JPWO2019146620A1 - Mesh woven fabric made of liquid crystal polyester fiber - Google Patents

Mesh woven fabric made of liquid crystal polyester fiber Download PDF

Info

Publication number
JPWO2019146620A1
JPWO2019146620A1 JP2019512693A JP2019512693A JPWO2019146620A1 JP WO2019146620 A1 JPWO2019146620 A1 JP WO2019146620A1 JP 2019512693 A JP2019512693 A JP 2019512693A JP 2019512693 A JP2019512693 A JP 2019512693A JP WO2019146620 A1 JPWO2019146620 A1 JP WO2019146620A1
Authority
JP
Japan
Prior art keywords
fiber
liquid crystal
crystal polyester
mesh
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019512693A
Other languages
Japanese (ja)
Other versions
JP7304285B2 (en
Inventor
義嗣 船津
義嗣 船津
千絵子 川俣
千絵子 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
NBC Meshtec Inc
Original Assignee
Toray Industries Inc
NBC Meshtec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, NBC Meshtec Inc filed Critical Toray Industries Inc
Publication of JPWO2019146620A1 publication Critical patent/JPWO2019146620A1/en
Application granted granted Critical
Publication of JP7304285B2 publication Critical patent/JP7304285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

液晶ポリエステル繊維からなり、メッシュ数が350本/インチ以上かつ紗厚が25μm以下であることを特徴とするメッシュ織物。液晶ポリエステル繊維からなり、メッシュ数が大きく、低紗厚のメッシュ織物で、スクリーン版とした際にペーストの透過体積が小さく、薄膜印刷に好適なメッシュ織物を、液晶ポリエステル繊維において生じやすい製織工程でのフィブリル化と耐摩耗性の低下を防止しつつ、塑性変形しにくい高強度と優れた耐薬品性にて提供する。A mesh woven fabric made of liquid crystal polyester fiber, characterized in that the number of meshes is 350 lines / inch or more and the gauze thickness is 25 μm or less. A mesh fabric made of liquid crystal polyester fiber with a large number of meshes and a low thickness, which has a small permeation volume of the paste when made into a screen plate, and is suitable for thin film printing. It is provided with high strength and excellent chemical resistance that is hard to be plastically deformed while preventing fibrillation and deterioration of wear resistance.

Description

本発明は液晶ポリエステル繊維からなるため高強度であり塑性変形しにくく、耐薬品性に優れ、かつメッシュ数が大きく、低紗厚であるためスクリーン版とした際にペーストの透過体積が小さく、薄膜印刷に適したメッシュ織物に関するものである。 Since the present invention is made of liquid crystal polyester fiber, it has high strength, is not easily plastically deformed, has excellent chemical resistance, has a large number of meshes, and has a low gauze thickness, so that the permeation volume of the paste is small when it is used as a screen plate, and it is a thin film. It relates to a mesh fabric suitable for printing.

液晶ポリエステル繊維は、高強度、高弾性率、耐薬品性の特徴に代表されるスーパー繊維の中で唯一溶融紡糸により製造される繊維であり、繊維の真円性に優れメッシュ織物用のモノフィラメントに適している。その一方で液晶ポリエステル繊維は耐摩耗性に劣り、特に製織工程でのフィブリル化が生じやすいため、メッシュ織物とするために耐摩耗性向上が望まれている。 Liquid crystal polyester fiber is the only super fiber produced by melt spinning among super fibers represented by its characteristics of high strength, high elastic modulus, and chemical resistance, and has excellent fiber roundness, making it a monofilament for mesh fabrics. Is suitable. On the other hand, the liquid crystal polyester fiber is inferior in abrasion resistance, and in particular, fibrillation is likely to occur in the weaving process. Therefore, improvement in abrasion resistance is desired in order to form a mesh fabric.

液晶ポリエステル繊維の耐摩耗性改善については、液晶ポリエステル繊維を、示差熱量測定において50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)+10℃以上の温度、すなわち融点+10℃以上で熱処理する技術が提案されている(特許文献1、2参照)。この技術により耐摩耗性は向上し、製織可能な液晶ポリエステル繊維が得られているが、フィルター、スクリーン印刷用等のメッシュ織物に対しては、性能向上のため織密度の高密度化(高メッシュ化)が求められており、さらに電子回路関係のスクリーン印刷用メッシュ織物に対しては、導電性ペーストの使用量削減のため、透過体積の減少が求められている。 Regarding the improvement of wear resistance of the liquid crystal polyester fiber, the temperature of the heat absorption peak temperature (Tm1) + 10 ° C. or higher observed when the liquid crystal polyester fiber is measured under the heating condition of 50 ° C. to 20 ° C./min in the differential calorimetry. That is, a technique for heat treatment at a melting point of + 10 ° C. or higher has been proposed (see Patent Documents 1 and 2). Abrasion resistance is improved by this technology, and weavable liquid crystal polyester fibers are obtained. However, for mesh fabrics for filters, screen printing, etc., the weaving density is increased (high mesh) to improve performance. In addition, for screen printing mesh fabrics related to electronic circuits, a reduction in transmission volume is required in order to reduce the amount of conductive paste used.

ここでメッシュの透過体積について説明する。透過体積(cc/m)とはメッシュ織物1mにおける開口部(透過部)の体積を表す指標である。透過体積はスクリーン印刷においてメッシュに保持されるペースト量と正の相関があることが知られており、透過体積が小さいほどペースト使用量が少なく、印刷膜厚が薄い印刷を行うことができる。この透過体積は紗厚(μm)を用いて以下の式で求めることができる。
透過体積=OPA/100×紗厚
Here, the transmission volume of the mesh will be described. The transmission volume (cc / m 2 ) is an index showing the volume of the opening (transmission portion) in the mesh woven fabric 1 m 2 . It is known that the transmission volume has a positive correlation with the amount of paste held in the mesh in screen printing, and the smaller the transmission volume, the smaller the amount of paste used, and the thinner the printing film thickness can be printed. This permeation volume can be calculated by the following formula using the thickness (μm).
Permeation volume = OPA / 100 x thickness

ここでOPA(%)とはオープニングエリアである。オープニングエリアとはメッシュの開口部の面積比率を表す指標であり、以下の式で求められる。
OPA=OP/(OP+繊維径)×100
Here, OPA (%) is the opening area. The opening area is an index showing the area ratio of the opening of the mesh, and is calculated by the following formula.
OPA = OP 2 / (OP + fiber diameter) 2 x 100

ここでOP(μm)とはオープニングであり、メッシュ織物における繊維と繊維の間の距離、すなわち開口部の辺の長さを表している。OP(μm)はメッシュ織物2.54cm(=1インチ)幅あたりの繊維本数であるメッシュ数(本/インチ)と繊維径(μm)から以下の式で算出できる。
OP=25400/メッシュ数−繊維径
Here, OP (μm) is the opening and represents the distance between the fibers in the mesh fabric, that is, the length of the side of the opening. OP (μm) can be calculated by the following formula from the number of meshes (fibers / inch) and the fiber diameter (μm), which is the number of fibers per 2.54 cm (= 1 inch) width of the mesh fabric.
OP = 25400 / number of meshes-fiber diameter

上記関係から分かるように、透過体積減少にはOPAを小さくし、紗厚を小さくすることが必要であり、OPAを小さくするにはOPを小さく、繊維径を大きくすることが有効である。またOPを小さくするにはメッシュ数を大きくし、繊維径を大きくすることが有効である。 As can be seen from the above relationship, it is necessary to reduce the OPA and the thickness of the gauze in order to reduce the permeation volume, and it is effective to reduce the OP and increase the fiber diameter in order to reduce the OPA. Further, in order to reduce the OP, it is effective to increase the number of meshes and increase the fiber diameter.

しかし、繊維径が大きすぎる場合、メッシュ織物での繊維の交点の高さが紗厚と関係するため紗厚が大きくなり透過体積が大きくなるという課題がある。さらにスクリーン印刷においてはメッシュの繊維部分はペーストが透過しないものの、繊維部分の後ろ側にペーストが回りこみ、印刷後にペーストの表面張力でレベリングすることで膜厚が均一になるのであるが、繊維径が大きすぎるとペーストの回り込みが不十分となり膜厚ムラが発生する課題がある。これらのことから、透過体積の減少に向けては、メッシュ数が大きく、紗厚が小さいメッシュが望まれている。 However, when the fiber diameter is too large, there is a problem that the height of the intersection of the fibers in the mesh woven fabric is related to the gauze thickness, so that the gauze thickness becomes large and the permeation volume becomes large. Furthermore, in screen printing, the paste does not pass through the fiber part of the mesh, but the paste wraps around behind the fiber part and leveling with the surface tension of the paste after printing makes the film thickness uniform. If is too large, there is a problem that the wraparound of the paste becomes insufficient and uneven film thickness occurs. From these facts, a mesh having a large number of meshes and a small gauze thickness is desired for reducing the transmission volume.

この課題に対し、液晶ポリエステルとほぼ同義であるポリアリレートを繊維原料の一部として用いた薄膜印刷用スクリーンが提案されている(特許文献3)。この技術では液晶ポリエステルを芯成分に、熱可塑性ポリマーを海、液晶ポリエステルを島とする海島ブレンドポリマーを鞘成分とする芯鞘複合繊維を用いてメッシュ織物を得て、これをカレンダー加工することで紗厚が小さいスクリーンを得ている。 To solve this problem, a thin film printing screen using polyarylate, which has almost the same meaning as liquid crystal polyester, as a part of the fiber raw material has been proposed (Patent Document 3). In this technology, a mesh woven fabric is obtained by using a core-sheath composite fiber with liquid crystal polyester as the core component, thermoplastic polymer as the sea, and liquid crystal polyester as the sea island blend polymer as the sheath component, and this is calendar-processed. I am getting a screen with a small thickness.

