JPWO2019133608A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019133608A5
JPWO2019133608A5 JP2020535579A JP2020535579A JPWO2019133608A5 JP WO2019133608 A5 JPWO2019133608 A5 JP WO2019133608A5 JP 2020535579 A JP2020535579 A JP 2020535579A JP 2020535579 A JP2020535579 A JP 2020535579A JP WO2019133608 A5 JPWO2019133608 A5 JP WO2019133608A5
Authority
JP
Japan
Prior art keywords
electrode
electric field
field energy
additional
pulsed electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020535579A
Other languages
Japanese (ja)
Other versions
JP2021508533A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/067504 external-priority patent/WO2019133608A1/en
Publication of JP2021508533A publication Critical patent/JP2021508533A/en
Publication of JPWO2019133608A5 publication Critical patent/JPWO2019133608A5/ja
Priority to JP2023135986A priority Critical patent/JP2023168331A/en
Pending legal-status Critical Current

Links

Description

いくつかの実施形態では、不整脈を治療するために、通路は心臓内に設けられ、機能上連続的な治療区域は肺静脈と左心房との間に電気的切断を含む。任意選択的に、通路は肺静脈を含む。いくつかの実施形態では、機能上連続的な治療区域は、貫壁性病変を含む。他の実施形態では、通路は肺内に気道を含み、機能上連続的な治療区域は、気道の軟骨層を維持しながら、細胞型の空孔を作り出す。いくつかの実施形態では、細胞型は、上皮細胞、杯状細胞及び/又は粘膜下腺細胞を含む。いくつかの実施形態では、機能上連続的な治療区域は、最大2.5cmまで且つこれを超えない深度を有する。 In some embodiments, a passageway is provided in the heart to treat an arrhythmia and the functionally continuous treatment segment includes an electrical disconnection between the pulmonary veins and the left atrium. Optionally, the passageway includes pulmonary veins. In some embodiments, the functionally continuous treatment area comprises a transmural lesion. In other embodiments, the passageway comprises an airway within the lung, and the functionally continuous treatment zone creates a cell-type void while maintaining the cartilaginous lining of the airway. In some embodiments, the cell types comprise epithelial cells, goblet cells and/or submucosal gland cells. In some embodiments, the functionally continuous treatment zone has a depth of up to and not exceeding 2.5 cm.

いくつかの実施形態では、通路は心臓内に設けられ、カテーテルの遠位端部は心臓内に位置決めされるように構成されるとともに、少なくとも1つのエネルギー送達アルゴリズムは、不整脈を治療するために機能上連続的な治療区域に肺静脈と左心房との間に電気的切断を含むようにさせる信号パラメータを含む。任意選択的に、通路は肺静脈を含み、カテーテルの遠位端部は肺静脈内に位置決めされるように構成されている。いくつかの実施形態では、信号パラメータは機能上連続的な治療区域に貫壁性病変を含むようにさせる。 In some embodiments, the passageway is provided within the heart, the distal end of the catheter is configured to be positioned within the heart, and the at least one energy delivery algorithm functions to treat an arrhythmia. Contains signal parameters that cause the continuous treatment segment to include electrical disconnection between the pulmonary veins and the left atrium. Optionally, the passageway includes a pulmonary vein and the distal end of the catheter is configured to be positioned within the pulmonary vein. In some embodiments, the signal parameters cause the functionally continuous treatment area to include transmural lesions.

PV-LA導通再開の推定される理由は、アブレーションライン内のギャップ及び/又は経壁病変生成の失敗である。ラインのギャップは、PVからLAへの電気的活動の再開を可能にし、PVトリガに心房細動を再度開始させるとともに、他のマイクロリエントラント心房性不整脈のトリガとしてもまた機能する場合がある。同様に、可逆的な心房損傷は、不完全な病変形成に起因する場合があり、一時的な電気的結合解除を生じるが、細胞死は生じない。線状病変全体にわたる永続的な導通遮断は、細胞死を伴う貫壁性病変を必要とし、且つ/又は使用する。前述したように、本開示の専用のカテーテル設計、別個のエネルギー送達アルゴリズム、及び使用方法は、周方向のアブレーションの規則性の向上を提供する。これにより、アブレーションライン内の導通ギャップが減少する。加えて、本開示の専用のカテーテル設計、別個のエネルギー送達アルゴリズム、及び使用方法は、貫壁性病変を形成する能力を高めることが可能である。このような改良は、心房細動を治療する際に有益な場合があるとともに、肺通路、胃腸の通路、並びに、身体内の他の自然通路及び人工通路を含む、多種多様な他の症状及び/又は他の体腔を治療する際に有用な場合がある。 Probable reasons for PV-LA continuity resumption are gaps in the ablation line and/or failure to create a transmural lesion. The line gap allows resumption of electrical activity from the PV to the LA, causing the PV trigger to re-initiate atrial fibrillation and may also serve as a trigger for other micro-reentrant atrial arrhythmias. Similarly, reversible atrial injury may result from incomplete lesion formation, resulting in transient electrical decoupling but not cell death. A permanent conduction block across a linear lesion requires and/or uses a transmural lesion with cell death. As previously described, the specialized catheter design, separate energy delivery algorithms, and methods of use of the present disclosure provide improved regularity of circumferential ablation. This reduces the conduction gaps in the ablation line. Additionally, the specialized catheter design, discrete energy delivery algorithms, and methods of use of the present disclosure can enhance the ability to form transmural lesions. Such improvements may be beneficial in treating atrial fibrillation, as well as in a wide variety of other conditions and conditions, including pulmonary passageways, gastrointestinal passageways, and other natural and artificial passageways within the body. /or may be useful in treating other body cavities.

図8に示されているように、エネルギーの限局的送達を多種多様なやり方で利用して、組織への効果を向上及び/又は最大化することができる。特に、電極(例えば212a、212b、212c、212d)へのエネルギー送達の正確なタイミング及び順番付けを利用して、以下でさらに説明するように、エネルギーを受け取る組織内の細胞死を確実にすることができる。これは、心房細動の治療に特に有用な場合がある。前述したように、線状病変全体にわたる永続的な導通遮断は、一時的な可逆的効果ではなく、細胞死を伴う貫壁性病変を使用し、且つ/又は必要とする。いくつかの実施形態では、PEF波形は、ナノ秒からマイクロ秒のパルス持続時間を反映する周波数を有する双極性の相殺を用いて、麻痺者の有無にかかわらず、細胞及び細胞小器官膜の両方を不安定化させる能力を保持しながら、全身性の筋収縮の程度を容認可能な低レベルまで軽減するものである。これは、ナノ秒のパルス電界(nsPEF)又は従来のミリ秒の不可逆的電気穿孔(IRE)法のいずれかを用いて到達したものを超える、一意的に治療結果を強化する素因となる細胞に及ぼす色々な形態の効果を誘発する。したがって、送達されるエネルギーは、標的組織で十分に大きく、且つ効果的な治療ゾーンを誘発することができるが、これは、nsPEFにとっての課題であり、一方、有利な安全性及び筋収縮プロファイルを維持することは、従来のミリ秒のIREにとっての、特に、外部の分散パッドを使用する単極パルス送達構成にとっての課題である。 As shown in FIG. 8, localized delivery of energy can be utilized in a wide variety of ways to enhance and/or maximize tissue effects. In particular, utilizing precise timing and sequencing of energy delivery to the electrodes (e.g., 212a, 212b, 212c, 212d) to ensure cell death within the tissue receiving the energy, as further described below. can be done. This may be particularly useful in treating atrial fibrillation. As noted above, permanent conduction block across linear lesions uses and/or requires transmural lesions with cell death rather than transient reversible effects. In some embodiments, PEF waveforms are applied to both cell and organelle membranes with and without paralysis using bipolar cancellation with frequencies reflecting pulse durations from nanoseconds to microseconds. It reduces the degree of generalized muscle contraction to an acceptably low level while retaining the ability to destabilize the . This predisposes cells to uniquely enhance therapeutic outcomes beyond those reached using either nanosecond pulsed electric fields (nsPEF) or conventional millisecond irreversible electroporation (IRE) methods. trigger various forms of effects. Thus, the delivered energy can induce a sufficiently large and effective treatment zone at the target tissue, which is a challenge for nsPEF, while providing favorable safety and muscle contraction profiles. Sustainability is a challenge for conventional millisecond IREs, especially for unipolar pulse delivery configurations that use external dispersive pads.

