group multi-phase rotating electric machine. Control device.
補正係数算出部は、前記多群多相回転電機の各群の磁束ばらつきから偏芯ベクトルが算出され回転角度検出器の出力が補正される
ことを特徴とする請求項1〜6のいずれか1項に記載の多群多相回転電機の制御装置。
The correction coefficient calculation unit calculates an eccentricity vector from the magnetic flux variation of each group of the multi-group multi-phase rotating electric machine, and corrects the output of the rotation angle detector. A control device for a multi-group polyphase rotating electric machine according to the item.
前記多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきが、前記多群多相回転電機の偏芯誤差に起因したものである
ことを特徴とする請求項1〜7のいずれか1項に記載の多群多相回転電機の制御装置。
The magnetic flux density variation with respect to the rotation periodicity during rotation of the multi-group multi-phase rotating electric machine is caused by an eccentricity error of the multi-group multi-phase rotating electric machine. A control device for a multi-group polyphase rotating electric machine according to item 1.
前記多群多相回転電機の回転時の回転周期性に対する磁束密度ばらつきが、前記多群多相回転電機の楕円変形に起因したものである
ことを特徴とする請求項1〜7のいずれか1項に記載の多群多相回転電機の制御装置。
The magnetic flux density variation with respect to the rotation periodicity during rotation of the multi-group multi-phase rotating electric machine is caused by elliptic deformation of the multi-group multi-phase rotating electric machine. A control device for a multi-group polyphase rotating electric machine according to the item.
請求項1〜9のいずれか1項に記載の多群多相回転電機の制御装置と、
前記制御装置から電流指令補正値を受け取り、前記電流指令補正値に基づいて前記多群多相回転電機の巻線に電流を流すインバータと
を備えたことを特徴とする多群多相回転電機の駆動装置。
A control device for a multi-group multi-phase rotating electric machine according to any one of claims 1 to 9,
An inverter for receiving a current command correction value from the control device and flowing a current through the windings of the multi-group multi-phase rotating electric machine based on the current command correction value. Drive.
JP2019570319A 2018-02-08 2018-12-11 Control device for multi-group multi-phase rotary machine and drive device for multi-group multi-phase rotary machine Active JP6833077B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018021163 2018-02-08
JP2018021163 2018-02-08
PCT/JP2018/045500 WO2019155756A1 (en) 2018-02-08 2018-12-11 Multigroup-multiphase rotating electrical machine control device and multigroup-multiphase rotating electrical machine drive device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021014727A Division JP7090758B2 (en) 2018-02-08 2021-02-02 Control device for multi-group multi-phase rotary electric machine and drive device for multi-group multi-phase rotary electric machine

Publications (2)

Publication Number Publication Date
JPWO2019155756A1 true JPWO2019155756A1 (en) 2020-06-18
JP6833077B2 JP6833077B2 (en) 2021-02-24

Family

ID=67547936

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019570319A Active JP6833077B2 (en) 2018-02-08 2018-12-11 Control device for multi-group multi-phase rotary machine and drive device for multi-group multi-phase rotary machine
JP2021014727A Active JP7090758B2 (en) 2018-02-08 2021-02-02 Control device for multi-group multi-phase rotary electric machine and drive device for multi-group multi-phase rotary electric machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021014727A Active JP7090758B2 (en) 2018-02-08 2021-02-02 Control device for multi-group multi-phase rotary electric machine and drive device for multi-group multi-phase rotary electric machine

Country Status (5)

