JPWO2019155593A1 - Trained model creation system for component image recognition and trained model creation method for component image recognition - Google Patents

Trained model creation system for component image recognition and trained model creation method for component image recognition Download PDF

Info

Publication number
JPWO2019155593A1
JPWO2019155593A1 JP2019570235A JP2019570235A JPWO2019155593A1 JP WO2019155593 A1 JPWO2019155593 A1 JP WO2019155593A1 JP 2019570235 A JP2019570235 A JP 2019570235A JP 2019570235 A JP2019570235 A JP 2019570235A JP WO2019155593 A1 JPWO2019155593 A1 JP WO2019155593A1
Authority
JP
Japan
Prior art keywords
component
trained model
image recognition
image
trained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019570235A
Other languages
Japanese (ja)
Other versions
JP6838175B2 (en
Inventor
貴紘 小野
貴紘 小野
秀一郎 鬼頭
秀一郎 鬼頭
勇太 横井
勇太 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2019155593A1 publication Critical patent/JPWO2019155593A1/en
Application granted granted Critical
Publication of JP6838175B2 publication Critical patent/JP6838175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

部品実装機(12)の吸着ノズル(31)に吸着した部品又は回路基板(11)に実装した部品を撮像対象とし、この撮像対象をカメラ(18,22)で撮像して画像認識する際に使用する学習済みモデルを作成する部品画像認識用学習済みモデル作成システムにおいて、基準となる部品の画像認識に使用する基準学習済みモデルを取得するコンピュータ(23)を備える。このコンピュータは、基準となる部品に対して所定の類似関係がある部品の種類毎にサンプル部品画像を収集して当該部品の種類毎に当該サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで、当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成する。When a component sucked on the suction nozzle (31) of the component mounting machine (12) or a component mounted on the circuit board (11) is set as an image pickup target, and the image pickup target is imaged by a camera (18, 22) to recognize an image. In the training model creation system for component image recognition for creating a trained model to be used, a computer (23) for acquiring a reference trained model used for image recognition of a reference component is provided. This computer collects sample part images for each type of part having a predetermined similarity relationship with the reference part, and adds the sample part image for each type of the part as teacher data of the reference trained model. By re-learning, a learned model for each part used for image recognition of the part is created for each type of the part.

Description

本明細書は、部品実装機の吸着ノズルに吸着した部品又は回路基板に実装した部品を撮像対象とし、この撮像対象をカメラで撮像して画像認識する際に使用する学習済みモデルを作成する部品画像認識用学習済みモデル作成システム及び部品画像認識用学習済みモデル作成方法に関する技術を開示したものである。 In the present specification, a component sucked on a suction nozzle of a component mounting machine or a component mounted on a circuit board is targeted for imaging, and a component for creating a learned model to be used when the imaging target is imaged by a camera and image recognition is performed. It discloses a technique for creating a trained model for image recognition and a method for creating a trained model for component image recognition.

部品実装機の吸着ノズルに吸着した部品の吸着姿勢は、正常吸着であれば部品が水平に吸着されるが、何等かの原因で部品が斜め等の異常な姿勢で吸着される異常吸着が発生することがある。このような異常吸着は部品実装不良の原因となるため、従来より、部品実装機には、吸着ノズルに吸着した部品を撮像するカメラを搭載し、そのカメラで撮像した画像を処理することで、部品の吸着姿勢が正常吸着か異常吸着かを判別して、異常吸着と判定した部品を廃棄し、正常吸着と判定した部品のみを回路基板に実装するようにしている。 As for the suction posture of the parts sucked to the suction nozzle of the parts mounting machine, if the parts are sucked normally, the parts are sucked horizontally, but for some reason, the parts are sucked in an abnormal posture such as diagonally. I have something to do. Since such abnormal adsorption causes defective component mounting, conventionally, the component mounting machine is equipped with a camera that captures the components adsorbed on the suction nozzle, and the image captured by the camera is processed. It is determined whether the suction posture of the parts is normal suction or abnormal suction, the parts judged to be abnormal suction are discarded, and only the parts judged to be normal suction are mounted on the circuit board.

従来の一般的な画像処理は、部品のサイズ等を含む画像処理用部品形状データを用いて正常吸着/異常吸着を判別するようにしているが、吸着ノズルに吸着した部品が微小な部品である場合には、従来の画像処理用部品形状データを用いた画像処理では、正常吸着/異常吸着の判別が困難な場合がある。 In conventional general image processing, normal adsorption / abnormal adsorption is discriminated by using image processing component shape data including the size of the component, but the component adsorbed on the suction nozzle is a minute component. In some cases, it may be difficult to distinguish between normal adsorption and abnormal adsorption in image processing using conventional image processing component shape data.

そこで、特許文献1(特開2008−130865号公報)に記載されているように、ニューラルネットワーク等の機械学習手法を用いて、予め正常吸着/異常吸着を判別する学習済みモデルを作成しておき、生産中に部品実装機のカメラで撮像した部品画像を処理して、学習済みモデルを用いて正常吸着/異常吸着を判別するようにしたものがある。 Therefore, as described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2008-1330865), a learned model for discriminating normal adsorption / abnormal adsorption is prepared in advance by using a machine learning method such as a neural network. , There is a device that processes a component image taken by a camera of a component mounting machine during production and discriminates between normal adsorption and abnormal adsorption using a learned model.

特開2008−130865号公報Japanese Unexamined Patent Publication No. 2008-1330865

例えば、電気的に同じ仕様の部品であっても、サイズ、色、素材、製造会社、製造ロット等のいずれかが違っている場合があり、その違いによって画像認識結果にも違いが生じる場合がある。しかし、生産開始前に電気的に同じ仕様の部品に対して、サイズ、色、素材、製造会社、製造ロット等によって部品の種類を細分化して、その全ての種類について機械学習手法により学習済みモデルを作成しようとすると、非常に多くの学習済みモデルを作成しなければならず、学習済みモデルの作成作業に多くの手間と時間がかかる。 For example, even parts with the same electrical specifications may differ in size, color, material, manufacturing company, manufacturing lot, etc., and the difference may cause differences in image recognition results. is there. However, before the start of production, for parts with the same electrical specifications, the types of parts are subdivided according to size, color, material, manufacturing company, manufacturing lot, etc., and all types have been learned by machine learning methods. If you try to create a trained model, you have to create a large number of trained models, and it takes a lot of time and effort to create the trained model.

そこで、既に学習済みモデルが作成されている部品と形状等が似ている種類の部品に対しては、取り敢えず、既存の学習済みモデルを使用して正常吸着/異常吸着を判別する場合があるが、その場合、生産中に期待する判別精度が得られない場合がある。この場合には、速やかに当該部品に特化した学習済みモデルを作成する必要があるが、従来手法で学習済みモデルを最初から作成するには、手間と時間がかかる。 Therefore, for parts of a type that are similar in shape to parts for which a trained model has already been created, normal adsorption / abnormal adsorption may be determined using an existing trained model for the time being. In that case, the expected discrimination accuracy may not be obtained during production. In this case, it is necessary to quickly create a trained model specialized for the component, but it takes time and effort to create a trained model from the beginning by the conventional method.

