JPWO2019104543A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019104543A5
JPWO2019104543A5 JP2020529328A JP2020529328A JPWO2019104543A5 JP WO2019104543 A5 JPWO2019104543 A5 JP WO2019104543A5 JP 2020529328 A JP2020529328 A JP 2020529328A JP 2020529328 A JP2020529328 A JP 2020529328A JP WO2019104543 A5 JPWO2019104543 A5 JP WO2019104543A5
Authority
JP
Japan
Prior art keywords
molecular sieve
type molecular
modified
dealuminum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020529328A
Other languages
Japanese (ja)
Other versions
JP2021504281A (en
JP7169354B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/CN2017/113629 external-priority patent/WO2019104543A1/en
Publication of JP2021504281A publication Critical patent/JP2021504281A/en
Publication of JPWO2019104543A5 publication Critical patent/JPWO2019104543A5/ja
Application granted granted Critical
Publication of JP7169354B2 publication Critical patent/JP7169354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水素化分解分野に関し、具体的には、変性Y型分子篩及び製造方法、水素化分解触媒及び製造方法、並びに、炭化水素油の水素化分解方法に関する。 The present invention relates to the field of hydrocracking, specifically, a modified Y-type molecular sieve and a manufacturing method, a hydrocracking catalyst and a manufacturing method, and a method for hydrocracking hydrocarbon oil.

水素化分解技術は、原料の適応性が高く、製品のスキームが柔軟であり、対象製品の選択性が高く、製品の品質が高く、付加価値が高いなどの特徴があり、さまざまな重質、劣質の原料をクリーンな燃料油や高品質の化学産業用原料に直接変換でき、現代の石油精製や石油化学産業で最も重要な重油高度加工技術の1つとなり、中国国内外でますます広く使用されるようになった。中国の現在の水素化分解装置の加工能力は50.0Mt/aを超えているが、中国国内の原油の品質が年々悪化しているため、高硫黄含有量の原油の輸入量は大幅に増加しており、精製プロセス自体及び石油製品の品質に対する環境保護要件が厳しくなり、クリーンな燃料油や化学産業用原料に対する市場の需要は増え続けている。したがって、水素化分解技術はより広く使用されることが予測でき、それに伴い、水素化分解技術自体に対するより高い要件も求められる。 Hydrocracking technology has features such as high adaptability of raw materials, flexible product scheme, high selectivity of target products, high quality of products, high added value, etc. It can directly convert poor quality raw materials into clean fuel oils and high quality chemical industrial raw materials, making it one of the most important heavy oil advanced processing technologies in modern petroleum refining and petroleum chemical industry, and is being used more and more widely in China and abroad. It came to be done. The processing capacity of China's current hydrocracking equipment exceeds 50.0 Mt / a, but the quality of crude oil in China is deteriorating year by year, so the import volume of crude oil with high sulfur content has increased significantly. As a result, environmental protection requirements for the refining process itself and the quality of petroleum products have become stricter, and the market demand for clean fuel oils and raw materials for the chemical industry continues to increase. Therefore, it can be predicted that the hydrocracking technique will be used more widely, and accordingly, higher requirements for the hydrocracking technique itself will be required.

水素化分解技術の中核は、水素化分解触媒であり、水素化分解触媒は、分解と水素化活性を持つ二重機能型の触媒であり、分解機能は、分子篩などの酸性担体材料によって提供され、水素化機能は、触媒に担持された元素周期の第VI族及び第VIII族の活性金属によって提供され、分解及び水素化の2つの機能サイトを調整することによりさまざまな反応のニーズを満たす。水素化分解触媒の分解成分としての分子篩は、その性能が触媒の反応性能に決定的な役割を果たす。現在、水素化分解触媒に使用される分子篩のタイプは主にY型とβ型などである。Y型分子篩は、3次元のスーパーケージと四面体のような12員環マクロ孔、開放した細孔構造を有し、大分子環状炭化水素に対して優れた開環選択性を有し、その重質ナフサ製品は、芳香族炭化水素の潜在含有量が高く、水素化によるテールオイルのBMCI値が低く、現在、水素化分解触媒で最も広く使用されている。 The core of the hydrocracking technology is the hydrocracking catalyst, the hydrocracking catalyst is a dual-function catalyst with cracking and hydroactive activity, and the cracking function is provided by an acidic carrier material such as a molecular sieve. The hydrogenation function is provided by the active metals of Group VI and Group VIII of the element cycle carried on the catalyst, and meets the needs of various reactions by coordinating the two functional sites of decomposition and hydrogenation. The performance of molecular sieves as a decomposition component of a hydrogenation decomposition catalyst plays a decisive role in the reaction performance of the catalyst. Currently, the types of molecular sieves used for hydrocracking catalysts are mainly Y-type and β-type. The Y-type molecular sieve has a three-dimensional supercage, a tetrahedron-like 12-membered ring macropore, and an open pore structure, and has excellent ring-opening selectivity for large molecular cyclic hydrocarbons. Heavy naphtha products have a high potential content of aromatic hydrocarbons and a low BMCI value of hydrogenated tail oil and are currently the most widely used in hydrocracking catalysts.

水素化分解触媒の分解成分として、Y型分子篩は、通常、分子篩の水熱及び化学的安定性を向上させ、また、その酸性特性及び孔構造を改善して水素化分解反応に適切な酸性環境及び好ましい細孔構造を得るために、使用前に変性する必要がある。通常、Y型分子篩の変性技術には、水熱変性法;無機酸、有機酸、塩や錯化剤などによる化学的脱アルミニウム変性法;水熱と化学的脱アルミニウム変性法の組み合わせなどの方法がある。しかしながら、現在の変性方法で得られた変性Y型分子篩は、分子篩の異なる細孔(ミクロ孔と二次孔)に酸性中心が分布しており、この場合、一方では、ミクロ孔における酸性中心の利用可能性が低く、他方では、過剰な二次分解反応が起こりやすく、反応選択性や液体製品の収率が低下する。 As a decomposition component of a hydrocracking catalyst, a Y-type molecular sieve usually improves the hydrothermal and chemical stability of the molecular sieve and also improves its acidic properties and pore structure to provide an acidic environment suitable for the hydrocracking reaction. And need to be modified prior to use in order to obtain a favorable pore structure. Usually, the modification technique of the Y-type molecular sieve includes a hydrothermal modification method; a chemical dealumination modification method using an inorganic acid, an organic acid, a salt or a complexing agent; a combination of a hydrothermal modification method and a chemical dealumination modification method. There is. However, in the modified Y-type molecular sieves obtained by the current modification method, acidic centers are distributed in different pores (micropores and secondary pores) of the molecular sieves, and in this case, on the other hand, the acidic centers in the micropores are distributed. The availability is low, on the other hand, excessive secondary decomposition reactions are likely to occur, reducing reaction selectivity and yield of liquid products.

US4503023は、分子篩の変性方法を開示し、NaYゼオライトに対してフルオロケイ酸アンモニウムを用いて液相脱アルミニウム及びシリコン補充を行うことにより製造される分子篩は、結晶化度が高く、シリカ/アルミナ比が高く、有機窒素被毒に対して一定の抵抗能力を有するものの、構造が完全すぎるため、二次孔はほとんどなく、酸性中心は主にミクロ孔に位置しており、劣質な原料の大分子反応物が接近しにくい。 US4503023 discloses a method for modifying molecular sieves, and molecular sieves produced by liquid phase dealuminum and silicon replenishment of NaY zeolite with ammonium fluorosilicate have a high crystallinity and a silica / alumina ratio. Although it has a certain resistance to organic nitrogen poisoning, it has few secondary pores because its structure is too perfect, and the acidic center is mainly located in the micropores, which is a large molecule of inferior raw material. Reactants are difficult to approach.

CN1178193Aは、孔径が1.7×10 -10 メートルを超える細孔の容積が45%以上を占め、表面積750~900m /g、格子定数24.23×10 -10 メートル~25.45×10 -10 メートル、結晶化度95~110%、SiO /Al 比7~20である変性Yゼオライトを開示している。その方法は、原料としてNaYゼオライトを使用し、まずNa O含有量が2m%未満になるまでアンモニウム交換を行ってから、水蒸気処理を行うことであり、蒸気処理後のゼオライトを、NH 、H やその他の金属カチオンを含む緩衝液で処理することを特徴とする。水熱脱硫と緩衝液による処理との組み合わせによりY分子篩を変性して得た分子篩は、豊富な二次孔を有し、拡散性能が良好であるが、この変性方式により得られた変性Y分子篩は、ミクロ孔構造に存在する酸性サイトが多数あり、分子篩の酸性サイトの分散度が大きく、反応選択性が低い。 CN1178193A occupies 45% or more of the volume of pores having a pore diameter of more than 1.7 × 10-10 m, has a surface area of 750 to 900 m 2 / g, and has a lattice constant of 24.23 × 10-10 m to 25.45 × 10 . A modified Y zeolite having a crystallinity of -10 meters, a crystallinity of 95 to 110%, and a SiO 2 / Al 2 O3 ratio of 7 to 20 is disclosed. The method is to use NaY zeolite as a raw material, first exchange ammonium until the Na 2 O content is less than 2 m%, and then perform steam treatment. It is characterized by treatment with a buffer solution containing H + and other metal cations. The molecular sieve obtained by modifying the Y molecular sieve by a combination of hydrothermal desulfurization and treatment with a buffer solution has abundant secondary pores and good diffusion performance. However, the modified Y molecular sieve obtained by this modification method. Has many acidic sites existing in the micropore structure, the degree of dispersion of the acidic sites on the molecular sieve is large, and the reaction selectivity is low.

CN1178721Aは、格子定数2.425~2.436nm、SiO /Al モル比15~200、比表面積700~780m /g、相対結晶化度100~125%を特徴とするシリカ/アルミナ比と結晶化度が高いY型分子篩を開示している。その製造方法は次のとおりである。NH NaY分子篩原料に対してヘキサフルオロケイ酸アンモニウムを使用して脱アルミ化・シリコン補充をした後、飽和蒸気で水熱処理し、最後にアルミニウム塩溶液で処理する。しかし、得られた変性Y型分子篩は、二次孔含有量が低く、またミクロ孔に多数の酸性中心が分布しているため、反応過程での過剰な分解反応や液体の収率低下を引き起こしてしまう。 CN1178721A is a silica / alumina characterized by a lattice constant of 2.425 to 2.436 nm, a SiO 2 / Al 2O 3 molar ratio of 15 to 200, a specific surface area of 700 to 780 m 2 / g, and a relative crystallinity of 100 to 125%. We disclose Y-type molecular sieves with high specific surface area and high crystallinity. The manufacturing method is as follows. The NH 4 NaY molecular sieve raw material is dealuminated and replenished with silicon using ammonium hexafluorosilicate, hydrothermally treated with saturated steam, and finally treated with an aluminum salt solution. However, the obtained modified Y-type molecular sieve has a low secondary pore content and a large number of acidic centers are distributed in the micropores, which causes an excessive decomposition reaction in the reaction process and a decrease in the yield of the liquid. Will end up.

US4036739は、水素化分解法を開示しており、315~899℃の温度で少なくとも0.5psiの水蒸気と一定時間接触させて処理し、格子定数2.440~2.464nmの変性Y型分子篩を得て、処理されたY分子篩をアンモニウム交換して、ナトリウム含有量が1%未満の中間体を得て、次に、格子定数が2.440nm未満の変性Y分子篩を得るY型分子篩の変性方法を開示しており、ただし、この処理プロセスが厳しいことにより、得られた変性Y分子篩は、結晶化度が深刻に破壊され、結晶化度が低くなり、その使用性能に影響を与える。 US40367639 discloses a hydrocracking method, which is treated by contacting with steam of at least 0.5 psi for a certain period of time at a temperature of 315 to 899 ° C. to obtain modified Y-type molecular sieves having a lattice constant of 2.440 to 2.464 nm. A method for modifying a Y-type molecular sieve obtained by exchanging ammonium with the treated Y molecular sieve to obtain an intermediate having a sodium content of less than 1%, and then obtaining a modified Y molecular sieve having a lattice constant of less than 2.440 nm. However, due to the strictness of this treatment process, the obtained modified Y molecular sieve has a serious destruction of the degree of crystallization, and the degree of crystallization is lowered, which affects the use performance thereof.

従来技術で提供されているY型分子篩は水素化分解反応に用いられる場合、過剰な分解の欠点があり、且つ反応選択性が悪い。 When the Y-type molecular sieve provided in the prior art is used for a hydrocracking reaction, it has a drawback of excessive decomposition and poor reaction selectivity.

