JPWO2019106760A1 - Magnetic system and parts related to generators, motors, linear motor cars, etc. - Google Patents

Magnetic system and parts related to generators, motors, linear motor cars, etc. Download PDF

Info

Publication number
JPWO2019106760A1
JPWO2019106760A1 JP2019556462A JP2019556462A JPWO2019106760A1 JP WO2019106760 A1 JPWO2019106760 A1 JP WO2019106760A1 JP 2019556462 A JP2019556462 A JP 2019556462A JP 2019556462 A JP2019556462 A JP 2019556462A JP WO2019106760 A1 JPWO2019106760 A1 JP WO2019106760A1
Authority
JP
Japan
Prior art keywords
coil
magnet
power
magnetic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019556462A
Other languages
Japanese (ja)
Inventor
須山弘次
Original Assignee
須山 弘次
須山 弘次
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 須山 弘次, 須山 弘次 filed Critical 須山 弘次
Publication of JPWO2019106760A1 publication Critical patent/JPWO2019106760A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本発明は発電機、モーター、リニアモーターカーなどの超伝導体や磁石、コイル、磁性体の形状、動力変換のシステムの関係等を強化、改善、省力化、利便化、安全化を図るものである。又本特許は発電機モーターだけでなくその他の機械、機関、仕組みにも対応するものである。ステーター、ローター、フライホイールや様々なシステムやその関係を効率アップする。ネオジム磁石や超伝導体磁石などの強力磁石とコイル、鉄などの磁性体の組み合せを変えて従来の発電システムでは実現しなかった効率の良い発電を行うシステムThe present invention aims at strengthening, improving, labor saving, convenience, and safety of superconductors such as generators, motors, and linear motor cars, the shapes of magnets, coils, and magnetic materials, and the relationship between power conversion systems. is there. In addition, this patent covers not only generator motors but also other machines, engines, and mechanisms. Improve efficiency of stators, rotors, flywheels and various systems and their relationships. A system that performs efficient power generation that was not possible with conventional power generation systems by changing the combination of strong magnets such as neodymium magnets and superconductor magnets and magnetic materials such as coils and iron.

Description

本発明は発電機、モーター、リニアモーターカーなどの超伝導体や磁石、コイル、磁性体の形状、動力変換のシステムの関係等を強化、改善、省力化、利便化、安全化を図るものである。又本特許は発電機モーターだけでなくその他の機械、機関、仕組みにも対応するものである。
ステーター、ローター、フライホイールや様々なシステムやその関係を効率アップする。ネオジム磁石や超伝導体磁石などの強力磁石とコイル、鉄などの磁性体の組み合せを変えて従来の発電システムでは実現しなかった効率の良い発電を行うシステム

1. フライホイール、磁力遮蔽による発電の概要
フライホイール回転効率を上げ、又起電効率もあげ発電するシステムの概要
まず超伝導浮揚させるためのフライホイールについては推進抵抗がゼロに近いフライホイールを作る。フライホイールに載せた又はフライホイール自体になっている磁石のローターを、起電用磁性体コイルステーターで挟み発電をする。又はフライホイールに起電用超伝導磁石コイルを乗せて回し、磁石に挟んで起電する。フライホイールの空気抵抗、コギング等による回転損失を防いで発生した電力を再回転力に回すと永久発電となる。空気抵抗はシステム内を真空にしてなくす。又コギング防止についてはコイルのみの起電装置にするか、鉄芯入れてコギングがある場合は次の方法でコギング解消する。磁石の吸着引き剥がし時又はコギング抵抗時にローターの別の場所に設けた反発同士の磁石Aを対応させる。回転時の磁石吸着の引き剥がし抵抗を同タイミングで回るAの反発の力をもって消していく。磁石の吸着、引き剥がしの力はコギングのリズムとなって現れるので、そのリズムに合わせた反発同士の磁石Aを設ける。吸着、引き剥がしの強弱と時間的なリズムは数値化できるのでその数値に合わせた反発リズムを設けて当てればコギングが防止できることとなる。
反発磁石A分重量が増えるがフライホイールの抵抗がなければ資源浪費にはあまり影響しない。ずらし式のコギング防止は吸着リズムと吸着リズムの融合なのでどうしても完全なリズム一致にならない。本発明は吸着と反発のリズム一致なので完全な一致をすることができる。吸着と反発の時系列的な吸着、反発強さは完全一致させることができるので回転数に応じた回転時独自の周波数を分析、それに合わせた反発同士の磁石Aを設ければコギングは消滅するのである。又空気抵抗、コギング抵抗無くして回転すれば半永久的に回ることになり永久発電となる。フライホイールに載せた磁石も弱磁、強磁により起電するのでコイルを巻いて起電を取電する。又反発同士の磁石A自体も弱磁、強磁が生じ起電するのでその電力も活用、磁石Aにコイルを巻き起電する。又フライホイール磁石が直接の起電磁性体コイルに対応する場合はそのフライホイールも弱磁、強磁により起電するのでコイルを巻いて起電を取電する。又その形状も回転型だけでなく二軸以上の直進+回転型にして遠心力その他の力から解放していくものも本特許とする。

フライホイールの形
超伝導体の浮揚板はローターステーターと同半径のものでそのまま円の上に浮かせ上部磁石部分とステーターコイルを向き合わせるタイプと、ローターステーターの直径よりも外側又は内側の内外円部分に超伝導体の浮揚板設け、ローターステーター磁石の上下が上下のローターステーターコイルに直接向き合う様にするタイプの二種類。それぞれステーターとコイルが逆相の場合もある。又、フライホイールはネオジムでも可能でありその場合はフライホイールを多層にして重力の分散を図る。その場合ネオジムは薄く軽くして効果上げる。

その他の発電の方法
磁力遮蔽による発電
フライホイールを駒開けにして発電する方法
まず浮揚させるためのフライホイールを作る。フライホイールは超電導の持つ完全反磁性を利用、又は強力磁石同士の反磁性を利用し浮揚させ回転させる。
下段にNSの連続した強力磁石、中段に磁力通す穴の開いた超伝導浮揚板、上段に磁性体コイル。超伝導体は完全反磁性体なので磁力遮蔽が可能である。磁力通す駒と磁力遮蔽する駒の連続する超伝導体ローター板面を作り回転させ、下段磁力NSを上段の磁性体コイルに通して起電する。ローターは薄くして重量、ギャップを減らす。空気抵抗はシステム内を真空にしてなくす。又コギングについては吸着ポイントに反発同士の磁石Aを入れその力利用する。回転の際の吸着磁石の引剥がしをするのに磁石の反極力利用する。
もうひとつの方法はフライホイール下段円板の裏表面がNSと反極になる強力磁石でフライホイールを作り中段のフライホイールローター磁石と反発浮遊させて回転させる。フライホイールローターは穴開き駒のあるものとする。ローターが回れば下段上に向く一面全部が同極である磁石ステーター板面と上段の磁性体コイルと合わせてONOFFの交互変換になるため起電する。コギングなくせば永久発電となるので上記と同じく反発同士の磁石Aの付属によりコギング無くしていく。真ん中のローターは薄くして軽くしギャップも少なくする。
又超伝導体に代えて薄い鉄板又は薄い鉄板を重ねたものでも代用できる。その場合は鉄板の薄い表面積にあわせて磁力が弱磁するので大きな薄い鉄板で十分弱磁させる。又はその大きな鉄板を二重、三重に重ねていく事で弱磁する。パワーウェイトレシオをよくする為に薄くて広い面積の鉄板にする。
又薄い鉄板でコイル磁性体を覆い鉄板の上と下にずらした空き駒を作って磁性体コイルにNS変換していく。鉄板が二重、三重だと効果があるがパワーウェイトレシオと磁力との兼ね合いで鉄板の枚数、面積決める。磁性体と磁石が逆相も本特許とする。
薄い鉄板はそのまま積層すると磁力連播するので、何重かに積層するうえに又、まん中の鉄板をU字、長方体にしてその又真ん中を空洞にする事により同極弱磁させる。この方法も本特許とする。
回転時の抵抗を減らす二軸リニア式
円形回転式は遠心力その他の力があるため高回転時はその回転ロスが大きいものとなる。二軸にしたローターリーに平行棒を推進させ、遠心力その他の力を減少させて省力化する。二軸にしても半回転する両端においてロスするため、二軸間直進部分は長くとった方が有効的である。そしてローターとステーターを平行交差するバーで交差させ起電する。
両脇などに浮揚のための反発浮揚体を作りローターを浮揚進行させる。そして浮揚板にスタビライジング用の磁石も設けて横にズレないようにする。
起電用コイル、磁性体は上下に設置サンドしNSの磁力を無駄にしない。半回転する両端はギヤの回転かベアリング、磁石反発浮揚で対応させる。
ローター磁石は超伝導体磁石を使うか強力磁石に上下左右からの援用補助磁石を援用し強磁強力化する。
コギングしないように、コイルは鉄磁性体を入れないか、鉄磁性体を入れるなら反発磁石Aよる力で防止していく。そしてステーターとコイルが逆相の場合も本特許とする。

2. 超伝導体やSMESの連搬起電発電
上記システムにおいて超伝導体、強力磁石は他磁石、鉄心により強磁を受けるが其の際の起電電力もコイルを巻いて取り込みする。又、磁石内の起電電力も裸銅線を挿入して取り込み省エネにする又、磁石の過熱防ぐ。
又其の隣り合わせにした超伝導体磁石、強力磁石、電磁石からもう一方の超伝導体コイルやSMESを連続磁力起電して、蓄電しそこから電気を流出させる発電機も本特許とする。その際起電部を真ん中にSMESを上下に配置したりサンドして起電レスポンスや起電力をあげたりもする。親体磁石の隣の起電子体の超伝導体はパワーアップ、レスポンスの向上のため、薄い細いものにして表面積やコイル巻き数をできるだけ増やす。その起電用の親体磁石より下層の起電超伝導コイルに電磁誘導、その下層の子体に順次連続伝播していく。そのコイルは磁力電流の大きさを監視、管理コントロールしながら徐々に下層の超伝導コイル、SMESに電磁誘導し、電気を貯めていく。又、超伝導体コイルの電圧を上げすぎないようにクエンチ防止用裸銅線を側線しクエンチ前に過剰電力を流出。磁力、電圧過剰によるクエンチ防ぐ。どんどん多数隣接すれば利用可能電力も増える。クエンチ又は流失による弱磁減電には母体超伝導体を適当な間隔で配置、弱磁減電した子に適時電磁誘導補充して対応。親と子の役割はシステムの電力流失具合により自動制御し子の充電に最適な親の出現をできるようにする。

3. 電磁石リレースイッチ式発電
又上記の改善ポイントで有る起電のタイミングを計り起電量を増やすことを応用したつぎのシステムも本特許とする。
電磁石のもたらす磁力により起電する。電磁石をスイッチリレーによりNS又はONOFF変換しそのスピードを早めることにより使用電力よりも発生電力を上回せる。起電用電磁石は超伝導体にすると使用電力量が減り効果的である。
起電量はそのNS変換回数に比例するので出来るだけ早いNS変換、又は電気のONOFFを行う。それにより一変換あたりの使用電力が減り、全体起電量が増える。電気使用による電磁発生においてNSそれぞれ点灯するのでなくONOFFにより片方の曲のみの点灯であればOFFの際は電力いらないので半分の電力量で起電回数も同じとなる、ONOFFの方式の方が節電になるのでより有利に行えるが両方本特許とする。又電磁石の磁性体を薄い鉄板、薄い鉄板の長方体でつくり省電力化し電磁石をコイルで取り囲むこと又は磁性体を電磁石コイルと起電コイルで共有することによりその効率あげる。又コイルの外側も鉄板で巻き強磁する。上記電気スイッチリレーのやり方として次の方式も本特許とする。
上記発生磁力によりモーターを回しさらに発電又は動力として活用するタイプも本特許とする。又その場合モーター内の磁石、磁性体にコイル巻いて起電、さらに発電する。又、皮膜無し銅線を磁石、磁性体に入れ、磁石、磁性体内の電力拾い無駄熱と無駄電力防止する。又、起電のタイプとしてNS 変換していくのとONOFFで回転起電していく省エネタイプ両方とも本特許とする。
上記種々の仕組みを使った下記、5.省エネモーターも本特許とする。

4. 動体発電
リニアに限らず走行、動くものすべてに適用。動くものがローター、それに受けていくものがステーターと定義して発電。
自動車や列車のように車輪を持つものはそのローターである車輪とステーターである車体で発電。又は車両も移動しているので移動体をローターとし、それに不動物ステーターを受けさせて発電する。コギングは反発磁石Aにて解消等、上記のシステムを使った効率の良いものとする。