上記課題を解決するために、部品実装機の吸着ノズルに吸着した部品又は回路基板に実装した部品を撮像対象とし、この撮像対象をカメラで撮像して画像認識する際に使用する学習済みモデルを作成する部品画像認識用学習済みモデル作成システムにおいて、基準となる部品の画像認識に使用する基準学習済みモデルを取得するコンピュータを備え、前記コンピュータは、前記基準となる部品に対して所定の類似関係がある部品の種類毎にサンプル部品画像を収集して当該部品の種類毎に当該サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成するようにしたものである。 In order to solve the above problem, a trained model is used when a component sucked on a suction nozzle of a component mounting machine or a component mounted on a circuit board is imaged and the imaged object is imaged by a camera to recognize an image. In the trained model creation system for component image recognition to be created, a computer for acquiring a reference trained model used for image recognition of a reference component is provided, and the computer has a predetermined similarity relationship with the reference component. By collecting sample part images for each type of part, adding the sample part image for each type of part as teacher data of the reference-learned model, and re-learning, the part for each type of part. This is to create a trained model for each part used for image recognition.

要するに、基準学習済みモデルが作成されている基準となる部品に対して所定の類似関係がある部品については、その部品の種類毎にサンプル部品画像を収集して当該部品の種類毎に当該サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで、当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成するものである。このようにすれば、基準となる部品に対して所定の類似関係がある部品の画像認識に用いる部品別学習済みモデルを基準学習済みモデルから比較的簡単に作成することができる。 In short, for parts that have a predetermined similarity to the reference parts for which the reference-learned model is created, sample part images are collected for each type of the part, and the sample parts are collected for each type of the part. By adding an image as teacher data of the reference-learned model and re-learning, a component-specific trained model used for image recognition of the component is created for each type of the component. In this way, it is relatively easy to create a component-specific trained model used for image recognition of a component having a predetermined similarity relationship with the reference component from the reference trained model.

図1は一実施例の部品実装ラインの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a component mounting line of one embodiment. 図2は正常吸着を説明する正面図である。FIG. 2 is a front view illustrating normal adsorption. 図3は斜め吸着を説明する正面図である。FIG. 3 is a front view illustrating oblique adsorption. 図4は部品吸着姿勢判別プログラムの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the processing flow of the component suction posture determination program. 図5は部品別学習済みモデル作成プログラムの処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the processing flow of the trained model creation program for each part.

以下、一実施例を説明する。
まず、図1に基づいて部品実装ライン10の構成を説明する。
An embodiment will be described below.
First, the configuration of the component mounting line 10 will be described with reference to FIG.

部品実装ライン10は、回路基板11の搬送方向に沿って、1台又は複数台の部品実装機12と、半田印刷機13やフラックス塗布装置(図示せず)等の実装関連機を配列して構成されている。部品実装ライン10の基板搬出側には、回路基板11に実装した各部品の実装状態の良否を検査する検査機14が設置されている。 In the component mounting line 10, one or a plurality of component mounting machines 12 and mounting related machines such as a solder printing machine 13 and a flux coating device (not shown) are arranged along the transport direction of the circuit board 11. It is configured. An inspection machine 14 for inspecting the quality of the mounting state of each component mounted on the circuit board 11 is installed on the board carry-out side of the component mounting line 10.

部品実装ライン10の各部品実装機12、半田印刷機13及び検査機14は、ネットワーク16を介して生産管理用コンピュータ21と相互に通信可能に接続され、この生産管理用コンピュータ21によって部品実装ライン10の生産が管理される。各部品実装機12の制御装置17は、1台又は複数台のコンピュータ(CPU)を主体として構成され、生産管理用コンピュータ21から転送されてくる生産ジョブ(生産プログラム)に従って、実装ヘッド(図示せず)を部品吸着位置→部品撮像位置→部品実装位置の経路で移動させて、フィーダ19から供給される部品(図2、図3参照)を実装ヘッドの吸着ノズル31(図2、図3参照)で吸着して当該部品をその下方から部品撮像用カメラ18で撮像して、その撮像画像を部品実装機12の制御装置17の画像処理機能によって処理して、後述する学習済みモデルを用いて当該部品の吸着姿勢が正常吸着(図2参照)か異常吸着(図3参照)かを判別する。その結果、異常吸着と判定すれば当該部品を所定の廃棄ボックス(図示せず)に廃棄し、正常吸着と判定すれば、当該部品の吸着位置X,Yと角度θを計測し、当該部品の位置X,Yや角度θのずれを補正して当該部品を回路基板11に実装するという動作を繰り返して、当該回路基板11に所定数の部品を実装する。 The component mounting machine 12, the solder printing machine 13, and the inspection machine 14 of the component mounting line 10 are connected to each other via the network 16 so as to be communicable with the production management computer 21, and the component mounting line is connected by the production management computer 21. 10 productions are controlled. The control device 17 of each component mounting machine 12 is mainly composed of one or a plurality of computers (CPUs), and is mounted head (shown) according to a production job (production program) transferred from the production management computer 21. The component (see FIGS. 2 and 3) supplied from the feeder 19 is moved to the suction nozzle 31 (see FIGS. 2 and 3) of the mounting head by moving the component suction position → component imaging position → component mounting position. ), The component is imaged from below by the component imaging camera 18, the captured image is processed by the image processing function of the control device 17 of the component mounting machine 12, and the learned model described later is used. It is determined whether the suction posture of the component is normal suction (see FIG. 2) or abnormal suction (see FIG. 3). As a result, if it is determined to be abnormal adsorption, the component is discarded in a predetermined disposal box (not shown), and if it is determined to be normal adsorption, the adsorption positions X and Y of the component and the angle θ are measured, and the component A predetermined number of components are mounted on the circuit board 11 by repeating the operation of correcting the deviations of the positions X and Y and the angle θ and mounting the components on the circuit board 11.

また、検査機14の制御装置20は、1台又は複数台のコンピュータ(CPU)を主体として構成され、搬入された回路基板11上の各部品の実装状態をその上方から検査用カメラ22で撮像して、その撮像画像を処理して、回路基板11上の各部品の有無や実装位置ずれ等の実装状態を認識してその認識結果に基づいて各部品の実装不良(検査不合格)の有無を検査する。この際、後述する学習済みモデルを用いて回路基板11上の各部品の有無を判別するようにしても良い。 Further, the control device 20 of the inspection machine 14 is mainly composed of one or a plurality of computers (CPUs), and the mounting state of each component on the carried-in circuit board 11 is captured by the inspection camera 22 from above. Then, the captured image is processed to recognize the presence / absence of each component on the circuit board 11 and the mounting state such as the mounting position deviation, and based on the recognition result, the presence / absence of mounting failure (inspection failure) of each component. Inspect. At this time, the presence / absence of each component on the circuit board 11 may be determined by using the learned model described later.