Claims (46)

内側周面を有する身体内の通路を治療するためのシステムによって実行される方法であって、
電極が前記通路の前記内側周面の一部にわたるように、前記通路内に前記電極を位置決めすることと、
前記電極にパルス電界エネルギーを供給することによって、前記通路の前記内側周面の第1の部分に沿って第1の治療区域を作り出すことと、
前記電極が再位置決めされるごとに前記電極が前記内側周面の追加の部分にわたるように、前記電極を前記通路内に1回又は複数回前記通路内に再位置決めすることと、
前記電極が再位置決めされるごとに前記再位置決めされた電極にパルス電界エネルギーを供給することによって、前記通路の前記内側周面の各追加の部分に沿って追加の治療区域を作り出すことと、
を含み、
前記第1の部分及び各追加の部分は、前記内側周面にわたる、治療効果の観点で機能的に連続している治療区域を作り出すように前記内側周面に沿って延在する、方法。
A method performed by a system for treating a passageway in the body having an inner perimeter, comprising:
positioning the electrode within the passage such that the electrode spans a portion of the inner perimeter of the passage;
creating a first treatment zone along a first portion of the inner perimeter of the passageway by supplying pulsed electric field energy to the electrode;
repositioning the electrode within the passageway one or more times such that the electrode spans an additional portion of the inner perimeter each time the electrode is repositioned;
creating additional treatment zones along each additional portion of the inner circumference of the passageway by supplying pulsed electric field energy to the repositioned electrodes each time the electrodes are repositioned;
including
The method of claim 1, wherein the first portion and each additional portion extend along the inner circumferential surface to create a treatment zone across the inner circumferential surface that is functionally continuous in terms of therapeutic efficacy .
身体内の通路を治療するためのシステムであって、
カテーテルであって、前記カテーテルの遠位端部の付近に設けられた第1の電極及び前記カテーテルの遠位端部の付近に設けられた少なくとも1つの追加の電極を含み、前記第1の電極及び前記少なくとも1つの追加の電極が、パルス電界エネルギーを前記通路の単一の内側周面に伝送するために整列されるように、前記カテーテルの前記遠位端部が前記通路内に位置決めされるように構成された、カテーテルと、
前記第1の電極及び前記少なくとも1つの追加の電極と電気的に通信するジェネレータであって、
a)前記第1の電極を通るエネルギー送達に優先順位をつけるように、前記パルス電界エネルギーの電気信号を前記第1の電極に供給して、第1の治療区域を作り出し、
b)電気信号が供給されたときに前記少なくとも1つの追加の電極のそれぞれを通るエネルギー送達に優先順位をつけるように、前記パルス電界エネルギーの前記電気信号を前記少なくとも1つの追加の電極のそれぞれに個々に供給するように切り替えて、前記少なくとも1つの追加の電極のそれぞれに対応する追加の治療区域を作り出すようにする、
少なくとも1つのエネルギー送達アルゴリズムを含む前記ジェネレータと、
を含み、
前記第1の治療区域及び前記追加の治療区域は、前記単一の内側周面にわたる、治療効果の観点で機能的に連続している治療区域を作り出すように、前記通路の前記単一の内側周面に沿って延在する、システム。
A system for treating a passageway in the body, comprising:
a catheter comprising a first electrode near a distal end of said catheter and at least one additional electrode near a distal end of said catheter, said first electrode and the at least one additional electrode is positioned within the passageway such that the distal end of the catheter is aligned to transmit pulsed electric field energy to a single inner circumferential surface of the passageway. a catheter configured to;
a generator in electrical communication with the first electrode and the at least one additional electrode,
a) supplying an electrical signal of said pulsed electric field energy to said first electrode to prioritize energy delivery through said first electrode to create a first treatment zone;
b) directing said electrical signal of said pulsed electric field energy to each of said at least one additional electrode so as to prioritize energy delivery through each of said at least one additional electrode when the electrical signal is applied; switching to individual delivery to create additional treatment areas corresponding to each of the at least one additional electrode;
the generator including at least one energy delivery algorithm;
including
The first treatment zone and the additional treatment zone are arranged inside the single interior of the passageway to create a treatment zone that spans the single inner perimeter and is functionally continuous in terms of therapeutic efficacy. A system extending along the perimeter.
前記通路は心臓内に設けられ、前記カテーテルの前記遠位端部は前記心臓内に位置決めされるように構成され、
前記少なくとも1つのエネルギー送達アルゴリズムは、不整脈を治療するために、治療効果の観点で機能的に連続している前記治療区域に肺静脈と左心房との間に電気的切断を含むようにさせる信号パラメータを含む、請求項2に記載のシステム。
the passageway is provided within the heart, the distal end of the catheter is configured to be positioned within the heart;
The at least one energy delivery algorithm causes the treatment area that is functionally continuous in terms of therapeutic efficacy to include electrical disconnection between the pulmonary veins and the left atrium to treat an arrhythmia. 3. The system of claim 2, including parameters.
前記通路は前記肺静脈を含み、前記カテーテルの前記遠位端部は前記肺静脈内に位置決めされるように構成された、請求項3に記載のシステム。 4. The system of claim 3, wherein the passageway includes the pulmonary vein and the distal end of the catheter is configured to be positioned within the pulmonary vein. 前記信号パラメータは、治療効果の観点で機能的に連続している前記治療区域に貫壁性病変を含むようにさせる、請求項4に記載のシステム。 5. The system of claim 4, wherein the signal parameter causes the treatment area that is functionally continuous in terms of therapeutic efficacy to include transmural lesions. 前記通路は、肺の気道を含み、前記カテーテルの前記遠位端部は前記気道内に位置決めされるように構成され、
前記少なくとも1つのエネルギー送達アルゴリズムは、治療効果の観点で機能的に連続している前記治療区域に、前記気道の軟骨層を維持しながら、細胞の空孔を含むようにさせる信号パラメータを含む、請求項2に記載のシステム。
the passageway includes an airway of the lung , the distal end of the catheter being configured to be positioned within the airway;
The at least one energy delivery algorithm includes signal parameters that cause the treatment area to be functionally continuous in terms of therapeutic efficacy to contain cellular voids while maintaining the cartilage layer of the airway . 3. The system of claim 2.
前記細胞型は上皮細胞、杯状細胞及び/又は粘膜下腺細胞を含む、請求項6に記載のシステム。 7. The system of claim 6, wherein said cell types comprise epithelial cells, goblet cells and/or submucosal gland cells. 治療効果の観点で機能的に連続している前記治療区域は、最大2.5cmまで且つこれを超えない深度を有する、請求項6に記載のシステム。 7. The system of claim 6, wherein the treatment zone that is functionally continuous in terms of therapeutic effect has a depth of up to and not exceeding 2.5 cm. 前記パルス電界エネルギーは二相である、請求項2~8のいずれか一項に記載のシステム。 The system of any one of claims 2-8, wherein the pulsed electric field energy is biphasic. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記複数の電極のうちの少なくとも1つにパルス電界エネルギーを10,000μs以下の間供給して、前記第1の治療区域及び/又は前記少なくとも1つの追加の治療区域のそれぞれを作り出す、請求項2~9のいずれか一項に記載のシステム。 The at least one energy delivery algorithm delivers pulsed electric field energy to at least one of the plurality of electrodes for 10,000 μs or less to perform the first treatment area and/or the at least one additional treatment. A system according to any one of claims 2 to 9, producing each of the zones. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記複数の電極のうちの少なくとも1つにパルス電界エネルギーを500μs以下の間供給して、前記第1の治療区域及び/又は前記少なくとも1つの追加の治療区域のそれぞれを作り出す、請求項10に記載のシステム。 The at least one energy delivery algorithm delivers pulsed electric field energy to at least one of the plurality of electrodes for 500 μs or less to effect the first treatment area and/or the at least one additional treatment area. 11. The system of claim 10, producing each. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記複数の電極のうちの少なくとも1つにパルス電界エネルギーを5μs~50μsの間供給して、前記第1の治療区域及び/又は前記少なくとも1つの追加の治療区域のそれぞれを作り出す、請求項11に記載のシステム。 