本発明の目的は、水素化分解反応に存在する過剰な分解や悪い反応選択性という従来技術の問題を解決するために、変性Y型分子篩及び製造方法、水素化分解触媒及び製造方法、並びに、炭化水素油の水素化分解方法を提供することである。この変性Y型分子篩の酸性中心サイトがマクロ孔の内部に集中して分布し、得た水素化分解触媒は、ワックスオイルの水素化分解反応に用いられると、触媒反応プロセスの選択性を向上させ、二次分解反応の発生を減少させ、水素化分解によるテールオイルの品質を改善し、反応の液体製品の収率を向上させることができる。 An object of the present invention is to solve the problems of the prior art such as excessive decomposition and poor reaction selectivity existing in a hydrocracking reaction, a modified Y-type molecular sieve and a manufacturing method, a hydrocracking catalyst and a manufacturing method, and It is to provide a method for hydrocracking hydrogenated oil. The acidic center sites of this modified Y-type molecular sieve are concentrated and distributed inside the macropores, and the obtained hydrocracking catalyst improves the selectivity of the catalytic reaction process when used in the hydrocracking reaction of wax oil. It is possible to reduce the occurrence of secondary decomposition reactions, improve the quality of tail oil due to hydrocracking, and improve the yield of liquid products in the reaction.

本発明の発明者は、研究したところ、従来技術で製造される変性Y型分子篩では、大量の酸性中心がミクロ孔構造に存在しており、ピリジン赤外分光法による全酸量とn-ブチルピリジン赤外分光法による酸との比が一般的には1.5より大きいことを見出した。ただし、ミクロ孔に大量存在する酸性中心により過剰な分解反応が起こり、反応選択性が悪くなる。それに対して、発明者は、変性Y型分子篩の酸性中心の分布を限定し、ミクロ孔における酸性中心の数を制御することで、水素化分解反応に存在する過剰な分解や悪い反応選択性の問題を解決するために、本発明を提案している。 As a result of research by the inventor of the present invention, in the modified Y-type molecular sieve manufactured by the prior art, a large amount of acidic centers are present in the micropore structure, and the total acid amount and n-butyl by pyridine infrared spectroscopy are present. We have found that the ratio to acid by pyridine infrared spectroscopy is generally greater than 1.5. However, an excessive decomposition reaction occurs due to a large amount of acidic centers present in the micropores, and the reaction selectivity deteriorates. On the other hand, the inventor limits the distribution of acidic centers in the modified Y-type molecular sieve and controls the number of acidic centers in the micropores to prevent excessive decomposition and poor reaction selectivity present in the hydrocracking reaction. The present invention is proposed to solve the problem.

従来技術に存在する欠陥に対して、本発明の第1態様は、変性Y型分子篩を提供し、前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 0.5~2重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1~1.2であり、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.1~1.2mmol/gである。 For defects existing in the prior art, the first aspect of the present invention provides a modified Y-type molecular sieve, and the modified Y-type molecular sieve is Na 2 O 0.5 based on the total amount of the modified Y-type molecular sieve. The ratio of the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy to the total acid amount of the modified Y-type molecular sieve by n-butyl pyridine infrared spectroscopy is 1 to 1. The total acid content of the modified Y-type molecular sieve is 0.1 to 1.2 mmol / g by pyridine infrared spectroscopy.

好ましくは、前記変性Y型分子篩は、比表面積500~900m /g、細孔容積0.28~0.7ml/g、相対結晶化度50%~130%、格子定数2.425~2.45nm、シリカ/アルミナモル比(6~80):1である。 Preferably, the modified Y-type molecular sieve has a specific surface area of 500 to 900 m 2 / g, a pore volume of 0.28 to 0.7 ml / g, a relative crystallinity of 50% to 130%, and a lattice constant of 2.425 to 2. 45 nm, silica / alumina molar ratio (6-80): 1.

本発明の第2態様は、本発明の変性Y型分子篩の製造方法を提供し、
NaY分子篩を前処理して、脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(1)と、
前記脱ナトリウム・脱アルミニウムY型分子篩をナトリウムイオン交換して、ナトリウム含有Y型分子篩を得るステップ(2)と、
前記ナトリウム含有Y型分子篩を大分子アンモニウム塩溶液で浸漬処理し、次に乾燥、焙焼をして、変性Y型分子篩を得るステップ(3)と、を含む。
A second aspect of the present invention provides a method for producing the modified Y-type molecular sieve of the present invention.
Step (1) of pretreating NaY molecular sieves to obtain desodium-dealuminum-dealuminum Y-type molecular sieves,
In the step (2) of obtaining sodium-containing Y-type molecular sieves by exchanging sodium ions with the desodium-dealuminum Y-type molecular sieves.
The step (3) of immersing the sodium-containing Y-type molecular sieve with a large molecular ammonium salt solution and then drying and roasting to obtain a modified Y-type molecular sieve is included.

好ましくは、ステップ(1)では、前記前処理プロセスは、アンモニウムイオン交換、水熱脱アルミニウム、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、及び酸による脱アルミニウムのうちの1つ又は複数の組み合わせを含む。 Preferably, in step (1), the pretreatment process is one or more of ammonium ion exchange, hydrothermal dealuminum, aluminum salt dealuminum, fluorosilicate dealuminum, and acid dealuminum. Including combinations of.

好ましくは、ステップ(1)では、前記前処理プロセスは、
NaY分子篩とアンモニウム塩水溶液とをアンモニウムイオン交換反応して、脱ナトリウムY型分子篩を得るステップ(a)と、
前記脱ナトリウムY型分子篩を水熱脱アルミニウムして、水熱脱アルミニウムの生成物を得るステップ(b)と、
前記水熱脱アルミニウムの生成物を化学的脱アルミニウムして、前記脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(c)と、を含み、
前記化学的脱アルミニウムは、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、又は酸による脱アルミニウムを含む。
Preferably, in step (1), the pretreatment process is
The step (a) of obtaining a desodium Y-type molecular sieve by subjecting a NaY molecular sieve and an aqueous ammonium salt solution to an ammonium ion exchange reaction,
The step (b) of obtaining the product of hydrothermally dealuminum by hydrothermally dealuminating the desodium Y-type molecular sieve.
The step (c) of chemically dealuminating the hydrothermally dealuminum product to obtain the desodium-dealuminum-dealuminum Y-type molecular sieve is included.
The chemical dealuminum includes dealuminum with an aluminum salt, dealuminum with a fluorosilicate, or dealuminum with an acid.

本発明の第3態様は、水素化分解触媒の製造方法を提供し、該方法は、
本発明の変性Y型分子篩、アモルファスシリカ-アルミナ及び/又は酸化アルミニウムを、(5~90):(0~50):(0.6~80)の重量比で混合して担体混合材料とし、次に、前記担体混合材料に質量百分率3~30重量%の硝酸水溶液を加えてスラリーとし、押出成形を行うステップ(I)と、
ステップ(I)で得た押出生成物を80~120℃で1~5h乾燥させ、次に400~500℃で1~5h焙焼し、シリカ-アルミナ担体を得るステップ(II)と、
前記シリカ/アルミナ担体を、水素化活性金属を含有する溶液において飽和浸漬して、得た生成物を乾燥させて焙焼し、水素化分解触媒を得るステップ(III)と、を含む。
A third aspect of the present invention provides a method for producing a hydrocracking catalyst, wherein the method provides.
The modified Y-type molecular sieve, amorphous silica-alumina and / or aluminum oxide of the present invention are mixed in a weight ratio of (5 to 90) :( 0 to 50) :( 0.6 to 80) to prepare a carrier mixing material. Next, the step (I) of adding an aqueous nitrate solution having a mass percentage of 3 to 30% by weight to the carrier mixed material to form a slurry and performing extrusion molding.
The extrusion product obtained in step (I) is dried at 80 to 120 ° C. for 1 to 5 hours and then roasted at 400 to 500 ° C. for 1 to 5 hours to obtain a silica-alumina carrier in step (II).
The silica / alumina carrier is saturated and immersed in a solution containing an active metal hydride, and the obtained product is dried and roasted to obtain a hydrocracking catalyst (III).

本発明の第4態様は、本発明の方法で製造される水素化分解触媒を提供し、前記水素化分解触媒は、シリカ-アルミナ担体と、水素化活性金属とを含み、前記水素化分解触媒の全量を基準として、前記シリカ-アルミナ担体の含有量は55~85重量%であり、前記水素化活性金属の含有量は金属酸化物で15~45重量%であり、前記シリカ-アルミナ担体は、本発明の変性Y型分子篩を含有し、前記シリカ-アルミナ担体における前記変性Y型分子篩の含有量が5~90重量%である。 A fourth aspect of the present invention provides a hydrocracking catalyst produced by the method of the present invention, wherein the hydrocracking catalyst comprises a silica-alumina carrier and a hydroactive metal, and the hydrocracking catalyst. The content of the silica-alumina carrier is 55 to 85% by weight, the content of the hydride active metal is 15 to 45% by weight of the metal oxide, and the silica-alumina carrier is based on the total amount of the metal oxide. The modified Y-type molecular sieve of the present invention is contained, and the content of the modified Y-type molecular sieve in the silica-alumina carrier is 5 to 90% by weight.

本発明の第5態様は、炭化水素油の水素化分解方法を提供し、該方法は、水素ガス存在下、炭化水素油を本発明の水素化分解触媒と接触させて水素化分解反応させるステップを含み、反応温度は340~420℃であり、反応圧力は8~20MPaであり、前記炭化水素油の供給時の体積空間速度は0.1~2h -1 であり、水素ガスと前記炭化水素油との体積比は(200~2000):1である。 A fifth aspect of the present invention provides a method for hydrocracking a hydrocarbon oil, in which the method is a step of contacting the hydrocarbon oil with the hydrocracking catalyst of the present invention to cause a hydrocracking reaction in the presence of hydrogen gas. The reaction temperature is 340 to 420 ° C., the reaction pressure is 8 to 20 MPa, the volumetric space velocity at the time of supplying the hydrocarbon oil is 0.1 to 2 h -1 , hydrogen gas and the hydrocarbon. The volume ratio with oil is (200-2000): 1.

上記技術案によれば、本発明は、酸性中心サイトがマクロ孔(即ち二次孔)に集中して分布している変性Y型分子篩を提供する。変性Y型分子篩のミクロ孔における酸性中心サイトのほとんどがナトリウムイオンで占められ、マクロ孔内部の酸性中心だけが残り、それにより、炭化水素類分子がミクロ孔に入って二次分解反応を行うことの発生が減少する。分子サイズの異なるアルカリ性有機物たとえばピリジンとn-ブチルピリジンを用いて赤外法による変性Y型分子篩の酸含有量を測定したところ、両方の酸含有量の値が等しい場合、変性Y型分子篩に分布している酸性中心がマクロ孔に集中していることを示す。 According to the above technical proposal, the present invention provides a modified Y-type molecular sieve in which acidic center sites are concentrated and distributed in macropores (that is, secondary pores). Most of the acidic center sites in the micropores of the modified Y-type molecular sieve are occupied by sodium ions, and only the acidic center inside the macropores remains, so that hydrocarbon molecules enter the micropores and perform a secondary decomposition reaction. Occurrence is reduced. When the acid content of the modified Y-type molecular sieves was measured by the infrared method using alkaline organic substances with different molecular sizes, for example, pyridine and n-butyl pyridine, if the acid contents of both were equal, they were distributed on the modified Y-type molecular sieves. It shows that the acidic centers are concentrated in the macropores.

本発明は、変性Y型分子篩の製造方法を提供し、まず、変性処理したY型分子篩の酸性中心をナトリウムイオン交換して、Y型分子篩が有する各種細孔における酸性中心サイトをナトリウムイオンで占めてから、分子サイズの大きいベンジル四級アンモニウム塩を用いてアンモニウムイオン交換処理し、ベンジル四級アンモニウム塩が大きな分子サイズを有するので、マクロ孔に分布しているナトリウムイオンが選択的にベンジル四級アンモニウムカチオンに交換され、さらに乾燥及び焙焼をした後、ベンジル四級アンモニウムカチオンだけが除去され、Y型分子篩のマクロ孔における酸性中心サイトが露出し、ミクロ孔における酸性中心サイトがナトリウムイオンで占められたままで酸性を発現させず、それにより、本発明による分子篩は、酸性中心サイトがマクロ孔に集中して分布するという特徴を有し、この特徴については、分子サイズの異なるピリジンとn-ブチルピリジンを用いて赤外法による酸性測定を行うことで判断することができ、それにより、上記特徴を有する変性Y型分子篩が得られる。 The present invention provides a method for producing a modified Y-type molecular sieve. First, the acidic center of the modified Y-type molecular sieve is exchanged with sodium ions, and the acidic center sites in various pores of the Y-type molecular sieve are occupied by sodium ions. Then, ammonium ion exchange treatment is performed using a benzyl quaternary ammonium salt having a large molecular size. Since the benzyl quaternary ammonium salt has a large molecular size, the sodium ions distributed in the macropores are selectively benzyl quaternary. After being exchanged for ammonium cations and further dried and roasted, only the benzyl quaternary ammonium cations are removed, the acidic center sites in the macropores of the Y-type molecular sieves are exposed, and the acidic center sites in the micropores are occupied by sodium ions. The molecular sieves according to the present invention are characterized in that the acidic center sites are concentrated and distributed in the macropores, and this feature is that pyridine and n-butyl having different molecular sizes are distributed. It can be determined by performing acidity measurement by the infrared method using pyridine, whereby a modified Y-type molecular sieve having the above characteristics can be obtained.