部品実装ライン10のネットワーク16には、後述する基準学習済みモデルや部品別学習済みモデルの作成に用いる教師データ(サンプル部品画像)の収集及び学習を行う学習用コンピュータ23が接続されている。 A learning computer 23 that collects and learns teacher data (sample component images) used for creating a reference trained model and a component-specific trained model, which will be described later, is connected to the network 16 of the component mounting line 10.

各部品実装機12の制御装置17は、生産中に後述する図4の部品吸着姿勢判別プログラムを実行することで、吸着ノズル31に吸着した部品の種類に応じた学習済みモデルを選択して、当該部品の撮像画像の処理結果から当該部品の吸着姿勢が正常吸着か異常吸着かを判別すると共に、正常吸着と判別した撮像画像を正常吸着のサンプル部品画像として学習用コンピュータ23へ転送し、異常吸着と判別した撮像画像を異常吸着のサンプル部品画像として学習用コンピュータ23へ転送する。 The control device 17 of each component mounting machine 12 executes the component suction posture determination program of FIG. 4 described later during production to select a learned model according to the type of component sucked on the suction nozzle 31. From the processing result of the captured image of the component, it is determined whether the suction posture of the component is normal suction or abnormal suction, and the captured image determined to be normal suction is transferred to the learning computer 23 as a sample component image of normal suction. The captured image determined to be adsorbed is transferred to the learning computer 23 as a sample component image of abnormal adsorption.

一方、学習用コンピュータ23は、後述する図5の部品別学習済みモデル作成プログラムを実行することで、各部品実装機12の制御装置17から転送されてくる正常吸着/異常吸着のサンプル部品画像を部品の種類毎に分類して収集すると共に、検査機14の検査結果の情報を取得して部品の種類毎に実装不良発生率を算出し、実装不良発生率が判定しきい値を超えた部品が存在する場合には、当該部品について収集した正常吸着/異常吸着のサンプル部品画像を基準学習済みモデルの教師データとして追加して再学習することで当該部品の画像認識に用いる部品別学習済みモデルを作成して、その部品別学習済みモデルを各部品実装機12の制御装置17へ転送する。再学習の手法は、ニューラルネットワーク、サポートベクターマシン等の機械学習の手法を用いれば良い。 On the other hand, the learning computer 23 executes the learning model creation program for each part of FIG. 5, which will be described later, to obtain a sample part image of normal adsorption / abnormal adsorption transferred from the control device 17 of each component mounting machine 12. In addition to classifying and collecting parts by type, the inspection result information of the inspection machine 14 is acquired, the mounting defect occurrence rate is calculated for each part type, and the mounting defect occurrence rate exceeds the judgment threshold value. If there is, the trained model for each part used for image recognition of the part by adding the sample part image of normal adsorption / abnormal adsorption collected for the part as the teacher data of the reference trained model and re-learning. Is created, and the trained model for each component is transferred to the control device 17 of each component mounting machine 12. As the re-learning method, a machine learning method such as a neural network or a support vector machine may be used.

ここで、基準学習済みモデルは、基準となる部品の画像認識に使用する学習済みモデルであり、学習用コンピュータ23が基準となる部品の正常吸着/異常吸着のサンプル部品画像を教師データとして収集して、ニューラルネットワーク、サポートベクターマシン等の機械学習で学習して基準学習済みモデルを作成しても良いし、外部のコンピュータで作成した基準学習済みモデルを学習用コンピュータ23に取り込むようにしても良い。また、基準となる部品は、特定の部品に限定されるものではなく、事前に学習済みモデルが作成されている部品を「基準となる部品」とすれば良い。 Here, the reference trained model is a trained model used for image recognition of the reference component, and the learning computer 23 collects sample component images of normal adsorption / abnormal adsorption of the reference component as teacher data. Then, the reference-learned model may be created by learning by machine learning such as a neural network or a support vector machine, or the reference-learned model created by an external computer may be imported into the learning computer 23. .. Further, the reference parts are not limited to specific parts, and parts for which a pre-learned model has been created may be defined as "reference parts".

各部品実装機12の制御装置17は、学習用コンピュータ23から転送されてくる基準学習済みモデルと部品別学習済みモデルをそのモデルを用いて画像認識する部品の種類と関連付けて記憶装置(図示せず)に記憶する。その際、部品の種類毎に用意された画像処理用部品形状データに基準学習済みモデル又は部品別学習済みモデルを含ませて記憶する。以下の説明で、単に「学習済みモデル」という場合は、基準学習済みモデルと部品別学習済みモデルの両方を含む。画像処理用部品形状データは、部品のボディ部分のサイズ、バンプやリード等の端子の位置、サイズ、ピッチ、個数等の外観上の特徴を表すデータであり、画像認識した部品の種類を判別したり、部品の吸着位置・角度等を計測するのに使用される。部品の種類毎に作成した学習済みモデルを当該部品の種類毎に用意された画像処理用部品形状データに含ませる処理は、各部品実装機12の制御装置17で行っても良いし、学習用コンピュータ23で行っても良い。或は、学習用コンピュータ23から学習済みモデルを生産管理用コンピュータ21へ転送して、この生産管理用コンピュータ21で学習済みモデルを画像処理用部品形状データに含ませる処理を行って、生産管理用コンピュータ21から各部品実装機12の制御装置17へ学習済みモデルを含む画像処理用部品形状データを転送するようにしても良い。 The control device 17 of each component mounting machine 12 associates the reference learned model and the learned model for each component transferred from the learning computer 23 with the type of component that recognizes an image using the model, and stores the storage device (shown). Remember in). At that time, the image processing component shape data prepared for each component type includes the reference-learned model or the component-specific trained model and stores it. In the following description, the term "trained model" includes both the standard trained model and the component-based trained model. The image processing component shape data is data that represents external features such as the size of the body portion of the component, the position of terminals such as bumps and leads, size, pitch, and number, and determines the type of image-recognized component. It is also used to measure the suction position and angle of parts. The process of including the trained model created for each component type in the image processing component shape data prepared for each component type may be performed by the control device 17 of each component mounting machine 12, or for learning. You may do it with the computer 23. Alternatively, the trained model is transferred from the learning computer 23 to the production management computer 21, and the production management computer 21 performs a process of including the trained model in the image processing part shape data for production management. The image processing component shape data including the trained model may be transferred from the computer 21 to the control device 17 of each component mounting machine 12.