5. 省エネモーター
多層サンドイッチよりパワーアップ
ローターを薄い永久磁石NS反極で作った多層サンドで、ステーターは電磁石とし両面永久磁石に当てる。薄い鉄板で長方体の鉄心とコイルで効率的に強磁されたサンドの間の磁力を受け吸着、反発する。それは強力回転すると同時に影響を受けた永久磁石から弱磁、強磁による起電を永久磁石に巻いたコイルにより取電。又ローターをコイル鉄心として電磁磁石による反発と電磁OFFにした鉄の自然吸着の省エネモードも本特許とする。その場合ローター鉄心コイルはOFF時起電するので取電する。又ステーターが永久磁石ならばローターは電磁石でステーターは重量関係ないので強力な物、ローター電磁石は軽くするために前述薄い鉄板磁性体、薄い平たい細いコイルによるローターになる。又それは強力回転すると同時に影響を受けた永久磁石から弱磁、強磁による起電を永久磁石に巻いたコイルにより取電。又ローターは回転時に起電するのでそれを取電する。その場合電磁石のONOFFを行い、OFF時に起電させる省エネモードも出来る。節電と共に起電取電となる。又ローター、ステーターの磁石、磁性体鉄内にエナメルなしのむき出しコイルを入れ、渦電流流してショート防ぎ加熱防ぐ又はその電流も利用する。又反発磁石の設置でコギング防ぐ。回転過程においてコギングするならばそのコギング運動の元となる障害の力とまるっきり正反対の力の磁石を作成設置してコギングを防ぐ。それでもハイスピードにより発生してしまう場合はモーターのスピードを制限してギアリンクによりスピードを出していく。
モーターに於いても2軸以上の多軸構造で遠心力その他の抵抗軽減。回転運動により失われるエネルギーを抑えるため、直進運動によりそのパワーを発生させていくタイプも本特許とする。回転時、直進時の空気抵抗減らすため、真空構造+水冷、ガス冷で空気抵抗なくす。
又コイルは下記6.の巻き方で効率はかる。平べったい四角い細いコイルにより磁石アップを図るとともに、高電圧の送電にしてベース損失を下げコイルによる電力の損失を下げる。又磁性体もローターであればパワーウェイトレシオ増すために鉄心は薄いもの、又は薄い鉄板で作った長方体の物にしてその軽量化を図る。ローターが永久磁石ならば永久磁石を薄いものにして軽くし永久磁石を多層化してパワーウェイトレシオ上げていく。又高電圧の送電を常時化する為にコイルは端子数を増やし速度に応じて電力の通す端子数を計る。そして電圧は高圧のままにする。

6. 磁性体とコイルの形、磁力と鉄の関係、巻き方
性能をさらに上げるため、ネオジム磁石などの 強力磁石とコイル、鉄などの磁性体を組み合わせて従来の発電システムでは実現しなかった効率の良い発電を行う。パワーウェイトレシオ重視し、ローター動力節約と発生パワーの最大化をする。ローター動力節約として抵抗軽減、重量軽減などをする。

平べったい四角い細いコイルによる起電力アップ。今までに平べったいコイルあったが四角いので余分な隙間がなくなるという理屈であった、また細いコイルを巻くと磁性体より距離が近く巻け、磁性体からの磁力が強く受けられ又コイル間の余分な隙間がなく効果的いうことはあった。しかしコイルが細いと電流が大きくなると耐えられない。又電流増加により熱が発生するので効率が落ちてしまうという欠点があった。当発明はコイルの途中にショートカットポイントを設けて先に流失させるので細いコイルの多数巻きが可能になる。又それにより加熱も無くなるので発電機、モーターの性能が落ちることはないのである。又それに変えてコイルは細いがコイルの流失先端子数を増やす。つまり二重三重にコイル端子を巻くことにより1回線コイルあたりの電流を減らすので有る。平べったい四角い細いコイルにより、コイル中心の密度が増えるだけでなく、コイルの表面積が増えるからで有る。密度が増えコイルに発生する電流も増え、又表面積が増えれば磁束の表面積も増えるのでコイルから発生する磁力、副磁も増えるので起電力がアップする。
又次のコイル形態も本特許とする。コイルの厚さ太さを磁性体より近いところと遠いところで変える。磁性体より近いところは電力低いので薄く、細くすることにより巻き数増やす。遠くなるにつれて電力高まるので厚くすることにより電力による内部抵抗を減らしている。外側にいくにつれ電力が高まるので厚く太くする。厚さと太さにおいては薄さの方を優先させる。平べったい方が磁束の向きの効率が増すからである。薄く平べったいコイルに徐々に幅の太さを持たせていく。又薄さとして限界、効率限界があるのでその限界において厚を持たせていく。又ローター磁石、起電用コイル内磁性体内の電流ショートの軽減をする。ローター磁石、起電磁性体も弱磁、強磁により起電するのでコイルを巻いて起電させ電力として利用する。又鉄心の中にコイルと同様に電気が発生している。ローター磁石と鉄芯にアース銅電線設け電流を流す。それによりショートによる熱の発生抑制が可能となる。又、電量が多ければ発生電力として利用する。

鉄心磁性体のコイルでの囲みかた
鉄心磁性体に発生する磁力を効果的にコイルに通す。鉄心は薄い平たいものにしてそのパワーウェイトレシオを効果的にする。中の鉄部分は磁束反映しないために意味がないので薄くするが、薄くしすぎると裏側の反極の影響強くなるので薄くしすぎない。又は鉄板の薄いものを長方体に作る。
コイルは起電強化の為薄い平たい細いものとする。電圧電流に対しては流電先の端子を増やし対応。又外側にも鉄板巻くと強磁するので巻いていく。
磁石の方も弱磁、強磁により起電力があるのでコイルを巻いて取電する。磁石はステーターであるのでなるべく大きく磁力強いものにする。
又、SはNよりも強くなるので、鉄心にSがなるべく来る様に設定する。

磁石をなるべく薄く作る
体積、重量あたりの磁力を最大にするため磁石の体積対面積比率を面積最大優先とする。そのため磁石をなるべく薄く作る。平面磁石の真ん中付近は磁束の曲がりにより磁束が弱くなる。その排除のため磁石縦横の長さも小さくする。
又は平べったく縦も横も狭い小さい磁石を多数横か縦に連結させる。連結により強磁も起きるので磁束は強まる。又ローターが磁石なら裏表両面のNSとも利用することにより回転運動対パワーウェイトレシオを無駄にしない。又ローターを複層化して磁性体コイルを挟んで強磁し起電強める。その際は磁性体を強磁するため同極磁石でサンドする。しかし磁性体の形によっては反極のサンドにより強磁するので随時変える。

コギング防止
コイルはコギング防止のため鉄心は使わないか、使うのであれば反発磁石Aを設け吸着リズムと反極リズムを一致させる反極磁石を進路に設けてコギング防ぐ。吸着のリズムに完全一致するのは反発のリズムであるので、吸着と反発のリズムをチューンニングし噛み合わせる。

磁石と磁性体の移動と起電のタイミングによるパワーロスを防ぐ
磁性体の当初の磁束と磁力化後の磁束の差が起電力となるが、磁石が進行して行くと磁性体の磁束が徐々に高まる、それにより起電も徐々にしていくがコイルの元々の電気抵抗等によりローパワー電力はコイルの中、先で消滅してしまう。起電の周波形を見ると波形が回転早いと高く狭くなっているのに対し低回転時は低く広くなっていて、山の裾野が大きい感じになっている。その山の面積が丸々使用可能電力にならない。裾野の低い部分はロスとなって起電に反映しないので、低回転の時はその波形の面積の山の裾野の部分が大きくロスが大きい。高回転にすると波形の形が変わり裾野のローパワー部分は少なくなる。
又コイルをなるたけ細くすれば一本あたりの送電が高圧になるのでコイルも細い物とするが電圧電流の大きさにより限度があるので、細くすの場合はその起電電圧電流に応じてたくさんコイルを束ねてその端子数を増やす。コイルを同一周回させない事により電圧電流の量は制限できるので最大起電、最大高圧送電ができる。又超伝導体コイルであればそのローパワー部分もコイル内で消滅しないため規模により拡大し利用できることとなる。

ノンタッチ磁力援用
他所に設けた磁石によるノンタッチのローター磁力アップ、磁力援用強磁による、ローター重量の軽減。(ローターが磁石の時のみ)

多軸式
多軸、リニア、真空化液冷化による遠心力、その他の力、推進抵抗の軽減。
回転式発電機の一種であるが二軸以上の構造のため、回転抵抗が少なくなる。又リニア構造なので補支抵抗、推進抵抗がなく省エネである。

起電のタイミングを計り起電量を増やす
NSの変換回数を多くすることにより起電回数増やし発電量増やす。ローター、ステーターのNSの変換数増やし、変換タイミングの刻みを増やす。一回転あたりのNSの変換又は磁極のONOFFの回数を増やす。ローターがコイルの場合コイル磁性体は磁性体鉄心を極力薄くしてパワーウェイトレシオを良くすると同時にコイルの巻数が増えるのでなるべく薄くする。ステーターがコイルの場合でも場所を効率よく使う為に磁性体は鉄板の薄い物を長方体に作り鉄板を周回させたもとする。それにより周回外周部を同極とすることができる。その鉄板にコイルを鉄板の長い部分に対して横にコイルを巻く。それにより通常の鉄心と同じ起電力で鉄心を薄く軽く設置できる。長方体周回の真ん中空洞部分は弱磁により磁力が無くなるがスペース有効活用の為なるべく少なくする。又コイルの外周にも鉄板を巻いて更に強磁図るか、隣の磁性体と協同して強磁する様な配置を取る。その場合ローター磁石の大きさよりも磁性体同士の幅を狭くしない様にする。狭いと同極の反極弱磁になり起電が減る。
無限の起電切り替えを可能にするためには上記の様な物理的な切り替えだと限界が生じるので電気スイッチ、電気的システムによるNS、ONOFFの切り替えも本特許とする。(下記3電磁石リレースイッチ式発電)
7. リニアモーターカー
上記のシステム、以上の理論を受けてリニアモーターカーの浮揚部分他を合理化する。又懸念されている電磁波の防止や高速浮揚移動の安全確保のための手段を確保しリニアモーターカーの発展敷設に寄与する。
車両の下に空気抵抗減らした正面面積の少ないブレードを履かせ、地下にくぐらせて浮揚する。ブレードの地下部分の枚数は重量、耐久性、安定性による。
車輌に対して垂直のブレード又はブレードを垂直に地下に潜らせ下部を又は途中部分を水平にしたブレードを磁石でサンドさせて浮揚させるので、通常の方式よりも2倍以上の浮揚力、安定性、省エネ性が実現する。又揺れに対するブレードの接触をなくすために斜めかラウンドにブレードを作るのも本特許とする。さらに磁力を効果的にする為に磁石をNS交互に多数設置する。
強力磁石、超伝導部の地下埋設型になるので地上部分への電磁波防止が優れる。さらに車両内や外界に対しての電磁波防止のため、地上面に電磁波防止のシールドを張ることも可能である。又ブレードなしの車両下部に平行超伝導バー又は強力磁石をつけたもの本特許とする。これは従来の車両下部、側面に取付けたものと異なり、安定性確保の力量が少なくて済む。横からの電磁波がないため、その防止のためのコスト削減になる。平行超伝導バーは地下埋設で又上下より支えるので省エネかつ電磁波も少なくできる。地下部分はさらにブレードを磁石で車輌正面から見て左右両方から挟んで浮揚させるタイプも本特許とする。このタイプは浮揚高さレベルを広範囲に設定できるので安全性も高まる。その場合、地下部の溝は下に向けて広がる様にする。そうすれば溝に入り込んだ障害物も下に落下して影響がないようになる。
リニアモーターカーは高速移動するので安全性を求められるが、その浮揚部分の安全性は鉄道の線路と車輪の関係のように重要である。障害物や歪み、ブレードの損傷による事故は致命傷である。それらを防ぐための方法は次のとおりである。障害物や歪みは先行して走り別走する先行補助リニアモーターカーを先行して走らせて点検しながら追走する。レーダーと併用して点検しながら安全走行する。又ブレードの損傷については損傷すると後続にも大きく影響し追損傷するので直ちに地上部の予備の車輪に切り替えられるようにする。ブレードは地下で散壊し地上部には損傷残骸が飛ばないようにする。そして予備車輪の運行に影響がないようにする。車両とブレード地上部分は損傷時、切り離して車両に当たらないように地下に吸い込まれるようにする。それにより損傷時の安全確保をする。
又その推進部はパワーアップと省エネルギーのため浮揚部、車両部とは切り離した推進部を設けて推進する。推進力と浮揚、安定のための力、車輌スペース部は切り離して考えた方がよく、別口の推進部を設ける。浮揚安定化のための磁力はギャップの大きさよりも接触しないためのアドバンテージを設けた方が良いのでその目的を省力で追及する。具体的には前述ブレードにより浮揚高さを作っていく。推進部については磁石間のギャップを少なくした推進部の方がパワフルかつ省エネなので浮揚安定部と分ける。推進部は車両とは間接的に繋ぐ。ワイヤー等による牽引により車両を牽引する。車両の揺れはワイヤー、コイル等によりヘッジされるので推進部は独立推進できる。又進行方向とは逆の方向にも別途ワイヤー、コイル等で繋ぎブレーキや逆進に使う。

8. 回転数と起電の関係
回転数が高い方が沢山起電する。起電は磁束の差によるが、移動時、磁性体の移動による磁束の移動は徐々に鉄心又はコイルに移動する。磁束は小さい磁束から大きい磁束まで波形に現れるようなカーブを描いて増減する。そのため回転が遅いとその波形は上下変動の少ない緩やかなものになる。波形の真ん中の弱い電圧が使えない状態でそのまま銅線に消費されてしまうので波形が弱いとその波形の真中面積が増えスルーロスが大きくなってしまう。回転早いとその真中の面積が少なくなるので起電として利用される量が大きくなるのである。
なるべく早い回転をさせて起電力のアップを目指すが、その真ん中の起電電力の再生ができればゆるい回転でも同等の起電が可能なのである。具体的にはコイルを超伝導体コイルとしベース部の電力を消失させないこととなる。以上の観点からコイルは超伝導体とすることが好ましい。
又磁石がコイルや磁性体に起電するのはコイル磁性体の電子が当初磁性的にばらばらの向きになっているが、磁性を帯びると整列し電子の動き、回転が起電を生む。そして磁性がなくなると電子が元の位置に回転し再起電になる。
磁石とコイル磁性体の位置関係が早く動くと電子の動き、回転にパワーが加わり起電が増える。ステーター、ローターの位置関係を早くすることは現在ローターのみの稼働であるので限界に近付いているがローターとステーターを共に逆に回転させ、合わせることによりその限界は2倍になるのである。いろいろな形状で(円心、二軸など)で会い合わせることができるのでいずれの形状でも本特許とする。又、3.のリレー式発電であればその擦り合わせのタイミングは無くなるので完全なタイミングで完全な起電が可能となるのである。
The present invention aims at strengthening, improving, labor saving, convenience, and safety of superconductors such as generators, motors, and linear motor cars, the shapes of magnets, coils, and magnetic materials, and the relationship between power conversion systems. is there. In addition, this patent covers not only generator motors but also other machines, engines, and mechanisms.
Improve efficiency of stators, rotors, flywheels and various systems and their relationships. A system that performs efficient power generation, which was not possible with conventional power generation systems, by changing the combination of strong magnets such as neodymium magnets and superconductor magnets and magnetic materials such as coils and iron.