さらに、本発明の変性Y型分子篩を使用して水素化分解触媒を製造し、ワックスオイルの水素化分解反応プロセスに用いると、ワックスオイル中の大分子環状炭化水素類物質の反応選択性を向上させ、二次分解反応の発生を減少させ、水素化分解によるテールオイルの品質を改善し、反応の液体製品の収率を提高させることに寄与する。 Furthermore, when a hydrogenation decomposition catalyst is produced using the modified Y-type molecular sieve of the present invention and used in the hydrogenation decomposition reaction process of wax oil, the reaction selectivity of large molecular cyclic hydrocarbon substances in wax oil is improved. It contributes to reducing the occurrence of secondary decomposition reactions, improving the quality of tail oil due to hydrocracking, and increasing the yield of liquid products in the reaction.

本明細書に開示されている範囲の端点及び任意の値は、この正確な範囲又は値に限定されず、これらの範囲又は値は、これらの範囲又は値に近い値を含むと理解されるべきである。数値範囲の場合、各範囲の端点間、各範囲の端点値と個々の点の値の間、及び個々の点の値の間を互いに組み合わせて、1つ以上の新しい数値範囲を取得でき、これらの値の範囲は、本明細書で具体的に開示されていると見なされるべきである。 The endpoints and arbitrary values of the ranges disclosed herein are not limited to this exact range or value, and it should be understood that these ranges or values include values close to these ranges or values. Is. For numeric ranges, one or more new numeric ranges can be obtained by combining each other between the endpoints of each range, between the endpoint values of each range and the values of individual points, and between the values of individual points. The range of values of is to be considered as specifically disclosed herein.

本発明の第1態様は、変性Y型分子篩を提供し、前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 0.5~2重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1~1.2であり、前記変性Y型分子篩のピリジン赤外分光法による全酸量が0.1~1.2mmol/gである、ことを特徴とする。 The first aspect of the present invention provides a modified Y-type molecular sieve, wherein the modified Y-type molecular sieve contains 0.5 to 2% by weight of Na 2O based on the total amount of the modified Y-type molecular sieve, and the modification is performed. The ratio of the total acid amount of the Y-type molecular sieve by pyridine infrared spectroscopy to the total acid amount of the modified Y-type molecular sieve by n-butyl pyridine infrared spectroscopy is 1 to 1.2, and the modified Y-type molecular sieve has a total acid amount of 1 to 1.2. It is characterized in that the total acid amount by pyridine infrared spectroscopy is 0.1 to 1.2 mmol / g.

本発明において、前記変性Y型分子篩とは、Y型分子篩原粉を化学的処理(たとえば、本発明に記載の後述する方法)して得た分子篩である。 In the present invention, the modified Y-type molecular sieve is a molecular sieve obtained by chemically treating Y-type molecular sieve raw powder (for example, the method described later described in the present invention).

本発明による変性Y型分子篩は、酸性中心が主にマクロ孔に分布しており、ミクロ孔には酸性中心が少量であるか又は酸性中心がなく、それにより、炭化水素油分子がミクロ孔に入って酸性中心で二次分解反応を行うことを減少できる。 In the modified Y-type molecular sieve according to the present invention, the acidic centers are mainly distributed in the macropores, and the micropores have a small amount of acidic centers or no acidic centers, whereby the hydrocarbon oil molecule becomes micropores. It is possible to reduce the number of secondary decomposition reactions that enter and carry out secondary decomposition reactions at acidic centers.

本発明による変性Y型分子篩が有する上記細孔における酸性中心の分布特徴は、ピリジンとn-ブチルピリジンを2種のプローブ分子として、変性Y型分子篩の酸性をそれぞれ測定した結果により表せる。n-ブチルピリジンの分子径が約0.8nmであり、本発明による変性Y型分子篩のマクロ孔にしか入られず、それにより、マクロ孔中の酸性中心の全量が反映され得る。ピリジンの分子径が約0.6nmであり、変性Y型分子篩のミクロ孔とマクロ孔の両方に入って、変性Y型分子篩のすべての細孔中の酸性中心の全量を反映できる。テストプロセスとしては、具体的には、ピリジン、n-ブチルピリジン吸着赤外分光法によって、米国NICOLET社製のNicolet 6700フーリエ赤外分光計を用いることができる、
細く粉砕された(粒度200メッシュ未満)サンプル20mgを直径20mmのシートにプレスし、吸収セルのサンプルホルダーにセットし、サンプル(シート状)200mgを石英バネの下端にあるカップ(サンプルを添加する前にバネの長さを記録、x 、mm)に投入し、吸収セルと吸着管を接続して、真空吸引して浄化し、真空度が4×10 -2 Paとなると、500℃に昇温して1h保温し、それによりサンプルの表面の吸着物を除去する(このとき、サンプル浄化後のバネ長さ、x 、mm)。次に室温に降温し、ピリジン(又はn-ブチルピリジン)を飽和まで吸着させ、次に160℃に昇温して、1時間平衡化し、物理的に吸着させたピリジンを脱着させ(このとき、ピリジン吸着後のバネ長さ、x 、mm)、ピリジン(又はn-ブチルピリジン)重量吸着法によって全酸量を求めた。
全酸量は、ピリジン重量吸着法により計算され、具体的には、以下のとおりである。
The distribution characteristic of the acidic center in the pores of the modified Y-type molecular sieve according to the present invention can be expressed by the results of measuring the acidity of the modified Y-type molecular sieve using pyridine and n-butylpyridine as two types of probe molecules. The molecular diameter of n-butylpyridine is about 0.8 nm and can only enter the macropores of the modified Y-type molecular sieves according to the invention, thereby reflecting the total amount of acidic centers in the macropores. The molecular diameter of pyridine is about 0.6 nm and can enter both the micropores and macropores of the modified Y-type molecular sieves to reflect the total amount of acidic centers in all the pores of the modified Y-type molecular sieves. Specifically, as a test process, a Nicolet 6700 Fourier infrared spectrometer manufactured by NICOLET, USA can be used by pyridine, n-butylpyridine adsorption infrared spectroscopy.
20 mg of a finely ground sample (less than 200 mesh in grain size) is pressed onto a sheet with a diameter of 20 mm, set in the sample holder of the absorption cell, and 200 mg of the sample (sheet) is placed in a cup at the lower end of the quartz spring (before adding the sample). Record the length of the spring, put it in x 1 , mm), connect the absorption cell and the suction tube, vacuum suction and purify, and when the degree of vacuum becomes 4 x 10 -2 Pa, it rises to 500 ° C. It is kept warm for 1 hour to remove adsorbents on the surface of the sample (at this time, the spring length after purification of the sample, x 2 , mm). Next, the temperature is lowered to room temperature, pyridine (or n-butylpyridine) is adsorbed to saturation, then the temperature is raised to 160 ° C., equilibrium is performed for 1 hour, and the physically adsorbed pyridine is desorbed (at this time). The total amount of acid was determined by the spring length after pyridine adsorption, x3 , mm), and the pyridine (or n-butylpyridine) weight adsorption method.
The total acid amount is calculated by the pyridine weight adsorption method, and specifically, it is as follows.

Figure 2019104543000001
Figure 2019104543000001

注:79.1、136.1はそれぞれピリジン、n-ブチルピリジンのモル質量であり、単位はg/molである。 Note: 79.1 and 136.1 are molar masses of pyridine and n-butylpyridine, respectively, in units of g / mol.

本発明において、Y型分子篩のミクロ孔とマクロ孔における酸性中心サイトの集中分布を調整することによって、炭化水素油分子の分子篩での反応が制御される。酸性中心サイトの分布は、ピリジンとn-ブチルピリジン赤外測定による酸性全量により示される。細孔中の酸性中心サイトを調整していない一般的なY型分子篩では、一般に、ピリジン赤外分光法による全酸量とn-ブチルピリジン赤外分光法による全酸量との比は1.2より大きい。それにより、Y型分子篩のミクロ孔中の酸性中心サイトが制御されたか否かを判断できる。 In the present invention, the reaction of hydrocarbon oil molecules on molecular sieves is controlled by adjusting the concentrated distribution of acidic center sites in the micropores and macropores of Y-type molecular sieves. The distribution of acidic center sites is indicated by total acidity by infrared measurements of pyridine and n-butylpyridine. In a general Y-type molecular sieve in which the acidic center site in the pores is not adjusted, the ratio of the total acid amount by pyridine infrared spectroscopy to the total acid amount by n-butyl pyridine infrared spectroscopy is generally 1. Greater than 2. Thereby, it can be determined whether or not the acidic center site in the micropores of the Y-type molecular sieve is controlled.

変性Y型分子篩についてn-ブチルピリジン、ピリジンを用いてそれぞれ測定した全酸量は等しいか、又はn-ブチルピリジンによる全酸量はわずかに小さい場合、即ち、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1~1.2に制限される場合、前記変性Y型分子篩に含まれる酸性中心が主にマクロ孔に集中していることを示す。 When the total acid amount measured with n-butylpyridine and pyridine for the modified Y-type molecular sieve is the same, or the total acid amount with n-butylpyridine is slightly smaller, that is, the pyridine infrared of the modified Y-type molecular sieve. When the ratio of the total acid amount by spectroscopy to the total acid amount of the modified Y-type molecular sieve by n-butylpyridine infrared spectroscopy is limited to 1 to 1.2, the acidic center contained in the modified Y-type molecular sieve. Indicates that is mainly concentrated in the macropores.

本発明によれば、好ましくは、前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 0.8~1.8重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1.02~1.15である。 According to the present invention, preferably, the modified Y-type molecular sieve contains 0.8 to 1.8% by weight of Na 2O based on the total amount of the modified Y-type molecular sieve, and the pyridine of the modified Y-type molecular sieve. The ratio of the total acid amount by infrared spectroscopy to the total acid amount of the modified Y-type molecular sieve by n-butylpyridine infrared spectroscopy is 1.02 to 1.15.

より好ましくは、前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 1~1.5重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1.05~1.12である。 More preferably, the modified Y-type molecular sieve contains 1 to 1.5% by weight of Na 2O based on the total amount of the modified Y-type molecular sieve, and the total acid of the modified Y-type molecular sieve by pyridine infrared spectroscopy. The ratio of the amount to the total acid amount of the modified Y-type molecular sieve by n-butylpyridine infrared spectroscopy is 1.05 to 1.12.

本発明によれば、好ましくは、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.2~1mmol/gである。 According to the present invention, the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy is preferably 0.2 to 1 mmol / g.

より好ましくは、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.3~0.8mmol/gである。 More preferably, the total acid content of the modified Y-type molecular sieve by pyridine infrared spectroscopy is 0.3 to 0.8 mmol / g.

本発明によれば、前記変性Y型分子篩は、ワックスオイルの水素化分解反応プロセスに用いると、水素化分解によるテールオイルの品質を改善し、反応の液体製品の収率を向上させることに寄与するなど他の特徴も有する。好ましい場合、前記変性Y型分子篩の比表面積は、500~900m /g、好ましくは550~850m /g、より好ましくは600~750m /gである。 According to the present invention, when the modified Y-type molecular sieve is used in the hydrocracking reaction process of wax oil, it contributes to improving the quality of tail oil by hydrocracking and improving the yield of the reaction liquid product. It also has other characteristics such as hydrogenation. When it is preferable, the specific surface area of the modified Y-type molecular sieve is 500 to 900 m 2 / g, preferably 550 to 850 m 2 / g, and more preferably 600 to 750 m 2 / g.

好ましくは、前記変性Y型分子篩の細孔容積は、0.28~0.7ml/g、好ましくは0.3~0.65ml/g、より好ましくは0.35~0.6ml/gである。 Preferably, the pore volume of the modified Y-type molecular sieve is 0.28 to 0.7 ml / g, preferably 0.3 to 0.65 ml / g, and more preferably 0.35 to 0.6 ml / g. ..

好ましくは、前記変性Y型分子篩の相対結晶化度は、50%~130%、60%~110%、より好ましくは70%~100%である。 Preferably, the relative crystallinity of the modified Y-type molecular sieve is 50% to 130%, 60% to 110%, and more preferably 70% to 100%.

好ましくは、前記変性Y型分子篩の格子定数は、2.425~2.45nm、好ましくは2.428~2.448nm、より好ましくは2.43~2.445nmである。 Preferably, the lattice constant of the modified Y-type molecular sieve is 2.425 to 2.45 nm, preferably 2.428 to 2.448 nm, and more preferably 2.43 to 2.445 nm.