また別の技術として、極細径の溶融異方性(液晶性)芳香族ポリエステル繊維からなるメッシュ織物の技術が提案されている(特許文献4)。この技術では芯成分が溶融異方性(液晶性)芳香族ポリエステル、鞘成分がポリオレフィン系ポリマーである芯鞘複合繊維を用いてメッシュ織物を製織し、その後、複合繊維の鞘成分を溶剤で溶解させて抽出除去することで極細径のメッシュ織物を得ている。 As another technique, a technique of a mesh woven fabric made of a melt anisotropic (liquid crystal) aromatic polyester fiber having an ultrafine diameter has been proposed (Patent Document 4). In this technique, a mesh woven fabric is woven using a core-sheath composite fiber in which the core component is a melt anisotropic (liquid crystal) aromatic polyester and the sheath component is a polyolefin polymer, and then the sheath component of the composite fiber is dissolved in a solvent. By allowing it to be extracted and removed, a mesh woven fabric having an ultrafine diameter is obtained.

特開2008−240230号公報(第18頁〜第19頁)Japanese Unexamined Patent Publication No. 2008-240230 (pages 18 to 19) 特開2010−248681号公報(第8頁)JP-A-2010-248681 (page 8) 特開2008−74073号公報(第2頁)Japanese Unexamined Patent Publication No. 2008-74073 (page 2) 特開2001−140141号公報(第2頁)Japanese Unexamined Patent Publication No. 2001-140141 (page 2)

しかしながら、特許文献3の技術では紗厚を小さくできているのはメッシュ数が小さい場合であり、メッシュ数が大きい場合は紗厚が小さくできていない(比較例5、メッシュ数380では紗厚41μm)。これは繊維として液晶ポリエステルではない成分を含むため、繊維を潰す際に高い荷重が必要となり、交点数が多い高メッシュでは紗厚が十分に小さくできないものと考えられる。特許文献4の技術では開口率として記載されているOPA(オープニングエリア)が大きく、透過体積は小さくできていないことに加え、溶剤抽出後の繊維径が実施例でタテ13μm、ヨコ14μmであることから繊維の交点の高さと関係する紗厚も小さくできていない。 However, in the technique of Patent Document 3, the gauze thickness can be reduced when the number of meshes is small, and when the number of meshes is large, the gauze thickness cannot be reduced (Comparative Example 5, the gauze thickness is 41 μm in the number of meshes 380). ). Since this contains a component other than liquid crystal polyester as the fiber, a high load is required when crushing the fiber, and it is considered that the gauze thickness cannot be sufficiently reduced in a high mesh having a large number of intersections. In the technique of Patent Document 4, the OPA (opening area) described as the aperture ratio is large, the permeation volume cannot be reduced, and the fiber diameter after solvent extraction is 13 μm in length and 14 μm in width in the examples. The thickness of the gauze, which is related to the height of the intersection of the fibers, has not been reduced.

本発明の課題は、液晶ポリエステル繊維からなるため高強度であり塑性変形しにくく、耐薬品性に優れ、かつメッシュ数が大きく、低紗厚であるためスクリーン版とした際にペーストの透過体積が小さく、薄膜印刷に適したメッシュ織物を提供することにある。 The subject of the present invention is that since it is made of liquid crystal polyester fiber, it has high strength, is not easily plastically deformed, has excellent chemical resistance, has a large number of meshes, and has a low gauze thickness, so that the permeation volume of the paste is large when it is used as a screen plate. It is an object of the present invention to provide a mesh fabric which is small and suitable for thin film printing.

前記した本発明の課題は以下の手段により達成される。
液晶ポリエステル繊維からなり、メッシュ数が350本/2.54cm(=1インチ)以上かつ紗厚が25μm以下であるメッシュ織物。
The above-mentioned problem of the present invention is achieved by the following means.
A mesh woven fabric made of liquid crystal polyester fibers having a mesh number of 350 fibers / 2.54 cm (= 1 inch) or more and a gauze thickness of 25 μm or less.

本発明のメッシュ織物は、液晶ポリエステル繊維からなるため高強度であり塑性変形しにくく、耐薬品性に優れる。加えてメッシュ数が大きく、低紗厚であるためスクリーン版とした際にペーストの透過体積が小さく、薄膜印刷に適する。 Since the mesh woven fabric of the present invention is made of liquid crystal polyester fiber, it has high strength, is not easily plastically deformed, and has excellent chemical resistance. In addition, since the number of meshes is large and the thickness is low, the transmission volume of the paste is small when a screen plate is used, which is suitable for thin film printing.

以下、本発明の液晶ポリエステル繊維からなるメッシュ織物について詳細に説明する。
本発明のメッシュ織物に用いられる液晶ポリエステル繊維は、実質的に液晶ポリエステル単成分からなる。実質的にとは他成分との複合繊維や海島繊維ではなく単成分からなる繊維であることを指す。ただし後述するような液晶ポリエステルの特性を損ねない範囲の5重量%程度以下の他ポリマーの添加や各種添加剤の添加は構わない。
Hereinafter, the mesh woven fabric made of the liquid crystal polyester fiber of the present invention will be described in detail.
The liquid crystal polyester fiber used in the mesh woven fabric of the present invention is substantially composed of a single component of liquid crystal polyester. Substantially means a fiber composed of a single component rather than a composite fiber with another component or a sea island fiber. However, the addition of other polymers or various additives of about 5% by weight or less within a range that does not impair the characteristics of the liquid crystal polyester as described later may be added.

本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。 The liquid crystal polyester used in the present invention is a polyester capable of forming an anisotropic molten phase (liquid crystal property) when melted. This characteristic can be confirmed, for example, by placing a sample made of liquid crystal polyester on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample under polarized light.

本発明に用いられる液晶ポリエステルとしては、例えば芳香族オキシカルボン酸の重合物(a)、芳香族ジカルボン酸(b)と芳香族ジオール、脂肪族ジオールの重合物、芳香族オキシカルボン酸の重合物(a)と芳香族ジカルボン酸(b)との共重合物(c)などが挙げられるが、高強度、高弾性率、高耐熱のためには脂肪族ジオールを用いない全芳香族ポリエステルが好ましい。ここで芳香族オキシカルボン酸としては、ヒドロキシ安息香酸、ヒドロキシナフトエ酸など、または上記芳香族オキシカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。また、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸など、または上記芳香族ジカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。さらに、芳香族ジオールとしては、ハイドロキノン、レゾルシン、ジオキシジフェニール、ナフタレンジオールなど、または上記芳香族ジオールのアルキル、アルコキシ、ハロゲン置換体などが挙げられ、脂肪族ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコールなどが挙げられる。 Examples of the liquid crystal polyester used in the present invention include a polymer of aromatic oxycarboxylic acid (a), a polymer of aromatic dicarboxylic acid (b) and aromatic diol, an aliphatic diol, and a polymer of aromatic oxycarboxylic acid. Examples thereof include a copolymer (c) of (a) and an aromatic dicarboxylic acid (b), but a total aromatic polyester that does not use an aliphatic diol is preferable for high strength, high elasticity, and high heat resistance. .. Here, examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid and the like, or alkyl, alkoxy and halogen substituents of the aromatic oxycarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalenedicarboxylic acid, diphenyletherdicarboxylic acid, diphenoxyetanedicarboxylic acid, diphenylethanedicarboxylic acid and the like, or alkyl, alkoxy, etc. of the aromatic dicarboxylic acid. Examples include halogen substituents. Further, examples of the aromatic diol include hydroquinone, resorcin, dioxydiphenyl, naphthalene diol and the like, or alkyl, alkoxy and halogen substituents of the above aromatic diol, and examples of the aliphatic diol include ethylene glycol and propylene glycol. Butanediol, neopentyl glycol and the like can be mentioned.

本発明に用いられる液晶ポリエステルとしては、p−ヒドロキシ安息香酸成分と4,4’−ジヒドロキシビフェニル成分とハイドロキノン成分とテレフタル酸成分および/またはイソフタル酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とハイドロキノン成分とテレフタル酸成分とが共重合されたもの、などが高強度、高弾性率、耐薬品性に優れ、好ましい例として挙げられる。 The liquid crystal polyester used in the present invention is a copolymer of a p-hydroxybenzoic acid component, a 4,4'-dihydroxybiphenyl component, a hydroquinone component, a terephthalic acid component and / or an isophthalic acid component, and a p-hydroxybenzoic acid component. Copolymerization of acid component and 6-hydroxy2-naphthoic acid component, copolymerization of p-hydroxybenzoic acid component, 6-hydroxy2-naphthoic acid component, hydroquinone component and terephthalic acid component, etc. Is excellent in high strength, high elasticity, and chemical resistance, and is mentioned as a preferable example.

本発明に用いられる液晶ポリエステルは、特に下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルであることが好ましい。なお本明細書において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。 The liquid crystal polyester used in the present invention is particularly preferably a liquid crystal polyester composed of the following structural units (I), (II), (III), (IV) and (V). In the present specification, the structural unit refers to a unit that can form a repeating structure in the main chain of a polymer.

Figure 2019146620
Figure 2019146620

この組み合わせにより分子鎖は適切な結晶性と非直線性を持つため、繊維の強度、弾性率を高めることができ、かつ耐摩耗性を向上させることができるため高メッシュ織物に適しており、さらに繊維を横方向(繊維軸垂直方向)に潰しやすいために紗厚を小さくできる。 With this combination, the molecular chain has appropriate crystallinity and non-linearity, so that the strength and elastic modulus of the fiber can be increased, and the abrasion resistance can be improved, so that it is suitable for high mesh woven fabrics. Since the fibers are easily crushed in the lateral direction (the direction perpendicular to the fiber axis), the thickness of the gauze can be reduced.