1. Outline of power generation by flywheel and magnetic force shielding Outline of system that raises flywheel rotation efficiency and power generation efficiency First, for flywheel for superconducting levitation, make a flywheel with propulsion resistance close to zero .. The rotor of the magnet placed on the flywheel or the flywheel itself is sandwiched between the magnetic coil stators for electromotive force to generate electricity. Alternatively, a superconducting magnet coil for electromotive force is placed on the flywheel and turned, sandwiched between magnets to generate electricity. Permanent power generation is achieved by turning the electric power generated by preventing the rotation loss due to the air resistance of the flywheel and cogging into the rerotation force. Air resistance eliminates the vacuum inside the system. To prevent cogging, use a coil-only electromotive device, or if there is cogging with an iron core, use the following method to eliminate cogging. The repulsive magnets A provided at different locations on the rotor are made to correspond to each other when the magnets are attracted and peeled off or when cogging resistance occurs. The peeling resistance of the magnet attraction during rotation is erased by the repulsive force of A that rotates at the same timing. Since the force of attracting and peeling magnets appears as a cogging rhythm, magnets A of repulsive magnets are provided according to the rhythm. Since the strength of adsorption and peeling and the temporal rhythm can be quantified, cogging can be prevented by providing a repulsive rhythm that matches the numerical values.
The weight increases by the amount of the repulsive magnet A, but if there is no resistance from the flywheel, it does not significantly affect resource waste. The staggered cogging prevention is a fusion of adsorption rhythm and adsorption rhythm, so it cannot be a perfect rhythm match. Since the present invention matches the rhythms of adsorption and repulsion, a perfect match can be achieved. Since the time-series adsorption and repulsion strength of adsorption and repulsion can be completely matched, cogging disappears if a unique frequency during rotation is analyzed according to the number of rotations and magnets A between repulsions are provided accordingly. It is. Also, if it rotates without air resistance and cogging resistance, it will rotate semi-permanently, resulting in permanent power generation. Since the magnet mounted on the flywheel is also generated by weak magnetism and strong magnetism, a coil is wound to collect the electromotive force. In addition, the repulsive magnets A themselves generate weak and strong magnetism, so that power is also used to wind a coil around the magnet A to generate electricity. If the flywheel magnet corresponds to a direct electromagnetic electromotive coil, the flywheel also generates electricity by weak magnetism or strong magnetism, so the coil is wound to collect the electromotive force. In addition to the rotary type, the patent also applies to a straight-ahead + rotary type with two or more axes to release from centrifugal force and other forces.

Flywheel shape The levitation plate of the superconductor has the same radius as the rotor stator and floats on the circle as it is, and the upper magnet part and the stator coil face each other, and the inner and outer circle parts outside or inside the diameter of the rotor stator. There are two types of superconductor levitation plates that allow the top and bottom of the rotor stator magnets to face the top and bottom rotor stator coils directly. The stator and coil may be out of phase, respectively. In addition, the flywheel can also be neodymium, in which case the flywheel is made into multiple layers to disperse gravity. In that case, neodymium is thin and light to improve the effect.

Other power generation methods
Power generation by magnetic force shielding How to open the flywheel to generate electricity First, make a flywheel to levitate. The flywheel uses the complete diamagnetism of superconductivity, or uses the diamagnetism of strong magnets to float and rotate.
A continuous strong magnet of NS in the lower row, a superconducting levitation plate with a hole for passing magnetic force in the middle row, and a magnetic coil in the upper row. Since the superconductor is a completely diamagnetic material, it can shield the magnetic force. A continuous superconductor rotor plate surface of a piece that transmits magnetic force and a piece that shields magnetic force is created and rotated, and the lower magnetic force NS is passed through the upper magnetic coil to generate electricity. Make the rotor thinner to reduce weight and gaps. Air resistance eliminates the vacuum inside the system. For cogging, magnets A that repel each other are inserted at the suction point and the force is used. The anti-polarity of the magnet is used to peel off the attracting magnet during rotation.
The other method is to make a flywheel with a strong magnet whose back surface of the lower disk of the flywheel is opposite to NS, and to repel and float it with the flywheel rotor magnet in the middle stage to rotate it. The flywheel rotor shall have a perforated piece. When the rotor rotates, the magnet stator plate surface, which faces upward on the lower stage, and the magnetic coil on the upper stage, together with the magnet stator plate surface and the magnetic coil on the upper stage, are turned on and off alternately, so electricity is generated. If there is no cogging, it will be a permanent power generation, so as above, we will eliminate cogging by attaching magnets A that repel each other. The rotor in the middle should be thin and light to reduce the gap.
Further, instead of the superconductor, a thin iron plate or a stack of thin iron plates can be used instead. In that case, the magnetic force is weakened according to the thin surface area of the iron plate, so a large thin iron plate is sufficiently weakened. Or, it is weakened by stacking the large iron plates in double or triple layers. Use a thin and wide iron plate to improve the power-to-weight ratio.
Also, cover the coil magnetic material with a thin iron plate, make empty pieces shifted above and below the iron plate, and perform NS conversion to a magnetic material coil. It is effective if the iron plates are double or triple, but the number and area of the iron plates are determined by the balance between the power-to-weight ratio and the magnetic force. This patent also applies to the opposite phases of the magnetic material and the magnet.
If thin iron plates are laminated as they are, magnetic force is continuously sown. Therefore, in addition to laminating several layers, the iron plate in the center is made into a U-shape and a rectangular parallelepiped, and the center is made hollow to make it extremely weak magnetism. This method is also patented in this patent.
Biaxial linear type that reduces resistance during rotation Since the circular rotation type has centrifugal force and other forces, its rotation loss is large at high rotation. The parallel bars are propelled by the biaxial rotary to reduce centrifugal force and other forces to save labor. Even if there are two axes, there is a loss at both ends of the half rotation, so it is effective to make the straight part between the two axes longer. Then, the rotor and the stator are crossed by a bar that intersects in parallel to generate electricity.
Create a repulsive levitation body for levitation on both sides and let the rotor float. A magnet for stabilizing is also provided on the floating plate to prevent it from shifting sideways.
The electromotive coil and magnetic material are installed vertically and sanded so that the magnetic force of NS is not wasted. Both ends that rotate half a turn correspond by rotation of gears, bearings, and magnet repulsion levitation.
For the rotor magnet, use a superconductor magnet or use auxiliary magnets from above, below, left, and right for the strong magnet to strengthen the strong magnet.
To prevent cogging, do not insert an iron magnetic material in the coil, or if an iron magnetic material is inserted, prevent it with the force of the repulsive magnet A. This patent also applies when the stator and coil are in opposite phase.

2. Continuously carried electromotive power generation of superconductors and SMES In the above system, superconductors and strong magnets receive strong magnetism by other magnets and iron cores, but the electromotive power at that time is also taken in by winding a coil. In addition, the electromotive power in the magnet is also taken in by inserting a bare copper wire to save energy, and the magnet is prevented from overheating.
The present patent also applies to a generator in which the other superconductor coil or SMES is continuously magnetically electrogenerated from the superconductor magnets, strong magnets, and electromagnets adjacent to each other to store electricity and discharge electricity from the magnets. At that time, SMES is placed up and down in the center of the electromotive part, or sanded to increase the electromotive response and electromotive force. The superconductor of the electromotive body next to the parent magnet should be thin and thin to increase the surface area and the number of coil turns in order to improve power and response. Electromagnetic induction is performed in the electromotive superconducting coil in the lower layer of the parent magnet for electromotive force, and the magnet is continuously propagated in the child body in the lower layer. The coil gradually electromagnetically induces the lower superconducting coil, SMES, while monitoring and managing the magnitude of the magnetic current, and stores electricity. Also, to prevent the voltage of the superconductor coil from rising too high, a bare copper wire for preventing quenching is siding and excess power flows out before quenching. Prevents quenching due to excessive magnetic force and voltage. If more and more are adjacent to each other, the available power will increase. For weak magnetic reduction due to quenching or runoff, the parent superconductors are placed at appropriate intervals, and the children with weak magnetic reduction are replenished by electromagnetic induction in a timely manner. The roles of the parent and the child are automatically controlled according to the power flow of the system so that the optimum parent can appear to charge the child.

3. Electromagnet relay switch type power generation In addition, the following system that applies the timing of the electromotive force, which is the above improvement point, to increase the amount of electromotive force is also patented.
Electromagnetism is generated by the magnetic force of the electromagnet. By converting the electromagnet to NS or ON / OFF with a switch relay and increasing its speed, the generated power can exceed the power used. If the electromagnet for electromotive force is a superconductor, the amount of electric power used is reduced and it is effective.
Since the amount of electricity generated is proportional to the number of NS conversions, perform NS conversion or turn on / off electricity as soon as possible. As a result, the power consumption per conversion is reduced and the total amount of electricity generated is increased. In the case of electromagnetic generation due to the use of electricity, if only one song is lit by turning on and off instead of turning on each NS, no power is required when turning off, so half the amount of power and the same number of power generations, the ONOFF method saves power. This can be done more advantageously, but both are patented. Further, the efficiency is improved by making the magnetic material of the electromagnet with a thin iron plate or a rectangular parallelepiped of the thin iron plate to save power and surrounding the electromagnet with a coil or sharing the magnetic material with the electromagnet coil and the electromotive coil. The outside of the coil is also wound with an iron plate and magnetized. The following method is also patented as the method of the electric switch relay.
The patent also applies to a type in which a motor is rotated by the generated magnetic force and further used as power generation or power. In that case, a coil is wound around a magnet or a magnetic material in the motor to generate electricity and generate electricity. In addition, a filmless copper wire is placed in a magnet or magnetic material to prevent wasted heat and wasted power from picking up power in the magnet or magnetic material. In addition, both the NS conversion type and the energy-saving type that rotates and generates electricity by turning it on and off are patented.
The following 5. Energy-saving motor using the above various mechanisms is also patented.

4. Applicable to everything that runs and moves, not just linear power generation. The one that moves is defined as the rotor, and the one that receives it is defined as the stator to generate electricity.
Those with wheels, such as automobiles and trains, generate electricity with the wheels that are the rotors and the car body that is the stator. Or, since the vehicle is also moving, the moving body is used as a rotor, and the animal stator is received by the rotor to generate electricity. Cogging shall be eliminated by the repulsive magnet A, etc., and the efficiency using the above system shall be used.

5. Power-up than energy-saving motor multi-layer sandwich A multi-layer sandwich made of a thin permanent magnet NS counter electrode with a rotor, and the stator is an electromagnet and is applied to a double-sided permanent magnet. It receives and repels the magnetic force between the rectangular parallelepiped iron core on a thin iron plate and the sand that is efficiently magnetized by the coil. At the same time as it rotates strongly, it draws electricity from the affected permanent magnets by weak magnets and strong magnets by a coil wound around the permanent magnets. In addition, the energy-saving mode of natural adsorption of iron with the rotor as the coil iron core and the repulsion by the electromagnetic magnet and the electromagnetic OFF is also patented. In that case, the rotor core coil generates electricity when it is OFF, so it takes power. If the stator is a permanent magnet, the rotor is an electromagnet and the stator is not related to weight, so it is a strong one. To make the rotor electromagnet lighter, the rotor is made of the above-mentioned thin iron plate magnetic material and a thin flat thin coil. In addition, it rotates strongly and at the same time receives electricity from the affected permanent magnet by a coil wound around the permanent magnet with weak magnetism and strong magnetism. Also, since the rotor generates electricity when it rotates, it collects electricity. In that case, the electromagnet can be turned on and off, and an energy-saving mode can be used to generate electricity when the electromagnet is turned off. Power is saved and power is taken. In addition, a bare coil without enamel is placed in the rotor, stator magnet, and magnetic iron, and an eddy current is applied to prevent short circuit and heat, or the current is also used. Also, installing a repulsive magnet prevents cogging. If cogging is performed during the rotation process, a magnet with a force that is completely opposite to the force of the obstacle that is the source of the cogging motion is created and installed to prevent cogging. If it still occurs due to high speed, limit the speed of the motor and increase the speed by gear link.
Even in the motor, the multi-axis structure with two or more axes reduces centrifugal force and other resistance. In order to suppress the energy lost by the rotational movement, the type that generates the power by the straight movement is also patented. In order to reduce the air resistance when rotating and going straight, the air resistance is eliminated by vacuum structure + water cooling and gas cooling.
In addition, the efficiency of the coil can be measured by the winding method of 6. below. A flat, square, thin coil is used to increase the magnet, and high-voltage power transmission is used to reduce the base loss and reduce the power loss due to the coil. If the magnetic material is also a rotor, the iron core should be thin or a rectangular parallelepiped made of a thin iron plate to reduce the weight in order to increase the power-to-weight ratio. If the rotor is a permanent magnet, make the permanent magnet thinner and lighter, and make the permanent magnets multi-layered to increase the power-to-weight ratio. In addition, in order to make high-voltage power transmission constant, the coil increases the number of terminals and measures the number of terminals through which power passes according to the speed. And the voltage remains high.

6. The shape of the magnetic material and the coil, the relationship between the magnetic force and iron, and the winding method In order to further improve the performance, the efficiency that was not realized by the conventional power generation system by combining the strong magnet such as neodymium magnet and the magnetic material such as coil and iron. To generate good power. Emphasis is placed on the power-to-weight ratio to save rotor power and maximize generated power. To save the power of the rotor, reduce resistance and weight.