The at least one energy delivery algorithm delivers pulsed electric field energy to at least one of the plurality of electrodes for 5 μs to 50 μs to the first treatment area and/or the at least one additional treatment area. 12. The system of claim 11, which produces each of 前記パルス電界エネルギーは1000個以下のパケットで構成される、請求項2~12のいずれか一項に記載のシステム。 A system according to any one of claims 2 to 12, wherein said pulsed electric field energy is composed of 1000 or fewer packets. 前記パルス電界エネルギーは40~500個のパケットで構成される、請求項13に記載のシステム。 14. The system of claim 13, wherein said pulsed electric field energy consists of 40-500 packets. 前記パルス電界エネルギーは10個以下のパケットで構成される、請求項13に記載のシステム。 14. The system of claim 13, wherein the pulsed electric field energy is composed of 10 or fewer packets. 前記パルス電界エネルギーは単極構成で送達される、請求項2~15のいずれか一項に記載のシステム。 The system of any one of claims 2-15, wherein the pulsed electric field energy is delivered in a monopolar configuration. 前記少なくとも1つの追加の電極は2~7個の追加の電極を含む、請求項2~16のいずれか一項に記載のシステム。 The system of any one of claims 2-16, wherein said at least one additional electrode comprises 2-7 additional electrodes. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記第1の電極及び少なくとも1つの追加の電極のそれぞれに、連続して前記パルス電界エネルギーの前記電気信号を供給する、請求項2~17のいずれか一項に記載のシステム。 18. Any one of claims 2-17, wherein the at least one energy delivery algorithm supplies the electrical signal of the pulsed electric field energy to each of the first electrode and at least one additional electrode in succession. The system described in . 前記第1の治療区域及び前記少なくとも1つの追加の治療区域は重複する、請求項2~18のいずれか一項に記載のシステム。 The system of any one of claims 2-18, wherein the first treatment zone and the at least one additional treatment zone overlap. 前記少なくとも1つのエネルギー送達アルゴリズムは、複数の段階で前記第1の電極に前記パルス電界エネルギーの前記電気信号を供給するように構成された、請求項2~19のいずれか一項に記載のシステム。 The system of any one of claims 2-19, wherein the at least one energy delivery algorithm is configured to provide the electrical signal of the pulsed electric field energy to the first electrode in multiple stages. . 前記少なくとも1つのエネルギー送達アルゴリズムは、複数の異なる段階で前記少なくとも1つの追加の電極に前記パルス電界エネルギーの前記電気信号を供給するように構成され、前記複数の段階及び前記複数の異なる段階は同時に起こらない、請求項20に記載のシステム。 The at least one energy delivery algorithm is configured to provide the electrical signal of the pulsed electric field energy to the at least one additional electrode in a plurality of different stages, the plurality of stages and the plurality of different stages simultaneously. 21. The system of claim 20, which does not occur. 前記複数の段階及び前記複数の異なる段階は繰り返しパターンを形成する、請求項21に記載のシステム。 22. The system of claim 21, wherein said plurality of stages and said plurality of different stages form a repeating pattern. 前記少なくとも1つのエネルギー送達アルゴリズムは、段階の合間に、前記第1の電極及び/又は前記少なくとも1つの追加の電極にメンテナンスパルス電界エネルギーを供給し、
前記メンテナンスパルス電界エネルギーは、前記パルス電界エネルギーよりも低い電圧を有する、請求項21に記載のシステム。
said at least one energy delivery algorithm supplying maintenance pulse electric field energy to said first electrode and/or said at least one additional electrode between stages;
22. The system of claim 21, wherein said maintenance pulse electric field energy has a lower voltage than said pulse electric field energy.
前記メンテナンスパルス電界エネルギーは、前記パルス電界エネルギーの電圧の半分未満の電圧を有する、請求項23に記載のシステム。 24. The system of claim 23, wherein said maintenance pulse electric field energy has a voltage less than half the voltage of said pulse electric field energy. 前記少なくとも第1の電極及び前記少なくとも1つの追加の電極は、拡張可能部材の上に設置されているか又は中に埋め込まれている、請求項2~24のいずれか一項に記載のシステム。 The system of any one of claims 2-24, wherein the at least first electrode and the at least one additional electrode are mounted on or embedded within an expandable member. 前記少なくとも第1の電極及び前記少なくとも1つの追加の電極は、拡張可能なバスケット形状を有する電極送達体を形成する複数のワイヤ又はリボンを含み、
前記バスケット形状の一部は、絶縁されている、請求項2~24のいずれか一項に記載のシステム。
said at least first electrode and said at least one additional electrode comprising a plurality of wires or ribbons forming an electrode delivery body having an expandable basket shape;
A system according to any one of claims 2 to 24, wherein said basket-shaped part is insulated.
身体内の通路を治療するためのシステムであって、
カテーテルであって、前記カテーテルの遠位端部の付近に設けられた少なくとも1つの電極を含、前記少なくとも1つの電極がパルス電界エネルギーを前記通路の内側表面に伝送することができるように、前記カテーテルの前記遠位端部が前記通路内に位置決めされるように構成された、カテーテルと、
前記少なくとも1つの電極と電気的に通信するジェネレータであって、パルス電界エネルギーが前記通路の前記内側表面上の細胞に送達されるように、前記少なくとも1つの電極に電気信号を供給する、少なくとも1つのエネルギー送達アルゴリズムを含む前記ジェネレータと、
を含み、
前記電気信号は複数のパケットを含み、
各パケットは複数の二相のサイクルを含み、且つ、
各パケットは0.0001~10秒で時間的に離隔されている、システム。
A system for treating a passageway in the body, comprising:
a catheter comprising at least one electrode located near a distal end of said catheter, said at least one electrode being capable of transmitting pulsed electric field energy to an inner surface of said passage; a catheter configured such that the distal end of the catheter is positioned within the passageway;
at least one generator in electrical communication with the at least one electrode for providing an electrical signal to the at least one electrode such that pulsed electric field energy is delivered to cells on the inner surface of the passageway; the generator including one energy delivery algorithm;
including
the electrical signal includes a plurality of packets;
each packet includes a plurality of biphasic cycles, and
Each packet is separated in time by 0.0001 to 10 seconds, system.
前記複数のパケットは、前記パルス電界エネルギーを10,000μs以下の間生成する、請求項27に記載のシステム。 28. The system of claim 27, wherein said plurality of packets generate said pulsed electric field energy for 10,000 [mu]s or less. 前記複数のパケットは、前記パルス電界エネルギーを500μs以下の間生成する、請求項28に記載のシステム。 29. The system of claim 28, wherein said plurality of packets produce said pulsed electric field energy for 500[mu]s or less. 前記複数のパケットは、前記パルス電界エネルギーを5μs~50μs以下の間生成する、請求項29に記載のシステム。 30. The system of claim 29, wherein said plurality of packets produce said pulsed electric field energy for 5 μs to 50 μs or less. 前記パルス電界エネルギーは1000個以下のパケットで構成される、請求項27~30のいずれか一項に記載のシステム。 The system of any one of claims 27-30, wherein said pulsed electric field energy is composed of 1000 or fewer packets. 前記パルス電界エネルギーは40~500個のパケットで構成される、請求項31に記載のシステム。 32. The system of claim 31, wherein said pulsed electric field energy consists of 40-500 packets. 前記複数のパケットは10個以下のパケットを含む、請求項31に記載のシステム。 32. The system of claim 31, wherein the plurality of packets includes ten packets or less. 前記パルス電界エネルギーは単極構成で送達される、請求項27~33のいずれか一項に記載のシステム。 34. The system of any one of claims 27-33, wherein the pulsed electric field energy is delivered in a monopolar configuration. 前記少なくとも1つの電極は、前記通路の前記内側表面の周面に前記パルス電界エネルギーを送達するように配置された、少なくとも第1の電極及び少なくとも1つの追加の電極を含む、請求項27~34のいずれか一項に記載のシステム。 Claims 27-34, wherein said at least one electrode comprises at least a first electrode and at least one additional electrode arranged to deliver said pulsed electric field energy circumferentially to said inner surface of said passageway. A system according to any one of Claims 1 to 3. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記少なくとも1つの追加の電極のそれぞれに別の複数のパケットを供給することに先立って、前記第1の電極に前記複数のパケットを供給する、請求項35に記載のシステム。 36. The method of claim 35, wherein the at least one energy delivery algorithm delivers the plurality of packets to the first electrode prior to delivering another plurality of packets to each of the at least one additional electrode. System as described. 前記少なくとも1つのエネルギー送達アルゴリズムは、前記複数のパケットを前記第1の電極に送達することを終える前に、前記少なくとも1つの追加の電極のそれぞれに別の複数のパケットを供給する、請求項36に記載のシステム。 37. The at least one energy delivery algorithm supplies another plurality of packets to each of the at least one additional electrode before finishing delivering the plurality of packets to the first electrode. The system described in . 前記少なくとも1つのエネルギー送達アルゴリズムは、パケットの合間に、前記第1の電極及び/又は前記少なくとも1つの追加の電極にメンテナンスパルス電界エネルギーを供給し、