さらに構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要であり、この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、固相重合後に高温熱処理を施すことで特に優れた耐摩耗性も得られるのである。 Furthermore, it is important to combine components consisting of diols that are not bulky and have high linearity, such as structural units (II) and (III), and by combining these components, the molecular chains are disordered in the fiber. It has a small structure and can maintain the interaction in the direction perpendicular to the fiber axis without excessively increasing crystallinity. As a result, in addition to obtaining high strength and elastic modulus, particularly excellent wear resistance can be obtained by performing high-temperature heat treatment after solid-phase polymerization.

また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85モル%が好ましく、より好ましくは65〜80モル%、さらに好ましくは68〜75モル%である。このような範囲とすることで結晶性を適切な範囲とすることができ、高い強度、弾性率が得られる。 The structural unit (I) described above is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, and further preferably 68 to 68 to the total of the structural units (I), (II) and (III). It is 75 mol%. With such a range, the crystallinity can be set to an appropriate range, and high strength and elastic modulus can be obtained.

構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%が好ましく、より好ましくは60〜80モル%、さらに好ましくは65〜75モル%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できることから、耐摩耗性を向上させることができるため高メッシュ織物に適しており、さらに繊維を横方向(繊維軸垂直方向)に潰しやすいために紗厚を小さくできる。 The structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, and further preferably 65 to 75 mol% with respect to the total of the structural units (II) and (III). Within such a range, the crystallinity is not excessively increased and the interaction in the vertical direction of the fiber axis can be maintained. Therefore, the abrasion resistance can be improved, which is suitable for high mesh woven fabrics, and the fibers are further arranged in the lateral direction. Since it is easy to crush in the (vertical direction of the fiber axis), the thickness of the gauze can be reduced.

構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%が好ましく、より好ましくは50〜90モル%、さらに好ましくは60〜85モル%である。このような範囲とすることでポリマーの直線性が適度に乱れることから、耐摩耗性を向上させることができるため高メッシュ織物に適しており、さらに繊維を横方向(繊維軸垂直方向)に潰しやすいために紗厚を小さくできる。 The structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol% with respect to the total of the structural units (IV) and (V). In such a range, the linearity of the polymer is appropriately disturbed, so that the abrasion resistance can be improved, which is suitable for high mesh woven fabrics, and the fibers are crushed in the lateral direction (the direction perpendicular to the fiber axis). Because it is easy, the thickness of the gauze can be reduced.

本発明に用いられる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで本発明に用いられる液晶ポリエステル繊維が好適に得られる。
構造単位(I)45〜65モル%
構造単位(II)12〜18モル%
構造単位(III)3〜10モル%
構造単位(IV)5〜20モル%
構造単位(V)2〜15モル%
The preferable range of each structural unit of the liquid crystal polyester used in the present invention is as follows. The liquid crystal polyester fiber used in the present invention can be preferably obtained by adjusting the composition so as to satisfy the above conditions within this range.
Structural unit (I) 45-65 mol%
Structural unit (II) 12-18 mol%
Structural unit (III) 3-10 mol%
Structural unit (IV) 5-20 mol%
Structural unit (V) 2 to 15 mol%

なお本発明で用いられる液晶ポリエステルには上記構造単位以外に3,3’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸(1,4−シクロヘキサンジカルボン酸)などの脂環式ジカルボン酸、クロロハイドロキノン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシベンゾフェノン等の芳香族ジオールおよびp−アミノフェノールなどを本発明の効果を損なわない5モル%程度以下の範囲で共重合させても良い。 In addition to the above structural units, the liquid crystal polyester used in the present invention includes aromatic dicarboxylic acids such as 3,3'-diphenyldicarboxylic acid and 2,2'-diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, and dodecandione. Aliphatic dicarboxylic acids such as acids, alicyclic dicarboxylic acids such as hexahydroterephthalic acid (1,4-cyclohexanedicarboxylic acid), chlorohydroquinone, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfide, Aromatic diols such as 4,4'-dihydroxybenzophenone and p-aminophenol may be copolymerized in a range of about 5 mol% or less that does not impair the effects of the present invention.

また本発明の効果を損なわない5重量%程度以下の範囲で、ポリエステル、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂などのポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99Mなどが好適な例として挙げられる。 Further, in the range of about 5% by weight or less that does not impair the effect of the present invention, polyester, vinyl polymers such as polyolefin and polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone. , Semi-aromatic polyesteramide, polyether ether ketone, fluororesin and other polymers may be added, polyphenylene sulfide, polyether ether ketone, nylon 6, nylon 66, nylon 46, nylon 6T, nylon 9T, polyethylene terephthalate, Suitable examples include polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethanol terephthalate, polyester 99M and the like.

さらに本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカなどの無機物や、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の各種添加剤を少量含有しても良い。 Further, as long as the effects of the present invention are not impaired, various metal oxides, kaolin, silica and other inorganic substances, colorants, matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents , Fluorescent whitening agent, terminal group encapsulant, compatibilizer and other various additives may be contained in a small amount.

本発明で用いられる液晶ポリエステル繊維のポリスチレン換算の重量平均分子量(以下、分子量と記載する)は25.0万以上200.0万以下であることが好ましい。25.0万以上の高い分子量を有することで高い強度、弾性率、伸度を有する。分子量は高いほど強度、弾性率が向上するため、30.0万以上がより好ましい。分子量の上限は特に限定されないが、本発明で達し得る上限としては200.0万程度であり、100.0万で十分高い効果が得られる。なお本明細書で言う分子量とは実施例記載の方法により求められた値とする。 The polystyrene-equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystal polyester fiber used in the present invention is preferably 250,000 or more and 200,000 or less. By having a high molecular weight of 250,000 or more, it has high strength, elastic modulus, and elongation. The higher the molecular weight, the higher the strength and elastic modulus. Therefore, 300,000 or more is more preferable. The upper limit of the molecular weight is not particularly limited, but the upper limit that can be reached in the present invention is about 2.0 million, and a sufficiently high effect can be obtained at 100,000. The molecular weight referred to in the present specification is a value obtained by the method described in Examples.

本発明で用いられる液晶ポリエステル繊維は、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)におけるピーク半値幅が15℃以上であることが好ましい。この測定法におけるTm1は繊維の融点を表し、ピーク形状はその面積が広いほど、即ち融解熱量ΔHm1が大きいほど結晶化度が高く、またその半値幅が狭いほど結晶の完全性は高いと言える。液晶ポリエステルは溶融紡糸した後、固相重合を施すことでTm1が上昇、ΔHm1が増加、半値幅は減少し、結晶化度、結晶の完全性が高くなることで繊維の強度、伸度、弾性率が増加、耐熱性が向上する。一方で耐摩耗性が悪化するが、これは結晶の完全性が高まることにより、結晶部と非晶部の構造差が顕著となるため、その界面で破壊が起こるためと考えられる。そこで本発明で用いられる液晶ポリエステル繊維では固相重合した繊維の特徴である高いTm1、高い強度、伸度、弾性率を維持したまま、ピーク半値幅を、固相重合していない液晶ポリエステル繊維のような15℃以上という値に増加させることで、結晶性を低下させて破壊の起点となる結晶/非晶の構造差を減少させ、フィブリル構造を乱し、繊維全体を柔軟化させることで耐摩耗性を高めることができる。Tm1におけるピーク半値幅は、高い方が耐摩耗性は高いため、好ましくは20℃以上である。なお、上限は特に制限されないが、工業的に達し得る上限は80℃程度であり、50℃で十分高い効果が得られる。 The liquid crystal polyester fiber used in the present invention has a peak half-value width of 15 ° C. or more at the endothermic peak (Tm1) observed when measured under a heating condition of 50 ° C. to 20 ° C./min in differential calorimetry. Is preferable. Tm1 in this measurement method represents the melting point of the fiber, and it can be said that the wider the area of the peak shape, that is, the larger the heat of fusion ΔHm1, the higher the crystallinity, and the narrower the half width, the higher the crystal perfection. Liquid crystal polyester is melt-spun and then subjected to solid-state polymerization to increase Tm1, increase ΔHm1, decrease half-price width, and increase crystallinity and crystal completeness to increase fiber strength, elongation, and elasticity. The rate increases and the heat resistance improves. On the other hand, the wear resistance deteriorates, which is considered to be because the structural difference between the crystalline part and the amorphous part becomes remarkable due to the increased integrity of the crystal, and the fracture occurs at the interface. Therefore, in the liquid crystal polyester fiber used in the present invention, the peak half price width is set to the peak half value width of the liquid crystal polyester fiber which is not solid-phase polymerized while maintaining the high Tm1, high strength, elongation, and elasticity, which are the characteristics of the solid-phase polymerized fiber. By increasing the temperature to 15 ° C or higher, the crystallinity is lowered to reduce the structural difference between crystals and non-crystals, which is the starting point of fracture, the fibril structure is disturbed, and the entire fiber is softened to withstand resistance. Abrasion resistance can be increased. The higher the peak half width at Tm1, the higher the wear resistance, and therefore, it is preferably 20 ° C. or higher. Although the upper limit is not particularly limited, the upper limit that can be reached industrially is about 80 ° C., and a sufficiently high effect can be obtained at 50 ° C.