Increased electromotive force with a flat, square, thin coil. Until now, there was a coil that wanted to be flat, but it was the theory that there would be no extra gap because it is square, and if you wind a thin coil, you can wind it closer than the magnetic material, and the magnetic force from the magnetic material is strongly received and between the coils. There was no extra gap in the, and it was effective. However, if the coil is thin, it cannot withstand a large current. Further, there is a drawback that efficiency is lowered because heat is generated due to an increase in current. In the present invention, since a shortcut point is provided in the middle of the coil and the coil is washed away first, a large number of thin coils can be wound. Moreover, since heating is also eliminated by this, the performance of the generator and the motor is not deteriorated. Also, instead of that, the coil is thin, but the number of terminals where the coil flows out is increased. That is, the current per one-line coil is reduced by winding the coil terminals in double and triple layers. This is because a flat, square and thin coil not only increases the density at the center of the coil, but also increases the surface area of the coil. As the density increases, the current generated in the coil also increases, and as the surface area increases, the surface area of the magnetic flux also increases, so the magnetic force and secondary magnetism generated from the coil also increase, and the electromotive force increases.
The following coil forms are also patented. Change the thickness of the coil between near and far from the magnetic material. Since the power is low near the magnetic material, it is thin and the number of turns is increased by making it thinner. Since the power increases as the distance increases, the internal resistance due to the power is reduced by making it thicker. The power increases as you go to the outside, so make it thicker and thicker. In terms of thickness and thickness, priority is given to thinness. This is because the flatter one increases the efficiency of the direction of the magnetic flux. Gradually increase the width of the thin and flat coil. In addition, there is a limit as thinness and an efficiency limit, so we will increase the thickness at that limit. It also reduces the current short circuit in the magnet inside the rotor magnet and the coil for generating electricity. Rotor magnets and electromagnetic bodies are also generated by weak magnetism and strong magnetism, so a coil is wound to generate electricity and use it as electric power. In addition, electricity is generated in the iron core in the same way as the coil. A ground copper wire is provided on the rotor magnet and iron core to allow current to flow. As a result, it is possible to suppress the generation of heat due to a short circuit. If the amount of power is large, it is used as generated power.

How to enclose the iron core magnetic material with a coil
The magnetic force generated in the iron core magnetic material is effectively passed through the coil. Make the iron core thin and flat to make its power-to-weight ratio effective. The iron part inside is not meaningful because it does not reflect the magnetic flux, so it is thin, but if it is too thin, the influence of the counter electrode on the back side will be strong, so it is not too thin. Or make a thin iron plate into a rectangular parallelepiped.
The coil shall be thin, flat and thin to strengthen the electromotive force. For voltage and current, increase the number of terminals at the galvanizing destination. Also, if you wind the iron plate on the outside, it will be strongly magnetized, so wind it.
Since the magnet also has an electromotive force due to weak magnetism and strong magnetism, a coil is wound to collect electricity. Since the magnet is a stator, make it as large and magnetic as possible.
Also, since S is stronger than N, set so that S comes to the iron core as much as possible.

Make the magnet as thin as possible In order to maximize the magnetic force per volume and weight, the volume-to-area ratio of the magnet is given the highest priority over the area. Therefore, make the magnet as thin as possible. The magnetic flux weakens near the center of the flat magnet due to the bending of the magnetic flux. To eliminate this, the length and width of the magnet are also reduced.
Alternatively, a large number of small magnets that are flat and narrow in length and width are connected horizontally or vertically. Since strong magnetism is also generated by the connection, the magnetic flux is strengthened. Also, if the rotor is a magnet, the rotational motion vs. power-to-weight ratio is not wasted by using both the NS on both the front and back sides. In addition, the rotor is multi-layered and magnetized by sandwiching a magnetic coil to strengthen the electromotive force. In that case, the magnetic material is strongly magnetized, so it is sanded with a homopolar magnet. However, depending on the shape of the magnetic material, it will be strongly magnetized by the antipolar sand, so it will be changed at any time.

Cogging prevention The coil does not use an iron core to prevent cogging, or if it is used, a repulsive magnet A is provided and a counterpolar magnet that matches the adsorption rhythm and the counterpolar rhythm is provided in the path to prevent cogging. Since it is the repulsive rhythm that exactly matches the adsorption rhythm, the adsorption and repulsive rhythms are tuned and meshed.

Preventing power loss due to the movement of the magnet and the magnetic material and the timing of electromotive force The difference between the initial magnetic flux of the magnetic material and the magnetic flux after magnetization becomes the electromotive force, but as the magnet progresses, the magnetic flux of the magnetic material gradually increases. The electromotive force gradually increases, but the low power power disappears first in the coil due to the original electrical resistance of the coil. Looking at the circumferential waveform of the electromotive force, the waveform is high and narrow when the rotation is fast, while it is low and wide when the rotation is low, and the foot of the mountain seems to be large. The entire area of the mountain does not become usable power. Since the low part of the base becomes a loss and is not reflected in the electromotive force, the part of the mountain with the area of the waveform is large and the loss is large at low rotation. At high rpm, the shape of the waveform changes and the low power part at the base decreases.
Also, if the coil is made as thin as possible, the power transmission per coil will be high, so the coil should be thin, but there is a limit depending on the magnitude of the voltage and current, so if it is made thin, many coils will be used according to the electromotive voltage and current. Bundle and increase the number of terminals. Since the amount of voltage and current can be limited by not rotating the coil in the same cycle, maximum electromotive force and maximum high-voltage power transmission can be performed. Further, if it is a superconductor coil, its low power portion does not disappear in the coil, so that it can be expanded and used depending on the scale.

Non-touch magnetic force support Non-touch rotor magnetic force is increased by magnets installed elsewhere, and rotor weight is reduced by magnetic force support strong magnetism. (Only when the rotor is a magnet)

Multi-shaft type Multi-shaft, linear, reduction of centrifugal force by vacuum liquid cooling, other force, propulsion resistance.
Although it is a type of rotary generator, it has a structure with two or more shafts, which reduces rotational resistance. Moreover, since it has a linear structure, there is no auxiliary resistance or propulsion resistance, which saves energy.

Measure the timing of electricity generation and increase the amount of electricity generation
By increasing the number of NS conversions, the number of power generations is increased and the amount of power generation is increased. Increase the number of NS conversions for rotors and stators, and increase the conversion timing steps. Increase the number of NS conversions or magnetic pole ON / OFF per rotation. When the rotor is a coil The coil magnetic material is made as thin as possible because the magnetic core is made as thin as possible to improve the power-to-weight ratio and at the same time the number of turns of the coil is increased. Even if the stator is a coil, in order to use the space efficiently, the magnetic material is made of a thin iron plate made into a rectangular parallelepiped and the iron plate is rotated. As a result, the outer peripheral portion of the circumference can be made the same pole. A coil is wound around the iron plate horizontally with respect to the long part of the iron plate. As a result, the iron core can be installed thinly and lightly with the same electromotive force as a normal iron core. The central cavity around the rectangular parallelepiped loses its magnetic force due to weak magnetism, but it should be reduced as much as possible for effective space utilization. In addition, an iron plate is wrapped around the outer circumference of the coil to further strengthen the magnetism, or the coil is arranged so as to strongly magnetize in cooperation with the adjacent magnetic material. In that case, the width between the magnetic materials should not be narrower than the size of the rotor magnet. If it is narrow, it becomes anti-polar weak magnet of the same pole and the electromotive force is reduced.
In order to enable infinite electromotive switching, there is a limit to the physical switching as described above, so switching between NS and ONOFF by an electric switch and an electric system is also patented. (The following 3 electromagnet relay switch type power generation)
7. Linear motor car Based on the above system and the above theory, rationalize the floating part of the linear motor car and others. In addition, it will contribute to the development and laying of linear motor cars by securing means for preventing electromagnetic waves of concern and ensuring the safety of high-speed floating movement.
A blade with a small front area with reduced air resistance is placed under the vehicle, and it is passed underground to float. The number of underground parts of the blade depends on weight, durability and stability.
Since the blade or blade that is perpendicular to the vehicle is submerged vertically underground and the blade with the lower part or the middle part horizontal is sanded with a magnet and floated, the levitation force and stability are more than twice that of the normal method. , Energy saving is realized. It is also patented to make the blade diagonally or roundly to eliminate the contact of the blade with shaking. In order to make the magnetic force more effective, a large number of magnets are installed alternately in NS.
Since it is a strong magnet and a superconducting part buried underground, it is excellent in preventing electromagnetic waves from the ground. Furthermore, in order to prevent electromagnetic waves inside and outside the vehicle, it is possible to put an electromagnetic wave prevention shield on the ground surface. In addition, a parallel superconducting bar or a strong magnet is attached to the lower part of the vehicle without blades. This is different from the conventional one mounted on the lower part and the side surface of the vehicle, and requires less ability to ensure stability. Since there is no electromagnetic wave from the side, the cost is reduced to prevent it. Since the parallel superconducting bar is buried underground and supported from above and below, it can save energy and reduce electromagnetic waves. The underground part is also patented as a type in which the blade is sandwiched from both the left and right sides when viewed from the front of the vehicle with a magnet and floated. This type can set the levitation height level in a wide range, which enhances safety. In that case, the groove in the basement should expand downward. Then, the obstacles that have entered the groove will also fall down and will not be affected.
Since a linear motor car moves at high speed, safety is required, but the safety of its floating part is as important as the relationship between railroad tracks and wheels. Accidents caused by obstacles, distortions and blade damage are fatal. The methods to prevent them are as follows. Obstacles and distortions are followed by running ahead and inspecting the leading auxiliary linear motor car that runs ahead and runs separately. Drive safely while checking in combination with radar. As for the damage of the blade, if it is damaged, it will greatly affect the subsequent damage and additional damage will occur, so it will be possible to immediately switch to the spare wheel on the ground. The blades will be scattered underground to prevent damaged debris from flying above ground. And make sure that the operation of spare wheels is not affected. When the vehicle and the blade above ground are damaged, they should be separated and sucked underground so that they do not hit the vehicle. This will ensure safety in the event of damage.
In addition, the propulsion section is provided with a levitation section and a propulsion section separate from the vehicle section for power-up and energy saving. It is better to consider the propulsion force and levitation, the force for stability, and the vehicle space part separately, and provide a separate propulsion part. Since it is better to provide an advantage that the magnetic force for levitation stabilization does not come into contact rather than the size of the gap, the purpose is pursued with labor saving. Specifically, the levitation height is created by the above-mentioned blade. As for the propulsion section, the propulsion section with a smaller gap between magnets is more powerful and energy efficient, so it is separated from the levitation stabilization section. The propulsion unit is indirectly connected to the vehicle. The vehicle is towed by towing with a wire or the like. Since the shaking of the vehicle is hedged by wires, coils, etc., the propulsion unit can be independently propelled. Also, it is used for braking and reverse movement by connecting it with a wire, coil, etc. separately in the direction opposite to the traveling direction.

8. Relationship between rotation speed and electromotive force The higher the rotation speed, the more electromotive force is generated. The electromotive force depends on the difference in magnetic flux, but during movement, the movement of magnetic flux due to the movement of the magnetic material gradually moves to the iron core or coil. The magnetic flux increases or decreases in a curve that appears in the waveform from a small magnetic flux to a large magnetic flux. Therefore, if the rotation is slow, the waveform becomes gentle with little vertical fluctuation. Since the weak voltage in the middle of the waveform cannot be used and is consumed by the copper wire as it is, if the waveform is weak, the center area of the waveform increases and the through loss increases. The faster the rotation, the smaller the area in the center, and the larger the amount used for electromotive force.
We aim to increase the electromotive force by rotating as fast as possible, but if the electromotive force in the middle can be regenerated, the same electromotive force can be generated even with a loose rotation. Specifically, the coil is used as a superconductor coil so that the power of the base portion is not lost. From the above viewpoint, the coil is preferably a superconductor.
In addition, magnets generate electricity in the coil or magnetic material because the electrons in the coil magnetic material are initially in different directions magnetically, but when they become magnetic, they are aligned and the movement and rotation of the electrons generate electricity. When the magnetism disappears, the electrons rotate to their original positions and become recharged.
If the positional relationship between the magnet and the coil magnetic material moves quickly, the movement of electrons and the rotation will be powered and the electromotive force will increase. To speed up the positional relationship between the stator and rotor is approaching the limit because only the rotor is currently in operation, but the limit is doubled by rotating both the rotor and the stator in reverse and matching them. Since it is possible to meet in various shapes (circular center, biaxial, etc.), any shape is patented. In addition, in the case of the relay type power generation in 3., the timing of the rubbing is eliminated, so that the complete power generation can be performed at the perfect timing.