前記メンテナンスパルス電界エネルギーは、前記パルス電界エネルギーよりも低い電圧を有する、請求項35に記載のシステム。
said at least one energy delivery algorithm delivering maintenance pulse electric field energy to said first electrode and/or said at least one additional electrode between packets;
36. The system of claim 35, wherein said maintenance pulse electric field energy has a lower voltage than said pulse electric field energy.
前記メンテナンスパルス電界エネルギーは、前記パルス電界エネルギーの電圧の半分未満の電圧を有する、請求項38に記載のシステム。 39. The system of claim 38, wherein said maintenance pulse electric field energy has a voltage less than half the voltage of said pulse electric field energy. 患者の心臓信号を取得するように構成された心臓モニタをさらに含み、
前記ジェネレータは、前記心臓信号と同期して前記メンテナンスパルス電界エネルギーを供給する、請求項38に記載のシステム。
further comprising a cardiac monitor configured to acquire a cardiac signal of the patient;
39. The system of Claim 38, wherein the generator provides the maintenance pulse electric field energy synchronously with the cardiac signal.
前記少なくとも第1の電極及び前記少なくとも1つの追加の電極は、拡張可能部材の上に設置されているか又は中に埋め込まれている、請求項35~40のいずれか一項に記載のシステム。 41. The system of any one of claims 35-40, wherein the at least first electrode and the at least one additional electrode are mounted on or embedded within an expandable member. 前記少なくとも第1の電極及び前記少なくとも1つの追加の電極は、拡張可能なバスケット形状を有する電極送達体を形成する複数のワイヤ又はリボンを含み、
前記バスケット形状の一部は、絶縁されている、請求項35~40のいずれか一項に記載のシステム。
said at least first electrode and said at least one additional electrode comprising a plurality of wires or ribbons forming an electrode delivery body having an expandable basket shape;
The system of any one of claims 35-40, wherein said basket-shaped portion is insulated.
前記パルス電界エネルギーは、最大2.5cmまで且つこれを超えない深度で細胞のホメオスタシスを破壊するように前記通路の前記内側表面上の前記細胞に送達される、請求項27~42のいずれか一項に記載のシステム。 43. Any one of claims 27-42, wherein the pulsed electric field energy is delivered to the cells on the inner surface of the passageway to disrupt cellular homeostasis at depths up to and not exceeding 2.5 cm. A system as described in . 患者の心臓信号を取得するように構成された心臓モニタをさらに含み、
前記ジェネレータは、前記心臓信号と同期して前記電気信号を供給する、請求項27~43のいずれか一項に記載のシステム。
further comprising a cardiac monitor configured to acquire a cardiac signal of the patient ;
The system of any one of claims 27-43, wherein the generator provides the electrical signal synchronously with the cardiac signal.
内側周面を有する身体内の通路を治療するためのシステムによって実行される方法であって、
前記通路内に複数の電極を位置決めし、前記複数の電極が前記通路の前記内側周面の少なくとも一部分にわたるようにすることと、
前記複数の電極のうちの少なくとも1つにパルス電界エネルギーを供給することによって前記通路の前記内側周面の第1の部分に沿って第1の治療区域を作り出すことであって、前記複数の電極のうちの前記少なくとも1つを通る前記第1の治療区域へのエネルギー送達に優先順位をつける、ことと、
前記複数の電極のうちの少なくとも1つにパルス電界エネルギーを供給することによって前記通路の前記内側周面の少なくとも1つの追加の部分に沿って少なくとも1つの追加の治療区域を作り出すことであって、前記複数の電極のうちの前記少なくとも1つを通る前記少なくとも1つの追加の治療区域へのエネルギー送達に優先順位をつける、ことと、
を含み、
前記第1の部分及び前記少なくとも1つの追加の部分は、前記内側周面に伝達されるエネルギーの平衡が保たれた治療区域を作り出すように前記内側周面に沿って延在する、方法。
A method performed by a system for treating a passageway in the body having an inner perimeter, comprising:
positioning a plurality of electrodes within the passage such that the plurality of electrodes span at least a portion of the inner perimeter of the passage;
creating a first treatment zone along a first portion of the inner circumferential surface of the passageway by supplying pulsed electric field energy to at least one of the plurality of electrodes, the plurality of electrodes comprising: prioritizing energy delivery to the first treatment area through the at least one of;
creating at least one additional treatment zone along at least one additional portion of the inner circumferential surface of the passageway by supplying pulsed electric field energy to at least one of the plurality of electrodes; prioritizing energy delivery to the at least one additional treatment area through the at least one of the plurality of electrodes;
including
The method, wherein the first portion and the at least one additional portion extend along the inner circumferential surface to create a balanced treatment zone for energy transferred to the inner circumferential surface .
身体内の通路を治療するためのシステムであって、
カテーテルであって、前記カテーテルの遠位端部の付近に設けられた第1の電極及び前記カテーテルの遠位端部の付近に設けられた少なくとも1つの追加の電極を含み、前記第1の電極及び前記少なくとも1つの追加の電極が、パルス電界エネルギーを前記通路の単一の内側周面に伝送するために整列されるように、前記カテーテルの前記遠位端部が前記通路内に位置決めされるように構成された、カテーテルと、
前記第1の電極及び前記少なくとも1つの追加の電極と電気的に通信するジェネレータであって、
a)前記第1の電極を通るエネルギー送達に優先順位をつけるように前記パルス電界エネルギーの電気信号を前記第1の電極に供給して、第1の治療区域を作り出し、
b)前記電気信号が供給されたときに、前記少なくとも1つの追加の電極のそれぞれを通るエネルギー送達に優先順位をつけるように、前記パルス電界エネルギーの電気信号を前記少なくとも1つの追加の電極のそれぞれに個々に供給するように切り替えて、前記少なくとも1つの追加の電極のそれぞれに対応する追加の治療区域を作り出すようにする、
少なくとも1つのエネルギー送達アルゴリズムを含む前記ジェネレータと、
を含み、
前記第1の治療区域及び前記追加の治療区域は、前記内側周面に伝達されるエネルギーの平衡が保たれた治療区域を作り出すように前記通路の前記単一の内側周面に沿って延在する、システム。
A system for treating a passageway in the body, comprising:
a catheter comprising a first electrode near a distal end of said catheter and at least one additional electrode near a distal end of said catheter, said first electrode and the at least one additional electrode is positioned within the passageway such that the distal end of the catheter is aligned to transmit pulsed electric field energy to a single inner circumferential surface of the passageway. a catheter configured to;
a generator in electrical communication with the first electrode and the at least one additional electrode,
a) supplying an electrical signal of said pulsed electric field energy to said first electrode to prioritize energy delivery through said first electrode to create a first treatment zone;
b) applying an electrical signal of said pulsed electric field energy to each of said at least one additional electrode so as to prioritize energy delivery through each of said at least one additional electrode when said electrical signal is provided; to individually supply the at least one additional electrode to create additional treatment zones corresponding to each of the at least one additional electrode;
the generator including at least one energy delivery algorithm;
including
The first treatment zone and the additional treatment zone extend along the single inner perimeter of the passageway to create a balanced treatment zone for energy transferred to the inner perimeter. do, the system.
JP2020535579A 2017-12-26 2018-12-26 Optimizing energy delivery for a variety of applications Pending JP2021508533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023135986A JP2023168331A (en) 2017-12-26 2023-08-24 Optimization of energy delivery for various applications