加えてピーク半値幅を15℃以上に増加させることで結晶性が低下し、繊維全体が柔軟化することで繊維を横方向(繊維軸垂直方向)に潰す際の荷重を小さくできる。このため製織後のカレンダー加工等により紗厚を小さくすることが容易となる。 In addition, by increasing the peak half width to 15 ° C. or higher, the crystallinity is lowered, and the entire fiber is softened, so that the load when the fiber is crushed in the lateral direction (the direction perpendicular to the fiber axis) can be reduced. Therefore, it becomes easy to reduce the thickness of the gauze by calendar processing after weaving.

なお、本発明の液晶ポリエステル繊維においては、吸熱ピークは1つであるが、固相重合が不十分な場合など繊維構造によっては2つ以上のピークが観測されることがある。この場合のピーク半値幅はそれぞれのピークの半値幅を合計した値とする。 The liquid crystal polyester fiber of the present invention has one endothermic peak, but two or more peaks may be observed depending on the fiber structure such as when solid-phase polymerization is insufficient. In this case, the peak half-value width is the sum of the half-value widths of each peak.

本発明で用いられる液晶ポリエステル繊維の融点(Tm1)は290℃以上が好ましく、300℃以上がより好ましく、310℃以上がさらに好ましい。このような高い融点を有することでメッシュとしての耐熱性が優れる。繊維の高融点化を達成するためには、高融点の液晶ポリエステルポリマーを製糸するなどの方法があるが、特に高い強度、弾性率を有し、さらに長手方向の均一性に優れる繊維を得るためには溶融紡糸した繊維を固相重合することが好ましい。なお、融点の上限は特に限定されないが、本発明で達し得る上限としては400℃程度である。 The melting point (Tm1) of the liquid crystal polyester fiber used in the present invention is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, still more preferably 310 ° C. or higher. Having such a high melting point makes the mesh excellent in heat resistance. In order to achieve a high melting point of the fiber, there is a method such as spinning a liquid crystal polyester polymer having a high melting point, but in order to obtain a fiber having particularly high strength and elastic modulus and excellent uniformity in the longitudinal direction. It is preferable to carry out solid-phase polymerization of melt-spun fibers. The upper limit of the melting point is not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C.

また本発明で用いられる液晶ポリエステル繊維の融解熱量ΔHm1の値は、液晶ポリエステルの構成単位の組成により変化するが、6.0J/g以下であることが好ましい。ΔHm1が6.0J/g以下に低下することで結晶化度は低下し、フィブリル構造が乱れ、繊維全体が柔軟化し、かつ破壊の起点となる結晶/非晶の構造差が減少することで耐摩耗性が向上するため高メッシュ化に適しており、かつ繊維を横方向(繊維軸垂直方向)に潰す際の荷重を小さくできる。ΔHm1は低いほど耐摩耗性は向上するため5.0J/g以下がより好ましい。なおΔHm1の下限は特に限定されないが、高い強度、弾性率を得るためには0.2J/g以上が好ましい。 The value of the heat of fusion ΔHm1 of the liquid crystal polyester fiber used in the present invention varies depending on the composition of the constituent unit of the liquid crystal polyester, but is preferably 6.0 J / g or less. When ΔHm1 is lowered to 6.0 J / g or less, the crystallinity is lowered, the fibril structure is disturbed, the entire fiber is softened, and the structural difference between crystals and amorphous which is the starting point of fracture is reduced, so that the resistance is reduced. Since the wear resistance is improved, it is suitable for high meshing, and the load when crushing the fiber in the lateral direction (the direction perpendicular to the fiber axis) can be reduced. The lower the ΔHm1, the better the wear resistance, so 5.0 J / g or less is more preferable. The lower limit of ΔHm1 is not particularly limited, but 0.2 J / g or more is preferable in order to obtain high strength and elastic modulus.

分子量が25.0万以上と高いにも関わらず、ΔHm1が6.0J/g以下と低いことは驚くべきことである。分子量が25.0万以上の液晶ポリエステルは融点を超えても粘度が著しく高く流動せず溶融紡糸が困難であり、このような高分子量の液晶ポリエステル繊維は低分子量の液晶ポリエステルを溶融紡糸し、この繊維を固相重合することで得られる。液晶ポリエステル繊維を固相重合すると分子量が増加し強度、伸度、弾性率、耐熱性は向上し、同時に結晶化度も高まりΔHm1が増加する。結晶化度が高まると強度、伸度、弾性率、耐熱性はさらに向上するが、結晶部と非晶部の構造差が顕著となり、その界面が破壊されやすくなり耐摩耗性は低下してしまう。これに対し本発明で用いられる液晶ポリエステル繊維では固相重合した繊維の1つの特徴である高い分子量を持つことで高い強度、伸度、弾性率、耐熱性を保持すると共に、固相重合をしていない液晶ポリエステル繊維のような低い結晶化度すなわち低いΔHm1を有することで耐摩耗性を向上できるのである。本発明で用いられる液晶ポリエステル繊維では、液晶ポリエステルのみからなる繊維を、構造変化すなわち結晶化度を低下させることにより耐摩耗性向上を達成できたため高メッシュ織物に適しており、かつ結晶化度が低いため繊維を横方向(繊維軸垂直方向)に潰す際の荷重を小さくできることから低紗厚に適している。 It is surprising that ΔHm1 is as low as 6.0 J / g or less even though the molecular weight is as high as 250,000 or more. Liquid crystal polyesters having a molecular weight of 250,000 or more have extremely high viscosity even when the melting point is exceeded, and do not flow, making melt spinning difficult. Such high molecular weight liquid crystal polyester fibers melt spin low molecular weight liquid crystal polyesters. It is obtained by solid-phase polymerization of this fiber. When the liquid crystal polyester fiber is solid-phase polymerized, the molecular weight is increased, the strength, elongation, elastic modulus, and heat resistance are improved, and at the same time, the crystallinity is also increased and ΔHm1 is increased. When the crystallinity is increased, the strength, elongation, elastic modulus, and heat resistance are further improved, but the structural difference between the crystalline part and the amorphous part becomes remarkable, the interface is easily broken, and the abrasion resistance is lowered. .. On the other hand, the liquid crystal polyester fiber used in the present invention retains high strength, elongation, elastic modulus, and heat resistance by having a high molecular weight, which is one of the characteristics of the solid-phase polymerized fiber, and solid-phase polymerization is performed. Abrasion resistance can be improved by having a low crystallinity, that is, a low ΔHm1 as in the case of a non-liquid crystal polyester fiber. The liquid crystal polyester fiber used in the present invention is suitable for a high-mesh woven fabric and has a high degree of crystallization because the fiber made of only the liquid crystal polyester can be improved in abrasion resistance by reducing the structural change, that is, the degree of crystallization. Since it is low, the load when crushing the fiber in the lateral direction (the direction perpendicular to the fiber axis) can be reduced, so that it is suitable for low gauze thickness.

また本発明に用いられる液晶ポリエステル繊維のTm2は組成により変化するが、耐熱性を高めるためには300℃以上が好ましい。Tm2は繊維を一旦Tm1よりも高温に保持した後、冷却、再昇温した際に観測される融解ピーク温度であり、繊維構造の影響を最小化した、樹脂そのものの融点に近い温度である。Tm2の上限は特に制限されないが、本発明で到達し得る上限としては400℃程度である。 The Tm2 of the liquid crystal polyester fiber used in the present invention varies depending on the composition, but is preferably 300 ° C. or higher in order to improve heat resistance. Tm2 is the melting peak temperature observed when the fiber is once held at a temperature higher than Tm1 and then cooled and reheated, and is a temperature close to the melting point of the resin itself, which minimizes the influence of the fiber structure. The upper limit of Tm2 is not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C.

本発明で用いられる液晶ポリエステル繊維のΔHm2は過度に大きいとポリマーそのものの結晶性が高くなり、耐摩耗性の向上が難しくなるため5.0J/g以下が好ましく、2.0J/g以下がより好ましい。ΔHm2は繊維を一旦Tm1よりも高温に保持した後、冷却、再昇温した際に観測される融解熱量であり、繊維構造の影響を最小化した、樹脂そのものの結晶融解熱量であり、樹脂そのものの結晶性の指標となる。なお、本発明に用いられる液晶ポリエステル繊維においては上記した測定条件における冷却後の再昇温時の吸熱ピークは1つであるが、2つ以上のピークが観測されることがある。この場合のΔHm2はそれぞれのピークのΔHm2を合計した値とする。 If the ΔHm2 of the liquid crystal polyester fiber used in the present invention is excessively large, the crystallinity of the polymer itself becomes high and it becomes difficult to improve the abrasion resistance. Therefore, 5.0 J / g or less is preferable, and 2.0 J / g or less is more preferable. preferable. ΔHm2 is the amount of heat of fusion observed when the fiber is once held at a temperature higher than Tm1 and then cooled and reheated, and is the amount of heat of crystallinity of the resin itself that minimizes the influence of the fiber structure. It is an index of crystallinity. In the liquid crystal polyester fiber used in the present invention, the endothermic peak at the time of reheating after cooling under the above measurement conditions is one, but two or more peaks may be observed. In this case, ΔHm2 is the sum of ΔHm2 of each peak.

なお本明細書で言うTm1、Tm2、Tm1ピーク半値幅、ΔHm1、ΔHm2とは実施例記載の方法により求められた値とする。
本発明のメッシュ織物はメッシュ数が350本/2.54cm(=1インチ)以上かつ紗厚が25μm以下である。メッシュ数が350本/インチ以上かつ紗厚が25μm以下であることでメッシュの透過体積が小さく、スクリーン版とした際にペーストの透過体積が小さく、薄膜印刷に適する。
The Tm1, Tm2, Tm1 peak half width, ΔHm1, and ΔHm2 referred to in the present specification are values obtained by the method described in the examples.
The mesh woven fabric of the present invention has 350 meshes / 2.54 cm (= 1 inch) or more and a gauze thickness of 25 μm or less. When the number of meshes is 350 lines / inch or more and the thickness of the gauze is 25 μm or less, the transmission volume of the mesh is small, and when the screen plate is used, the transmission volume of the paste is small, which is suitable for thin film printing.