各部品実装機12の制御装置17は、部品の種類毎に記憶した学習済みモデルの中に、吸着ノズル31に吸着した部品の画像認識に用いる学習済みモデルが存在する場合には、当該部品用の学習済みモデルを選択して当該部品の画像認識を行うが、当該部品用の学習済みモデルが存在しない場合には、学習済みモデルが存在する部品の中から、吸着ノズル31に吸着した部品と所定の類似関係がある部品を「基準となる部品」とみなして、当該基準となる部品用の学習済みモデルを「基準学習済みモデル」として用いて、吸着ノズル31に吸着した部品の画像認識を行う。この際、基準となる部品用の学習済みモデルが、他の部品用の基準学習済みモデルから作成した部品別学習済みモデルである場合もあり、この場合は、他の部品用の基準学習済みモデルから作成した部品別学習済みモデルが基準学習済みモデルとして用いられることになる。 The control device 17 of each component mounting machine 12 is used for the component if the learned model stored for each type of component includes a learned model used for image recognition of the component sucked by the suction nozzle 31. The trained model of the above is selected and the image recognition of the part is performed. However, if the trained model for the part does not exist, the part sucked to the suction nozzle 31 is selected from the parts having the trained model. The parts having a predetermined similar relationship are regarded as "reference parts", and the trained model for the reference parts is used as the "reference trained model" to perform image recognition of the parts sucked on the suction nozzle 31. Do. At this time, the trained model for the reference part may be a part-specific trained model created from the standard trained model for other parts. In this case, the trained model for other parts is used. The trained model for each part created from is used as the standard trained model.

この場合、所定の類似関係がある部品とは、例えば、部品のサイズ、色、素材、製造会社、製造ロット等のいずれかが違っていても部品の形状が同一又は類似している部品である。部品どうしに所定の類似関係があれば、一方の部品用の学習済みモデルを用いて他方の部品の画像認識を行っても、ある程度の精度(一般には生産に必要最低限の精度以上)で画像認識可能である。換言すれば、一方の部品用の学習済みモデルを用いて他方の部品の画像認識をある程度の精度で行うことができれば、これら2つの部品は所定の類似関係があると言える。 In this case, the parts having a predetermined similar relationship are, for example, parts having the same or similar shapes even if any of the size, color, material, manufacturing company, manufacturing lot, etc. of the parts is different. .. If there is a certain similarity between the parts, even if the image recognition of the other part is performed using the trained model for one part, the image will be imaged with a certain degree of accuracy (generally, the accuracy above the minimum required for production). It is recognizable. In other words, if the trained model for one component can be used to perform image recognition of the other component with a certain degree of accuracy, it can be said that these two components have a predetermined similarity relationship.

次に、図4の部品吸着姿勢判別プログラムと図5の部品別学習済みモデル作成プログラムの処理の流れを説明する。 Next, the processing flow of the component suction posture determination program of FIG. 4 and the learned model creation program for each component of FIG. 5 will be described.

[部品吸着姿勢判別プログラム]
図4の部品吸着姿勢判別プログラムは、生産中に各部品実装機12の吸着ノズル31に吸着した部品を部品撮像用カメラ18で撮像するタイミングになる毎に各部品実装機12の制御装置17によって実行される。
[Part suction posture discrimination program]
The component suction posture determination program of FIG. 4 is performed by the control device 17 of each component mounting machine 12 at each timing when the component imaged by the component imaging camera 18 captures the component sucked by the suction nozzle 31 of each component mounting machine 12 during production. Will be executed.

各部品実装機12の制御装置17は、本プログラムを起動すると、まず、ステップ101で、吸着ノズル31に吸着した部品を部品撮像用カメラ18で撮像して、その撮像画像を取り込む。この後、ステップ102に進み、記憶装置(図示せず)に部品の種類毎に記憶されている学習済みモデルの中に、撮像した部品用の学習済みモデルが存在するか否かを判定し、撮像した部品用の学習済みモデルが存在する場合には、ステップ103に進み、撮像した部品用の学習済みモデルを今回の画像認識に用いる学習済みモデルとして選択する。 When the control device 17 of each component mounting machine 12 starts this program, first, in step 101, the component sucked by the suction nozzle 31 is imaged by the component imaging camera 18, and the captured image is captured. After that, the process proceeds to step 102, and it is determined whether or not there is a trained model for the imaged component among the trained models stored in the storage device (not shown) for each type of component. If there is a trained model for the imaged component, the process proceeds to step 103, and the trained model for the imaged component is selected as the trained model used for the image recognition this time.

一方、記憶装置に部品の種類毎に記憶されている学習済みモデルの中に、撮像した部品用の学習済みモデルが存在しない場合には、ステップ104に進み、記憶装置に部品の種類毎に記憶されている学習済みモデルの中から、撮像した部品と所定の類似関係がある部品用の学習済みモデルを今回の画像認識に用いる学習済みモデルとして選択する。 On the other hand, if there is no trained model for the imaged component among the trained models stored in the storage device for each type of component, the process proceeds to step 104, and the storage device stores each component type. From the trained models that have been learned, a trained model for a component that has a predetermined similarity relationship with the imaged component is selected as the trained model to be used for this image recognition.

以上のようにして、今回の画像認識に用いる学習済みモデルを選択した後、ステップ105に進み、今回の撮像画像を制御装置17の画像処理機能によって処理して、選択した学習済みモデルを用いて、撮像した部品の吸着姿勢が正常吸着(図2参照)か異常吸着(図3参照)かを判別する。 After selecting the trained model to be used for the image recognition this time as described above, the process proceeds to step 105, the captured image this time is processed by the image processing function of the control device 17, and the selected trained model is used. , It is determined whether the suction posture of the imaged component is normal suction (see FIG. 2) or abnormal suction (see FIG. 3).

この後、ステップ106に進み、吸着姿勢の判別結果が正常吸着か否かを判定し、正常吸着であれば、ステップ107に進み、今回の撮像画像を正常吸着のサンプル部品画像として学習用コンピュータ23へ転送して本プログラムを終了する。一方、吸着姿勢の判別結果が正常吸着ではなく、異常吸着であれば、ステップ108に進み、今回の撮像画像を異常吸着のサンプル部品画像として学習用コンピュータ23へ転送して本プログラムを終了する。これにより、学習用コンピュータ23が各部品実装機12の制御装置17から正常吸着/異常吸着のサンプル部品画像を収集する。 After that, the process proceeds to step 106 to determine whether or not the suction posture determination result is normal suction, and if it is normal suction, the process proceeds to step 107, and the image captured this time is used as a sample component image of normal suction by the learning computer 23. Transfer to and exit this program. On the other hand, if the determination result of the suction posture is not normal suction but abnormal suction, the process proceeds to step 108, and the image captured this time is transferred to the learning computer 23 as a sample component image of abnormal suction to end this program. As a result, the learning computer 23 collects sample component images of normal adsorption / abnormal adsorption from the control device 17 of each component mounting machine 12.

尚、各部品実装機12の制御装置17が正常吸着/異常吸着のサンプル部品画像を一時的に収集するようにしても良い。この場合は、各部品実装機12の制御装置17がサンプル部品画像を所定数収集する毎(又は所定期間収集する毎)にそれまでに収集したサンプル部品画像を一括して学習用コンピュータ23へ転送するようにしたり、或は、学習用コンピュータ23からサンプル部品画像転送要求が出力される毎に各部品実装機12の制御装置17がそれまでに収集したサンプル部品画像を一括して学習用コンピュータ23へ転送するようにしても良い。或は、生産管理用コンピュータ21が各部品実装機12の制御装置17からサンプル部品画像を収集して、この生産管理用コンピュータ21からサンプル部品画像を学習用コンピュータ23へ転送するようにしても良い。いずれの方法であっても、学習用コンピュータ23が最終的にサンプル部品画像を収集することができる。 The control device 17 of each component mounting machine 12 may temporarily collect sample component images of normal adsorption / abnormal adsorption. In this case, every time the control device 17 of each component mounting machine 12 collects a predetermined number of sample component images (or every time a predetermined number of sample component images are collected), the sample component images collected so far are collectively transferred to the learning computer 23. Or, every time the sample component image transfer request is output from the learning computer 23, the sample component images collected by the control device 17 of each component mounting machine 12 are collectively collected by the learning computer 23. You may try to transfer to. Alternatively, the production management computer 21 may collect sample part images from the control device 17 of each component mounting machine 12 and transfer the sample component images from the production management computer 21 to the learning computer 23. .. With either method, the learning computer 23 can finally collect sample component images.