Claims (1)

概要
本発明は発電機、モーター、リニアモーターカーなどの超伝導体や磁石、コイル、磁性体の形状、動力変換のシステムの関係等を強化、改善、省力化、利便化、安全化を図るものである。又本特許は発電機モーターだけでなくその他の機械、機関、仕組みにも対応するものである。
ステーター、ローター、フライホイールや様々なシステムやその関係を効率アップする。ネオジム磁石や超伝導体磁石などの強力磁石とコイル、鉄などの磁性体の組み合せを変えて従来の発電システムでは実現しなかった効率の良い発電を行うシステム

1. フライホイール、磁力遮蔽による発電の概要
フライホイール回転効率を上げ、又起電効率もあげ発電するシステムの概要
まず超伝導浮揚させるためのフライホイールについては推進抵抗がゼロに近いフライホイールを作る。フライホイールに載せた又はフライホイール自体になっている磁石のローターを、起電用磁性体コイルステーターで挟み発電をする。又はフライホイールに起電用超伝導磁石コイルを乗せて回し、磁石に挟んで起電する。フライホイールの空気抵抗、コギング等による回転損失を防いで発生した電力を再回転力に回すと永久発電となる。空気抵抗はシステム内を真空にしてなくす。又コギング防止についてはコイルのみの起電装置にするか、鉄芯入れてコギングがある場合は次の方法でコギング解消する。磁石の吸着引き剥がし時又はコギング抵抗時にローターの別の場所に設けた反発同士の磁石Aを対応させる。回転時の磁石吸着の引き剥がし抵抗を同タイミングで回るAの反発の力をもって消していく。磁石の吸着、引き剥がしの力はコギングのリズムとなって現れるので、そのリズムに合わせた反発同士の磁石Aを設ける。吸着、引き剥がしの強弱と時間的なリズムは数値化できるのでその数値に合わせた反発リズムを設けて当てればコギングが防止できることとなる。
反発磁石A分重量が増えるがフライホイールの抵抗がなければ資源浪費にはあまり影響しない。ずらし式のコギング防止は吸着リズムと吸着リズムの融合なのでどうしても完全なリズム一致にならない。本発明は吸着と反発のリズム一致なので完全な一致をすることができる。吸着と反発の時系列的な吸着、反発強さは完全一致させることができるので回転数に応じた回転時独自の周波数を分析、それに合わせた反発同士の磁石Aを設ければコギングは消滅するのである。空気抵抗、コギング抵抗無くして回転すれば半永久的に回ることになり永久発電となる。フライホイールに載せた磁石も弱磁、強磁により起電するのでコイルを巻いて起電を取電する。又反発同士の磁石A自体も弱磁、強磁が生じ起電するのでその電力も活用、磁石Aにコイルを巻き起電する。又フライホイール磁石が直接の起電磁性体コイルに対応する場合はそのフライホイールも弱磁、強磁により起電するのでコイルを巻いて起電を取電する。又その形状も回転型だけでなく二軸以上の直進+回転型にして遠心力その他の力から解放していくものも本特許とする。

フライホイールの形
超伝導体の浮揚板はローターステーターと同半径のものでそのまま円の上に浮かせ上部磁石部分とステーターコイルを向き合わせるタイプと、ローターステーターの直径よりも外側又は内側の内外円部分に超伝導体の浮揚板設け、ローターステーター磁石の上下が上下のローターステーターコイルに直接向き合う様にするタイプの二種類。それぞれステーターとコイルが逆相の場合もある。又、フライホイールはネオジムでも可能でありその場合はフライホイールを多層にして重力の分散を図る。その場合ネオジムは薄く軽くして効果上げる。

その他の発電の方法
磁力遮蔽による発電
フライホイールを駒開けにして発電する方法
まず浮揚させるためのフライホイールを作る。フライホイールは超電導の持つ完全反磁性を利用、又は強力磁石同士の反磁性を利用し浮揚させ回転させる。
下段にNSの連続した強力磁石、中段に磁力通す穴の開いた超伝導浮揚板、上段に磁性体コイル。超伝導体は完全反磁性体なので磁力遮蔽が可能である。磁力通す駒と磁力遮蔽する駒の連続する超伝導体ローター板面を作り回転させ、下段磁力NSを上段の磁性体コイルに通して起電する。ローターは薄くして重量、ギャップを減らす。空気抵抗はシステム内を真空にしてなくす。又コギングについては吸着ポイントに反発同士の磁石Aを入れその力利用する。回転の際の吸着磁石の引剥がしをするのに磁石の反極力利用する。
もうひとつの方法はフライホイール下段円板の裏表面がNSと反極になる強力磁石でフライホイールを作り中段のフライホイールローター磁石と反発浮遊させて回転させる。フライホイールローターは穴開き駒のあるものとする。ローターが回れば下段上に向く一面全部が同極である磁石ステーター板面と上段の磁性体コイルと合わせてONOFFの交互変換になるため起電する。コギングなくせば永久発電となるので上記と同じく反発同士の磁石Aの付属によりコギング無くしていく。真ん中のローターは薄くして軽くしギャップも少なくする。
又超伝導体に代えて薄い鉄板又は薄い鉄板を重ねたものでも代用できる。その場合は鉄板の薄い表面積にあわせて磁力が弱磁するので大きな薄い鉄板で十分弱磁させる。又はその大きな鉄板を二重、三重に重ねていく事で弱磁する。パワーウェイトレシオをよくする為に薄くて広い面積の鉄板にする。
又薄い鉄板でコイル磁性体を覆い鉄板の上と下にずらした空き駒を作って磁性体コイルにNS変換していく。鉄板が二重、三重だと効果があるがパワーウェイトレシオと磁力との兼ね合いで鉄板の枚数、面積決める。磁性体と磁石が逆相も本特許とする。又薄い鉄板はそのまま積層すると磁力連播するので、何重かに積層するうえに又、まん中の鉄板をU字、長方体にしてその又真ん中を空洞にする事により同極弱磁させる。この方法も本特許とする。

回転時の抵抗を減らす二軸リニア式
円形回転式は遠心力その他の力があるため高回転時はその回転ロスが大きいものとなる。二軸にしたローターリーに平行棒を推進させ、遠心力その他の力を減少させて省力化する。二軸にしても半回転する両端においてロスするため、二軸間直進部分は長くとった方が有効的である。そしてローターとステーターを平行交差するバーで交差させ起電する。
両脇などに浮揚のための反発浮揚体を作りローターを浮揚進行させる。そして浮揚板にスタビライジング用の磁石も設けて横にズレないようにする。
起電用コイル、磁性体は上下に設置サンドしNSの磁力を無駄にしない。半回転する両端はギヤの回転かベアリング、磁石反発浮揚で対応させる。
ローター磁石は超伝導体磁石を使うか強力磁石に上下左右からの援用補助磁石を援用し強磁強力化する。
コギングしないように、コイルは鉄磁性体を入れないか、鉄磁性体を入れるなら反発磁石Aよる力で防止していく。そしてステーターとコイルが逆相の場合も本特許とする。

2. 超伝導体やSMESの連搬起電発電
上記システムにおいて超伝導体、強力磁石は他磁石、鉄心により強磁を受けるが其の際の起電電力もコイルを巻いて取り込みする。又、磁石内の起電電力も裸銅線を挿入して取り込み省エネにする又、磁石の過熱防ぐ。
又其の隣り合わせにした超伝導体磁石、強力磁石、電磁石からもう一方の超伝導体コイルやSMESを連続磁力起電して、蓄電しそこから電気を流出させる発電機も本特許とする。その際起電部を真ん中にSMESを上下に配置したりサンドして起電レスポンスや起電力をあげたりもする。親体磁石の隣の起電子体の超伝導体はパワーアップ、レスポンスの向上のため、薄い細いものにして表面積やコイル巻き数をできるだけ増やす。その起電用の親体磁石より下層の起電超伝導コイルに電磁誘導、その下層の子体に順次連続伝播していく。そのコイルは磁力電流の大きさを監視、管理コントロールしながら徐々に下層の超伝導コイル、SMESに電磁誘導し、電気を貯めていく。又、超伝導体コイルの電圧を上げすぎないようにクエンチ防止用裸銅線を側線しクエンチ前に過剰電力を流出。磁力、電圧過剰によるクエンチ防ぐ。どんどん多数隣接すれば利用可能電力も増える。クエンチ又は流失による弱磁減電には母体超伝導体を適当な間隔で配置、弱磁減電した子に適時電磁誘導補充して対応。親と子の役割はシステムの電力流失具合により自動制御し子の充電に最適な親の出現をできるようにする。

3. 電磁石リレースイッチ式発電
又上記の改善ポイントで有る起電のタイミングを計り起電量を増やすことを応用したつぎのシステムも本特許とする。又電磁石のもたらす磁力により起電する。電磁石をスイッチリレーによりNS又はONOFF変換しそのスピードを早めることにより使用電力よりも発生電力を上回せる。起電用電磁石は超伝導体にすると使用電力量が減り効果的である。
起電量はそのNS変換回数に比例するので出来るだけ早いNS変換、又は電気のONOFFを行う。それにより一変換あたりの使用電力が減り、全体起電量が増える。電気使用による電磁発生においてNSそれぞれ点灯するのでなくONOFFにより片方の曲のみの点灯であればOFFの際は電力いらないので半分の電力量で起電回数も同じとなる、ONOFFの方式の方が節電になるのでより有利に行えるが両方本特許とする。又電磁石の磁性体を薄い鉄板、薄い鉄板の長方体でつくり省電力化し電磁石をコイルで取り囲むこと又は磁性体を電磁石コイルと起電コイルで共有することによりその効率あげる。又コイルの外側も鉄板で巻き強磁する。上記電気スイッチリレーのやり方として次の方式も本特許とする。
上記発生磁力によりモーターを回しさらに発電又は動力として活用するタイプも本特許とする。又その場合モーター内の磁石、磁性体にコイル巻いて起電、さらに発電する。又、皮膜無し銅線を磁石、磁性体に入れ、磁石、磁性体内の電力拾い無駄熱と無駄電力防止する。又、起電のタイプとしてNS 変換していくのとONOFFで回転起電していく省エネタイプ両方とも本特許とする。
上記種々の仕組みを使った下記、5.省エネモーターも本特許とする。

4. 動体発電
リニアに限らず走行、動くものすべてに適用。動くものがローター、それに受けていくものがステーターと定義して発電。
自動車や列車のように車輪を持つものはそのローターである車輪とステーターである車体で発電。又は車両も移動しているので移動体をローターとし、それに不動物ステーターを受けさせて発電する。コギングは反発磁石Aにて解消等、上記のシステムを使った効率の良いものとする。

5. 省エネモーター
多層サンドイッチよりパワーアップ
ローターを薄い永久磁石NS反極で作った多層サンドで、ステーターは電磁石とし両面永久磁石に当てる。薄い鉄板で長方体の鉄心とコイルで効率的に強磁されたサンドの間の磁力を受け吸着、反発する。それは強力回転すると同時に影響を受けた永久磁石から弱磁、強磁による起電を永久磁石に巻いたコイルにより取電。又ローターをコイル鉄心として電磁磁石による反発と電磁OFFにした鉄の自然吸着の省エネモードも本特許とする。その場合ローター鉄心コイルはOFF時起電するので取電する。
又ステーターが永久磁石ならばローターは電磁石でステーターは重量関係ないので強力な物、ローター電磁石は軽くするために前述薄い鉄板磁性体、薄い平たい細いコイルによるローターになる。又それは強力回転すると同時に影響を受けた永久磁石から弱磁、強磁による起電を永久磁石に巻いたコイルより取電。又ローターは回転時に起電するのでそれを取電する。その場合電磁石のONOFFを行い、OFF時に起電させる省エネモードも出来る。節電と共に起電取電となる。又 ローターステーターの磁石、磁性体鉄内にエナメルなしのむき出しコイルを入れ、渦電流流してショート防ぎ加熱防ぐ又はその電流も利用する。
反発磁石の設置でコギング防ぐ。回転過程においてコギングするならばそのコギング運動の元となる障害の力とまるっきり正反対の力の磁石を作成設置してコギングを防ぐ。それでもハイスピードにより発生してしまう場合はモーターのスピードを制限してギアリンクによりスピードを出していく。
モーターに於いても2軸以上の多軸構造で遠心力その他の抵抗軽減。回転運動により失われるエネルギーを抑えるため、直進運動によりそのパワーを発生させていくタイプも本特許とする。回転時、直進時の空気抵抗減らすため、真空構造+水冷、ガス冷で空気抵抗なくす。 又コイルは下記6.の巻き方で効率はかる。平べったい四角い細いコイルにより磁石アップを図るとともに、高電圧の送電にしてベース損失を下げコイルによる電力の損失を下げる。又磁性体もローターであればパワーウェイトレシオ増すために鉄心は薄いもの、又は薄い鉄板で作った長方体の物にしてその軽量化を図る。ローターが永久磁石ならば永久磁石を薄いものにして軽くし永久磁石を多層化してパワーウェイトレシオ上げていく。又高電圧の送電を常時化する為にコイルは端子数を増やし速度に応じて電力の通す端子数を計る。そして電圧は高圧のままにする。

6. 磁性体とコイルの形、磁力と鉄の関係、巻き方
性能をさらに上げるため、ネオジム磁石などの 強力磁石とコイル、鉄などの磁性体を組み合わせて従来の発電システムでは実現しなかった効率の良い発電を行う。パワーウェイトレシオ重視し、ローター動力節約と発生パワーの最大化をする。ローター動力節約として抵抗軽減、重量軽減などをする。

平べったい四角い細いコイルによる起電力アップ。
今までに平べったいコイルあったが四角いので余分な隙間がなくなるという理屈であった、また細いコイルを巻くと磁性体より距離が近く巻け、磁性体からの磁力が強く受けられ又コイル間の余分な隙間がなく効果的いうことはあった。しかしコイルが細いと電流が大きくなると耐えられない。又電流増加により熱が発生するので効率が落ちてしまうという欠点があった。当発明はコイルの途中にショートカットポイントを設けて先に流失させるので細いコイルの多数巻きが可能になる。又それにより加熱も無くなるので発電機、モーターの性能が落ちることはないのである。又それに変えてコイルは細いがコイルの流失先端子数を増やす。つまり二重三重にコイル端子を巻くことにより1回線コイルあたりの電流を減らすので有る。平べったい四角い細いコイルにより、コイル中心の密度が増えるだけでなく、コイルの表面積が増えるからで有る。密度が増えコイルに発生する電流も増え、又表面積が増えれば磁束の表面積も増えるのでコイルから発生する磁力、副磁も増えるので起電力がアップする。
又次のコイル形態も本特許とする。コイルの厚さ太さを磁性体より近いところと遠いところで変える。磁性体より近いところは電力低いので薄く、細くすることにより巻き数増やす。遠くなるにつれて電力高まるので厚くすることにより電力による内部抵抗を減らしている。外側にいくにつれ電力が高まるので厚く太くする。厚さと太さにおいては薄さの方を優先させる。平べったい方が磁束の向きの効率が増すからである。薄く平べったいコイルに徐々に幅の太さを持たせていく。又薄さとして限界、効率限界があるのでその限界において厚を持たせていく。又ローター磁石、起電用コイル内磁性体内の電流ショートの軽減をする。ローター磁石、起電磁性体も弱磁、強磁により起電するのでコイルを巻いて起電させ電力として利用する。又鉄心の中にコイルと同様に電気が発生している。ローター磁石と鉄芯にアース銅電線設け電流を流す。それによりショートによる熱の発生抑制が可能となる。又、電量が多ければ発生電力として利用する。