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762610430P 2017-12-26 2017-12-26
US62/610,430 2017-12-26
US201862693622P 2018-07-03 2018-07-03
US62/693,622 2018-07-03
PCT/US2018/067504 WO2019133608A1 (en) 2017-12-26 2018-12-26 Optimization of energy delivery for various applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023135986A Division JP2023168331A (en) 2017-12-26 2023-08-24 Optimization of energy delivery for various applications

Publications (2)

Publication Number Publication Date
JP2021508533A JP2021508533A (en) 2021-03-11
JPWO2019133608A5 true JPWO2019133608A5 (en) 2023-04-19

Family

ID=65036907

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020535579A Pending JP2021508533A (en) 2017-12-26 2018-12-26 Optimizing energy delivery for a variety of applications
JP2023135986A Pending JP2023168331A (en) 2017-12-26 2023-08-24 Optimization of energy delivery for various applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023135986A Pending JP2023168331A (en) 2017-12-26 2023-08-24 Optimization of energy delivery for various applications

Country Status (8)

Country Link
US (2) US11547851B2 (en)
EP (2) EP4218641A1 (en)
JP (2) JP2021508533A (en)
CN (1) CN111683613A (en)
AU (1) AU2018397478A1 (en)
CA (1) CA3087183A1 (en)
DK (1) DK3731771T3 (en)
WO (1) WO2019133608A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
EP3681391A1 (en) 2017-09-12 2020-07-22 Farapulse, Inc. Systems, apparatuses, and methods for ventricular focal ablation
WO2019133608A1 (en) 2017-12-26 2019-07-04 Gala Therapeutics, Inc. Optimization of energy delivery for various applications
EP3790483A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
CN115836908A (en) 2018-05-07 2023-03-24 波士顿科学医学有限公司 Systems, devices, and methods for delivering ablation energy to tissue
WO2020061359A1 (en) 2018-09-20 2020-03-26 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US11045628B2 (en) 2018-12-11 2021-06-29 Biosense Webster (Israel) Ltd. Balloon catheter with high articulation
US11850051B2 (en) 2019-04-30 2023-12-26 Biosense Webster (Israel) Ltd. Mapping grid with high density electrode array
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
CN113365566A (en) 2019-12-03 2021-09-07 圣犹达医疗用品心脏病学部门有限公司 Electroporation system and method
US11950930B2 (en) 2019-12-12 2024-04-09 Biosense Webster (Israel) Ltd. Multi-dimensional acquisition of bipolar signals from a catheter
US11517218B2 (en) 2019-12-20 2022-12-06 Biosense Webster (Israel) Ltd. Selective graphical presentation of electrophysiological parameters
EP4057925B1 (en) 2020-02-28 2023-10-11 St. Jude Medical, Cardiology Division, Inc. Electrode assembly including expandable isolation member
CN112716599A (en) * 2020-02-28 2021-04-30 圣犹达医疗用品心脏病学部门有限公司 Electrode assembly including expandable spacer member
US20210267672A1 (en) * 2020-02-28 2021-09-02 St. Jude Medical, Cardiology Division, Inc. Electrode assembly including expandable isolation member
WO2021181231A2 (en) * 2020-03-07 2021-09-16 Arga' Medtech Sa Ablation equipment for delivering non-thermal energy to treat target regions of tissue in organs and control method thereof
WO2021207385A1 (en) * 2020-04-08 2021-10-14 Galary, Inc. Pulsed electric field waveform manipulation and use
US20220047326A1 (en) * 2020-08-13 2022-02-17 Biosense Webster (Israel) Ltd. Applying Bipolar Ablation Energy Between Shorted Electrode Groups
US11950841B2 (en) 2020-09-22 2024-04-09 Biosense Webster (Israel) Ltd. Basket catheter having insulated ablation electrodes and diagnostic electrodes
US11950840B2 (en) 2020-09-22 2024-04-09 Biosense Webster (Israel) Ltd. Basket catheter having insulated ablation electrodes
WO2022139797A1 (en) * 2020-12-21 2022-06-30 Arga' Medtech Sa Electronic apparatus for delivering coherent sine burst irreversible electroporation energy to a biological tissue
US11918383B2 (en) 2020-12-21 2024-03-05 Biosense Webster (Israel) Ltd. Visualizing performance of catheter electrodes
JP2024509644A (en) 2021-04-07 2024-03-04 ビーティーエル メディカル デベロップメント エー.エス. Pulsed field ablation device and method
IL309432A (en) 2021-07-06 2024-02-01 Btl Medical Dev A S Pulsed field ablation device and method
WO2023280822A1 (en) * 2021-07-06 2023-01-12 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
US20230052114A1 (en) * 2021-08-12 2023-02-16 St. Jude Medical, Cardiology Division, Inc. Systems and methods for electroporation using asymmetric waveforms and waveforms with reduced burst duration
CN113729918A (en) * 2021-08-12 2021-12-03 圣犹达医疗用品心脏病学部门有限公司 System and method for electroporation using asymmetric waveforms
US11944374B2 (en) * 2021-08-30 2024-04-02 Covidien Lp Electrical signals for retrieval of material from vessel lumens
CA3233052A1 (en) * 2021-09-20 2023-03-23 Galvanize Therapeutics, Inc. Controlled lesion and immune response to pulsed electric field therapy
CN114271931B (en) * 2021-12-23 2023-09-12 心航路医学科技(广州)有限公司 Pulse ablation system
CN114259296A (en) * 2021-12-23 2022-04-01 心航路医学科技(广州)有限公司 Pulse electric field generator
CN114534091B (en) * 2022-02-17 2022-09-09 湖南安泰康成生物科技有限公司 Apparatus for inhibiting tumor proliferation by electric field and control device thereof
WO2023212250A1 (en) * 2022-04-28 2023-11-02 Galvanize Therapeutics, Inc. Lesion optimization in the use of pulsed electric fields