[部品別学習済みモデル作成プログラム]
図5の部品別学習済みモデル作成プログラムは、学習用コンピュータ23が所定の周期で繰り返し実行する。学習用コンピュータ23が本プログラムを起動すると、まず、ステップ201で、各部品実装機12の制御装置17又は生産管理用コンピュータ21から部品の種類毎に正常吸着/異常吸着のサンプル部品画像を収集する。そして、次のステップ202で、検査機14から検査結果の情報を取得する。
[Learned model creation program for each part]
The learning computer 23 repeatedly executes the learned model creation program for each part in FIG. 5 at a predetermined cycle. When the learning computer 23 starts this program, first, in step 201, sample component images of normal adsorption / abnormal adsorption are collected from the control device 17 of each component mounting machine 12 or the production management computer 21 for each component type. .. Then, in the next step 202, information on the inspection result is acquired from the inspection machine 14.

この後、ステップ203に進み、収集した正常吸着のサンプル部品画像の中から、検査機14で実装不良と判定された部品を撮像したサンプル部品画像を廃棄する。これは、正常吸着と判定されても、検査機14で実装不良と判定された部品は、実際には異常吸着である可能性があるためである。尚、このステップ203の処理は、各部品実装機12の制御装置17又は生産管理用コンピュータ21で行って、検査機14で実装不良と判定されなかった部品を撮像した画像のみを正常吸着のサンプル部品画像として学習用コンピュータ23で収集するようにしても良い。 After that, the process proceeds to step 203, and from the collected sample component images of normal adsorption, the sample component image obtained by imaging the component determined to be improperly mounted by the inspection machine 14 is discarded. This is because even if it is determined to be normal adsorption, the component determined to be improperly mounted by the inspection machine 14 may actually be abnormal adsorption. The process of step 203 is performed by the control device 17 of each component mounting machine 12 or the production management computer 21, and only the image of the component that is not determined to be mounting failure by the inspection machine 14 is sampled for normal adsorption. The learning computer 23 may collect the component images.

この後、ステップ204に進み、検査機14から取得した検査結果の情報に基づいて部品の種類毎に実装不良発生率を算出する。この後、ステップ205に進み、算出した実装不良発生率が所定の判定しきい値を超える部品が存在するか否かを判定し、実装不良発生率が判定しきい値を超える部品が存在しない場合には、選択した学習済みモデルを用いた画像認識の精度が確保されている(部品別学習済みモデルを作成する必要はない)と判断して、本プログラムを終了する。 After that, the process proceeds to step 204, and the mounting defect occurrence rate is calculated for each type of component based on the information of the inspection result acquired from the inspection machine 14. After that, the process proceeds to step 205, and it is determined whether or not there is a component whose calculated mounting defect occurrence rate exceeds a predetermined determination threshold value, and there is no component whose mounting defect occurrence rate exceeds the determination threshold value. Is determined that the accuracy of image recognition using the selected trained model is ensured (it is not necessary to create a trained model for each part), and this program is terminated.

これに対し、実装不良発生率が判定しきい値を超える部品が存在する場合には、当該部品については画像認識の精度が確保されていない(部品別学習済みモデルを作成する必要がある)と判断して、ステップ206に進み、当該部品について収集した正常吸着/異常吸着のサンプル部品画像を、当該部品の画像認識に使用した基準学習済みモデルの教師データとして追加して再学習することで、当該部品用の部品別学習済みモデルを作成する。この後、ステップ207に進み、作成した部品別学習済みモデルを各部品実装機12の制御装置17へ転送して本プログラムを終了する。これにより、各部品実装機12の制御装置17は、学習用コンピュータ23から転送されてきた部品別学習済みモデルを用いて画像認識できる状態となる。 On the other hand, if there is a component whose mounting defect occurrence rate exceeds the judgment threshold, the accuracy of image recognition is not ensured for that component (it is necessary to create a trained model for each component). After making a judgment, the process proceeds to step 206, and the sample part image of normal adsorption / abnormal adsorption collected for the part is added as teacher data of the reference trained model used for image recognition of the part and relearned. Create a part-specific trained model for the part. After that, the process proceeds to step 207, and the created component-specific trained model is transferred to the control device 17 of each component mounting machine 12 to end this program. As a result, the control device 17 of each component mounting machine 12 is in a state where image recognition can be performed using the component-specific learned model transferred from the learning computer 23.

以上説明した本実施例によれば、基準学習済みモデルが作成されている基準となる部品に対して所定の類似関係がある部品については、その部品の種類毎にサンプル部品画像を収集して当該部品の種類毎に当該サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成するようにしたので、基準となる部品に対して所定の類似関係がある部品の画像認識に用いる部品別学習済みモデルを基準学習済みモデルから比較的簡単に作成することができ、学習済みモデルを作成する作業の手間と時間を減らすことができる。 According to the present embodiment described above, for a part having a predetermined similarity relationship with the reference part for which the reference-learned model is created, a sample part image is collected for each type of the part and the relevant part is concerned. By adding the sample part image for each part type as teacher data of the reference trained model and re-learning, a trained model for each part used for image recognition of the part is created for each type of the part. Therefore, it is possible to relatively easily create a trained model for each part used for image recognition of a part having a predetermined similarity relationship with the reference part from the standard trained model, and the work of creating the trained model. You can save time and effort.

しかも、本実施例では、部品の種類毎に作成した部品別学習済みモデルを当該部品の種類毎に用意された画像処理用部品形状データに含ませるようにしたので、この画像処理用部品形状データを使用可能な他の部品実装ラインの部品実装機でも、部品別学習済みモデルを用いた同様の画像認識が可能となり、生産品質の向上、安定につながる利点がある。 Moreover, in this embodiment, the trained model for each part created for each part type is included in the image processing part shape data prepared for each part type, so that the image processing part shape data is included. Even with component mounting machines on other component mounting lines that can be used, similar image recognition using the trained model for each component is possible, which has the advantage of improving production quality and stabilizing.

但し、部品別学習済みモデルを画像処理用部品形状データと関連付けずに単独で管理するようにしても良い。 However, the trained model for each part may be managed independently without being associated with the part shape data for image processing.