鉄心磁性体のコイルでの囲みかた
鉄心磁性体に発生する磁力を効果的にコイルに通す。鉄心は薄い平たいものにしてそのパワーウェイトレシオを効果的にする。中の鉄部分は磁束反映しないために意味がないので薄くするが、薄くしすぎると裏側の反極の影響強くなるので薄くしすぎない。又は鉄板の薄いものを長方体に作る。
コイルは起電強化の為薄い平たい細いものとする。電圧電流に対しては流電先の端子を増やし対応。又外側にも鉄板巻くと強磁するので巻いていく。
磁石の方も弱磁、強磁により起電力があるのでコイルを巻いて取電する。磁石はステーターであるのでなるべく大きく磁力強いものにする。
又、SはNよりも強くなるので、鉄心にSがなるべく来る様に設定する。

磁石をなるべく薄く作る
体積、重量あたりの磁力を最大にするため磁石の体積対面積比率を面積最大優先とする。そのため磁石をなるべく薄く作る。平面磁石の真ん中付近は磁束の曲がりにより磁束が弱くなる。その排除のため磁石縦横の長さも小さくする。
又は平べったく縦も横も狭い小さい磁石を多数横か縦に連結させる。連結により強磁も起きるので磁束は強まる。又ローターが磁石なら裏表両面のNSとも利用することにより回転運動対パワーウェイトレシオを無駄にしない。又ローターを複層化して磁性体コイルを挟んで強磁し起電強める。その際は磁性体を強磁するため同極磁石でサンドする。しかし磁性体の形によっては反極のサンドにより強磁するので随時変える。

コギング防止
コイルはコギング防止のため鉄心は使わないか、使うのであれば反発磁石Aを設け吸着リズムと反極リズムを一致させる反極磁石を進路に設けてコギング防ぐ。吸着のリズムに完全一致するのは反発のリズムであるので、吸着と反発のリズムをチューンニングし噛み合わせる。

磁石と磁性体の移動と起電のタイミングによるパワーロスを防ぐ
磁性体の当初の磁束と磁力化後の磁束の差が起電力となるが、磁石が進行して行くと磁性体の磁束が徐々に高まる、それにより起電も徐々にしていくがコイルの元々の電気抵抗等によりローパワー電力はコイルの中、先で消滅してしまう。起電の周波形を見ると波形が回転早いと高く狭くなっているのに対し低回転時は低く広くなっていて、山の裾野が大きい感じになっている。その山の面積が丸々使用可能電力にならない。裾野の低い部分はロスとなって起電に反映しないので、低回転の時はその波形の面積の山の裾野の部分が大きくロスが大きい。高回転にすると波形の形が変わり裾野のローパワー部分は少なくなる。
又コイルをなるたけ細くすれば一本あたりの送電が高圧になるのでコイルも細い物とするが電圧電流の大きさにより限度があるので、細くすの場合はその起電電圧電流に応じてたくさんコイルを束ねてその端子数を増やす。コイルを同一周回させない事により電圧電流の量は制限できるので最大起電、最大高圧送電ができる。又超伝導体コイルであればそのローパワー部分もコイル内で消滅しないため規模により拡大し利用できることとなる。

ノンタッチ磁力援用
他所に設けた磁石によるノンタッチのローター磁力アップ、磁力援用強磁による、ローター重量の軽減。(ローターが磁石の時のみ)

多軸式
多軸、リニア、真空化液冷化による遠心力、その他の力、推進抵抗の軽減。
回転式発電機の一種であるが二軸以上の構造のため、回転抵抗が少なくなる。又リニア構造なので補支抵抗、推進抵抗がなく省エネである。

起電のタイミングを計り起電量を増やす
NSの変換回数を多くすることにより起電回数増やし発電量増やす。ローター、ステーターのNSの変換数増やし、変換タイミングの刻みを増やす。一回転あたりのNSの変換又は磁極のONOFFの回数を増やす。ローターがコイルの場合コイル磁性体は磁性体鉄心を極力薄くしてパワーウェイトレシオを良くすると同時にコイルの巻数が増えるのでなるべく薄くする。ステーターがコイルの場合でも場所を効率よく使う為に磁性体は鉄板の薄い物を長方体に作り鉄板を周回させたもとする。それにより周回外周部を同極とすることができる。その鉄板にコイルを鉄板の長い部分に対して横にコイルを巻く。それにより通常の鉄心と同じ起電力で鉄心を薄く軽く設置できる。長方体周回の真ん中空洞部分は弱磁により磁力が無くなるがスペース有効活用の為なるべく少なくする。又コイルの外周にも鉄板を巻いて更に強磁図るか、隣の磁性体と協同して強磁する様な配置を取る。その場合ローター磁石の大きさよりも磁性体同士の幅を狭くしない様にする。狭いと同極の反極弱磁になり起電が減る。
無限の起電切り替えを可能にするためには上記の様な物理的な切り替えだと限界が生じるので電気スイッチ、電気的システムによるNS、ONOFFの切り替えも本特許とする。(下記3電磁石リレースイッチ式発電)

7. リニアモーターカー
上記のシステム、以上の理論を受けてリニアモーターカーの浮揚部分他を合理化する。又懸念されている電磁波の防止や高速浮揚移動の安全確保のための手段を確保しリニアモーターカーの発展敷設に寄与する。
車両の下に空気抵抗減らした正面面積の少ないブレードを履かせ、地下にくぐらせて浮揚する。ブレードの地下部分の枚数は重量、耐久性、安定性による。
車輌に対して垂直のブレード又はブレードを垂直に地下に潜らせ下部を又は途中部分を水平にしたブレードを磁石でサンドさせて浮揚させるので、通常の方式よりも2倍以上の浮揚力、安定性、省エネ性が実現する。又揺れに対するブレードの接触をなくすために斜めかラウンドにブレードを作るのも本特許とする。さらに磁力を効果的にする為に磁石をNS交互に多数設置する。
強力磁石、超伝導部の地下埋設型になるので地上部分への電磁波防止が優れる。さらに車両内や外界に対しての電磁波防止のため、地上面に電磁波防止のシールドを張ることも可能である。又ブレードなしの車両下部に平行超伝導バー又は強力磁石をつけたもの本特許とする。これは従来の車両下部、側面に取付けたものと異なり、安定性確保の力量が少なくて済む。横からの電磁波がないため、その防止のためのコスト削減になる。平行超伝導バーは地下埋設で又上下より支えるので省エネかつ電磁波も少なくできる。地下部分はさらにブレードを磁石で車輌正面から見て左右両方から挟んで浮揚させるタイプも本特許とする。このタイプは浮揚高さレベルを広範囲に設定できるので安全性も高まる。その場合、地下部の溝は下に向けて広がる様にする。そうすれば溝に入り込んだ障害物も下に落下して影響がないようになる。
リニアモーターカーは高速移動するので安全性を求められるが、その浮揚部分の安全性は鉄道の線路と車輪の関係のように重要である。障害物や歪み、ブレードの損傷による事故は致命傷である。それらを防ぐための方法は次のとおりである。障害物や歪みは先行して走り別走する先行補助リニアモーターカーを先行して走らせて点検しながら追走する。レーダーと併用して点検しながら安全走行する。又ブレードの損傷については損傷すると後続にも大きく影響し追損傷するので直ちに地上部の予備の車輪に切り替えられるようにする。ブレードは地下で散壊し地上部には損傷残骸が飛ばないようにする。そして予備車輪の運行に影響がないようにする。車両とブレード地上部分は損傷時、切り離して車両に当たらないように地下に吸い込まれるようにする。それにより損傷時の安全確保をする。又その推進部はパワーアップと省エネルギーのため浮揚部、車両部とは切り離した推進部を設けて推進する。推進力と浮揚、安定のための力、車輌スペース部は切り離して考えた方がよく、別口の推進部を設ける。浮揚安定化のための磁力はギャップの大きさよりも接触しないためのアドバンテージを設けた方が良いのでその目的を省力で追及する。具体的には前述ブレードにより浮揚高さを作っていく。推進部については磁石間のギャップを少なくした推進部の方がパワフルかつ省エネなので浮揚安定部と分ける。推進部は車両とは間接的に繋ぐ。ワイヤー等による牽引により車両を牽引する。車両の揺れはワイヤー、コイル等によりヘッジされるので推進部は独立推進できる。又進行方向とは逆の方向にも別途ワイヤー、コイル等で繋ぎブレーキや逆進に使う。

8. 回転数と起電の関係
回転数が高い方が沢山起電する。起電は磁束の差によるが、移動時、磁性体の移動による磁束の移動は徐々に鉄心又はコイルに移動する。磁束は小さい磁束から大きい磁束まで波形に現れるようなカーブを描いて増減する。そのため回転が遅いとその波形は上下変動の少ない緩やかなものになる。波形の真ん中の弱い電圧が使えない状態でそのまま銅線に消費されてしまうので波形が弱いとその波形の真中面積が増えスルーロスが大きくなってしまう。回転早いとその真中の面積が少なくなるので起電として利用される量が大きくなるのである。
なるべく早い回転をさせて起電力のアップを目指すが、その真ん中の起電電力の再生ができればゆるい回転でも同等の起電が可能なのである。具体的にはコイルを超伝導体コイルとしベース部の電力を消失させないこととなる。以上の観点からコイルは超伝導体とすることが好ましい。又磁石がコイルや磁性体に起電するのはコイル磁性体の電子が当初磁性的にばらばらの向きになっているが、磁性を帯びると整列し電子の動き、回転が起電を生む。そして磁性がなくなると電子が元の位置に回転し再起電になる。
磁石とコイル磁性体の位置関係が早く動くと電子の動き、回転にパワーが加わり起電が増える。ステーター、ローターの位置関係を早くすることは現在ローターのみの稼働であるので限界に近付いているがローターとステーターを共に逆に回転させ、合わせることによりその限界は2倍になるのである。いろいろな形状で(円心、二軸など)で会い合わせることができるのでいずれの形状でも本特許とする。又、3.のリレー式発電であればその擦り合わせのタイミングは無くなるので完全なタイミングで完全な起電が可能となるのである。

Outline The present invention aims at strengthening, improving, labor saving, convenience, and safety of superconductors such as generators, motors, and linear motor cars, the shapes of magnets, coils, and magnetic materials, and the relationship between power conversion systems. Is. In addition, this patent covers not only generator motors but also other machines, engines, and mechanisms.
Improve efficiency of stators, rotors, flywheels and various systems and their relationships. A system that performs efficient power generation, which was not possible with conventional power generation systems, by changing the combination of strong magnets such as neodymium magnets and superconductor magnets and magnetic materials such as coils and iron.

1. Outline of power generation by flywheel and magnetic force shielding Outline of system that raises flywheel rotation efficiency and power generation efficiency First, for flywheel for superconducting levitation, make a flywheel with propulsion resistance close to zero .. The rotor of the magnet placed on the flywheel or the flywheel itself is sandwiched between the magnetic coil stators for electromotive force to generate electricity. Alternatively, a superconducting magnet coil for electromotive force is placed on the flywheel and turned, sandwiched between magnets to generate electricity. Permanent power generation is achieved by turning the electric power generated by preventing the rotation loss due to the air resistance of the flywheel and cogging into the rerotation force. Air resistance eliminates the vacuum inside the system. To prevent cogging, use a coil-only electromotive device, or if there is cogging with an iron core, use the following method to eliminate cogging. The repulsive magnets A provided at different locations on the rotor are made to correspond to each other when the magnets are attracted and peeled off or when cogging resistance occurs. The peeling resistance of the magnet attraction during rotation is erased by the repulsive force of A that rotates at the same timing. Since the force of attracting and peeling magnets appears as a cogging rhythm, magnets A of repulsive magnets are provided according to the rhythm. Since the strength of adsorption and peeling and the temporal rhythm can be quantified, cogging can be prevented by providing a repulsive rhythm that matches the numerical values.
The weight increases by the amount of the repulsive magnet A, but if there is no resistance from the flywheel, it does not significantly affect resource waste. The staggered cogging prevention is a fusion of adsorption rhythm and adsorption rhythm, so it cannot be a perfect rhythm match. Since the present invention matches the rhythms of adsorption and repulsion, a perfect match can be achieved. Since the time-series adsorption and repulsion strength of adsorption and repulsion can be completely matched, cogging disappears if a unique frequency during rotation is analyzed according to the number of rotations and magnets A between repulsions are provided accordingly. It is. If it rotates without air resistance and cogging resistance, it will rotate semi-permanently, resulting in permanent power generation. Since the magnet mounted on the flywheel is also generated by weak magnetism and strong magnetism, a coil is wound to collect the electromotive force. In addition, the repulsive magnets A themselves generate weak and strong magnetism, so that power is also used to wind a coil around the magnet A to generate electricity. If the flywheel magnet corresponds to a direct electromagnetic electromotive coil, the flywheel also generates electricity by weak magnetism or strong magnetism, so the coil is wound to collect the electromotive force. In addition to the rotary type, the patent also applies to a straight-ahead + rotary type with two or more axes to release from centrifugal force and other forces.