Country Link
US (1) US11152875B2 (en)
JP (2) JP6833077B2 (en)
CN (1) CN111670538B (en)
DE (1) DE112018007043T5 (en)
WO (1) WO2019155756A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833077B2 (en) * 2018-02-08 2021-02-24 三菱電機株式会社 Control device for multi-group multi-phase rotary machine and drive device for multi-group multi-phase rotary machine
JP7390418B2 (en) 2021-09-21 2023-12-01 本田技研工業株式会社 Power supply circuit and rotating electrical machine system
CN114157214B (en) * 2021-11-19 2023-10-27 华中科技大学 Eccentric fault detection and air gap flux density compensation method for multi-module synchronous motor
CN114460465A (en) * 2022-04-08 2022-05-10 华中科技大学 Method and system for judging eccentric fault of permanent magnet motor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137560B2 (en) * 1995-05-29 2001-02-26 トヨタ自動車株式会社 Synchronous motor controller
JP3366858B2 (en) * 1998-05-29 2003-01-14 株式会社日立製作所 Control device for rotating electric machine
JP3951830B2 (en) * 2002-06-26 2007-08-01 日産自動車株式会社 Motor control device
JP2004201485A (en) * 2002-11-29 2004-07-15 Sony Corp Motor and controller of actuator
JP4455245B2 (en) * 2004-09-22 2010-04-21 三菱電機株式会社 Vector control device for induction motor
JP2006280158A (en) * 2005-03-30 2006-10-12 Toyota Motor Corp Method and device for measuring eccentricity of multiple-phase motor
CN101132980A (en) * 2006-03-14 2008-02-27 三菱电机株式会社 Electromagnetic brake control device
JP2009296706A (en) * 2008-06-02 2009-12-17 Toshiba Corp Electric motor controller
GB2462940B8 (en) 2009-09-03 2012-03-28 Protean Holdings Corp Electric motor and electric generator.
US8749192B2 (en) 2009-09-03 2014-06-10 Protean Electric Limited Electric motor and electric generator
JP2012115125A (en) * 2010-11-02 2012-06-14 Panasonic Corp Controller of brushless dc motor and blower having the same
WO2012086459A1 (en) * 2010-12-22 2012-06-28 マイクロスペース株式会社 Motor drive control device
JP5802517B2 (en) * 2011-10-21 2015-10-28 オークマ株式会社 Machine tool and motor control method thereof
JP5652664B2 (en) 2011-10-21 2015-01-14 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine control device
JP6064207B2 (en) * 2012-12-17 2017-01-25 株式会社ミツバ Brushless motor control method, brushless motor control device, and electric power steering device
JP5925114B2 (en) * 2012-12-18 2016-05-25 三菱電機株式会社 Motor drive device, multi-winding motor, and electric power steering device
CN103944471B (en) * 2014-04-02 2017-09-19 天津大学 It is a kind of to improve the MC direct torque control of torque and magnetic linkage performance
JP6678064B2 (en) 2016-05-26 2020-04-08 マレリ株式会社 AC motor drive controller
JP6833077B2 (en) * 2018-02-08 2021-02-24 三菱電機株式会社 Control device for multi-group multi-phase rotary machine and drive device for multi-group multi-phase rotary machine

Also Published As

Publication number Publication date
JP2021073840A (en) 2021-05-13
JP7090758B2 (en) 2022-06-24
US20200395875A1 (en) 2020-12-17
WO2019155756A1 (en) 2019-08-15
CN111670538A (en) 2020-09-15
DE112018007043T5 (en) 2020-10-22
US11152875B2 (en) 2021-10-19
CN111670538B (en) 2023-06-09
JP6833077B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP7090758B2 (en) Control device for multi-group multi-phase rotary electric machine and drive device for multi-group multi-phase rotary electric machine
US9627936B2 (en) Permanent magnet motor
JP6124999B2 (en) Permanent magnet type motor for electric power steering
JP5303297B2 (en) Motor control device and motor control method
US7885785B1 (en) Rotor position sensing apparatus and method using piezoelectric sensor and hall-effect sensor
JP5329005B2 (en) Permanent magnet rotating electric machine
JP5287824B2 (en) motor
JPH11234990A (en) Permanent magnet motor
JP5835450B2 (en) Rotating machine control device
JP2008295206A (en) Bearingless motor and bearingless motor control system
JP2013116034A (en) Switched reluctance motor
JP5538984B2 (en) Permanent magnet motor
JP5358679B2 (en) Three-phase AC motor driving device, driving method, three-phase AC motor, and control device
JP4811145B2 (en) Multi-phase motor rotation angle detector
JP5985119B1 (en) Permanent magnet rotating electric machine
US20240039444A1 (en) Stepping motor drive device
JP7227938B2 (en) Rotating electric machine
JP2009261121A (en) Motor control apparatus
WO2022054232A1 (en) Rotating machine control device
WO2023218676A1 (en) Rotating electric machine control device and rotating electric machine control method
WO2019230818A1 (en) Motor control device, motor control method, and motor system
JP6708786B2 (en) Rotating electric machine control device and control method thereof
US20230170832A1 (en) Motor control device
JP4744022B2 (en) Permanent magnet 3-phase stepping motor
JPH11103588A (en) Control method for torque pulsation of permanent magnet embedded-type motor, and controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6833077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250