更に、本実施例では、生産中に各部品実装機12の吸着ノズル31に吸着した部品を部品撮像用カメラ18で撮像して、その画像を処理して当該部品の吸着姿勢が正常吸着か異常吸着かを判別して、正常吸着と判別した撮像画像を正常吸着のサンプル部品画像として収集すると共に、異常吸着と判別した撮像画像を異常吸着のサンプル部品画像として収集するようにしたので、生産中に部品撮像用カメラ18で撮像した画像を正常吸着/異常吸着のサンプル部品画像として収集することができ、サンプル部品画像を収集する作業の手間を省くことができる。 Further, in this embodiment, a component sucked by the suction nozzle 31 of each component mounting machine 12 during production is imaged by the component imaging camera 18, and the image is processed so that the suction posture of the component is normal suction or abnormal. It is in production because it is determined whether it is adsorption and the captured image determined to be normal adsorption is collected as a sample part image of normal adsorption, and the captured image determined to be abnormal adsorption is collected as a sample part image of abnormal adsorption. The image captured by the component imaging camera 18 can be collected as a sample component image of normal adsorption / abnormal adsorption, and the labor of collecting the sample component image can be saved.

但し、サンプル部品画像の収集方法は生産中に収集する方法のみに限定されず、例えば、生産開始前に部品実装機12の吸着ノズル31に吸着した正常吸着の部品と異常吸着の部品をそれぞれ部品撮像用カメラ18で撮像して、その撮像画像を正常吸着/異常吸着のサンプル部品画像として収集するようにしても良い。或は、サンプル部品画像を撮像する専用の撮像装置を用いて、その撮像装置で撮像した正常吸着/異常吸着のサンプル部品画像を収集するようにしても良い。専用の撮像装置を用いる場合は、生産開始前、生産中、生産終了後のいずれであっても正常吸着/異常吸着のサンプル部品画像を収集できる。 However, the method of collecting the sample part image is not limited to the method of collecting the sample part image only during the production. The image may be taken by the imaging camera 18 and the captured image may be collected as a sample component image of normal adsorption / abnormal adsorption. Alternatively, a dedicated imaging device for capturing a sample component image may be used to collect a sample component image of normal adsorption / abnormal adsorption captured by the imaging device. When a dedicated imaging device is used, sample component images of normal adsorption / abnormal adsorption can be collected before, during, or after the end of production.

また、本実施例では、生産中に実装不良発生率が所定の判定しきい値を超える部品が発生した場合に、当該部品について収集した正常吸着/異常吸着のサンプル部品画像を、当該部品の画像認識に使用した基準学習済みモデルの教師データとして追加して再学習することで、当該部品用の部品別学習済みモデルを作成して各部品実装機12の制御装置17へ転送するようにしたので、生産中に実装不良発生率が所定の判定しきい値を超える部品が発生する毎に、当該部品の画像認識に用いる部品別学習済みモデルを作成することが可能となり、生産中に当該部品の画像認識の精度を向上させて実装不良発生率を低減させることができる。 Further, in this embodiment, when a component whose mounting defect occurrence rate exceeds a predetermined determination threshold value occurs during production, the sample component image of normal adsorption / abnormal adsorption collected for the component is used as an image of the component. By adding it as teacher data of the reference trained model used for recognition and retraining it, a trained model for each part for the relevant part is created and transferred to the control device 17 of each component mounting machine 12. , Every time a part whose mounting defect occurrence rate exceeds a predetermined judgment threshold occurs during production, it is possible to create a learned model for each part used for image recognition of the part, and the part is manufactured during production. It is possible to improve the accuracy of image recognition and reduce the incidence of mounting defects.

但し、部品別学習済みモデルの作成は、生産開始前又は生産終了後に行っても良い。或は、正常吸着/異常吸着のサンプル部品画像の収集数が所定数を超えた時点で部品別学習済みモデルを作成するようにしても良い。 However, the trained model for each part may be created before the start of production or after the end of production. Alternatively, a trained model for each component may be created when the number of collected sample component images of normal adsorption / abnormal adsorption exceeds a predetermined number.

また、本実施例の学習済みモデルは、吸着ノズル31に吸着した部品の吸着姿勢が正常吸着か異常吸着かを判別する学習済みモデルであるが、吸着ノズル31に吸着した部品の有無を判別する学習済みモデルであっても良い。この場合、吸着ノズル31に吸着した部品有りの状態で部品撮像用カメラ18で撮像した画像を部品有りのサンプル部品画像として収集すると共に、吸着ノズル31に吸着した部品無しの状態で部品撮像用カメラ18で撮像した画像を部品無しのサンプル部品画像として収集し、当該部品の種類毎に分類した部品有り/部品無しのサンプル部品画像を、当該部品の画像認識に用いた基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品用の部品別学習済みモデルを作成するようにすれば良い。この場合も、サンプル部品画像の収集は、専用の撮像装置を用いて行っても良い。 Further, the trained model of this embodiment is a trained model that determines whether the suction posture of the component sucked on the suction nozzle 31 is normal suction or abnormal suction, but determines the presence or absence of the component sucked on the suction nozzle 31. It may be a trained model. In this case, the image captured by the component imaging camera 18 with the components adsorbed on the suction nozzle 31 is collected as a sample component image with the components, and the component imaging camera without the components adsorbed on the suction nozzle 31 is collected. The image captured in 18 is collected as a sample part image without parts, and the sample part image with / without parts classified according to the type of the part is used as the reference trained model teacher data for image recognition of the part. By adding and re-learning as, a part-specific trained model for the part may be created for each type of the part. In this case as well, the sample component image may be collected by using a dedicated imaging device.

また、検査機14が回路基板11に実装した部品の有無を判別する学習済みモデルを使用して回路基板11上の部品の有無を検査する場合がある。この場合、検査機14の制御装置20は、搬入された回路基板11上の各部品の実装状態を検査用カメラ22で撮像して、その撮像画像を処理して、学習済みモデルを使用して回路基板11上の各部品の有無を検査して、部品有りと判定した撮像画像を部品有りのサンプル部品画像として収集すると共に、部品無しと判定した撮像画像を部品無しのサンプル部品画像として収集し、当該部品の種類毎に分類した部品有り/部品無しのサンプル部品画像を、当該部品の画像認識に用いた基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品用の部品別学習済みモデルを作成するようにすれば良い。この場合も、サンプル部品画像の収集は、専用の撮像装置を用いて行っても良い。 In addition, the inspection machine 14 may inspect the presence or absence of parts on the circuit board 11 by using a learned model for determining the presence or absence of parts mounted on the circuit board 11. In this case, the control device 20 of the inspection machine 14 captures the mounted state of each component on the carried-in circuit board 11 with the inspection camera 22, processes the captured image, and uses the trained model. The presence or absence of each component on the circuit board 11 is inspected, and the captured image determined to have a component is collected as a sample component image with a component, and the captured image determined to have no component is collected as a sample component image without a component. By adding the sample part image with / without parts classified according to the type of the part as the teacher data of the reference trained model used for the image recognition of the part and re-learning, for each type of the part. A part-specific trained model for the part may be created. In this case as well, the sample component image may be collected by using a dedicated imaging device.