Flywheel shape The levitation plate of the superconductor has the same radius as the rotor stator and floats on the circle as it is, and the upper magnet part and the stator coil face each other, and the inner and outer circle parts outside or inside the diameter of the rotor stator. There are two types of superconductor levitation plates that allow the top and bottom of the rotor stator magnets to face the top and bottom rotor stator coils directly. The stator and coil may be out of phase, respectively. In addition, the flywheel can also be neodymium, in which case the flywheel is made into multiple layers to disperse gravity. In that case, neodymium is thin and light to improve the effect.

Other power generation methods
Power generation by magnetic force shielding How to open the flywheel to generate electricity First, make a flywheel to levitate. The flywheel uses the complete diamagnetism of superconductivity, or uses the diamagnetism of strong magnets to float and rotate.
A continuous strong magnet of NS in the lower row, a superconducting levitation plate with a hole for passing magnetic force in the middle row, and a magnetic coil in the upper row. Since the superconductor is a completely diamagnetic material, it can shield the magnetic force. A continuous superconductor rotor plate surface of a piece that transmits magnetic force and a piece that shields magnetic force is created and rotated, and the lower magnetic force NS is passed through the upper magnetic coil to generate electricity. Make the rotor thinner to reduce weight and gaps. Air resistance eliminates the vacuum inside the system. For cogging, magnets A that repel each other are inserted at the suction point and the force is used. The anti-polarity of the magnet is used to peel off the attracting magnet during rotation.
The other method is to make a flywheel with a strong magnet whose back surface of the lower disk of the flywheel is opposite to NS, and to repel and float it with the flywheel rotor magnet in the middle stage to rotate it. The flywheel rotor shall have a perforated piece. When the rotor rotates, the magnet stator plate surface, which faces upward on the lower stage, and the magnetic coil on the upper stage, together with the magnet stator plate surface and the magnetic coil on the upper stage, are turned on and off alternately, so electricity is generated. If there is no cogging, it will be a permanent power generation, so as above, we will eliminate cogging by attaching magnets A that repel each other. The rotor in the middle should be thin and light to reduce the gap.
Further, instead of the superconductor, a thin iron plate or a stack of thin iron plates can be used instead. In that case, the magnetic force is weakened according to the thin surface area of the iron plate, so a large thin iron plate is sufficiently weakened. Or, it is weakened by stacking the large iron plates in double or triple layers. Use a thin and wide iron plate to improve the power-to-weight ratio.
Also, cover the coil magnetic material with a thin iron plate, make empty pieces shifted above and below the iron plate, and perform NS conversion to a magnetic material coil. It is effective if the iron plates are double or triple, but the number and area of the iron plates are determined by the balance between the power-to-weight ratio and the magnetic force. This patent also applies to the opposite phases of the magnetic material and the magnet. If thin iron plates are laminated as they are, magnetic force is continuously sown. Therefore, in addition to laminating several layers, the iron plate in the center is made into a U-shape and a rectangular parallelepiped, and the center is hollowed to make the magnetism extremely weak. This method is also patented in this patent.

Biaxial linear type that reduces resistance during rotation Since the circular rotation type has centrifugal force and other forces, its rotation loss is large at high rotation. The parallel bars are propelled by the biaxial rotary to reduce centrifugal force and other forces to save labor. Even if there are two axes, there is a loss at both ends of the half rotation, so it is effective to make the straight part between the two axes longer. Then, the rotor and the stator are crossed by a bar that intersects in parallel to generate electricity.
Create a repulsive levitation body for levitation on both sides and let the rotor float. A magnet for stabilizing is also provided on the floating plate to prevent it from shifting sideways.
The electromotive coil and magnetic material are installed vertically and sanded so that the magnetic force of NS is not wasted. Both ends that rotate half a turn correspond by rotation of gears, bearings, and magnet repulsion levitation.
For the rotor magnet, use a superconductor magnet or use auxiliary magnets from above, below, left, and right for the strong magnet to strengthen the strong magnet.
To prevent cogging, do not insert an iron magnetic material in the coil, or if an iron magnetic material is inserted, prevent it with the force of the repulsive magnet A. This patent also applies when the stator and coil are in opposite phase.

2. Continuously carried electromotive power generation of superconductors and SMES In the above system, superconductors and strong magnets receive strong magnetism by other magnets and iron cores, but the electromotive power at that time is also taken in by winding a coil. In addition, the electromotive power in the magnet is also taken in by inserting a bare copper wire to save energy, and the magnet is prevented from overheating.
The present patent also applies to a generator in which the other superconductor coil or SMES is continuously magnetically electrogenerated from the superconductor magnets, strong magnets, and electromagnets adjacent to each other to store electricity and discharge electricity from the magnets. At that time, SMES is placed up and down in the center of the electromotive part, or sanded to increase the electromotive response and electromotive force. The superconductor of the electromotive body next to the parent magnet should be thin and thin to increase the surface area and the number of coil turns in order to improve power and response. Electromagnetic induction is performed in the electromotive superconducting coil in the lower layer of the parent magnet for electromotive force, and the magnet is continuously propagated in the child body in the lower layer. The coil gradually electromagnetically induces the lower superconducting coil, SMES, while monitoring and managing the magnitude of the magnetic current, and stores electricity. Also, to prevent the voltage of the superconductor coil from rising too high, a bare copper wire for preventing quenching is siding and excess power flows out before quenching. Prevents quenching due to excessive magnetic force and voltage. If more and more are adjacent to each other, the available power will increase. For weak magnetic reduction due to quenching or runoff, the parent superconductors are placed at appropriate intervals, and the children with weak magnetic reduction are replenished by electromagnetic induction in a timely manner. The roles of the parent and the child are automatically controlled according to the power flow of the system so that the optimum parent can appear to charge the child.

3. Electromagnet relay switch type power generation In addition, the following system that applies the timing of the electromotive force, which is the above improvement point, to increase the amount of electromotive force is also patented. In addition, electricity is generated by the magnetic force brought about by the electromagnet. By converting the electromagnet to NS or ON / OFF with a switch relay and increasing its speed, the generated power can exceed the power used. If the electromagnet for electromotive force is a superconductor, the amount of electric power used is reduced and it is effective.
Since the amount of electricity generated is proportional to the number of NS conversions, perform NS conversion or turn on / off electricity as soon as possible. As a result, the power consumption per conversion is reduced and the total amount of electricity generated is increased. In the case of electromagnetic generation due to the use of electricity, if only one song is lit by turning on and off instead of turning on each NS, no power is required when turning off, so half the amount of power and the same number of power generations, the ONOFF method saves power. This can be done more advantageously, but both are patented. Further, the efficiency is improved by making the magnetic material of the electromagnet with a thin iron plate or a rectangular parallelepiped of the thin iron plate to save power and surrounding the electromagnet with a coil or sharing the magnetic material with the electromagnet coil and the electromotive coil. The outside of the coil is also wound with an iron plate and magnetized. The following method is also patented as the method of the electric switch relay.
The patent also applies to a type in which a motor is rotated by the generated magnetic force and further used as power generation or power. In that case, a coil is wound around a magnet or a magnetic material in the motor to generate electricity and generate electricity. In addition, a filmless copper wire is placed in a magnet or magnetic material to prevent wasted heat and wasted power from picking up power in the magnet or magnetic material. In addition, both the NS conversion type and the energy-saving type that rotates and generates electricity by turning it on and off are patented.
The following 5. Energy-saving motor using the above various mechanisms is also patented.

4. Applicable to everything that runs and moves, not just linear power generation. The one that moves is defined as the rotor, and the one that receives it is defined as the stator to generate electricity.
Those with wheels, such as automobiles and trains, generate electricity with the wheels that are the rotors and the car body that is the stator. Or, since the vehicle is also moving, the moving body is used as a rotor, and the animal stator is received by the rotor to generate electricity. Cogging shall be eliminated by the repulsive magnet A, etc., and the efficiency using the above system shall be used.

5. Power-up than energy-saving motor multi-layer sandwich A multi-layer sandwich made of a thin permanent magnet NS counter electrode with a rotor, and the stator is an electromagnet and is applied to a double-sided permanent magnet. It receives and repels the magnetic force between the rectangular parallelepiped iron core on a thin iron plate and the sand that is efficiently magnetized by the coil. At the same time as it rotates strongly, it draws electricity from the affected permanent magnets by weak magnets and strong magnets by a coil wound around the permanent magnets. In addition, the energy-saving mode of natural adsorption of iron with the rotor as the coil iron core and the repulsion by the electromagnetic magnet and the electromagnetic OFF is also patented. In that case, the rotor core coil generates electricity when it is OFF, so it takes power.
If the stator is a permanent magnet, the rotor is an electromagnet and the stator is not related to weight, so it is a strong one. To make the rotor electromagnet lighter, the rotor is made of the above-mentioned thin iron plate magnetic material and a thin flat thin coil. In addition, it rotates strongly and at the same time draws electricity from the affected permanent magnets from weak magnets and strong magnets from the coil wound around the permanent magnets. Also, since the rotor generates electricity when it rotates, it collects electricity. In that case, you can turn the electromagnet on and off, and you can also set the energy saving mode to generate electricity when it is off. Power is saved and power is taken. In addition, a bare coil without enamel is placed in the magnet and magnetic iron of the rotor stator, and an eddy current is applied to prevent short circuit and heat, or the current is also used.
Prevent cogging by installing a repulsive magnet. If cogging is performed during the rotation process, a magnet with a force that is completely opposite to the force of the obstacle that is the source of the cogging motion is created and installed to prevent cogging. If it still occurs due to high speed, limit the speed of the motor and increase the speed by gear link.
Even in the motor, the multi-axis structure with two or more axes reduces centrifugal force and other resistance. In order to suppress the energy lost by the rotational movement, the type that generates the power by the straight movement is also patented. In order to reduce the air resistance when rotating and going straight, the air resistance is eliminated by vacuum structure + water cooling and gas cooling. In addition, the efficiency of the coil can be measured by the winding method of 6. below. A flat, square, thin coil is used to increase the magnet, and high-voltage power transmission is used to reduce the base loss and reduce the power loss due to the coil. If the magnetic material is also a rotor, the iron core should be thin or a rectangular parallelepiped made of a thin iron plate to reduce the weight in order to increase the power-to-weight ratio. If the rotor is a permanent magnet, make the permanent magnet thinner and lighter, and make the permanent magnets multi-layered to increase the power-to-weight ratio. In addition, in order to make high-voltage power transmission constant, the coil increases the number of terminals and measures the number of terminals through which power passes according to the speed. And the voltage remains high.

6. In order to further improve the shape of the magnetic material and the coil, the relationship between the magnetic force and iron, and the winding performance, the efficiency that was not achieved by the conventional power generation system by combining a strong magnet such as a neodymium magnet with a magnetic material such as a coil and iron To generate good power. Emphasis is placed on the power-to-weight ratio to save rotor power and maximize generated power. To save the power of the rotor, reduce resistance and weight.

Increased electromotive force with a flat, square, thin coil.
Until now, there was a coil that wanted to be flat, but it was the theory that there would be no extra gap because it is square, and if you wind a thin coil, you can wind it closer than the magnetic material, and the magnetic force from the magnetic material is strongly received and between the coils. There was no extra gap in the, and it was effective. However, if the coil is thin, it cannot withstand a large current. Further, there is a drawback that efficiency is lowered because heat is generated due to an increase in current. In the present invention, since a shortcut point is provided in the middle of the coil and the coil is washed away first, a large number of thin coils can be wound. Moreover, since heating is also eliminated by this, the performance of the generator and the motor is not deteriorated. Also, instead of that, the coil is thin, but the number of terminals where the coil flows out is increased. That is, the current per one-line coil is reduced by winding the coil terminals in double and triple layers. This is because a flat, square and thin coil not only increases the density at the center of the coil, but also increases the surface area of the coil. As the density increases, the current generated in the coil also increases, and as the surface area increases, the surface area of the magnetic flux also increases, so the magnetic force and secondary magnetism generated from the coil also increase, and the electromotive force increases.
The following coil forms are also patented. Change the thickness of the coil between near and far from the magnetic material. Since the power is low near the magnetic material, it is thin and the number of turns is increased by making it thinner. Since the power increases as the distance increases, the internal resistance due to the power is reduced by making it thicker. The power increases as you go to the outside, so make it thicker and thicker. In terms of thickness and thickness, priority is given to thinness. This is because the flatter one increases the efficiency of the direction of the magnetic flux. Gradually increase the width of the thin and flat coil. In addition, there is a limit as thinness and an efficiency limit, so we will increase the thickness at that limit. It also reduces the current short circuit in the magnet inside the rotor magnet and the coil for generating electricity. Rotor magnets and electromagnetic bodies are also generated by weak magnetism and strong magnetism, so a coil is wound to generate electricity and use it as electric power. In addition, electricity is generated in the iron core in the same way as the coil. A ground copper wire is provided on the rotor magnet and iron core to allow current to flow. As a result, it is possible to suppress the generation of heat due to a short circuit. If the amount of power is large, it is used as generated power.

How to enclose the iron core magnetic material with a coil
The magnetic force generated in the iron core magnetic material is effectively passed through the coil. Make the iron core thin and flat to make its power-to-weight ratio effective. The iron part inside is not meaningful because it does not reflect the magnetic flux, so it is thin, but if it is too thin, the influence of the counter electrode on the back side will be strong, so it is not too thin. Or make a thin iron plate into a rectangular parallelepiped.
The coil shall be thin, flat and thin to strengthen the electromotive force. For voltage and current, increase the number of terminals at the galvanizing destination. Also, if you wind the iron plate on the outside, it will be strongly magnetized, so wind it.
Since the magnet also has an electromotive force due to weak magnetism and strong magnetism, a coil is wound to collect electricity. Since the magnet is a stator, make it as large and magnetic as possible.
Also, since S is stronger than N, set so that S comes to the iron core as much as possible.