本発明のメッシュ織物のメッシュ数は350本/インチ以上である。すなわち、2.54cm(=1インチ)幅当たりに350本以上の繊維があることでオープニング(OP)が小さくなり、透過体積が小さくなり薄膜印刷に適する。この観点からメッシュ数は大きいほうが良く、380本/インチ以上がより好ましい。メッシュ数の上限は特に制限されないが、本発明で到達し得る上限としては600本/インチ程度である。なお本明細書で言うメッシュ数とは実施例記載の方法により求められた値とする。 The number of meshes of the mesh fabric of the present invention is 350 lines / inch or more. That is, since there are 350 or more fibers per 2.54 cm (= 1 inch) width, the opening (OP) becomes small and the transmitted volume becomes small, which is suitable for thin film printing. From this point of view, the larger the number of meshes, the more preferably 380 lines / inch or more. The upper limit of the number of meshes is not particularly limited, but the upper limit that can be reached in the present invention is about 600 meshes / inch. The number of meshes referred to in the present specification is a value obtained by the method described in the examples.

本発明のメッシュ織物の紗厚は25μm以下である。25μm以下であることで透過体積が小さくなり薄膜印刷に適する。この観点から紗厚は小さいほうが良く、23μm以下がより好ましい。紗厚の下限は特に制限されないが、本発明で到達し得る下限としては10μm程度である。なお本明細書で言う紗厚とは実施例記載の方法により求められた値とする。 The thickness of the mesh fabric of the present invention is 25 μm or less. When it is 25 μm or less, the transmission volume becomes small and it is suitable for thin film printing. From this point of view, the thickness of the gauze should be small, and more preferably 23 μm or less. The lower limit of the thickness is not particularly limited, but the lower limit that can be reached in the present invention is about 10 μm. The thickness referred to in the present specification is a value obtained by the method described in the examples.

本発明のメッシュ織物の繊維径は25μm以上が好ましい。繊維径が25μm以上であることでオープニングを小さくでき、透過体積が小さくなり薄膜印刷に適する。この観点から繊維径は大きいほうが良く、30μm以上がより好ましい。繊維径が大きすぎると印刷時にペーストの回りこみが不十分となり、膜厚ムラが生じる懸念があるため、繊維径は50μm以下が好ましい。本明細書で言う繊維径とは実施例記載の方法により求められた値とする。なお本発明のメッシュ織物の繊維断面は真円ではなく、繊維軸垂直方向に潰された楕円径に近い形である。本明細書ではメッシュ織物の繊維径と記載するが、その長さは楕円形の断面の長軸に相当する長さであることに注意が必要である。 The fiber diameter of the mesh fabric of the present invention is preferably 25 μm or more. When the fiber diameter is 25 μm or more, the opening can be reduced and the transmitted volume becomes small, which is suitable for thin film printing. From this viewpoint, the fiber diameter is preferably large, and more preferably 30 μm or more. If the fiber diameter is too large, the paste wraps around insufficiently during printing, and there is a concern that film thickness unevenness may occur. Therefore, the fiber diameter is preferably 50 μm or less. The fiber diameter referred to in the present specification is a value obtained by the method described in Examples. The fiber cross section of the mesh woven fabric of the present invention is not a perfect circle, but has a shape close to an elliptical diameter crushed in the direction perpendicular to the fiber axis. Although referred to as the fiber diameter of the mesh fabric in the present specification, it should be noted that the length corresponds to the long axis of the elliptical cross section.

本発明のメッシュ織物のオープニング(OP)は50μm以下が好ましい。OPが50μm以下であることで透過体積が小さくなり薄膜印刷に適する。この観点からOPは小さいほうが良く45μm以下がより好ましく、40μm以下がさらに好ましい。OPの下限は特に制限されないが、本発明で到達し得る下限としては10μm程度である。なお本明細書で言うOPとは実施例記載の方法により求められた値とする。 The opening (OP) of the mesh fabric of the present invention is preferably 50 μm or less. When the OP is 50 μm or less, the transmission volume becomes small and suitable for thin film printing. From this viewpoint, the OP should be as small as possible, more preferably 45 μm or less, and even more preferably 40 μm or less. The lower limit of OP is not particularly limited, but the lower limit that can be reached in the present invention is about 10 μm. The OP referred to in the present specification is a value obtained by the method described in the examples.

本発明のメッシュ織物のオープニングエリア(OPA)は30%未満が好ましい。OPAが30%未満であることで透過体積が小さくなり薄膜印刷に適する。この観点からOPAは小さいほうが良く25%以下がより好ましく、20%以下がさらに好ましい。OPAの下限は特に制限されないが、本発明で到達し得る下限としては10%程度である。なお本明細書で言うOPAとは実施例記載の方法により求められた値とする。 The opening area (OPA) of the mesh fabric of the present invention is preferably less than 30%. When the OPA is less than 30%, the transmitted volume becomes small and suitable for thin film printing. From this point of view, the OPA should be as small as possible, more preferably 25% or less, still more preferably 20% or less. The lower limit of OPA is not particularly limited, but the lower limit that can be reached in the present invention is about 10%. The OPA referred to in the present specification is a value obtained by the method described in the examples.

本発明のメッシュ織物の引張強度は200N/5cm以上が好ましい。液晶ポリエステル繊維からなるメッシュ織物で引張強度が200N/5cm以上であれば強度が十分に高く、メッシュが塑性変形しにくいため印刷耐久性に優れる。この観点から引張強度は高い方が良く300N/5cm以上がより好ましい。引張強度の上限は特に制限されないが、本発明で到達し得る上限としては600N/5cm程度である。なお本明細書で言う引張強度とは実施例記載の方法により求められた値とする。 The tensile strength of the mesh fabric of the present invention is preferably 200 N / 5 cm or more. If the mesh woven fabric is made of liquid crystal polyester fiber and has a tensile strength of 200 N / 5 cm or more, the strength is sufficiently high, and the mesh is not easily plastically deformed, so that the printing durability is excellent. From this point of view, the higher the tensile strength is, the more preferably 300 N / 5 cm or more. The upper limit of the tensile strength is not particularly limited, but the upper limit that can be reached in the present invention is about 600 N / 5 cm. The tensile strength referred to in the present specification is a value obtained by the method described in the examples.

本発明のメッシュ織物は、液晶ポリエステル繊維からなるため高強度であり塑性変形しにくく、耐熱性耐薬品性に優れる。このためスクリーン版や耐熱耐薬品フィルター等に好適に使用される。特にメッシュ数が大きく、低紗厚であるためペーストの透過体積が小さく、薄膜印刷に適したスクリーン版とすることができる。 Since the mesh woven fabric of the present invention is made of liquid crystal polyester fiber, it has high strength, is not easily plastically deformed, and has excellent heat resistance and chemical resistance. Therefore, it is suitably used for screen plates, heat-resistant and chemical-resistant filters, and the like. In particular, since the number of meshes is large and the thickness is low, the transmission volume of the paste is small, and a screen plate suitable for thin film printing can be obtained.

以下、本発明のメッシュ織物の製造例を示す。
本発明に好適に用いられる液晶ポリエステルの組成は前記の通りである。このような組成の液晶ポリエステルを用いて、特開2008−240230号公報や特開2010−248681号公報、WO2015/115259号公報に記載の技術により、溶融紡糸、固相重合、ならびに繊維を走行させながらの高温熱処理を行うことで耐摩耗性に優れる液晶ポリエステル繊維を得る。このようにして得られた液晶ポリエステル繊維を整経し、公知のレピア織機等を用いて高メッシュ織物を得る。
Hereinafter, an example of manufacturing the mesh woven fabric of the present invention will be shown.
The composition of the liquid crystal polyester preferably used in the present invention is as described above. Using the liquid crystal polyester having such a composition, melt spinning, solid phase polymerization, and fibers are run by the techniques described in JP-A-2008-240230, JP-A-2010-248681, and WO2015 / 115259. A liquid crystal polyester fiber having excellent wear resistance can be obtained by performing high-temperature heat treatment while performing the same process. The liquid crystal polyester fiber thus obtained is warped to obtain a high-mesh woven fabric using a known rapier loom or the like.

次に紗厚を小さくするためメッシュに圧力をかけて薄くする。圧力の付与方法は平板を用いたプレス加工、2本の回転するロール間にメッシュを通すカレンダー加工があるが、長いメッシュ織物を連続加工できる点からカレンダー加工が好ましい。カレンダー加工条件として例えば金属(鉄製)ロール、線圧は100kgf/cm以上、ロール温度50℃以上としてカレンダー加工を行うことで本発明のメッシュ織物が得られる。 Next, pressure is applied to the mesh to reduce the thickness of the gauze. The pressure applying method includes press processing using a flat plate and calendar processing in which a mesh is passed between two rotating rolls, but calendar processing is preferable because long mesh woven fabrics can be continuously processed. The mesh woven fabric of the present invention can be obtained by performing calender processing under, for example, a metal (iron) roll, a linear pressure of 100 kgf / cm or more, and a roll temperature of 50 ° C. or more as the calender processing conditions.

以下、実施例により本発明をより具体的に説明する。なお実施例中の各特性値は次の方法で求めた。 Hereinafter, the present invention will be described in more detail with reference to Examples. Each characteristic value in the examples was obtained by the following method.