好ましくは、前記変性Y型分子篩のシリカ/アルミナモル比は、(6~80):1、好ましくは(8~60):1、より好ましくは(10~50):1である。 Preferably, the silica / alumina molar ratio of the modified Y-type molecular sieve is (6 to 80): 1, preferably (8 to 60): 1, and more preferably (10 to 50): 1.

本発明の第2態様は、本発明の変性Y型分子篩の製造方法を提供し、
NaY分子篩を前処理して、脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(1)と、
前記脱ナトリウム・脱アルミニウムY型分子篩をナトリウムイオン交換して、ナトリウム含有Y型分子篩を得るステップ(2)と、
前記ナトリウム含有Y型分子篩を大分子アンモニウム塩溶液で浸漬処理し、次に乾燥、焙焼をして、変性Y型分子篩を得るステップ(3)と、を含む。
A second aspect of the present invention provides a method for producing the modified Y-type molecular sieve of the present invention.
Step (1) of pretreating NaY molecular sieves to obtain desodium-dealuminum-dealuminum Y-type molecular sieves,
In the step (2) of obtaining sodium-containing Y-type molecular sieves by exchanging sodium ions with the desodium-dealuminum Y-type molecular sieves.
The step (3) of immersing the sodium-containing Y-type molecular sieve with a large molecular ammonium salt solution and then drying and roasting to obtain a modified Y-type molecular sieve is included.

本発明によれば、ステップ(1)は、NaY分子篩にマクロ孔を形成し、それは、マクロ孔とミクロ孔のそれぞれの後続の修飾に有利である。好ましい場合、ステップ(1)では、前記前処理のプロセスは、アンモニウムイオン交換、水熱脱アルミニウム、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、及び酸による脱アルミニウムのうちの1つ又は複数の組み合わせを含む。本発明において、NaY分子篩の前記前処理は、NaY分子篩をアンモニウムイオン交換、水熱脱アルミニウム、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、及び酸による脱アルミニウムのうちの1つ又は複数のステップにより処理してもよく、ステップの間の順番について制限がなく、前記脱ナトリウム・脱アルミニウムY型分子篩を提供できればよく、たとえば、前記脱ナトリウム・脱アルミニウムY型分子篩は、Na O含有量が3重量%未満であり、SiO /Al モル比(6~80):1、格子定数2.425~2.450である。一般には、まず、NaY分子篩をアンモニウムイオン交換することで脱ナトリウムし、次に、水熱脱アルミニウム、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、及び酸による脱アルミニウムのうちの1つ又は複数の組み合わせにより脱ナトリウム生成物を脱アルミニウムする。 According to the present invention, step (1) forms macropores on the NaY molecular sieve, which is advantageous for subsequent modification of the macropores and micropores respectively. If preferred, in step (1), the pretreatment process is one of ammonium ion exchange, hydrothermal dealuminum, dealuminum with an aluminum salt, dealuminum with a fluorosilicate, and dealuminum with an acid. Includes multiple combinations. In the present invention, the pretreatment of the NaY molecular sieve is one or more of ammonium ion exchange, hydrothermal dealuminum, dealuminum with aluminum salt, dealuminum with fluorosilicate, and dealuminum with acid. The desodium-dealuminum Y-type molecular sieve may be provided without limitation in the order between the steps. For example, the desodium-dealuminum Y-type molecular sieve contains Na 2O . The amount is less than 3% by weight, SiO 2 / Al 2 O 3 molar ratio (6 to 80): 1, lattice constant 2.425 to 2.450. In general, first, the NaY molecular sieve is desodiumized by exchanging ammonium ions, and then one of hydrothermal dealuminum, dealuminum with an aluminum salt, dealuminum with a fluorosilicate, and dealuminum with an acid. Alternatively, the desalting product is dealuminated by a combination of two or more.

本発明の好ましい実施形態では、ステップ(1)の前記前処理のプロセスは、
NaY分子篩とアンモニウム塩水溶液とをアンモニウムイオン交換反応して、脱ナトリウムY型分子篩を得るステップ(a)と、
前記脱ナトリウムY型分子篩を水熱脱アルミニウムして、水熱脱アルミニウムの生成物を得るステップ(b)と、
前記水熱脱アルミニウムの生成物を化学的脱アルミニウムして、前記脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(c)と、を含み、
前記化学的脱アルミニウムは、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、又は酸による脱アルミニウムである。
In a preferred embodiment of the invention, the pretreatment process of step (1) is
The step (a) of obtaining a desodium Y-type molecular sieve by subjecting a NaY molecular sieve and an aqueous ammonium salt solution to an ammonium ion exchange reaction,
The step (b) of obtaining the product of hydrothermally dealuminum by hydrothermally dealuminating the desodium Y-type molecular sieve.
The step (c) of chemically dealuminating the hydrothermally dealuminum product to obtain the desodium-dealuminum-dealuminum Y-type molecular sieve is included.
The chemical dealuminum is dealuminum with an aluminum salt, dealuminum with a fluorosilicate, or dealuminum with an acid.

本発明によれば、ステップ(a)は、後続の脱アルミニウムプロセスを順調に実施するように、NaY分子篩におけるNaイオンを除去する。好ましい場合、ステップ(a)では、前記アンモニウム塩によるイオン交換反応のプロセスは、NaY分子篩とアンモニウム塩水溶液とを、60~120℃、好ましくは60~90℃で、1~4回、1~3h交換して、前記脱ナトリウムY型分子篩を得ることである。 According to the present invention, step (a) removes Na ions on NaY molecular sieves so that the subsequent dealuminum removal process can be carried out smoothly. If preferable, in step (a), the process of the ion exchange reaction with the ammonium salt involves sieving the NaY molecular sieve and the ammonium salt aqueous solution at 60 to 120 ° C., preferably 60 to 90 ° C., 1 to 4 times, 1 to 3 h. The exchange is to obtain the desodium Y-type molecular sieve.

好ましくは、前記脱ナトリウムY型分子篩のNa O含有量は3重量%未満である。 Preferably, the Na 2 O content of the desodium Y-type molecular sieve is less than 3% by weight.

好ましくは、NaY分子篩のSiO /Al モル比は(3~6):1であり、Na O含有量は6~12重量%である。 Preferably, the SiO 2 / Al 2 O 3 molar ratio of the NaY molecular sieve is (3 to 6): 1 and the Na 2 O content is 6 to 12% by weight.

好ましくは、アンモニウム塩は、塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びシュウ酸アンモニウムから選ばれる1種又は複数種であり、前記アンモニウム塩水溶液のモル濃度は0.3~6mol/L、好ましくは1~3mol/Lである。 Preferably, the ammonium salt is one or more selected from ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium acetate and ammonium oxalate, and the molar concentration of the ammonium salt aqueous solution is 0.3 to 6 mol / L, preferably 1. It is ~ 3 mol / L.

本発明によれば、ステップ(b)は、前記脱ナトリウムY型分子篩を脱アルミニウムして、マクロ孔を形成する。好ましくは、ステップ(b)では、前記水熱脱アルミニウムのプロセスは、前記脱ナトリウムY型分子篩と水蒸気とを、温度520~700℃、圧力0.01~0.5MPaの条件で、1~6h接触させることである。 According to the present invention, in step (b), the desodium Y-type molecular sieve is dealuminated to form macropores. Preferably, in step (b), the hydrothermal dealuminum process uses the desodium Y-type molecular sieve and steam under the conditions of a temperature of 520 to 700 ° C. and a pressure of 0.01 to 0.5 MPa for 1 to 6 hours. To make contact.

好ましくは、前記水熱脱アルミニウムの回数は1~3回である。 Preferably, the number of times of the hydrothermal dealuminum is 1 to 3 times.

本発明によれば、ステップ(c)は、分子篩を化学的に脱アルミニウムして、マクロ孔を形成する。好ましくは、ステップ(c)では、前記化学的脱アルミニウムのプロセスは、前記水熱脱アルミニウムの生成物を、アルミニウム塩溶液、フルオロケイ酸アンモニウム溶液又は硝酸溶液と、50~120℃の温度で、0.5~3h恒温反応させることである。 According to the present invention, step (c) chemically dealuminates the molecular sieve to form macropores. Preferably, in step (c), the chemical dealumination process takes the hydrothermal dealuminum product with an aluminum salt solution, an ammonium fluorosilicate solution or a nitrate solution at a temperature of 50-120 ° C. It is a constant temperature reaction for 0.5 to 3 hours.

好ましくは、前記アルミニウム塩溶液は、塩化アルミニウム、硫酸アルミニウム、及び硝酸アルミニウムのうちの少なくとも1種の水溶液である。 Preferably, the aluminum salt solution is an aqueous solution of at least one of aluminum chloride, aluminum sulfate, and aluminum nitrate.

好ましくは、前記アルミニウム塩溶液、フルオロケイ酸アンモニウム溶液又は硝酸溶液のモル濃度は0.05~2mol/Lである。前記水熱脱アルミニウムの生成物と前記アルミニウム塩溶液が前記恒温反応を行うことは、前記アルミニウム塩による脱アルミニウムである。前記水熱脱アルミニウムの生成物と前記フルオロケイ酸アンモニウム溶液が前記恒温反応を行うことは、前記フルオロケイ酸塩による脱アルミニウムである。前記水熱脱アルミニウムの生成物と前記硝酸溶液が前記恒温反応を行うことは、前記酸による脱アルミニウムである。 Preferably, the molar concentration of the aluminum salt solution, ammonium fluorosilicate solution or nitric acid solution is 0.05 to 2 mol / L. The constant temperature reaction between the product of the hydrothermal dealuminum and the aluminum salt solution is dealumination by the aluminum salt. The constant temperature reaction between the hydrothermally dealuminum product and the ammonium fluorosilicate solution is dealuminumization with the fluorosilicate. The constant temperature reaction between the product of the hydrothermal dealuminum and the nitric acid solution is dealumination with the acid.

本発明によれば、ステップ(2)は、前記脱ナトリウム・脱アルミニウムY型分子篩におけるマクロ孔、ミクロ孔の空いた酸性中心をナトリウムイオンで中和する。ステップ(2)では、前記ナトリウムイオン交換のプロセスは、前記脱ナトリウム・脱アルミニウムY型分子篩と、NaNO の質量百分率が0.1~3重量%であるNaNO 水溶液とを、40~80℃で1~4h恒温反応させることである。 According to the present invention, in step (2), the acidic centers having macropores and micropores in the desodium-dealuminum Y-type molecular sieve are neutralized with sodium ions. In step (2), the sodium ion exchange process uses the desodium / dealuminum Y-type molecular sieve and the NaNO 3 aqueous solution having a mass percentage of NaNO 3 of 0.1 to 3% by weight at 40 to 80 ° C. It is a constant temperature reaction for 1 to 4 hours.

本発明によれば、ステップ(3)の前記浸漬処理は、Y型分子篩のマクロ孔において酸性中心を占めるナトリウムイオンを大分子アンモニウム塩で交換することで、マクロ孔における酸性中心を露出させる。大分子アンモニウム塩がY型分子篩のミクロ孔に入られず、ミクロ孔には依然としてナトリウムイオンは酸性中心を占めている。最終的に得られた本発明の変性Y型分子篩は、マクロ孔には酸性中心があり、ミクロ孔には酸性中心が極めて小さいか、酸性中心がないようになり、水素化分解反応に用いられると、炭化水素油の二次分解反応の発生を減少させる。好ましい場合、ステップ(3)の前記浸漬処理のプロセスは、40~80℃で、前記ナトリウム含有Y型分子篩を前記大分子アンモニウム塩溶液において2~6h浸漬することである。 According to the present invention, the dipping treatment of step (3) exposes the acidic center in the macropores by exchanging the sodium ion occupying the acidic center in the macropores of the Y-type molecular sieve with a large molecular ammonium salt. Large-molecular-weight ammonium salts cannot enter the micropores of Y-type molecular sieves, and sodium ions still occupy the acidic center in the micropores. The finally obtained modified Y-type molecular sieve of the present invention has an acidic center in the macropores and an extremely small or no acidic center in the micropores, and is used for the hydrocracking reaction. And reduce the occurrence of secondary decomposition reactions of hydrocarbon oils. When it is preferable, the process of the dipping treatment in step (3) is to soak the sodium-containing Y-type molecular sieve in the large molecular ammonium salt solution for 2 to 6 hours at 40 to 80 ° C.

本発明において、好ましくは、大分子アンモニウム塩は、ベンジル四級アンモニウム塩である。 In the present invention, the large molecular weight ammonium salt is preferably a benzyl quaternary ammonium salt.

好ましくは、前記ベンジル四級アンモニウム塩は、臭化ベンジルトリプロピルアンモニウム、臭化ベンジルトリブチルアンモニウム、塩化ベンジルトリプロピルアンモニウム、及び塩化ベンジルトリブチルアンモニウムのうちの少なくとも1種である。 Preferably, the benzyl quaternary ammonium salt is at least one of benzyltripropylammonium bromide, benzyltributylammonium bromide, benzyltripropylammonium chloride, and benzyltributylammonium chloride.