Make the magnet as thin as possible In order to maximize the magnetic force per volume and weight, the volume-to-area ratio of the magnet is given the highest priority over the area. Therefore, make the magnet as thin as possible. The magnetic flux weakens near the center of the flat magnet due to the bending of the magnetic flux. To eliminate this, the length and width of the magnet are also reduced.
Alternatively, a large number of small magnets that are flat and narrow in length and width are connected horizontally or vertically. Since strong magnetism is also generated by the connection, the magnetic flux is strengthened. Also, if the rotor is a magnet, the rotational motion vs. power-to-weight ratio is not wasted by using both the NS on both the front and back sides. In addition, the rotor is multi-layered and magnetized by sandwiching a magnetic coil to strengthen the electromotive force. In that case, the magnetic material is strongly magnetized, so it is sanded with a homopolar magnet. However, depending on the shape of the magnetic material, it will be strongly magnetized by the antipolar sand, so it will be changed at any time.

Cogging prevention The coil does not use an iron core to prevent cogging, or if it is used, a repulsive magnet A is provided and a counterpolar magnet that matches the adsorption rhythm and the counterpolar rhythm is provided in the path to prevent cogging. Since it is the repulsive rhythm that exactly matches the adsorption rhythm, the adsorption and repulsive rhythms are tuned and meshed.

Preventing power loss due to the movement of the magnet and the magnetic material and the timing of electromotive force The difference between the initial magnetic flux of the magnetic material and the magnetic flux after magnetization becomes the electromotive force, but as the magnet progresses, the magnetic flux of the magnetic material gradually increases. The electromotive force gradually increases, but the low power power disappears first in the coil due to the original electrical resistance of the coil. Looking at the circumferential waveform of the electromotive force, the waveform is high and narrow when the rotation is fast, while it is low and wide when the rotation is low, and the foot of the mountain seems to be large. The entire area of the mountain does not become usable power. Since the low part of the base becomes a loss and is not reflected in the electromotive force, the part of the mountain with the area of the waveform is large and the loss is large at low rotation. At high rpm, the shape of the waveform changes and the low power part at the base decreases.
Also, if the coil is made as thin as possible, the power transmission per coil will be high, so the coil should be thin, but there is a limit depending on the magnitude of the voltage and current, so if it is made thin, many coils will be used according to the electromotive voltage and current. Bundle and increase the number of terminals. Since the amount of voltage and current can be limited by not rotating the coil in the same cycle, maximum electromotive force and maximum high-voltage power transmission can be performed. Further, if it is a superconductor coil, its low power portion does not disappear in the coil, so that it can be expanded and used depending on the scale.

Non-touch magnetic force support Non-touch rotor magnetic force is increased by magnets installed elsewhere, and rotor weight is reduced by magnetic force support strong magnetism. (Only when the rotor is a magnet)

Multi-shaft type Multi-shaft, linear, reduction of centrifugal force by vacuum liquid cooling, other force, propulsion resistance.
Although it is a type of rotary generator, it has a structure with two or more shafts, which reduces rotational resistance. Moreover, since it has a linear structure, there is no auxiliary resistance or propulsion resistance, which saves energy.

Measure the timing of electricity generation and increase the amount of electricity generation
By increasing the number of NS conversions, the number of power generations is increased and the amount of power generation is increased. Increase the number of NS conversions for rotors and stators, and increase the conversion timing steps. Increase the number of NS conversions or magnetic pole ON / OFF per rotation. When the rotor is a coil The coil magnetic material is made as thin as possible because the magnetic core is made as thin as possible to improve the power-to-weight ratio and at the same time the number of turns of the coil is increased. Even if the stator is a coil, in order to use the space efficiently, the magnetic material is made of a thin iron plate made into a rectangular parallelepiped and the iron plate is rotated. As a result, the outer peripheral portion of the circumference can be made the same pole. A coil is wound around the iron plate horizontally with respect to the long part of the iron plate. As a result, the iron core can be installed thinly and lightly with the same electromotive force as a normal iron core. The central cavity around the rectangular parallelepiped loses its magnetic force due to weak magnetism, but it should be reduced as much as possible for effective space utilization. In addition, an iron plate is wrapped around the outer circumference of the coil to further strengthen the magnetism, or the coil is arranged so as to strongly magnetize in cooperation with the adjacent magnetic material. In that case, the width between the magnetic materials should not be narrower than the size of the rotor magnet. If it is narrow, it becomes an anti-polar weak magnet of the same pole and the electromotive force is reduced.
In order to enable infinite electromotive switching, there is a limit to the physical switching as described above, so switching between NS and ONOFF by an electric switch and an electric system is also patented. (The following 3 electromagnet relay switch type power generation)

7. Linear motor car Based on the above system and the above theory, rationalize the floating part of the linear motor car and others. In addition, it will contribute to the development and laying of linear motor cars by securing means for preventing electromagnetic waves of concern and ensuring the safety of high-speed floating movement.
A blade with a small front area with reduced air resistance is placed under the vehicle, and it is passed underground to float. The number of underground parts of the blade depends on weight, durability and stability.
Since the blade or blade that is perpendicular to the vehicle is submerged vertically underground and the blade with the lower part or the middle part horizontal is sanded with a magnet and floated, the levitation force and stability are more than twice that of the normal method. , Energy saving is realized. It is also patented to make the blade diagonally or roundly to eliminate the contact of the blade with shaking. In order to make the magnetic force more effective, a large number of magnets are installed alternately in NS.
Since it is a strong magnet and a superconducting part buried underground, it is excellent in preventing electromagnetic waves from the ground. Furthermore, in order to prevent electromagnetic waves inside and outside the vehicle, it is possible to put an electromagnetic wave prevention shield on the ground surface. In addition, a parallel superconducting bar or a strong magnet is attached to the lower part of the vehicle without blades. This is different from the conventional one mounted on the lower part and the side surface of the vehicle, and requires less ability to ensure stability. Since there is no electromagnetic wave from the side, the cost is reduced to prevent it. Since the parallel superconducting bar is buried underground and supported from above and below, it can save energy and reduce electromagnetic waves. The underground part is also patented as a type in which the blade is held by a magnet from both the left and right sides when viewed from the front of the vehicle and floated. This type can set the levitation height level in a wide range, which enhances safety. In that case, the groove in the basement should expand downward. Then, the obstacles that have entered the groove will also fall down and will not be affected.
Since a linear motor car moves at high speed, safety is required, but the safety of its floating part is as important as the relationship between railroad tracks and wheels. Accidents caused by obstacles, distortions and blade damage are fatal. The methods to prevent them are as follows. Obstacles and distortions are followed by running ahead and inspecting the leading auxiliary linear motor car that runs ahead and runs separately. Drive safely while checking in combination with radar. As for the damage of the blade, if it is damaged, it will greatly affect the subsequent damage and additional damage will occur, so it will be possible to immediately switch to the spare wheel on the ground. The blades will be scattered underground to prevent damaged debris from flying above ground. And make sure that the operation of spare wheels is not affected. When the vehicle and the blade above ground are damaged, they should be separated and sucked underground so that they do not hit the vehicle. This will ensure safety in the event of damage. In addition, the propulsion section is provided with a levitation section and a propulsion section separate from the vehicle section for power-up and energy saving. It is better to consider the propulsion force and levitation, the force for stability, and the vehicle space part separately, and provide a separate propulsion part. Since it is better to provide an advantage that the magnetic force for levitation stabilization does not come into contact rather than the size of the gap, the purpose is pursued with labor saving. Specifically, the levitation height is created by the above-mentioned blade. As for the propulsion section, the propulsion section with a smaller gap between magnets is more powerful and energy efficient, so it is separated from the levitation stabilization section. The propulsion unit is indirectly connected to the vehicle. The vehicle is towed by towing with a wire or the like. Since the shaking of the vehicle is hedged by wires, coils, etc., the propulsion unit can be independently propelled. Also, it is used for braking and reverse movement by connecting it with a wire, coil, etc. separately in the direction opposite to the traveling direction.

8. Relationship between rotation speed and electromotive force The higher the rotation speed, the more electromotive force is generated. The electromotive force depends on the difference in magnetic flux, but during movement, the movement of magnetic flux due to the movement of the magnetic material gradually moves to the iron core or coil. The magnetic flux increases or decreases in a curve that appears in the waveform from a small magnetic flux to a large magnetic flux. Therefore, if the rotation is slow, the waveform becomes gentle with little vertical fluctuation. Since the weak voltage in the middle of the waveform cannot be used and is consumed by the copper wire as it is, if the waveform is weak, the center area of the waveform increases and the through loss increases. The faster the rotation, the smaller the area in the center, and the larger the amount used for electromotive force.
We aim to increase the electromotive force by rotating as fast as possible, but if the electromotive force in the middle can be regenerated, the same electromotive force can be generated even with a loose rotation. Specifically, the coil is used as a superconductor coil so that the power of the base portion is not lost. From the above viewpoint, the coil is preferably a superconductor. In addition, magnets generate electricity in the coil or magnetic material because the electrons in the coil magnetic material are initially in different directions magnetically, but when they become magnetic, they are aligned and the movement and rotation of the electrons generate electricity. When the magnetism disappears, the electrons rotate to their original positions and re-electron.
If the positional relationship between the magnet and the coil magnetic material moves quickly, the movement of electrons and the rotation will be powered and the electromotive force will increase. To speed up the positional relationship between the stator and rotor is approaching the limit because only the rotor is currently in operation, but the limit is doubled by rotating both the rotor and the stator in reverse and matching them. Since it is possible to meet in various shapes (circular center, biaxial, etc.), any shape is patented. In addition, in the case of the relay type power generation in 3., the timing of the rubbing is eliminated, so that the complete power generation can be performed at the perfect timing.

JP2019556462A 2017-11-29 2017-11-29 Magnetic system and parts related to generators, motors, linear motor cars, etc. Pending JPWO2019106760A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042838 WO2019106760A1 (en) 2017-11-29 2017-11-29 Magnetic force system and components relating to power generator, motor, linear motor car and like

Publications (1)

Publication Number Publication Date
JPWO2019106760A1 true JPWO2019106760A1 (en) 2020-12-17

Family

ID=66663870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556462A Pending JPWO2019106760A1 (en) 2017-11-29 2017-11-29 Magnetic system and parts related to generators, motors, linear motor cars, etc.

Country Status (2)

Country Link
JP (1) JPWO2019106760A1 (en)
WO (1) WO2019106760A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832200B2 (en) * 1988-04-28 1998-12-02 清水建設株式会社 Running path structure of magnetic levitation train
JPH0923624A (en) * 1995-07-06 1997-01-21 Nabco Ltd Axle generator for rolling stock
JPH11337240A (en) * 1998-05-27 1999-12-10 Mitsubishi Heavy Ind Ltd Cooling method of flywheel power storage device
JP4135951B2 (en) * 2005-06-17 2008-08-20 中部エイチ・エス・エス・ティ開発株式会社 Orbital structure information detector
JP2011135733A (en) * 2009-12-25 2011-07-07 Aisin Seiki Co Ltd Rotating electric machine
JP2011152024A (en) * 2010-01-20 2011-08-04 Car-Life Research Institute Corp Power generation method using road and vehicle
JP3170663U (en) * 2011-07-14 2011-09-22 富夫 矢古宇 Electric vehicle power generator
JP2013094030A (en) * 2011-10-27 2013-05-16 Hokuto Co Ltd Armature coil and synchronous rotary machine
JP6058931B2 (en) * 2012-07-24 2017-01-11 株式会社幸大ハイテック Permanent magnet generator

Also Published As

Publication number Publication date
WO2019106760A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6393916B2 (en) Electric rotating machine
CN103490573B (en) A kind of axial magnetic field Magneticflux-switching type surface-mount type permanent magnetism memory electrical machine
CN103199661B (en) Built-in permanent magnet memory motor of magnetic flux switching type
CN205490049U (en) Disc motor
US8766493B2 (en) Magnetic stator assembly
CN102904404A (en) Halbach-structure-based iron-core-free axial magnetic field brushless direct-current electromotor
CN108808910A (en) A kind of built-in hybrid permanent magnet motor
CN103312104A (en) Dual-rotor flux-switching permanent-magnet motor
CN201549999U (en) Axial flux switching type hybrid excitation synchronous generator
CN106981969B (en) Deicing robot magnetic torque rotation drive device based on magnetic conduction conductive material
CN109245483B (en) Bilateral alternating-pole permanent magnet linear motor without yoke part at secondary level
CN205173235U (en) Magnetic levitation motor uses radial magnetic bearing
KR100975326B1 (en) Electric generator with fixing plate comprising segmented magnets and rotary disk having segmented coil
CN104779755B (en) A kind of modularization double-stator permanent magnet straight line motor and the motor module being made up of it
JPWO2019106760A1 (en) Magnetic system and parts related to generators, motors, linear motor cars, etc.
CN102723837A (en) Electrically-controlled magnetic motor
TWM475102U (en) Inductive power generating device
CN103312061A (en) Switch magnetic chain motor with concealed salient pole
CN102361379B (en) Large-capacity double-U-type stator double-disk type rotor transverse magnetic flux permanent magnet wind-driven generator
CN107800265A (en) A kind of cylindrical shape transverse flux permanent-magnet synchronous linear generator
CN102355110B (en) High-capacity outer-rotor/trihedral-stator transverse-flux permanent magnet wind-driven generator
CN103401324A (en) Permanent magnet motor
Mazlan et al. Design optimization of single-phase outer-rotor hybrid excitation flux switching motor for electric vehicles
CN202309447U (en) High-capacity transverse flux permanent magnet wind driven generator having double-C stator and double-disc rotor
KR102126784B1 (en) Electrical device for storing electricity by flywheel