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386837A (en) 1993-02-01 1995-02-07 Mmtc, Inc. Method for enhancing delivery of chemotherapy employing high-frequency force fields
US5993434A (en) 1993-04-01 1999-11-30 Genetronics, Inc. Method of treatment using electroporation mediated delivery of drugs and genes
AUPN957296A0 (en) 1996-04-30 1996-05-23 Cardiac Crc Nominees Pty Limited A system for simultaneous unipolar multi-electrode ablation
SE509241C2 (en) 1996-07-18 1998-12-21 Radinvent Ab Devices for electrodynamic radiation therapy of tumor diseases
US5906609A (en) * 1997-02-05 1999-05-25 Sahar Technologies Method for delivering energy within continuous outline
US6055453A (en) 1997-08-01 2000-04-25 Genetronics, Inc. Apparatus for addressing needle array electrodes for electroporation therapy
US6241701B1 (en) 1997-08-01 2001-06-05 Genetronics, Inc. Apparatus for electroporation mediated delivery of drugs and genes
US6043066A (en) 1997-09-04 2000-03-28 Mangano; Joseph A. Cell separation using electric fields
US6038478A (en) 1997-10-16 2000-03-14 Huntingdon Medical Research Institutes Lymphocyte attraction by electrical stimulation
JP2002508989A (en) 1998-01-14 2002-03-26 キューロン メディカル,インコーポレイテッド Electrosurgical instruments and methods for treating gastroesophageal reflux disease (GERD)
WO1999043263A1 (en) 1998-02-27 1999-09-02 Conway-Stuart Medical, Inc. Apparatus to electrosurgically treat esophageal sphincters
US6107699A (en) * 1998-05-22 2000-08-22 Scimed Life Systems, Inc. Power supply for use in electrophysiological apparatus employing high-voltage pulses to render tissue temporarily unresponsive
JP3819160B2 (en) 1998-09-18 2006-09-06 富士通株式会社 Information management method and information management apparatus
US6325797B1 (en) * 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US20020010491A1 (en) 1999-08-04 2002-01-24 Schoenbach Karl H. Method and apparatus for intracellular electro-manipulation
US6326177B1 (en) 1999-08-04 2001-12-04 Eastern Virginia Medical School Of The Medical College Of Hampton Roads Method and apparatus for intracellular electro-manipulation
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US6689062B1 (en) 1999-11-23 2004-02-10 Microaccess Medical Systems, Inc. Method and apparatus for transesophageal cardiovascular procedures
US8175698B2 (en) 2000-02-17 2012-05-08 Novocure Ltd. Treating bacteria with electric fields
US7599746B2 (en) 2000-02-17 2009-10-06 Standen Ltd Apparatus and method for preventing the spread of cancerous metastases and for elimination of metastases
US7742811B2 (en) 2000-03-13 2010-06-22 Onco Stim Implantable device and method for the electrical treatment of cancer
US8024048B2 (en) 2000-03-13 2011-09-20 Ionix Medical Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US6733485B1 (en) 2001-05-25 2004-05-11 Advanced Bionics Corporation Microstimulator-based electrochemotherapy methods and systems
US20020198567A1 (en) 2001-06-07 2002-12-26 Yona Keisari Electro-endocytotic therapy as a treatment modality of cancer
US7130697B2 (en) 2002-08-13 2006-10-31 Minnesota Medical Physics Llc Apparatus and method for the treatment of benign prostatic hyperplasia
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
USRE42016E1 (en) 2001-08-13 2010-12-28 Angiodynamics, Inc. Apparatus and method for the treatment of benign prostatic hyperplasia
US7713740B2 (en) 2001-08-24 2010-05-11 University Of South Florida Method of using electric fields to facilitate the entry of molecules into cells in vivo
US7879610B1 (en) 2001-08-24 2011-02-01 University Of South Florida Electroporation system and method for facilitating entry of molecules into cells in vivo
WO2003047684A2 (en) 2001-12-04 2003-06-12 University Of Southern California Method for intracellular modifications within living cells using pulsed electric fields
US7620451B2 (en) * 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8347891B2 (en) * 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
WO2004037341A2 (en) 2002-05-07 2004-05-06 Schroeppel Edward A Method and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20040044338A1 (en) 2002-08-30 2004-03-04 Lennox Arlene J. Methods and systems for administering microcurrent therapy for treatment and prevention of side effects associated with cancer treatment
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
AU2004247071B2 (en) 2003-05-30 2010-03-11 University Of South Florida Method for the treatment of malignancies
US8802643B1 (en) 2003-05-30 2014-08-12 University Of South Florida Method for the treatment of malignancies
US20060269531A1 (en) 2003-07-18 2006-11-30 Eastern Virginia Medical School Apparatus for generating electrical pulses and methods of using the same
DE202004021943U1 (en) * 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US8500713B2 (en) 2003-10-29 2013-08-06 Medtronic, Inc. Implantable electroporation therapy device and method for using same
ES2729378T3 (en) 2003-12-24 2019-11-04 Univ California Tissue ablation with irreversible electroporation
US8298222B2 (en) 2003-12-24 2012-10-30 The Regents Of The University Of California Electroporation to deliver chemotherapeutics and enhance tumor regression
US20050222646A1 (en) 2004-04-06 2005-10-06 Kai Kroll Method and device for treating cancer with modified output electrical therapy
US8244345B2 (en) 2004-04-23 2012-08-14 Novocure Ltd Treating a tumor or the like with electric fields at different frequencies
AU2005289828A1 (en) 2004-09-24 2006-04-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for the non-thermal, electrically-induced closure of blood vessels
JP5559460B2 (en) 2004-12-27 2014-07-23 スタンデン・リミテッド Method for treating tumors or the like using electric fields of different orientations
US20120226271A1 (en) 2005-03-25 2012-09-06 Peter Callas Vacuum Ablation Apparatus and Method
US20060264752A1 (en) 2005-04-27 2006-11-23 The Regents Of The University Of California Electroporation controlled with real time imaging
US8114070B2 (en) 2005-06-24 2012-02-14 Angiodynamics, Inc. Methods and systems for treating BPH using electroporation
US20060293731A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US7608275B2 (en) * 2005-07-22 2009-10-27 The Foundry, Llc Systems and methods for delivery of a therapeutic agent
DK1933937T3 (en) 2005-10-03 2015-04-07 Novocure Ltd OPTIMIZATION OF THE CHARACTERISTICS OF AN ELECTRIC FIELD FOR ENHANCING FIELD EFFECT ON proliferating cells
US20070191904A1 (en) 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
WO2007100727A2 (en) 2006-02-24 2007-09-07 Eastern Virginia Medical School Nanosecond pulsed electric fields cause melanomas to self-destruct
US9037230B2 (en) 2006-03-03 2015-05-19 Oncosec Medical Incorporated Method and device for treating microscopic tumors remaining in tissues following surgical resection
US8019414B2 (en) 2006-04-05 2011-09-13 Novocure Ltd. Treating cancer using electromagnetic fields in combination with other treatment regimens
JP5457183B2 (en) 2006-09-14 2014-04-02 ラジュール・テクノロジーズ・エルエルシイ Apparatus and method for destroying cancer cells
US7691080B2 (en) 2006-09-21 2010-04-06 Mercator Medsystems, Inc. Dual modulus balloon for interventional procedures
US8983609B2 (en) 2007-05-30 2015-03-17 The Cleveland Clinic Foundation Apparatus and method for treating pulmonary conditions
WO2009121017A1 (en) * 2008-03-27 2009-10-01 The Regents Of The University Of California Balloon catheter for reducing restenosis via irreversible electroporation
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US8926606B2 (en) 2009-04-09 2015-01-06 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
WO2009137800A2 (en) 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
WO2009137819A1 (en) 2008-05-09 2009-11-12 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US10736689B2 (en) 2008-08-20 2020-08-11 Prostacare Pty Ltd Low-corrosion electrode for treating tissue
WO2010022275A1 (en) 2008-08-20 2010-02-25 Ionix Medical, Inc. Non-thermal ablation system for treating tissue
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8231603B2 (en) 2009-02-10 2012-07-31 Angiodynamics, Inc. Irreversible electroporation and tissue regeneration
US20100228248A1 (en) 2009-03-03 2010-09-09 Griffin Adam H Method and device for treating cancer with electrical therapy in conjunction with a catheter and high power pulser
WO2010107947A1 (en) 2009-03-17 2010-09-23 Bioelectromed Corp. Nanosecond pulsed electric field parameters for destroying tumors with a single treatment
US20100240995A1 (en) 2009-03-17 2010-09-23 Bioelectromed Corp. System and method for treating tumors
US8512334B2 (en) 2009-06-12 2013-08-20 Bioelectromed Corporation Nanosecond pulsed electric field parameters for destroying tumors with a single treatment
US20100256630A1 (en) 2009-04-07 2010-10-07 Angiodynamics, Inc. Irreversible electroporation (ire) for esophageal disease
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US9339328B2 (en) 2009-08-20 2016-05-17 Angiodynamics, Inc. Multi-electrode energy delivery device and method of using the same
WO2011056684A2 (en) 2009-10-27 2011-05-12 Innovative Pulmonary Solutions, Inc. Delivery devices with coolable energy emitting assemblies
US20170049513A1 (en) 2009-11-06 2017-02-23 Cosman Medical, Inc. Multiple electrode generator
US20110118732A1 (en) 2009-11-19 2011-05-19 The Regents Of The University Of California Controlled irreversible electroporation
US20110160514A1 (en) 2009-12-31 2011-06-30 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20110202052A1 (en) 2010-02-12 2011-08-18 Daniel Gelbart System for treating benign prostatic hyperplasia
US20110288545A1 (en) 2010-04-22 2011-11-24 Old Dominion University Research Foundation Method and Device for Ablation of Cancer and Resistance to New Cancer Growth
GB201006841D0 (en) 2010-04-26 2010-06-09 Thomsen Lars Method, device and system for targetted cell lysis
MX2013004437A (en) 2010-10-25 2013-07-17 Medtronic Ardian Luxembourg Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods.
US9044245B2 (en) 2011-01-05 2015-06-02 Medtronic Ablation Frontiers Llc Multipolarity epicardial radiofrequency ablation
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