好ましくは、前記大分子アンモニウム塩溶液中、臭素又は塩素元素の濃度で、大分子アンモニウム塩溶液のモル濃度は0.2~2mol/Lである。 Preferably, it is the concentration of bromine or element chlorine in the large molecule ammonium salt solution, and the molar concentration of the large molecule ammonium salt solution is 0.2 to 2 mol / L.

本発明において、製造された変性Y型分子篩中の酸性中心の分布は、ピリジン赤外吸着及びn-ブチルピリジン赤外吸着方法によって測定することができる。具体的な方法及びテスト結果は前記と同じであり、ここで詳しく説明しない。 In the present invention, the distribution of acidic centers in the produced modified Y-type molecular sieves can be measured by the pyridine infrared adsorption method and the n-butyl pyridine infrared adsorption method. The specific method and test results are the same as described above, and will not be described in detail here.

本発明によれば、好ましい場合、ステップ(3)では、前記乾燥プロセスは、100~150℃で1~4h乾燥させることであり、前記焙焼プロセスは、500~700℃で2~6h焙焼処理することである。 According to the present invention, if preferred, in step (3), the drying process is drying at 100 to 150 ° C. for 1 to 4 hours, and the roasting process is roasting at 500 to 700 ° C. for 2 to 6 hours. Is to process.

本発明の第3態様は、水素化分解触媒の製造方法を提供し、該方法は、
本発明の変性Y型分子篩、アモルファスシリカ-アルミナ及び/又は酸化アルミニウムを、(5~90):(0~50):(0.6~80)の重量比で混合して担体混合材料とし、次に、前記担体混合材料に質量百分率3~30重量%の硝酸水溶液を加えてスラリーとし、押出成形を行うステップ(I)と、
ステップ(I)で得た押出生成物を80~120℃で1~5h乾燥させ、次に400~500℃で1~5h焙焼し、シリカ-アルミナ担体を得るステップ(II)と、
前記シリカ/アルミナ担体を、水素化活性金属を含有する溶液において飽和浸漬して、得た生成物を乾燥させて焙焼し、水素化分解触媒を得るステップ(III)と、を含む。
A third aspect of the present invention provides a method for producing a hydrocracking catalyst, wherein the method provides.
The modified Y-type molecular sieve, amorphous silica-alumina and / or aluminum oxide of the present invention are mixed in a weight ratio of (5 to 90) :( 0 to 50) :( 0.6 to 80) to prepare a carrier mixing material. Next, the step (I) of adding an aqueous nitrate solution having a mass percentage of 3 to 30% by weight to the carrier mixed material to form a slurry and performing extrusion molding.
The extrusion product obtained in step (I) is dried at 80 to 120 ° C. for 1 to 5 hours and then roasted at 400 to 500 ° C. for 1 to 5 hours to obtain a silica-alumina carrier in step (II).
The silica / alumina carrier is saturated and immersed in a solution containing an active metal hydride, and the obtained product is dried and roasted to obtain a hydrocracking catalyst (III).

本発明による触媒製造方法のステップ(I)では、前記スラリーの固形分は長いストランド押出生成物の押出成形に適していればよい。好ましくは、前記スラリーの固形分は30~60重量%である。 In step (I) of the catalyst production method according to the present invention, the solid content of the slurry may be suitable for extrusion molding of long strand extrusion products. Preferably, the solid content of the slurry is 30-60% by weight.

本発明において、ステップ(III)では、水素化活性金属を含有する溶液の添加量は、得た水素化分解触媒には、金属酸化物で水素化活性金属を15~45重量%含有するようにする。前記水素化活性金属を含有する溶液中、水素化活性金属は、金属酸化物で、濃度が20~70mol/Lであってもよい。 In the present invention, in step (III), the amount of the solution containing the hydroactive metal added is such that the obtained hydrocracking catalyst contains 15 to 45% by weight of the hydroactive metal as a metal oxide. do. In the solution containing the hydrogenated active metal, the hydrogenated active metal is a metal oxide and may have a concentration of 20 to 70 mol / L.

本発明において、前記水素化活性金属を含有する溶液は、第VIII族及び/又は第VI族の金属元素を含有する化合物の溶液であってもよい。好ましくは、Ni及び/又はCoを含有する化合物の溶液、W及び/又はMoを含有する化合物の溶液であってもよい。より好ましくは、前記水素化活性金属を含有する溶液は、硝酸ニッケル、硝酸コバルト、メタタングステン酸アンモニウム、モリブデン酸アンモニウム、酸化モリブデンを含有する溶液であってもよい。 In the present invention, the solution containing the hydrogenated active metal may be a solution of a compound containing a metal element of Group VIII and / or Group VI. Preferably, it may be a solution of a compound containing Ni and / or Co, or a solution of a compound containing W and / or Mo. More preferably, the solution containing the active metal hydride may be a solution containing nickel nitrate, cobalt nitrate, ammonium metatungstate, ammonium molybdate, and molybdenum oxide.

本発明において、ステップ(III)の乾燥は、90~150℃で2~20h実施され得る。焙焼は400~600℃で2~10h実施され得る。それにより、前記水素化活性金属は酸化物の形態に変換されて前記水素化分解触媒に存在する。 In the present invention, the drying of step (III) can be carried out at 90 to 150 ° C. for 2 to 20 hours. Roasting can be carried out at 400-600 ° C. for 2-10 hours. Thereby, the hydroactive metal is converted into the form of an oxide and exists in the hydrocracking catalyst.

本発明の第4態様は、本発明の方法で製造される水素化分解触媒を提供し、前記水素化分解触媒は、シリカ-アルミナ担体と、水素化活性金属とを含み、前記水素化分解触媒の全量を基準として、前記シリカ-アルミナ担体の含有量は55~85重量%であり、前記水素化活性金属の含有量は金属酸化物で15~45重量%であり、前記シリカ-アルミナ担体は、本発明の変性Y型分子篩を含有し、前記シリカ-アルミナ担体における前記変性Y型分子篩の含有量が5~90重量%である。 A fourth aspect of the present invention provides a hydrocracking catalyst produced by the method of the present invention, wherein the hydrocracking catalyst comprises a silica-alumina carrier and a hydroactive metal, and the hydrocracking catalyst. The content of the silica-alumina carrier is 55 to 85% by weight, the content of the hydride active metal is 15 to 45% by weight of the metal oxide, and the silica-alumina carrier is based on the total amount of the metal oxide. The modified Y-type molecular sieve of the present invention is contained, and the content of the modified Y-type molecular sieve in the silica-alumina carrier is 5 to 90% by weight.

本発明によれば、好ましい場合、前記水素化活性金属は、第VIII族及び/又は第VI族の金属から選ばれる。 According to the present invention, the hydroactive metal is preferably selected from Group VIII and / or Group VI metals.

好ましくは、前記第VIII族金属はNi及び/又はCoであり、第VI族金属はW及び/又はMoである。 Preferably, the Group VIII metal is Ni and / or Co, and the Group VI metal is W and / or Mo.

好ましくは、前記触媒の全量を基準として、金属酸化物で、前記水素化分解触媒は、前記第VIII族金属3~15重量%、前記第VI族金属10~40重量%を含有する。 Preferably, it is a metal oxide based on the total amount of the catalyst, and the hydrocracking catalyst contains 3 to 15% by weight of the Group VIII metal and 10 to 40% by weight of the Group VI metal.

本発明において、水素化分解触媒の使用、輸送及び貯蔵を容易にするために、前記水素化分解触媒中の前記水素化活性金属は酸化状態で存在し、水素化分解反応の前に硫黄含有化合物と接触して加硫反応によって硫化状態に変換された後、炭化水素油の水素化分解に関与できる。 In the present invention, in order to facilitate the use, transportation and storage of the hydrocracking catalyst, the hydroactive metal in the hydrocracking catalyst is present in an oxidized state and is a sulfur-containing compound prior to the hydrocracking reaction. After being converted into a sulfide state by a vulverization reaction in contact with hydrogen, it can participate in the hydrocracking of hydrocarbon oil.

本発明において、前記水素化分解触媒は、本発明による変性Y型分子篩成分を含有し、より良好な水素化分解の反応選択性を有し、炭化水素油分子の二次分解反応の発生を減少させ、水素化分解反応生成物の選択性により優れている。前記水素化分解触媒の反応性能は、具体的な反応性能の評価実験により測定できる。実験では、小型マイクロ反応装置で1段直列式ワンパスプロセスを使用でき、装置には、直列に接続された2つの反応器があり、実施手順に従って、第1反応器には従来の精製触媒が充填され、第2反応器には水素化分解触媒が充填される。 In the present invention, the hydrocracking catalyst contains the modified Y-type molecular sieve component according to the present invention, has better reaction selectivity for hydrocracking, and reduces the occurrence of secondary decomposition reactions of hydrocarbon oil molecules. It is more excellent in the selectivity of the hydrocracking reaction product. The reaction performance of the hydrogenation decomposition catalyst can be measured by a specific reaction performance evaluation experiment. In the experiment, a one-stage series one-pass process can be used in a small microreactor, the device has two reactors connected in series, and the first reactor is filled with a conventional purification catalyst according to the procedure. Then, the second reactor is filled with a hydrocracking catalyst.

本発明において、第2反応器には、一回で本発明の水素化分解触媒を、別途従来のY型分子篩を用いて製造した従来の水素化分解触媒を充填し、反応評価を別々に行って、精製油の窒素含有量及び変換深度を同じに制御しながら、2回の反応でそれぞれ得られた分解テールオイル製品のBMCI値及び装置の液体製品の収率をそれぞれ比較することができる。その中でも、テールオイル製品のBMCI値が低く、製品の液体収率が高いほど、対応する触媒は水素化分解反応の過程において大分子環状炭化水素の反応をさらに促進し、二次分解反応の発生を減少させることを示す。2回の反応の違いは、触媒に使用されている分子篩のみであり、上記の結果は、分子篩の酸性がマクロ孔により集中して分布するためと考えられる。 In the present invention, the second reactor is filled with the hydrogenation decomposition catalyst of the present invention once and the conventional hydrogenation decomposition catalyst separately manufactured by using a conventional Y-type molecular sieve, and the reaction evaluation is performed separately. Therefore, the BMCI value of the decomposed tail oil product obtained in each of the two reactions and the yield of the liquid product of the apparatus can be compared while controlling the nitrogen content and the conversion depth of the refined oil in the same manner. Among them, the lower the BMCI value of the tail oil product and the higher the liquid yield of the product, the more the corresponding catalyst further promotes the reaction of the large molecular cyclic hydrocarbon in the process of the hydrocracking reaction, and the secondary decomposition reaction occurs. Is shown to be reduced. The difference between the two reactions is only the molecular sieve used for the catalyst, and the above result is considered to be because the acidity of the molecular sieve is more concentrated and distributed by the macropores.

本発明の第5態様は、炭化水素油の水素化分解方法を提供し、該方法は、水素ガス存在下、炭化水素油を本発明の水素化分解触媒と接触させて水素化分解反応させるステップを含み、反応温度は340~420℃であり、反応圧力は8~20MPaであり、前記炭化水素油の供給時の体積空間速度は0.1~2h -1 であり、水素ガスと前記炭化水素油との体積比は(200~2000):1である。 A fifth aspect of the present invention provides a method for hydrocracking a hydrocarbon oil, in which the method is a step of contacting the hydrocarbon oil with the hydrocracking catalyst of the present invention to cause a hydrocracking reaction in the presence of hydrogen gas. The reaction temperature is 340 to 420 ° C., the reaction pressure is 8 to 20 MPa, the volumetric space velocity at the time of supplying the hydrocarbon oil is 0.1 to 2 h -1 , hydrogen gas and the hydrocarbon. The volume ratio with oil is (200-2000): 1.

本発明において、前記炭化水素油は、石油ベースの減圧ワックスオイル原料としてもよく、その蒸留範囲が300~600℃、密度が0.86~0.94g/cm である。 In the present invention, the hydrocarbon oil may be used as a petroleum-based vacuum wax oil raw material, and the distillation range thereof is 300 to 600 ° C. and the density is 0.86 to 0.94 g / cm 3 .