A.熱特性(Tm1、Tm2、Tm1ピーク半値幅、ΔHm1、ΔHm2)
TA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm1(℃)とし、Tm1での融解熱量をΔHm1(J/g)とした。Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm2とし、Tm2での融解熱量をΔHm2(J/g)とした。繊維、樹脂とも同様の測定を行い、樹脂ではTm2を融点とした。
A. Thermal characteristics (Tm1, Tm2, Tm1 peak half width, ΔHm1, ΔHm2)
The differential calorimetry was measured by DSC2920 manufactured by TA instruments, and the temperature of the endothermic peak observed when measured under the heating condition of 50 ° C. to 20 ° C./min was set to Tm1 (° C.), and the amount of heat of fusion at Tm1 was ΔHm1 (. J / g). After observing Tm1, the temperature is kept at Tm1 + 20 ° C. for 5 minutes, then cooled to 50 ° C. under the temperature lowering condition of 20 ° C./min, and then measured again under the temperature rising condition of 20 ° C./min. The temperature of Tm2 was set, and the amount of heat of fusion at Tm2 was set to ΔHm2 (J / g). The same measurement was performed for both the fiber and the resin, and the melting point of the resin was Tm2.

B.ポリスチレン換算の重量平均分子量(Mw)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
B. Polystyrene-equivalent weight average molecular weight (Mw)
A mixed solvent of pentafluorophenol / chloroform = 35/65 (weight ratio) was used as a solvent, and the liquid crystal polyester was dissolved so as to have a concentration of 0.04 to 0.08% by volume / volume to prepare a sample for GPC measurement. If there was an insoluble matter even after being left at room temperature for 24 hours, it was allowed to stand for another 24 hours, and the supernatant was used as a sample. This was measured using a GPC measuring device manufactured by Waters, and the weight average molecular weight (Mw) was determined by polystyrene conversion.
Column: Shodex K-806M 2 pcs, K-802 1 pcs Detector: Differential refractive index detector RI
Temperature: 23 ± 2 ° C
Flow rate: 0.8 mL / min Injection volume: 200 μL

C.繊維の総繊度、単繊維繊度
検尺機にて繊維を100mカセ取りし、その重量(g)を100倍し、1水準当たり3回の測定を行い、平均値を総繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。
C. Total fiber fineness, single fiber fineness 100 m of fiber was taken with a measuring machine, its weight (g) was multiplied by 100, and measurements were taken 3 times per level, and the average value was taken as total fineness (dtex). .. The quotient obtained by dividing this by the number of filaments was defined as the single fiber fineness (dtex).

D.繊維の強度、伸度、弾性率
JIS L1013:2010記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。なお、弾性率とは初期引張抵抗度のことである。
D. Fiber strength, elongation, elastic modulus According to the method described in JIS L1013: 2010, measurement was performed 10 times per level using Tensilon UCT-100 manufactured by Orientec Co., Ltd. under the conditions of sample length of 100 mm and tensile speed of 50 mm / min. The average value was determined to be strong (cN), strength (cN / dtex), elongation (%), and elastic modulus (cN / dtex). The elastic modulus is the initial tensile resistance.

E.メッシュ織物の引張強度
JIS L1913(2010年)の6.3.1に準じ、サンプルサイズ5cm×30cm、つかみ間隔20cm、引張速度10cm/分の条件でn=3の引張試験を行い、サンプルが破断した時の強度を引張強度(N/5cm)とし、平均値を算出し小数点以下第二位を四捨五入したものを引張強度(N/5cm)とした。
E. Tensile strength of mesh woven fabric According to JIS L1913 (2010) 63.1, a tensile test of n = 3 was performed under the conditions of sample size 5 cm x 30 cm, grip interval 20 cm, and tensile speed 10 cm / min, and the sample broke. The strength at that time was taken as the tensile strength (N / 5 cm), the average value was calculated, and the value rounded to the second digit after the decimal point was taken as the tensile strength (N / 5 cm).

F.紗厚
メッシュ織物を300mm角の版枠に紗張りした状態で、ミツトヨ社製デジマチックインジケーターを用いて計測した。メッシュ織物中の異なる9ヶ所の計測を行い、これを平均化したものを紗厚(μm)とした。
F. A measurement was performed using a digital indicator manufactured by Mitutoyo Co., Ltd. in a state where a thick mesh woven fabric was stretched on a 300 mm square plate frame. Nine different points in the mesh fabric were measured, and the average of these was taken as the thickness (μm).

G.メッシュ織物の繊維径、OP、メッシュ数、OPA、透過体積
メッシュ織物を300mm角の版枠に紗張りした状態で、キーエンス社製マイクロスコープVHX−2000を用いて繊維径、OPを計測した。計測位置はメッシュを構成する繊維の交点間のほぼ中間点とし、繊維径、OPをメッシュ織物中の異なる10ヶ所で計測し、これを平均化したものを繊維径(μm)、OP(μm)とした。メッシュ数(本/インチ)については以下の式で算出した。
メッシュ数=25400/(OP+繊維径)
G. Fiber diameter, OP, number of meshes, OPA, transmission volume of the mesh woven fabric The fiber diameter and OP were measured using a KEYENCE microscope VHX-2000 with the mesh woven fabric stretched on a 300 mm square plate frame. The measurement position is approximately the midpoint between the intersections of the fibers that make up the mesh, and the fiber diameter and OP are measured at 10 different points in the mesh fabric, and the averaged values are the fiber diameter (μm) and OP (μm). And said. The number of meshes (lines / inch) was calculated by the following formula.
Number of meshes = 25400 / (OP + fiber diameter)

OPA(%)については以下の式で算出した。
OPA=OP/(OP+繊維径)×100
OPA (%) was calculated by the following formula.
OPA = OP 2 / (OP + fiber diameter) 2 x 100

透過体積(cc/m)はD項で得られた紗厚(μm)を用いて以下の式で算出した。
透過体積=OPA/100×紗厚
The permeation volume (cc / m 2 ) was calculated by the following formula using the thickness (μm) obtained in the D term.
Permeation volume = OPA / 100 x thickness

本発明のメッシュ織物として、薄膜印刷に適用できるのは透過体積6.0cc/m以下である。5.0cc/m以下がより好ましく、4.0cc/m以下がさらに好ましい。The mesh woven fabric of the present invention can be applied to thin film printing with a transmission volume of 6.0 cc / m 2 or less. 5.0 cc / m 2 or less is more preferable, and 4.0 cc / m 2 or less is further preferable.

参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1460重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、335℃まで4時間で昇温した。
Reference example 1
870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4'-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid in a 5 L reaction vessel equipped with a stirring blade and a distillate. And 1460 parts by weight of anhydrous acetic acid (1.10 equivalents of the total phenolic hydroxyl groups) were charged, and the temperature was raised from room temperature to 145 ° C. in 30 minutes while stirring in a nitrogen gas atmosphere, and then the reaction was carried out at 145 ° C. for 2 hours. Then, the temperature was raised to 335 ° C. in 4 hours.

重合温度を335℃に保持し、1.5時間で133Paに減圧し、更に40分間反応を続け、トルクが28kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 335 ° C., the pressure was reduced to 133 Pa in 1.5 hours, the reaction was continued for another 40 minutes, and the polycondensation was completed when the torque reached 28 kg cm. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, and the polymer was discharged into a strand shape via a mouthpiece having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

得られた液晶ポリエステルの組成、融点、重量平均分子量(Mw)は表1に記載の通りである。 The composition, melting point, and weight average molecular weight (Mw) of the obtained liquid crystal polyester are as shown in Table 1.

Figure 2019146620
Figure 2019146620

この液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。紡糸パックでは金属不織布フィルターを用いてポリマーを濾過し、表2記載の条件にてポリマーを吐出した。なお口金孔の直上に位置する導入孔はストレート孔とし、導入孔と口金孔の接続部分はテーパーとしたものを用いた。吐出したポリマーは40mmの保温領域を通過させた後、25℃、空気流の環状冷却風により糸条の外側から冷却し固化させ、その後、脂肪酸エステル化合物を主成分とする紡糸油剤を付与し、全フィラメントを表2記載の紡糸速度で第1ゴデットロールに引き取った。これを同じ速度である第2ゴデットロールを介した後、全フィラメント中の1本以外はサクションガンにて吸引し、残りのフィラメント数1の繊維はダンサーアームを介しパーンワインダー(神津製作所社製EFT型テークアップワインダー、巻取パッケージに接触するコンタクトロール無し)にてパーンの形状に巻き取った。得られた紡糸繊維物性を表2に示す。 After vacuum drying at 160 ° C. for 12 hours using this liquid crystal polyester, the polymer was melt-extruded with a φ15 mm single shaft extruder manufactured by Osaka Seiki Kogyo Co., Ltd., and the polymer was supplied to the spinning pack while weighing with a gear pump. In the spinning pack, the polymer was filtered using a metal non-woven fabric filter, and the polymer was discharged under the conditions shown in Table 2. The introduction hole located directly above the mouthpiece hole was a straight hole, and the connection portion between the introduction hole and the mouthpiece hole was tapered. The discharged polymer is passed through a heat retention region of 40 mm, then cooled and solidified from the outside of the yarn by a cyclic cooling air of an air stream at 25 ° C., and then a spinning oil agent containing a fatty acid ester compound as a main component is applied. All filaments were taken up by a first godet roll at the spinning rates shown in Table 2. After passing this through the second godet roll at the same speed, suction is performed with a suction gun except for one of all the filaments, and the remaining fibers with the number of filaments 1 are passed through the dancer arm to the panwinder (EFT type manufactured by Kozu Seisakusho). It was wound into the shape of a pan with a take-up winder and no contact roll that contacts the winding package). Table 2 shows the physical properties of the obtained spun fiber.