その他、本発明は、部品実装ライン10の構成を変更したり、図4、図5の各プログラムの処理内容や処理順序を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。 In addition, the present invention may be modified in various ways without departing from the gist, such as changing the configuration of the component mounting line 10 or appropriately changing the processing contents and processing order of the programs of FIGS. 4 and 5. Needless to say, it can be implemented.

10…部品実装ライン、11…回路基板、12…部品実装機、14…検査機、17…部品実装機の制御装置、18…部品撮像用カメラ、19…フィーダ、20…検査機の制御装置、21…生産管理用コンピュータ、22…検査用カメラ、23…学習用コンピュータ、31…吸着ノズル 10 ... Parts mounting line, 11 ... Circuit board, 12 ... Parts mounting machine, 14 ... Inspection machine, 17 ... Parts mounting machine control device, 18 ... Parts imaging camera, 19 ... Feeder, 20 ... Inspection machine control device, 21 ... Production control computer, 22 ... Inspection camera, 23 ... Learning computer, 31 ... Suction nozzle

Claims (9)

部品実装機の吸着ノズルに吸着した部品又は回路基板に実装した部品を撮像対象とし、この撮像対象をカメラで撮像して画像認識する際に使用する学習済みモデルを作成する部品画像認識用学習済みモデル作成システムにおいて、
基準となる部品の画像認識に使用する基準学習済みモデルを取得するコンピュータを備え、
前記コンピュータは、前記基準となる部品に対して所定の類似関係がある部品の種類毎にサンプル部品画像を収集して当該部品の種類毎に当該サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成する、部品画像認識用学習済みモデル作成システム。
A component mounted on a suction nozzle of a component mounting machine or a component mounted on a circuit board is targeted for imaging, and a trained model is created by capturing the imaged object with a camera and recognizing the image. In the modeling system
Equipped with a computer to acquire the reference trained model used for image recognition of the reference part
The computer collects sample part images for each type of part having a predetermined similarity relationship with the reference part, and uses the sample part image for each type of the part as teacher data of the reference-learned model. A trained model creation system for component image recognition that creates a trained model for each component used for image recognition of the component for each type of component by adding and re-learning.
前記コンピュータによって前記部品の種類毎に作成した前記部品別学習済みモデルは、当該部品の種類毎に用意された画像処理用部品形状データに含まれる、請求項1に記載の部品画像認識用学習済みモデル作成システム。 The part image recognition trained according to claim 1, wherein the learned model for each part created by the computer for each type of the part is included in the image processing part shape data prepared for each type of the part. Modeling system. 前記基準となる部品に対して所定の類似関係がある部品とは、前記基準となる部品とサイズ、色、素材、製造会社、製造ロットのいずれかが違っていても部品の形状が同一又は類似している部品である、請求項1又は2に記載の部品画像認識用学習済みモデル作成システム。 A part having a predetermined similarity relationship with the reference part has the same or similar shape as the reference part even if the size, color, material, manufacturing company, or manufacturing lot is different from the reference part. The trained model creation system for component image recognition according to claim 1 or 2, which is a component. 前記コンピュータは、生産中に部品実装機のカメラ又は検査機のカメラで前記撮像対象を撮像した画像を前記サンプル部品画像として収集する、請求項1乃至3のいずれかに記載の部品画像認識用学習済みモデル作成システム。 The learning for component image recognition according to any one of claims 1 to 3, wherein the computer collects an image captured by the camera of the component mounting machine or the camera of the inspection machine as the sample component image during production. Completed modeling system. 前記基準学習済みモデル及び前記部品別学習済みモデルは、前記吸着ノズルに吸着した部品の吸着姿勢が正常吸着か異常吸着かを判別する学習済みモデルである、請求項1乃至4のいずれかに記載の部品画像認識用学習済みモデル作成システム。 The reference trained model and the component-specific trained model are the trained models for discriminating whether the suction posture of the parts sucked by the suction nozzle is normal suction or abnormal suction, according to any one of claims 1 to 4. A trained model creation system for component image recognition. 前記基準学習済みモデル及び前記部品別学習済みモデルは、前記吸着ノズルに吸着した部品の有無を判別する学習済みモデルである、請求項1乃至4のいずれかに記載の部品画像認識用学習済みモデル作成システム。 The trained model for component image recognition according to any one of claims 1 to 4, wherein the reference trained model and the component-specific trained model are trained models that determine the presence or absence of components adsorbed on the suction nozzle. Creation system. 前記基準学習済みモデル及び前記部品別学習済みモデルは、前記回路基板に実装した部品の有無を判別する学習済みモデルである、請求項1乃至4のいずれかに記載の部品画像認識用学習済みモデル作成システム。 The trained model for component image recognition according to any one of claims 1 to 4, wherein the reference trained model and the component-specific trained model are trained models that determine the presence or absence of components mounted on the circuit board. Creation system. 前記コンピュータは、作成した前記部品別学習済みモデルをそれを使用する部品実装機又は検査機へ転送する、請求項1乃至7のいずれかに記載の部品画像認識用学習済みモデル作成システム。 The trained model creation system for component image recognition according to any one of claims 1 to 7, wherein the computer transfers the created trained model for each component to a component mounting machine or an inspection machine that uses the model. 部品実装機の吸着ノズルに吸着した部品又は回路基板に実装した部品を撮像対象とし、この撮像対象をカメラで撮像して画像認識する際に使用する学習済みモデルを作成する部品画像認識用学習済みモデル作成方法において、
基準となる部品の画像認識に使用する基準学習済みモデルを取得する工程と、
前記基準となる部品に対して所定の類似関係がある部品の種類毎にサンプル部品画像を収集する工程と、
前記部品の種類毎に取得した前記サンプル部品画像を前記基準学習済みモデルの教師データとして追加して再学習することで当該部品の種類毎に当該部品の画像認識に用いる部品別学習済みモデルを作成する工程と
を含む、部品画像認識用学習済みモデル作成方法。
A component sucked on the suction nozzle of the component mounting machine or a component mounted on the circuit board is targeted for imaging, and a trained model is created by capturing the imaged object with a camera and recognizing the image. In the model creation method
The process of acquiring the reference trained model used for image recognition of the reference part, and
A process of collecting sample part images for each type of part having a predetermined similarity relationship with the reference part, and
By adding the sample part image acquired for each type of the part as teacher data of the reference-learned model and re-learning, a trained model for each part used for image recognition of the part is created for each type of the part. A trained model creation method for component image recognition, including the steps to be performed.
JP2019570235A 2018-02-09 2018-02-09 Trained model creation system for component image recognition and trained model creation method for component image recognition Active JP6838175B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004555 WO2019155593A1 (en) 2018-02-09 2018-02-09 System for creating learned model for component image recognition, and method for creating learned model for component image recognition

Publications (2)

Publication Number Publication Date
JPWO2019155593A1 true JPWO2019155593A1 (en) 2020-10-22
JP6838175B2 JP6838175B2 (en) 2021-03-03