前記水素化分解反応が行われる際に、前記水素化分解触媒中の活性金属が硫化状態で関与する。しかしながら、硫化状態の水素化活性金属を含有する触媒が直接製造される場合、触媒は輸送及び貯蔵中に容易に酸化され、水素化分解反応に本格的に関与する前に硫化される必要がある。したがって、本分野では、一般に、水素化活性金属を酸化状態で含有する触媒を製造し、炭化水素油の水素化分解反応を行う前に触媒を硫化反応させて、硫化状態の水素化活性金属を含有する触媒を得るか、又は炭化水素油中の硫黄含有化合物を利用して、炭化水素油と触媒との接触中に水素化活性金属の硫化及び炭化水素油の水素化分解を行う。本発明による炭化水素油の水素化分解方法において、前記水素化分解反応中に、本発明の水素化分解触媒は、炭化水素油中の硫黄含有化合物の存在下で、水素化活性金属を硫化状態に変換するとともに、炭化水素油の水素化分解を実現する。 When the hydrocracking reaction is carried out, the active metal in the hydrocracking catalyst is involved in a sulfurized state. However, if a catalyst containing a hydrogenated active metal in a sulfide state is directly produced, the catalyst must be easily oxidized during transport and storage and sulphurized before it can be fully involved in the hydrocracking reaction. .. Therefore, in this field, in general, a catalyst containing an active hydrogenated metal in an oxidized state is produced, and the catalyst is subjected to a sulfurization reaction before the hydrocracking reaction of the hydrocarbon oil is carried out to obtain the hydrogenated active metal in the hydrogenated state. The contained catalyst is obtained, or the sulfur-containing compound in the hydrocarbon oil is utilized to carry out sulfide decomposition of the hydride active metal and hydrocracking of the hydrogenated oil during contact between the hydrocarbon oil and the catalyst. In the method for hydrocracking hydrogen oil according to the present invention, during the hydrocracking reaction, the hydrocracking catalyst of the present invention sulfides the hydroactive metal in the presence of a sulfur-containing compound in the hydrocarbon oil. At the same time, it realizes hydrocracking of hydrocarbon oil.

以下、実施例にて本発明を詳細に説明する。
以下の実施例及び比較例では、ピリジン、n-ブチルピリジン赤外分光法による酸量は、ピリジン、n-ブチルピリジン吸着赤外分光法により、米国NICOLET社製のNicolet 6700フーリエ赤外分光計方法を用いて測定され、そのプロセスは、以下のとおりである。
Hereinafter, the present invention will be described in detail with reference to Examples.
In the following examples and comparative examples, the amount of acid by pyridine, n-butylpyridine infrared spectroscopy is determined by the Nicolet 6700 Fourier infrared spectrometer method manufactured by NICOLET, USA, by pyridine, n-butylpyridine adsorption infrared spectroscopy. Measured using, the process is as follows.

細く粉砕された(粒度200メッシュ未満)サンプル20mgを直径20mmのシートにプレスし、吸収セルのサンプルホルダーにセットし、サンプル(シート状)200mgを石英バネの下端にあるカップ(サンプルを添加する前にバネの長さを記録、x 、mm)に投入し、吸収セルと吸着管を接続して、真空吸引して浄化し、真空度が4×10 -2 Paとなると、500℃に昇温して1h保温し、それによりサンプルの表面の吸着物を除去する(このとき、サンプル浄化後のバネ長さ、x 、mm)。次に室温に降温し、ピリジン(又はn-ブチルピリジン)を飽和まで吸着させ、次に160℃に昇温して、1時間平衡化し、物理的に吸着させたピリジンを脱着させ(このとき、ピリジン吸着後のバネ長さ、x 、mm)、ピリジン(又はn-ブチルピリジン)重量吸着法によって全酸量を求めた。 20 mg of a finely ground sample (less than 200 mesh in grain size) is pressed onto a sheet with a diameter of 20 mm, set in the sample holder of the absorption cell, and 200 mg of the sample (sheet) is placed in a cup at the lower end of the quartz spring (before adding the sample). Record the length of the spring, put it in x 1 , mm), connect the absorption cell and the suction tube, vacuum suction and purify, and when the degree of vacuum becomes 4 x 10 -2 Pa, it rises to 500 ° C. It is kept warm for 1 hour to remove adsorbents on the surface of the sample (at this time, the spring length after purification of the sample, x 2 , mm). Next, the temperature is lowered to room temperature, pyridine (or n-butylpyridine) is adsorbed to saturation, then the temperature is raised to 160 ° C., equilibrium is performed for 1 hour, and the physically adsorbed pyridine is desorbed (at this time). The total amount of acid was determined by the spring length after pyridine adsorption, x3 , mm), and the pyridine (or n-butylpyridine) weight adsorption method.

全酸量は、ピリジン重量吸着法により計算され、具体的には、以下のとおりである。 The total acid amount is calculated by the pyridine weight adsorption method, and specifically, it is as follows.

Figure 2019104543000002
Figure 2019104543000002

注:79.1、136.1はそれぞれピリジン、n-ブチルピリジンのモル質量であり、単位はg/molである。 Note: 79.1 and 136.1 are molar masses of pyridine and n-butylpyridine, respectively, in units of g / mol.

表面積及び細孔体積は、低温窒素吸着(BET法)により測定され、
分子篩中のNa O含有量、分子篩SiO /Al モル比は蛍光法により測定され、
分子篩の格子定数、相対結晶化度は、XRD方法により測定され、機器としてRigaku Dmax-2500 X線回折計を用い、Cukα放射、グラファイト単結晶フィルター、操作チューブの電圧35KV、チューブ電流40mA、走査速度(2θ)2°/min、走査範囲4°~35°を用いる。標準試料は本発明の実施例1で使用されるY型分子篩原粉である。
Surface area and pore volume are measured by low temperature nitrogen adsorption (BET method).
The Na 2 O content in the molecular sieves and the SiO 2 / Al 2 O 3 molar ratio of the molecular sieves were measured by the fluorescence method.
The lattice constant and relative crystallinity of the molecular sieve are measured by the XRD method, and a Rigaku Dmax-2500 X-ray diffractometer is used as an instrument, Cukα emission, graphite single crystal filter, operation tube voltage 35 KV, tube current 40 mA, scanning speed. (2θ) 2 ° / min and a scanning range of 4 ° to 35 ° are used. The standard sample is the Y-type molecular sieve raw powder used in Example 1 of the present invention.

テールオイルの収率は、製品実際沸点のカットデータから算出される。 The yield of tail oil is calculated from the cut data of the actual boiling point of the product.

BMCI測定方法:BMCI=48640/T+473.7d-456.8
d:密度(15.6℃)
T:絶対温度Kで表される平均沸点。
BMCI measurement method: BMCI = 48640 / T + 473.7d-456.8
d: Density (15.6 ° C)
T: Average boiling point expressed in absolute temperature K.

実施例1
(1)NaY型分子篩原粉(Na O含有量 10重量%、SiO /Al モル比 5.0)を、濃度1.0mol/Lの硝酸アンモニウムと、3:1の液固比で混合し、70℃でアンモニウムイオン交換を3h行い、このプロセスを3回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.5重量%であった。
Example 1
(1) NaY-type molecular sieve raw powder (Na 2 O content 10% by weight, SiO 2 / Al 2 O 3 mol ratio 5.0), ammonium nitrate having a concentration of 1.0 mol / L and a liquid-solid ratio of 3: 1. The sodium ion exchange was carried out at 70 ° C. for 3 hours, and this process was repeated 3 times. The obtained desodium Y-type molecular sieve had a Na 2 O content of 2.5% by weight.

(2)脱ナトリウムY型分子篩と水蒸気を、550℃、0.1MPaで接触させて、水熱脱アルミニウムを2h行い、このプロセスを1回繰り返し、水熱脱アルミニウムの生成物を得た。 (2) The sodium-free Y-type molecular sieve and steam were brought into contact with each other at 550 ° C. and 0.1 MPa to carry out hydrothermal dealuminum for 2 hours, and this process was repeated once to obtain a product of hydrothermal dealuminum.

(3)水熱脱アルミニウムの生成物を5:1の液固比で0.5mol/Lの硫酸アルミニウム溶液と混合し、次に、80℃で恒温反応を2h行って、脱ナトリウム・脱アルミニウムY型分子篩を得た。 (3) The product of hydrothermal dealuminum is mixed with a 0.5 mol / L aluminum sulfate solution at a liquid-solidity ratio of 5: 1, and then a constant temperature reaction is carried out at 80 ° C. for 2 hours to remove sodium and dealuminum. A Y-type molecular sieve was obtained.

(4)脱ナトリウム・脱アルミニウムY型分子篩を0.8mol/LのNaNO 水溶液に加えて、60℃でナトリウムイオン交換を2h行って、ナトリウム含有Y型分子篩を得た。 (4) Sodium-de-aluminum Y-type molecular sieves were added to a 0.8 mol / L NaNO 3 aqueous solution, and sodium ion exchange was carried out at 60 ° C. for 2 hours to obtain sodium-containing Y-type molecular sieves.

(5)ナトリウム含有Y型分子篩を、濃度0.5mol/Lの臭化ベンジルトリブチルアンモニウム水溶液に加え、70℃で3h浸漬処理した。 (5) Sodium-containing Y-type molecular sieves were added to a benzyltributylammonium bromide aqueous solution having a concentration of 0.5 mol / L, and the cells were immersed at 70 ° C. for 3 hours.

(6)ステップ(5)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y型分子篩を得て、番号Y-1とした。 (6) The product obtained in step (5) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y-type molecular sieves, which were numbered Y-1.

実施例2
(1)NaY分子篩原粉を、濃度2.0mol/Lの塩化アンモニウムと3:1の液固比で混合し、80℃でアンモニウムイオン交換を2h行い、このプロセスを1回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.7重量%であった。
Example 2
(1) NaY molecular sieve raw powder was mixed with ammonium chloride having a concentration of 2.0 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 80 ° C. for 2 hours, and this process was repeated once to obtain desorption. The Na 2 O content of the sodium Y-type molecular sieve was 2.7% by weight.

(2)脱ナトリウムY型分子篩と水蒸気を、600℃、0.1MPaで接触させて、水熱脱アルミニウムを2h行い、このプロセスを1回繰り返し、水熱脱アルミニウムの生成物を得た。 (2) The sodium-free Y-type molecular sieve and steam were brought into contact with each other at 600 ° C. and 0.1 MPa to carry out hydrothermal dealuminum for 2 hours, and this process was repeated once to obtain a product of hydrothermal dealuminum.

(3)水熱脱アルミニウムの生成物を5:1の液固比で濃度0.4mol/Lのフルオロケイ酸アンモニウム溶液と混合し、次に90℃で恒温反応を2h行い、脱ナトリウム・脱アルミニウムY型分子篩を得た。 (3) The product of hydrothermal dealuminum is mixed with an ammonium fluorosilate solution having a liquid-solid ratio of 5: 1 and a concentration of 0.4 mol / L, and then a constant temperature reaction is carried out at 90 ° C. for 2 hours to de-sodium and de-sodium. Aluminum Y-type molecular sieves were obtained.

(4)脱ナトリウム・脱アルミニウムY型分子篩を2.0mol/LのNaNO 水溶液に加えて、80℃でナトリウムイオン交換を2h行って、ナトリウム含有Y型分子篩を得た。 (4) Desodium-dealuminum Y-type molecular sieves were added to a 2.0 mol / L NaNO 3 aqueous solution, and sodium ion exchange was carried out at 80 ° C. for 2 hours to obtain sodium-containing Y-type molecular sieves.

(5)ナトリウム含有Y型分子篩を濃度1.5mol/Lの塩化ベンジルトリブチルアンモニウム水溶液に加え、70℃で3h浸漬処理した。 (5) Sodium-containing Y-type molecular sieves were added to an aqueous solution of benzyltributylammonium chloride having a concentration of 1.5 mol / L, and the cells were immersed at 70 ° C. for 3 hours.

(6)ステップ(5)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y型分子篩を得て、番号Y-2とした。 (6) The product obtained in step (5) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y-type molecular sieves, which were numbered Y-2.

実施例3
(1)NaY分子篩原粉を濃度3.0mol/Lの硫酸アンモニウムと3:1の液固比で混合し、80℃でアンモニウムイオン交換を2h行い、このプロセスを1回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.3重量%であった。
Example 3
(1) NaY molecular sieve raw powder was mixed with ammonium sulfate having a concentration of 3.0 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 80 ° C. for 2 hours, and this process was repeated once to obtain desodium Y. The Na 2 O content of the type molecular sieve was 2.3% by weight.

(2)脱ナトリウムY型分子篩と水蒸気を、630℃、0.1MPaで接触させて、水熱処理を2h行い、このプロセスを1回繰り返し、水熱脱アルミニウムの生成物を得た。 (2) The sodium-free Y-type molecular sieve and steam were brought into contact with each other at 630 ° C. and 0.1 MPa, hydrothermally treated for 2 hours, and this process was repeated once to obtain a hydrothermally dealuminum product.

(3)水熱脱アルミニウムの生成物を5:1の液固比で濃度0.6mol/Lの希硝酸溶液と混合し、次に、95℃で恒温反応を2h行って、脱ナトリウム・脱アルミニウムY型分子篩を得た。 (3) The product of hydrothermal dealuminum is mixed with a dilute nitrate solution having a liquid-solid ratio of 5: 1 and a concentration of 0.6 mol / L, and then a constant temperature reaction is carried out at 95 ° C. for 2 hours to desodium and de-sodium. Aluminum Y-type molecular sieves were obtained.