WO2012120495A2 (en) 2011-03-04 2012-09-13 Rainbow Medical Ltd. Tissue treatment and monitoring by application of energy
US10722282B2 (en) 2011-06-14 2020-07-28 Aerin Medical, Inc. Methods and devices to treat nasal airways
US20130030430A1 (en) 2011-07-29 2013-01-31 Stewart Mark T Intracardiac tools and methods for delivery of electroporation therapies
US9387031B2 (en) * 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US9351790B2 (en) 2011-09-17 2016-05-31 M.O.E. Medical Devices Llc Electrode geometries and method for applying electric field treatment to parts of the body
US10470684B2 (en) 2012-01-26 2019-11-12 Autonomix Medical, Inc. Controlled sympathectomy and micro-ablation systems and methods
US20130218143A1 (en) * 2012-02-20 2013-08-22 Tyco Healthcare Group Lp Combined Thermal Therapy and Hydrogel with Embedded Stem Cell Treatment
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US20160000499A1 (en) 2013-03-15 2016-01-07 Cibiem, Inc. Endovascular catheters for carotid body ablation utilizing an ionic liquid stream
US10779875B2 (en) 2013-05-06 2020-09-22 Novocure Gmbh Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment
US9655669B2 (en) 2013-05-06 2017-05-23 Novocure Limited Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment
CA2914195C (en) 2013-06-03 2020-06-02 Nanoblate Corporation Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
AU2014274903B2 (en) 2013-06-05 2019-03-07 Medtronic Ireland Manufacturing Unlimited Company Modulation of targeted nerve fibers
US9242041B2 (en) 2013-06-17 2016-01-26 Quantum Cure, Inc. Method and apparatus for cancer treatment
US10154869B2 (en) 2013-08-02 2018-12-18 Gary M. Onik System and method for creating radio-frequency energy electrical membrane breakdown for tissue ablation
US10478247B2 (en) 2013-08-09 2019-11-19 Boston Scientific Scimed, Inc. Expandable catheter and related methods of manufacture and use
WO2015042173A1 (en) * 2013-09-20 2015-03-26 Advanced Cardiac Therapeutics, Inc. Temperature sensing and tissue ablation using a plurality of electrodes
US9763733B2 (en) 2013-10-25 2017-09-19 Covidien Lp Unfurling electrode devices with the multiple longitudinal electrode segments
CN105792883B (en) 2013-12-05 2019-11-05 飞慕控股有限责任公司 Utilize the immunotherapy for cancer of radio frequency electricity film breakdown (RF-EMB)
US20150289923A1 (en) 2014-04-14 2015-10-15 Virginia Tech Intellectual Properties, Inc. Treatment planning for electrical-energy based therapies based on cell characteristics
AU2015259303B2 (en) 2014-05-12 2021-10-28 Arena, Christopher B. Selective modulation of intracellular effects of cells using pulsed electric fields
US20150342669A1 (en) 2014-05-29 2015-12-03 Boston Scientific Scimed, Inc. Devices and methods for controlled energy delivery to airways
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
US9833617B2 (en) 2014-07-25 2017-12-05 Loyalty Based Innovations, LLC Apparatus and method for treating multiple tumors in patients with metastatic disease by electric fields
US20190117963A1 (en) 2014-07-25 2019-04-25 Loyalty Based Innovations, LLC Apparatus and method for treating multiple tumors in patients with metastatic disease by electric fields
WO2016036891A1 (en) 2014-09-02 2016-03-10 Old Dominion University Electromanipulation of proteins using nanosecond pulsed electric fields
WO2016089781A1 (en) 2014-12-01 2016-06-09 Electroblate, Inc. Nanoelectroablation control and vaccination
US10271893B2 (en) * 2014-12-15 2019-04-30 Medtronic Ablation Frontiers Llc Timed energy delivery
ES2809734T3 (en) 2015-01-09 2021-03-05 Oncosec Medical Inc Gene therapy and electroporation for the treatment of malignant neoplasms
EP3250142A4 (en) 2015-01-30 2018-11-21 Rfemb Holdings LLC Radio-frequency electrical membrane breakdown for the treatment of tissues
CA2975926A1 (en) 2015-02-04 2016-08-11 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of benign prostatic hyperplasia
US20180110978A1 (en) 2015-03-19 2018-04-26 Old Dominion University Research Foundation Synergistic regulated cell death induction with hsp90 inhibitors and nanosecond pulsed electric fields
JP6879996B2 (en) 2015-03-26 2021-06-02 オンコセック メディカル インコーポレイテッド How to treat malignant tumors
AU2016246146B2 (en) 2015-04-10 2021-03-11 Angiodynamics, Inc. System and method for irreversible electroporation with thermally controlled electrodes
CN108472071B (en) 2015-05-01 2021-03-16 因特科学股份有限公司 Methods, systems, and apparatus for tissue ablation using pulse shape design
CA2985847C (en) 2015-05-14 2022-11-08 London Health Sciences Centre Research Inc. Intratumoral modulation therapy
WO2016201264A1 (en) 2015-06-11 2016-12-15 Massachusetts Institute Of Technology Methods for inducing electroporation and tissue ablation
CN108601883A (en) 2015-09-29 2018-09-28 埃吉诺维亚公司 Delivering method and composition
WO2017066651A1 (en) 2015-10-14 2017-04-20 Zarembinski Chris Integrated needle-catheter systems and methods of use
US20170105793A1 (en) * 2015-10-15 2017-04-20 Boston Scientific Scimed, Inc. Energy delivery devices and related methods of use
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
WO2017120169A1 (en) * 2016-01-05 2017-07-13 Iowa Approach, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
WO2017173089A1 (en) 2016-03-31 2017-10-05 Memorial Sloan Kettering Cancer Center Systems and methods for enhancing delivery of diagnostic and/or therapeutic compositions in vivo using electric pulses
US10821283B2 (en) 2016-04-04 2020-11-03 Novocure Gmbh Reducing motility of cancer cells using tumor treating fields (TTFields)
EP4209190A1 (en) 2016-06-27 2023-07-12 Galvanize Therapeutics, Inc. System comprising a generator and a catheter with an electrode for treating a lung passageway
US20210236815A1 (en) 2016-06-27 2021-08-05 Galary, Inc. Immunostimulation in the treatment of viral infection
CN106388932B (en) 2016-07-12 2017-10-10 上海睿刀医疗科技有限公司 Irreversible electroporation device
WO2018065806A1 (en) 2016-10-06 2018-04-12 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Single-needle device for the treatment of deep tumours by means of electrochemotherapy
US20200046967A1 (en) 2016-10-06 2020-02-13 Virginia Tech Intellectual Properties, Inc. Induced cell morphology electroporation
US20180104486A1 (en) 2016-10-18 2018-04-19 Korea University Research And Business Foundation Apparatus and method for treating cancer using discontinuous fractional alternative electric field
EP3528730A1 (en) 2016-10-20 2019-08-28 Old Dominion University Research Foundation Methods and devices for using sub-microsecond electric pulses to trigger apoptosis
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US20180154142A1 (en) 2016-12-05 2018-06-07 Old Dominion University Research Foundation Methods and devices for treatment of tumors with nano-pulse stimulation
US11229478B2 (en) 2017-02-08 2022-01-25 Medtronic, Inc. Profile parameter selection algorithm for electroporation
CN107194119B (en) * 2017-06-20 2020-10-27 北京盖乐照明设计有限公司 Method for determining shape parameters of fixed sunshade plate net
US10850095B2 (en) 2017-08-08 2020-12-01 Pulse Biosciences, Inc. Treatment of tissue by the application of energy
EP3459480A1 (en) 2017-09-21 2019-03-27 National University of Ireland, Galway Apparatus for localising an electrical field
US20190117969A1 (en) 2017-10-23 2019-04-25 Cardiac Pacemakers, Inc. Medical devices for treatment of cancer with electric fields
CN107714171A (en) 2017-11-16 2018-02-23 中国人民解放军火箭军总医院 A kind of Pulsed Electric Fields therapeutic apparatus for treating tumor
CN112543661A (en) 2017-11-17 2021-03-23 艾伯维公司 Methods of treating glioblastoma
US20190160283A1 (en) 2017-11-28 2019-05-30 Pulse Biosciences, Inc. Methods and devices for treating hpv-associated lesions using nanosecond pulsed electric fields
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
EP4218640A1 (en) 2017-12-26 2023-08-02 Galvanize Therapeutics, Inc. Systems for the treatment of disease states and disorders
WO2019133608A1 (en) 2017-12-26 2019-07-04 Gala Therapeutics, Inc. Optimization of energy delivery for various applications
EP3742998B1 (en) 2018-01-23 2023-11-15 Boston Scientific Scimed, Inc. Enhanced needle array and therapies for tumor ablation
WO2019164650A1 (en) 2018-02-21 2019-08-29 Medtronic, Inc. Focal pulsed field ablation devices and methods
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
CN117757842A (en) 2018-03-15 2024-03-26 星际治疗有限公司 Synthetic DNA carriers and methods of use
US11712576B2 (en) 2018-03-29 2023-08-01 Minnesota Medical Physics Llc Method and apparatus for cancer treatment
US11298422B2 (en) 2018-04-09 2022-04-12 Novocure Gmbh Treating tumors with TTFields and an aurora kinase inhibitor
CN116159242A (en) 2018-07-03 2023-05-26 埃德温·阊 Enhancement of cell membrane permeability using alternating electric fields
US11179322B2 (en) 2018-07-10 2021-11-23 Novocure Gmbh Methods and compositions for treating tumors with TTFields and sorafenib
CN112423836A (en) 2018-07-17 2021-02-26 迪格尼提健康公司 System and method for treating cancer using alternating electric field generation
US20220387095A1 (en) 2019-04-18 2022-12-08 Galvanize Therapeutics, Inc. Applying pulsed electric fields in the treatment of neural disorders
JP2022529058A (en) 2019-04-18 2022-06-16 ギャラリー,インコーポレイテッド Instruments and systems for treating abnormal tissue,
CA3147592A1 (en) 2019-07-16 2021-01-21 Galary, Inc. Treatment of the reproductive tract with pulsed electric fields
US20210023362A1 (en) 2019-07-24 2021-01-28 Virginia Tech Intellectual Properties, Inc. Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies
JP2023509387A (en) 2019-12-18 2023-03-08 ガルヴァナイズ セラピューティクス,インコーポレイテッド Treatment of cardiac tissue with pulsed electric fields
WO2021207385A1 (en) 2020-04-08 2021-10-14 Galary, Inc. Pulsed electric field waveform manipulation and use
CN116829691A (en) 2020-08-04 2023-09-29 盖能适治疗股份有限公司 Pulsed electric field transfer of molecules to cells in vivo
WO2022031797A1 (en) 2020-08-04 2022-02-10 Galary, Inc. Pulsed electric field transfer of molecules to cells while in the body
CA3214778A1 (en) 2021-03-25 2022-09-29 Galvanize Therapeutics, Inc. Multi-electrode system and method for deducing treatment effect outcomes