Family

ID=67549304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019570235A Active JP6838175B2 (en) 2018-02-09 2018-02-09 Trained model creation system for component image recognition and trained model creation method for component image recognition

Country Status (5)

Country Link
US (1) US11386546B2 (en)
EP (1) EP3751976A4 (en)
JP (1) JP6838175B2 (en)
CN (1) CN111656883B (en)
WO (1) WO2019155593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210012499A1 (en) * 2019-07-12 2021-01-14 SVXR, Inc. Methods and Systems for Detecting Defects in Devices Using X-rays

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135622A (en) * 2020-02-25 2021-09-13 日本サポートシステム株式会社 Information processing device, inspection system and program
TW202205126A (en) * 2020-03-25 2022-02-01 日商東京威力科創股份有限公司 Abnormality detection apparatus and abnormality detection method
US20230315425A1 (en) * 2020-07-03 2023-10-05 Sony Group Corporation Information processing apparatus, information processing method, information processing system, and program
JP2022141065A (en) * 2021-03-15 2022-09-29 オムロン株式会社 Inspection system, inspection management device, inspection program creation method, and program
CN117716396A (en) 2021-07-26 2024-03-15 京瓷株式会社 Training model generation method, user environment estimation method, training model generation device, user environment estimation device, and training model generation system
CN117882505A (en) * 2021-09-07 2024-04-12 雅马哈发动机株式会社 Component mounting system
WO2023195173A1 (en) * 2022-04-08 2023-10-12 株式会社Fuji Component mounting system and image classification method
WO2024079883A1 (en) * 2022-10-14 2024-04-18 株式会社Fuji Production assistance device
WO2024079882A1 (en) * 2022-10-14 2024-04-18 株式会社Fuji Production assistance device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130865A (en) * 2006-11-22 2008-06-05 Fuji Mach Mfg Co Ltd Component sucked posture discrimination method and component sucked posture discrimination system
JP2009054821A (en) * 2007-08-28 2009-03-12 Panasonic Corp Component mounting device
JP2013100996A (en) * 2011-11-07 2013-05-23 Omron Corp System, device and method for supporting visual confirmation work of inspection result
JP2014027064A (en) * 2012-07-25 2014-02-06 Juki Corp Information management system and information provision method
WO2017081736A1 (en) * 2015-11-09 2017-05-18 富士機械製造株式会社 Lead end-position image recognition method and lead end-position image recognition system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088688A1 (en) * 2001-05-02 2002-11-07 Teradyne, Inc. Inspection system using dynamically obtained values and related techniques
US6941288B2 (en) * 2002-04-08 2005-09-06 Shih-Jong J. Lee Online learning method in a decision system
JP5182121B2 (en) * 2009-01-27 2013-04-10 オムロン株式会社 Library data creation method and inspection data creation method for substrate visual inspection
JP6140438B2 (en) * 2012-12-20 2017-05-31 富士機械製造株式会社 Nozzle inspection apparatus and nozzle inspection method
EP3300473B1 (en) * 2015-05-21 2024-01-24 FUJI Corporation Component orientation determination data creation device and component orientation determination data creation method
KR101893831B1 (en) * 2016-10-20 2018-08-31 주식회사 고영테크놀러지 Board inspection apparatus and board inspection method using the same
CN109923955B (en) * 2016-11-14 2020-10-30 株式会社富士 Reclassification system and reclassification method for saving images
JP6983524B2 (en) * 2017-03-24 2021-12-17 キヤノン株式会社 Information processing equipment, information processing methods and programs
US11144786B2 (en) * 2017-11-02 2021-10-12 Canon Kabushiki Kaisha Information processing apparatus, method for controlling information processing apparatus, and storage medium
US11019761B2 (en) * 2018-03-26 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Mounting head and component mounter
USPP32082P3 (en) * 2018-07-31 2020-08-18 Royal Super Fruits B.V. Aristotelia plant named ‘VB1’

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130865A (en) * 2006-11-22 2008-06-05 Fuji Mach Mfg Co Ltd Component sucked posture discrimination method and component sucked posture discrimination system
JP2009054821A (en) * 2007-08-28 2009-03-12 Panasonic Corp Component mounting device
JP2013100996A (en) * 2011-11-07 2013-05-23 Omron Corp System, device and method for supporting visual confirmation work of inspection result
JP2014027064A (en) * 2012-07-25 2014-02-06 Juki Corp Information management system and information provision method
WO2017081736A1 (en) * 2015-11-09 2017-05-18 富士機械製造株式会社 Lead end-position image recognition method and lead end-position image recognition system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210012499A1 (en) * 2019-07-12 2021-01-14 SVXR, Inc. Methods and Systems for Detecting Defects in Devices Using X-rays
US11688067B2 (en) * 2019-07-12 2023-06-27 Bruker Nano, Inc. Methods and systems for detecting defects in devices using X-rays

Also Published As

Publication number Publication date
CN111656883B (en) 2021-07-30
US20210035284A1 (en) 2021-02-04
JP6838175B2 (en) 2021-03-03
WO2019155593A1 (en) 2019-08-15
EP3751976A1 (en) 2020-12-16
US11386546B2 (en) 2022-07-12
EP3751976A4 (en) 2021-02-24
CN111656883A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6838175B2 (en) Trained model creation system for component image recognition and trained model creation method for component image recognition
JP6922168B2 (en) Surface mount line quality control system and its control method
US6748104B1 (en) Methods and apparatus for machine vision inspection using single and multiple templates or patterns
JP6723373B2 (en) Storage image reclassification system and reclassification method
US10366484B2 (en) Inspection method, inspection apparatus, processing apparatus, and recording medium for detecting defects of a work
US20060075631A1 (en) Pick and place machine with improved component pick up inspection
KR20210038211A (en) Method of inspection using image masking operation
CN111223081A (en) Part hole opening recognition and detection method and system based on deep learning
US20220284699A1 (en) System and method of object detection using ai deep learning models
CN110516375B (en) Abnormal board card detection method and device, electronic equipment and storage medium
CN112534472B (en) Image determination device, image determination method, and recording medium for program thereof
US7551765B2 (en) Electronic component detection system
JP5615076B2 (en) Component presence / absence determination apparatus and component presence / absence determination method
JP4814116B2 (en) Mounting board appearance inspection method
CN115471684A (en) Injection molding workpiece template matching method, electronic equipment and storage medium
TWI549097B (en) A method of detecting images of appearance of electronic components and computer readable media thereof
CN109624502B (en) Efficient low-loss printed product production system and method
JP5778685B2 (en) System and method for alignment and inspection of ball grid array devices
JP2020197983A (en) Object measurement method, measuring device, program, and computer-readable recording medium
WO2022181304A1 (en) Inspection system and inspection program
Sun et al. Further development of adaptable automated visual inspection—part i: concept and scheme
CN117788412A (en) PCB defect detection method based on AOI
KR20240039039A (en) Component placement system
CN114428082A (en) Electronic component image capturing method and capacitor polarity determination method using same
CN116486141A (en) Plank grade classification and cutting method and system based on multi-mode image recognition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6838175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250