(4)脱ナトリウム・脱アルミニウムY型分子篩を1.5mol/LのNaNO 水溶液に加えて、70℃でナトリウムイオン交換を2h行って、ナトリウム含有Y型分子篩を得た。 (4) Desodium-dealuminum Y-type molecular sieves were added to a 1.5 mol / L NaNO 3 aqueous solution, and sodium ion exchange was carried out at 70 ° C. for 2 hours to obtain sodium-containing Y-type molecular sieves.

(5)ナトリウム含有Y型分子篩を、濃度1.2mol/Lの臭化ベンジルトリプロピルアンモニウム水溶液に加え、80℃で2h浸漬処理した。 (5) Sodium-containing Y-type molecular sieves were added to a benzyltripropylammonium bromide aqueous solution having a concentration of 1.2 mol / L, and the cells were immersed at 80 ° C. for 2 hours.

(6)ステップ(5)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y型分子篩を得て、番号Y-3とした。 (6) The product obtained in step (5) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y-type molecular sieves, which were designated as No. Y-3.

実施例4
(1)NaY型分子篩原粉を濃度0.5mol/Lの硝酸アンモニウムと3:1の液固比で混合し、70℃でアンモニウムイオン交換を3h行い、このプロセスを3回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.5重量%であった。
Example 4
(1) NaY-type molecular sieve raw powder was mixed with ammonium nitrate having a concentration of 0.5 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 70 ° C. for 3 hours, and this process was repeated 3 times to obtain desodium. The Na 2 O content of the Y-type molecular sieve was 2.5% by weight.

(2)脱ナトリウムY型分子篩を6:1の液固比で0.2mol/Lフルオロケイ酸アンモニウム処理溶液と混合し、次に、80℃で恒温反応を2h行った。 (2) Desodium Y-type molecular sieves were mixed with a 0.2 mol / L ammonium fluorosilate-treated solution at a liquid-solid ratio of 6: 1, and then a constant temperature reaction was carried out at 80 ° C. for 2 hours.

(3)ステップ(2)で得た生成物と水蒸気を0.2MPa、520℃接触させて、水熱処理を2h行い、このプロセスを1回繰り返した。 (3) The product obtained in step (2) and steam were brought into contact with each other at 0.2 MPa and 520 ° C., hydrothermal treatment was performed for 2 hours, and this process was repeated once.

(4)ステップ(3)で得た生成物を5:1の液固比で0.6mol/Lの硫酸アルミニウム溶液と混合して撹拌し、次に、75℃で恒温反応を2h行って、脱ナトリウム・脱アルミニウムY型分子篩を得た。 (4) The product obtained in step (3) was mixed with a 0.6 mol / L aluminum sulfate solution at a liquid-solid ratio of 5: 1 and stirred, and then a constant temperature reaction was carried out at 75 ° C. for 2 hours. De-sodium and de-aluminum Y-type molecular sieves were obtained.

(5)脱ナトリウム・脱アルミニウムY型分子篩を0.6mol/LのNaNO 水溶液に加えて、50℃でナトリウムイオン交換を2h行って、ナトリウム含有Y型分子篩を得た。 (5) Sodium-de-aluminum Y-type molecular sieves were added to a 0.6 mol / L NaNO 3 aqueous solution, and sodium ion exchange was carried out at 50 ° C. for 2 hours to obtain sodium-containing Y-type molecular sieves.

(6)ナトリウム含有Y型分子篩を、濃度0.5mol/Lの臭化ベンジルトリブチルアンモニウム水溶液に加え、60℃で5h浸漬処理した。 (6) Sodium-containing Y-type molecular sieves were added to a benzyltributylammonium bromide aqueous solution having a concentration of 0.5 mol / L, and the cells were immersed at 60 ° C. for 5 hours.

(7)ステップ(6)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y分子篩を得て、番号Y-4とした。 (7) The product obtained in step (6) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y molecular sieves, which were numbered Y-4.

比較例1
(1)NaY型分子篩原粉を濃度0.5mol/Lの硝酸アンモニウムと3:1の液固比で混合し、70℃でアンモニウムイオン交換を3h行い、このプロセスを3回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.5重量%であった。
Comparative Example 1
(1) NaY-type molecular sieve raw powder was mixed with ammonium nitrate having a concentration of 0.5 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 70 ° C. for 3 hours, and this process was repeated 3 times to obtain desodium. The Na 2 O content of the Y-type molecular sieve was 2.5% by weight.

(2)アンモニウム交換Y分子篩と水蒸気を550℃、0.1MPaで接触させて、水熱処理を2h行い、このプロセスを1回繰り返し、水熱脱アルミニウムの生成物を得た。 (2) Ammonium exchange The Y molecular sieve and steam were brought into contact with each other at 550 ° C. and 0.1 MPa, hydrothermally treated for 2 hours, and this process was repeated once to obtain a product of hydrothermal dealuminum.

(3)水熱脱アルミニウムの生成物を5:1の液固比で0.5mol/Lの硫酸アルミニウム溶液と混合し、次に、80℃で恒温反応を2h行った。 (3) The product of hydrothermal dealuminum was mixed with a 0.5 mol / L aluminum sulfate solution at a liquid-solid ratio of 5: 1, and then a constant temperature reaction was carried out at 80 ° C. for 2 hours.

(4)ステップ(3)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y型分子篩を得て、番号B-1とした。 (4) The product obtained in step (3) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y-type molecular sieves, which were designated as No. B-1.

比較例2
(1)NaY型分子篩原粉を濃度0.5mol/Lの硝酸アンモニウムと3:1の液固比で混合し、70℃でアンモニウムイオン交換を3h行い、このプロセスを3回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.5重量%であった。
Comparative Example 2
(1) NaY-type molecular sieve raw powder was mixed with ammonium nitrate having a concentration of 0.5 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 70 ° C. for 3 hours, and this process was repeated 3 times to obtain desodium. The Na 2 O content of the Y-type molecular sieve was 2.5% by weight.

(2)ステップ(1)で得た生成物を6:1の液固比で0.2mol/Lフルオロケイ酸アンモニウム処理溶液と混合し、次に、80℃で恒温反応を2h行った。 (2) The product obtained in step (1) was mixed with a 0.2 mol / L ammonium fluorosilate-treated solution at a liquid-solid ratio of 6: 1, and then a constant temperature reaction was carried out at 80 ° C. for 2 hours.

(3)ステップ(2)で得た生成物と水蒸気を0.2MPa、520℃で接触させて、水熱処理を2h行い、このプロセスを1回繰り返した。 (3) The product obtained in step (2) and steam were brought into contact with each other at 0.2 MPa and 520 ° C., hydrothermal treatment was performed for 2 hours, and this process was repeated once.

(4)ステップ(3)で得た分子篩を5:1の液固比で0.6mol/Lの硫酸アルミニウム溶液と混合して撹拌し、次に、75℃で恒温反応を2h行った。 (4) The molecular sieves obtained in step (3) were mixed with a 0.6 mol / L aluminum sulfate solution at a liquid-solid ratio of 5: 1 and stirred, and then a constant temperature reaction was carried out at 75 ° C. for 2 hours.

(5)ステップ(4)で得た生成物を、120℃で4h乾燥させ、550℃で4h焙焼し、変性Y型分子篩を得て、番号B-2とした。 (5) The product obtained in step (4) was dried at 120 ° C. for 4 hours and roasted at 550 ° C. for 4 hours to obtain modified Y-type molecular sieves, which were designated as No. B-2.

比較例3
(1)NaY型分子篩原粉200gを濃度0.5mol/Lの硝酸アンモニウムと3:1の液固比で混合し、70℃でアンモニウムイオン交換を3h行い、このプロセスを3回繰り返し、得た脱ナトリウムY型分子篩には、Na O含有量は2.5重量%であった。
Comparative Example 3
(1) 200 g of NaY-type molecular sieve raw powder was mixed with ammonium nitrate having a concentration of 0.5 mol / L at a liquid-solid ratio of 3: 1, ammonium ion exchange was performed at 70 ° C. for 3 hours, and this process was repeated 3 times to obtain desorption. The Na 2 O content of the sodium Y-type molecular sieve was 2.5% by weight.

(2)脱ナトリウムY型分子篩を560℃、0.1MPaで、水熱処理を2h行った。 (2) The sodium-free Y-type molecular sieve was subjected to hydrothermal treatment at 560 ° C. and 0.1 MPa for 2 hours.

(3)ステップ(2)で得た分子篩を5:1の液固比で蒸留水と混合して撹拌し、次に80℃に昇温し、撹拌しながら0.5mol/Lの硫酸アルミニウム溶液400mlを加え、恒温反応を2h行った。 (3) The molecular sieve obtained in step (2) is mixed with distilled water at a liquid-solid ratio of 5: 1 and stirred, then the temperature is raised to 80 ° C., and a 0.5 mol / L aluminum sulfate solution is stirred while stirring. 400 ml was added, and a constant temperature reaction was carried out for 2 hours.

(4)ステップ(3)で得た分子篩を140℃で8min乾燥させた。 (4) The molecular sieves obtained in step (3) were dried at 140 ° C. for 8 min.

(5)ステップ(4)で得た分子篩を、ブタジエン雰囲気で満たされた密閉容器に投入し、圧力を0.3MPaに制御しながら20min十分に接触させ、次に、空気雰囲気下、200℃で15h加熱した。 (5) The molecular sieves obtained in step (4) are placed in a closed container filled with a butadiene atmosphere, sufficiently contacted for 20 minutes while controlling the pressure to 0.3 MPa, and then at 200 ° C. under an air atmosphere. It was heated for 15 hours.

(6)ステップ(5)で得た分子篩を、5:1の液固比で蒸留水と混合し、次に、濃度0.6mol/Lのフルオロケイ酸アンモニウム溶液100mlを加えて、80℃で2h処理した。 (6) The molecular sieve obtained in step (5) is mixed with distilled water at a liquid-solid ratio of 5: 1, and then 100 ml of an ammonium fluorosilate solution having a concentration of 0.6 mol / L is added and the temperature is 80 ° C. Processed for 2 hours.

(7)ステップ(6)のフルオロケイ酸アンモニウム処理を経たY分子篩を、120℃で2h乾燥させ、550℃で4h焙焼し、変性Y分子篩を得て、番号B-3とした。 (7) The Y molecular sieves treated with ammonium fluorosilate in step (6) were dried at 120 ° C. for 2 hours and roasted at 550 ° C. for 4 hours to obtain modified Y molecular sieves, which were designated as No. B-3.

上記実施例及び比較例で製造した分子篩の特性を表1に示した。 The characteristics of the molecular sieves produced in the above Examples and Comparative Examples are shown in Table 1.

Figure 2019104543000003
Figure 2019104543000003

表1のデータから明らかなように、本発明による技術案の実施例により製造した変性Y型分子篩は、ピリジン赤外分光法による全酸量とn-ブチルピリジン赤外分光法による全酸量との比が、1~1.2、好ましくは1.02~1.15、より好ましくは1.05~1.12、特に好ましくは1.03~1.09であった。一方、比較例で得た変性Y型分子篩のピリジン赤外分光法による全酸量とn-ブチルピリジン赤外分光法による全酸量との比は、1.2よりも大きく、1.4~1.7であった。 As is clear from the data in Table 1, the modified Y-type molecular sieve manufactured by the embodiment of the technical proposal according to the present invention has a total acid amount by pyridine infrared spectroscopy and a total acid amount by n-butyl pyridine infrared spectroscopy. The ratio was 1 to 1.2, preferably 1.02 to 1.15, more preferably 1.05 to 1.12, and particularly preferably 1.03 to 1.09. On the other hand, the ratio of the total acid amount of the modified Y-type molecular sieve obtained in the comparative example by the pyridine infrared spectroscopy to the total acid amount by the n-butyl pyridine infrared spectroscopy is larger than 1.2, and is 1.4 to 1. It was 1.7.

実施例5
実施例1~4及び比較例1~3で製造した変性Y型分子篩を用いて水素化分解触媒を製造し、触媒の成分組成を表2に示した。
Example 5
The hydrocracking catalysts were produced using the modified Y-type molecular sieves produced in Examples 1 to 4 and Comparative Examples 1 to 3, and the component compositions of the catalysts are shown in Table 2.

(1)変性Y型分子篩と酸化アルミニウムを混合して担体混合材料とし、次に、担体混合材料に質量百分率20重量%の硝酸水溶液を加えてスラリーとし、押出成形を行った。 (1) A modified Y-type molecular sieve and aluminum oxide were mixed to prepare a carrier mixed material, and then an aqueous nitric acid solution having a mass percentage of 20% by mass was added to the carrier mixed material to form a slurry, which was extruded.