Similar Documents

Publication Publication Date Title
JPWO2019133608A5 (en)
US11938317B2 (en) Optimization of energy delivery for various applications
US20240065760A1 (en) Cardiac pulsed field ablation
JP7442076B2 (en) Systems, devices, and methods for delivering pulsed electric field ablation energy to endocardial tissue
US11633230B2 (en) Intracardiac tools and methods for delivery of electroporation therapies
US9113911B2 (en) Ablation device and method for electroporating tissue cells
US20210393327A1 (en) Treatment of cardiac tissue with pulsed electric fields
EP3578124A1 (en) Electrophysiology apparatus
Di Biase et al. Pulsed field catheter ablation in atrial fibrillation
JP2022067039A (en) Using unipolar configuration for irreversible electroporation (ire)
US20220008123A1 (en) Sequential activation of electrode-pairs during irreversible electroporation (ire)
CZ33133U1 (en) Electroporation generator for cardiac tissue ablation
IL309363A (en) Electroporation treatment
Naccarelli et al. Catheter ablation of canine ventricular myocardium utilizing radiofrequency current
US20220346857A1 (en) Tissue ablation using high-frequency unipolar ire
US20230089295A1 (en) Combined electrodes for tissue penetrative irreversible electroporation (ire)
US20230310061A1 (en) Multiple pulse width trains to enhance ablation homogeneity in highly oriented cellular substrates
CN117426863A (en) Tissue ablation using high frequency monopole IRE
Marcus Radiofrequency Energy for Catheter Ablative Procedures
Wagshal et al. Application of radiofrequency energy as an energy source for ablation of cardiac arrhythmias
CA3212976A1 (en) Devices for the delivery of pulsed electric fields in the treatment of cardiac tissue