Figure 2019146620
Figure 2019146620

この紡糸繊維パッケージから神津製作所社製SSP−MV型リワインダー(接触長200mm、ワインド数8.7、テーパー角45°)を用いて巻き返しを行った。紡糸繊維の解舒は、縦方向(繊維周回方向に対し垂直方向)に行い、調速ローラーは用いず、オイリングローラー(梨地仕上げのステンレスロール)を用いて固相重合用油剤の給油を行った。固相重合用油剤には下記化学式(1)で示されるリン酸系化合物を6.0重量%含有する水溶液に、タルクSG−2000(日本タルク株式会社製)を1.0重量%分散させた This spun fiber package was rewound using an SSP-MV type rewinder manufactured by Kozu Seisakusho Co., Ltd. (contact length 200 mm, wind number 8.7, taper angle 45 °). The unraveled fibers were unwound in the longitudinal direction (perpendicular to the fiber circumferential direction), and the oil for solid phase polymerization was lubricated using an oiling roller (stainless steel roll with satin finish) without using a speed governor roller. .. Tarku SG-2000 (manufactured by Nippon Tarku Co., Ltd.) was dispersed in an aqueous solution containing 6.0% by weight of a phosphoric acid compound represented by the following chemical formula (1) as an oil for solid phase polymerization in an amount of 1.0% by weight.

Figure 2019146620
Figure 2019146620

巻き返しの芯材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、面圧は100gfとした。巻き返し後の繊維への固相重合油剤の油分付着率、ならびに巻き返し条件を表3に示す。As the rewinding core material, a stainless steel perforated bobbin wrapped with Kevlar felt (with a basis weight of 280 g / m 2 and a thickness of 1.5 mm) was used, and the surface pressure was 100 gf. Table 3 shows the oil content adhesion rate of the solid phase polymer oil agent to the fibers after rewinding and the rewinding conditions.

次に巻き返したパッケージからステンレスの穴あきボビンを外し、ケブラーフェルトに繊維を巻き取ったパッケージの状態として固相重合を行なった。固相重合は、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で表3に示す最高到達温度まで昇温し、表3に示す保持時間の間保持し、固相重合を行った。なお、雰囲気は除湿窒素を流量20NL/分にて供給し、庫内が過度に加圧にならないよう排気口より排気させた。得られた固相重合後繊維物性を表3に示す。 Next, the stainless steel perforated bobbin was removed from the rewound package, and solid-phase polymerization was performed in the state of a package in which fibers were wound around Kevlar felt. For solid-phase polymerization, the temperature is raised from room temperature to 240 ° C. in about 30 minutes using a closed oven, held at 240 ° C. for 3 hours, and then raised to the maximum temperature shown in Table 3 at 4 ° C./hour. Then, it was held for the holding time shown in Table 3 and solid-phase polymerization was carried out. As for the atmosphere, dehumidified nitrogen was supplied at a flow rate of 20 NL / min and exhausted from the exhaust port so that the inside of the refrigerator was not excessively pressurized. Table 3 shows the physical properties of the obtained solid-phase polymerized fibers.

Figure 2019146620
Figure 2019146620

次に、固相重合後のパッケージから繊維を解舒し、連続して高温非接触熱処理を行なった。固相重合後のパッケージをフリーロールクリール(軸およびベアリングを有し、外層部は自由に回転できる。ブレーキおよび駆動源なし。)にはめ、ここから糸を横方向(繊維周回方向)に引き出し、連続して、繊維を両端にスリットを設けた浴長150cm(接触長150cm)の浴槽(内部に繊維と接触するガイドなし)内に通し、油剤を洗浄除去した。洗浄液は非イオン・アニオン系の界面活性剤(三洋化成社製グランアップUS−30)を0.2wt%含有した50℃の温水とし、外部タンクにてこれを温調し、ポンプにて水槽に供給した。水槽への供給に際しては、水槽内に5cm間隔で穴を開けたパイプを通し、このパイプに供給することで水槽内に液流を与えるようにした。なおスリットおよび液面調整用の穴からあふれた洗浄液は回収し、外部タンクに戻す機構を設けている。 Next, the fibers were unwound from the package after solid-phase polymerization, and high-temperature non-contact heat treatment was continuously performed. The package after solid-phase polymerization is fitted into a free-roll creel (having a shaft and bearings, the outer layer can rotate freely. No brake and drive source), and the yarn is pulled out from here in the lateral direction (fiber circumference direction). The fibers were continuously passed through a bath having a bath length of 150 cm (contact length of 150 cm) having slits at both ends (without a guide that contacts the fibers inside), and the oil agent was washed and removed. The cleaning liquid is hot water at 50 ° C. containing 0.2 wt% of a nonionic / anionic surfactant (Grand Up US-30 manufactured by Sanyo Chemical Industries, Ltd.), the temperature is adjusted in an external tank, and the water tank is pumped. Supplied. When supplying to the water tank, a pipe with holes at intervals of 5 cm was passed through the water tank, and the liquid flow was given to the water tank by supplying to this pipe. A mechanism is provided to collect the cleaning liquid overflowing from the slit and the hole for adjusting the liquid level and return it to the external tank.

洗浄後の繊維は引き続き、両端にスリットを設けた浴長23cm(接触長23cm)の浴槽(内部に繊維と接触するガイドなし)内に通し、50℃の温水ですすいだ。すすぎ後の繊維はベアリングローラーガイドを通し、空気流を当てて水を吹き飛ばして除去した後にセパレートローラー付きの第1ローラーに通した。なお、クリールはフリーロールであるため、このローラーにより繊維に張力を付与することで、固相重合パッケージからの解舒を行い、繊維を走行させることになる。 The washed fibers were subsequently passed through a bathtub with a bath length of 23 cm (contact length 23 cm) having slits at both ends (without a guide that contacts the fibers inside) and rinsed with warm water at 50 ° C. The rinsed fibers were passed through a bearing roller guide, blown off by an air stream to remove them, and then passed through a first roller with a separate roller. Since the creel is a free roll, by applying tension to the fiber by this roller, the fiber is unwound from the solid-phase polymerization package and the fiber is run.

ローラーを通過した繊維を加熱したスリットヒーター間を走行させ、表4に示した条件で高温非接触熱処理を行なった。スリットヒーター内にはガイド類を設けず、またヒーターと繊維も非接触としている。ヒーター通過後の繊維はセパレートローラー付きの第2ローラーに通した。なお、熱処理前の糸速度は第1ローラーの表面速度、熱処理後の糸速度は第2ローラーの表面速度を表している。第2ローラーを通過した繊維は、セラミック製のオイリングローラーにより脂肪酸エステル化合物を主体とする仕上げ油剤を付与し、EFT型ボビントラバースワインダー(神津製作所社製)にてパーンの形状に巻き取った。高温熱処理後の繊維物性を表4に示す。 The fibers that passed through the rollers were run between the heated slit heaters, and high-temperature non-contact heat treatment was performed under the conditions shown in Table 4. No guides are provided inside the slit heater, and the heater and fibers are not in contact with each other. After passing through the heater, the fibers were passed through a second roller with a separate roller. The yarn speed before the heat treatment represents the surface speed of the first roller, and the yarn speed after the heat treatment represents the surface speed of the second roller. The fibers that passed through the second roller were subjected to a finishing oil mainly composed of a fatty acid ester compound by a ceramic oiling roller, and wound into a pan shape by an EFT type bobbin traverse winder (manufactured by Kozu Seisakusho). Table 4 shows the physical properties of the fibers after the high-temperature heat treatment.

Figure 2019146620
Figure 2019146620

参考例2
参考例1で得られた液晶ポリエステルを用い、吐出量、紡糸温度を表2の通りに変えた以外は参考例1と同様の方法で溶融紡糸を行った。得られた紡糸繊維物性を表2に示す。次に巻き返し条件を表3の通りに変えた以外は参考例1と同様の方法で巻き返し、固相重合を行った。固相重合後の繊維物性を表3に示す。高温熱処理条件を表4の通りに変えた以外は参考例1と同様の方法で解舒、洗浄、高温熱処理を行った。高温熱処理後の繊維物性を表4に示す。
Reference example 2
Using the liquid crystal polyester obtained in Reference Example 1, melt spinning was carried out in the same manner as in Reference Example 1 except that the discharge amount and the spinning temperature were changed as shown in Table 2. Table 2 shows the physical properties of the obtained spun fiber. Next, solid-phase polymerization was carried out by rewinding in the same manner as in Reference Example 1 except that the rewinding conditions were changed as shown in Table 3. Table 3 shows the physical properties of the fiber after solid-phase polymerization. The unraveling, washing, and high-temperature heat treatment were carried out in the same manner as in Reference Example 1 except that the high-temperature heat treatment conditions were changed as shown in Table 4. Table 4 shows the physical properties of the fibers after the high-temperature heat treatment.

実施例1
参考例1で得られた液晶ポリエステル繊維を用い、経糸用の整経を行い、レピア織機を用いてメッシュ数が380本/インチとなるよう製織を行った。得られた織物を上下鉄ロールからなり、加熱温度が70℃とし、線圧を200kgf/m、加工速度3m/分としてカレンダー加工を行い、メッシュ織物を得た。
Example 1
Using the liquid crystal polyester fiber obtained in Reference Example 1, warping was performed for warp threads, and weaving was performed using a rapier loom so that the number of meshes was 380 lines / inch. The obtained woven fabric was made of upper and lower iron rolls, and calendered at a heating temperature of 70 ° C., a linear pressure of 200 kgf / m, and a processing speed of 3 m / min to obtain a mesh woven fabric.

このメッシュ織物の特性を表5に示す。メッシュ数は350本/インチ以上、紗厚は25μm以下であることから透過体積は小さくなっており、ペースト使用量が削減可能である薄膜印刷に適したメッシュ特性であることが分かる。 The characteristics of this mesh fabric are shown in Table 5. Since the number of meshes is 350 lines / inch or more and the thickness of the gauze is 25 μm or less, the transmission volume is small, and it can be seen that the mesh characteristics are suitable for thin film printing in which the amount of paste used can be reduced.


Figure 2019146620
Figure 2019146620

比較例1、実施例2
実施例1と同様の方法で製織を行い、織物を得た。これを比較例1ではカレンダー加工を行わず、そのまま用い、実施例2では線圧を100kgf/mとすること以外は実施例1と同様の方法でカレンダー加工を行い、メッシュ織物を得た。
Comparative Example 1, Example 2
Weaving was carried out in the same manner as in Example 1 to obtain a woven fabric. In Comparative Example 1, this was used as it was without calendering, and in Example 2, the calendering was performed in the same manner as in Example 1 except that the linear pressure was 100 kgf / m to obtain a mesh woven fabric.

これらのメッシュ織物の特性を表5に示す。比較例1ではメッシュ数は350本/インチ以上であるが紗厚が25μmを超えるため透過体積が大きいことが分かる。メッシュ数が350本/インチ以上、紗厚が25μm以下である実施例2では透過体積は小さくなっており、ペースト使用量が削減可能である薄膜印刷に適したメッシュ特性であることが分かる。 The characteristics of these mesh fabrics are shown in Table 5. In Comparative Example 1, the number of meshes is 350 lines / inch or more, but the thickness of the gauze exceeds 25 μm, so that it can be seen that the transmission volume is large. In Example 2 in which the number of meshes is 350 lines / inch or more and the thickness of the gauze is 25 μm or less, the transmission volume is small, and it can be seen that the mesh characteristics are suitable for thin film printing in which the amount of paste used can be reduced.

比較例2
参考例1で得られた液晶ポリエステル繊維を用い、メッシュ数を330本/インチとすること以外は実施例1と同様の方法で製織を行い、線圧を100kgf/mとすること以外は実施例1と同様の方法でカレンダー加工を行い、メッシュ織物を得た。
Comparative Example 2
Using the liquid crystal polyester fiber obtained in Reference Example 1, weaving was performed in the same manner as in Example 1 except that the number of meshes was 330 fibers / inch, and the linear pressure was 100 kgf / m. A mesh woven fabric was obtained by performing calendar processing in the same manner as in 1.

このメッシュ織物の特性を表5に示す。紗厚は25μm以下であるがメッシュ数が350本/インチよりも小さいため透過体積が大きいことが分かる。 The characteristics of this mesh fabric are shown in Table 5. Although the thickness of the gauze is 25 μm or less, it can be seen that the transmission volume is large because the number of meshes is smaller than 350 lines / inch.

実施例3
参考例2で得られた液晶ポリエステル繊維を用い、実施例1と同様の方法で製織を行った。これを実施例1と同様の方法でカレンダー加工を行い、メッシュ織物を得た。
Example 3
Using the liquid crystal polyester fiber obtained in Reference Example 2, weaving was carried out in the same manner as in Example 1. This was subjected to calendar processing in the same manner as in Example 1 to obtain a mesh woven fabric.

このメッシュ織物の特性を表5に示す。メッシュ数は350本/インチ以上、紗厚は25μm以下であることから透過体積は小さくなっており、ペースト使用量が削減可能である薄膜印刷に適したメッシュ特性であることが分かる。 The characteristics of this mesh fabric are shown in Table 5. Since the number of meshes is 350 lines / inch or more and the thickness of the gauze is 25 μm or less, the transmission volume is small, and it can be seen that the mesh characteristics are suitable for thin film printing in which the amount of paste used can be reduced.

Claims (1)

液晶ポリエステル繊維からなり、メッシュ数が350本/2.54cm以上であり、紗厚が25μm以下であることを特徴とするメッシュ織物。 A mesh woven fabric made of liquid crystal polyester fibers, having a mesh number of 350 fibers / 2.54 cm or more and a gauze thickness of 25 μm or less.
JP2019512693A 2018-01-29 2019-01-23 Mesh fabric made of liquid crystal polyester fiber Active JP7304285B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018012227 2018-01-29
JP2018012227 2018-01-29
PCT/JP2019/002014 WO2019146620A1 (en) 2018-01-29 2019-01-23 Woven mesh fabric comprising liquid-crystal polyester fibers

Publications (2)

Publication Number Publication Date
JPWO2019146620A1 true JPWO2019146620A1 (en) 2020-11-26
JP7304285B2 JP7304285B2 (en) 2023-07-06

Family

ID=67395718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019512693A Active JP7304285B2 (en) 2018-01-29 2019-01-23 Mesh fabric made of liquid crystal polyester fiber

Country Status (5)

Country Link
JP (1) JP7304285B2 (en)
KR (1) KR20200105848A (en)
CN (1) CN111655916A (en)
TW (1) TW201937023A (en)
WO (1) WO2019146620A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166276U (en) * 1986-04-11 1987-10-22
US5365840A (en) * 1990-10-03 1994-11-22 Newman Donald E Screen material for and method of screen printing
JP2001064845A (en) * 1999-08-18 2001-03-13 Kuraray Co Ltd Base fabric
JP2004284134A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Screen gauze
WO2008146690A1 (en) * 2007-05-24 2008-12-04 Teijin Fibers Limited Monofilament for screen fabric and process for production of screen fabric
JP2010029995A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Polishing pad
JP2011093083A (en) * 2009-09-29 2011-05-12 Toray Ind Inc Polishing pad
WO2015115259A1 (en) * 2014-01-31 2015-08-06 東レ株式会社 Liquid crystal polyester fibers, and production method therefor
WO2018105657A1 (en) * 2016-12-06 2018-06-14 株式会社Nbcメッシュテック Screen plate and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008185B1 (en) * 1987-02-17 1995-07-26 니혼 도쿠슈 오리모노 캄파니 리미티드 Mesh woven fabric for printing screen
CA2242217C (en) * 1997-07-10 2006-12-12 Kuraray Co., Ltd. Screen textile material
JP2001140141A (en) 1999-11-04 2001-05-22 Kuraray Co Ltd Mesh fabric for screen gauze and method of producing the same
JP5242034B2 (en) 2006-09-25 2013-07-24 株式会社Nbcメッシュテック SCREEN FOR THIN FILM PRINTING, ITS MANUFACTURING METHOD, AND SCREEN PLATE FOR THIN FILM PRINTING
JP5286827B2 (en) 2007-02-28 2013-09-11 東レ株式会社 Liquid crystal polyester fiber
EP2407583B1 (en) * 2009-03-11 2013-10-09 Toray Industries, Inc. Liquid crystal polyester fibers and method for producing the same
JP5327109B2 (en) 2009-03-23 2013-10-30 東レ株式会社 Liquid crystalline polyester fiber and winding package
JP2018111311A (en) * 2017-01-12 2018-07-19 株式会社Nbcメッシュテック Screen printing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166276U (en) * 1986-04-11 1987-10-22
US5365840A (en) * 1990-10-03 1994-11-22 Newman Donald E Screen material for and method of screen printing
JP2001064845A (en) * 1999-08-18 2001-03-13 Kuraray Co Ltd Base fabric
JP2004284134A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Screen gauze
WO2008146690A1 (en) * 2007-05-24 2008-12-04 Teijin Fibers Limited Monofilament for screen fabric and process for production of screen fabric
JP2010029995A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Polishing pad
JP2011093083A (en) * 2009-09-29 2011-05-12 Toray Ind Inc Polishing pad
WO2015115259A1 (en) * 2014-01-31 2015-08-06 東レ株式会社 Liquid crystal polyester fibers, and production method therefor
WO2018105657A1 (en) * 2016-12-06 2018-06-14 株式会社Nbcメッシュテック Screen plate and method for manufacturing same

Also Published As

Publication number Publication date
KR20200105848A (en) 2020-09-09
WO2019146620A1 (en) 2019-08-01
CN111655916A (en) 2020-09-11
TW201937023A (en) 2019-09-16
JP7304285B2 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
KR101412284B1 (en) Liquid crystalline polyester fiber and process for production of the same
US10584429B2 (en) Method of producing liquid crystal polyester fibers
JP5286827B2 (en) Liquid crystal polyester fiber
JP6610778B2 (en) Heat-adhesive core-sheath composite fiber and tricot knitted fabric
JP5098693B2 (en) Liquid crystal polyester fiber
WO2010103986A1 (en) Liquid crystal polyester fibers and method for producing the same
JP5327109B2 (en) Liquid crystalline polyester fiber and winding package
JP6855683B2 (en) Liquid crystal polyester multifilament
JP5470930B2 (en) Method for producing liquid crystal polyester fiber
KR20160110481A (en) Liquid crystal polyester fibers, and production method therefor
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP5098692B2 (en) Method for producing liquid crystal polyester fiber
JP5320756B2 (en) Method for producing liquid crystal polyester fiber
JP2010242246A (en) Method for producing liquid crystal polyester fiber
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP5298597B2 (en) Method for producing liquid crystal polyester fiber
JP5187224B2 (en) Method for producing molten liquid crystalline polyester fiber
JP2017031525A (en) Manufacturing method of liquid crystalline polyester multifilament
JP7304285B2 (en) Mesh fabric made of liquid crystal polyester fiber
JP6953776B2 (en) Liquid crystal polyester multifilament
JP5115471B2 (en) Liquid crystalline polyester fiber and method for producing the same
JP2005047020A (en) Polyester monofilament for screen gauze
JP2016191169A (en) Liquid crystal polyester multifilament and production method of the same
JP2015059282A (en) Liquid crystalline polyester monofilament package

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7304285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150