(2)ステップ(1)で得た押出生成物を100℃で3h乾燥させ、次に450℃で3h焙焼し、シリカ-アルミナ担体を得た。 (2) The extruded product obtained in step (1) was dried at 100 ° C. for 3 hours and then roasted at 450 ° C. for 3 hours to obtain a silica-alumina carrier.

(3)水素化活性金属を含有する溶液においてシリカ-アルミナ担体を飽和浸漬して、得た生成物を乾燥させて焙焼し、水素化分解触媒を得た。 (3) The silica-alumina carrier was saturated and immersed in a solution containing an active metal for hydrogenation, and the obtained product was dried and roasted to obtain a hydrogenation decomposition catalyst.

得た触媒に対応する番号は、実施例1~4の変性Y型分子篩Y-1~Y-4に対応する触媒はC-1~C-4であえり、比較例1~3の変性Y型分子篩B-1~B-3に対応する触媒はBC-1~BC-3である。表2に示した。 The numbers corresponding to the obtained catalysts are C-1 to C-4 for the catalysts corresponding to the modified Y-type molecular sieves Y-1 to Y-4 of Examples 1 to 4, and the modified Y-types of Comparative Examples 1 to 3 are used. The catalysts corresponding to the molecular sieves B-1 to B-3 are BC-1 to BC-3. It is shown in Table 2.

Figure 2019104543000004
Figure 2019104543000004

評価例1
触媒C-1~C-4及びBC-1~BC-3を小型マイクロ反応装置(米国xytel社製の100ml小型評価装置)において評価試験を行い、評価装置には、1段直列式ワンパスプロセスが使用され、第1反応器には従来の精製触媒が充填され、第2反応器には表2の水素化分解触媒が充填され、反応原料油の特性を表3、評価結果を表4~表5に示した。
Evaluation example 1
The catalysts C-1 to C-4 and BC-1 to BC-3 are evaluated and tested in a small micro-reactor (100 ml small evaluation device manufactured by xytel in the United States), and the evaluation device is equipped with a one-stage series one-pass process. The first reactor is filled with the conventional purification catalyst, the second reactor is filled with the hydrocracking catalyst shown in Table 2, the characteristics of the reaction raw material oil are shown in Table 3, and the evaluation results are shown in Tables 4 to 4. Shown in 5.

Figure 2019104543000005
Figure 2019104543000005

Figure 2019104543000006
Figure 2019104543000006

Figure 2019104543000007
Figure 2019104543000007

表5の結果から明らかなように、実施例1~4の本発明による変性Y型分子篩を用いて製造した水素化分解触媒C-1~C-4では、分子篩に最適化された酸性中心の分布を有し、ミクロ孔における酸性中心の量が減少し、水素化分解反応を行う場合、得た水素化分解によるテールオイル製品のBMCI値は、比較例1~3の変性Y型分子篩(ピリジン赤外分光法による全酸量とn-ブチルピリジン赤外分光法による全酸量との比は1.2より大きい)を用いて製造された水素化分解触媒による反応結果よりも有意に低く、また、C 液体収率は比較例の触媒による反応結果よりも大きかった。 As is clear from the results in Table 5, in the hydrogenation decomposition catalysts C-1 to C-4 produced by using the modified Y-type molecular sieves according to the present invention of Examples 1 to 4, the acidic center optimized for the molecular sieve was used. When having a distribution, the amount of acidic centers in the micropores is reduced, and a hydrocracking reaction is carried out, the BMCI value of the obtained tail oil product by hydrocracking is the modified Y-type molecular sieve (pyridine) of Comparative Examples 1 to 3. The ratio of the total acid amount by infrared spectroscopy to the total acid amount by n-butylpyridine infrared spectroscopy is greater than 1.2), which is significantly lower than the reaction result by the hydrocracking catalyst produced using. Moreover, the C 5 + liquid yield was larger than the reaction result by the catalyst of the comparative example.

また、比較例3は、従来技術による変性Y型分子篩を提供し、変性Y型分子篩粒子の体相と表面でのシリカ/アルミナ比が使用されている。この変性方法は、分子篩の局所のシリカ/アルミナ比を変えることで分子篩の酸量へ影響を及ぼすが、この方法は、Y型分子篩のマクロ孔とミクロ孔における酸性中心サイトの分布を変えることができず、ミクロ孔における酸中心サイトを露出させたままであり、ピリジン酸量とn-ブチルピリジン酸量との比が1.2より大きいため、ミクロ孔に入った炭化水素が酸中心サイトで二次分解反応を行う可能性を減少させることができず、水素化分解に用いられる場合は、水素化分解によるテールオイルの品質を改善し、反応の液体製品の収率を向上させることもできなかった。 Further, Comparative Example 3 provides a modified Y-type molecular sieve according to the prior art, and the silica / alumina ratio between the body phase and the surface of the modified Y-type molecular sieve particles is used. This modification method affects the acid content of the molecular sieve by changing the local silica / alumina ratio of the molecular sieve, but this method can change the distribution of acidic center sites in the macropores and micropores of the Y-type molecular sieve. The acid center site in the micropores remains exposed, and the ratio of the amount of pyridineic acid to the amount of n-butylpyridine acid is greater than 1.2, so that the hydrocarbons in the micropores remain exposed at the acid center site. The possibility of a secondary decomposition reaction could not be reduced, and when used for hydrocracking, the quality of tail oil due to hydrocracking could not be improved and the yield of the liquid product of the reaction could not be improved. rice field.

以上、本発明の好ましい実施形態について詳細に説明したが、本発明はこれに限定されない。本発明の技術的構想の範囲内で、本発明の技術案に対して、他の適切な方式による様々な技術的特徴の組み合わせを含む様々な簡単な変形を行うことができ、これらの簡単な変形及び組み合わせも、本発明の開示と見なされるべきであり、すべて本発明の特許範囲に属する。
Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited thereto. Within the scope of the technical concept of the present invention, various simple modifications including a combination of various technical features by other appropriate methods can be made to the technical proposal of the present invention, and these simple modifications can be made. Modifications and combinations should also be considered disclosure of the invention and are all within the scope of the invention.

Claims (21)

変性Y型分子篩であって、
前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 0.5~2重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1~1.2であり、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.1~1.2mmol/gである、ことを特徴とする変性Y型分子篩。
A modified Y-type molecular sieve,
Based on the total amount of the modified Y-type molecular sieve, the modified Y-type molecular sieve contains 0.5 to 2% by weight of Na 2O , and the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy and the modification. The ratio of the Y-type molecular sieve to the total acid amount by n-butyl pyridine infrared spectroscopy is 1 to 1.2, and the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy is 0.1 to 1. A modified Y-type molecular sieve characterized by 2 mmol / g.
前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 0.8~1.8重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1.02~1.15であり、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.2~1mmol/gである、請求項1に記載の変性Y型分子篩。 Based on the total amount of the modified Y-type molecular sieve, the modified Y-type molecular sieve contains 0.8 to 1.8% by weight of Na 2O , and the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy. The ratio of the modified Y-type molecular sieve to the total acid amount by n-butyl pyridine infrared spectroscopy is 1.02 to 1.15, and the total acid content of the modified Y-type molecular sieve by pyridine infrared spectroscopy is 0. The modified Y-type molecular sieve according to claim 1, which is 2 to 1 mmol / g. 前記変性Y型分子篩の全量を基準として、前記変性Y型分子篩は、Na O 1~1.5重量%を含有し、前記変性Y型分子篩のピリジン赤外分光法による全酸量と前記変性Y型分子篩のn-ブチルピリジン赤外分光法による全酸量との比が1.05~1.12であり、前記変性Y型分子篩のピリジン赤外分光法による全酸量は0.3~0.8mmol/gである、請求項2に記載の変性Y型分子篩。 Based on the total amount of the modified Y-type molecular sieve, the modified Y-type molecular sieve contains 1 to 1.5% by weight of Na 2O , and the total acid amount of the modified Y-type molecular sieve by pyridine infrared spectroscopy and the modification. The ratio of the Y-type molecular sieve to the total acid amount by n-butyl pyridine infrared spectroscopy is 1.05 to 1.12, and the total acid content of the modified Y-type molecular sieve by pyridine infrared spectroscopy is 0.3 to 1.12. The modified Y-type molecular sieve according to claim 2, which is 0.8 mmol / g. 前記変性Y型分子篩は、比表面積500~900m /g、細孔容積0.28~0.7ml/g、相対結晶化度50%~130%、格子定数2.425~2.45nm、SiO /Al モル比(6~80):1であり、前記相対結晶化度は、NaY型分子篩原粉(Na O含有量 10重量%、SiO /Al モル比 5.0)を標準試料とした結晶化度である、請求項1~3のいずれか1項に記載の変性Y型分子篩。 The modified Y-type molecular sieve has a specific surface area of 500 to 900 m 2 / g, a pore volume of 0.28 to 0.7 ml / g, a relative crystallinity of 50% to 130%, a lattice constant of 2.425 to 2.45 nm, and SiO. 2 / Al 2 O 3 molar ratio (6 to 80): 1, and the relative crystallization degree is NaY type molecular sieve raw powder (Na 2 O content 10% by weight, SiO 2 / Al 2 O 3 molar ratio) . The modified Y-type molecular sieve according to any one of claims 1 to 3 , which is the crystallinity of 5.0) as a standard sample . 前記変性Y型分子篩は、比表面積550~850m /g、細孔容積0.3~0.65ml/g、相対結晶化度60%~110%、格子定数2.428~2.448nm、SiO /Al モル比(8~60):1である、請求項4に記載の変性Y型分子篩。 The modified Y-type molecular sieve has a specific surface area of 550 to 850 m 2 / g, a pore volume of 0.3 to 0.65 ml / g, a relative crystallization degree of 60% to 110%, a lattice constant of 2.428 to 2.448 nm, and a SiO. The modified Y-type molecular sieve according to claim 4, which has a 2 / Al 2O 3 molar ratio (8 to 60): 1. 前記変性Y型分子篩は、比表面積600~750m /g、細孔容積0.35~0.6ml/g、相対結晶化度70%~100%、格子定数2.43~2.445nm、SiO /Al モル比(10~50):1である、請求項5に記載の変性Y型分子篩。 The modified Y-type molecular sieve has a specific surface area of 600 to 750 m 2 / g, a pore volume of 0.35 to 0.6 ml / g, a relative crystallinity of 70% to 100%, a lattice constant of 2.43 to 2.445 nm, and SiO. The modified Y-type molecular sieve according to claim 5, which has a 2 / Al 2O 3 molar ratio (10 to 50): 1. 請求項1~6のいずれか1項に記載の変性Y型分子篩の製造方法であって、
NaY分子篩を前処理して、脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(1)と、
前記脱ナトリウム・脱アルミニウムY型分子篩をナトリウムイオン交換して、ナトリウム含有Y型分子篩を得るステップ(2)と、
前記ナトリウム含有Y型分子篩を大分子アンモニウム塩溶液で浸漬処理し、次に乾燥、焙焼をして、変性Y型分子篩を得るステップ(3)と、を含む、ことを特徴とする製造方法。
The method for producing a modified Y-type molecular sieve according to any one of claims 1 to 6.
Step (1) of pretreating NaY molecular sieves to obtain desodium-dealuminum-dealuminum Y-type molecular sieves,
In the step (2) of obtaining sodium-containing Y-type molecular sieves by exchanging sodium ions with the desodium-dealuminum Y-type molecular sieves.
A production method comprising the step (3) of immersing the sodium-containing Y-type molecular sieve with a large molecular ammonium salt solution, and then drying and roasting the sodium-containing Y-type molecular sieve to obtain a modified Y-type molecular sieve.
ステップ(2)では、前記ナトリウムイオン交換のプロセスは、前記脱ナトリウム・脱アルミニウムY型分子篩を、40~80℃で、NaNO の質量百分率が0.1~3重量%であるNaNO 水溶液と1~4h恒温反応させることである、請求項7に記載の方法。 In step (2), the sodium ion exchange process involves using the desodium-dealuminum Y-type molecular sieve with a NaNO 3 aqueous solution having a mass percentage of NaNO 3 of 0.1 to 3% by weight at 40 to 80 ° C. The method according to claim 7, wherein the reaction is carried out at a constant temperature for 1 to 4 hours. ステップ(3)では、前記浸漬処理のプロセスは、40~80℃で、前記ナトリウム含有Y型分子篩を、前記大分子アンモニウム塩溶液において2~6h浸漬することであり、前記大分子アンモニウム塩がベンジル四級アンモニウム塩である、請求項7又は8に記載の方法。 In step (3), the dipping process is to immerse the sodium-containing Y-type molecular sieve in the large-molecular-weight ammonium salt solution for 2 to 6 hours at 40 to 80 ° C., and the large-molecular-weight ammonium salt is benzyl. The method according to claim 7 or 8, which is a quaternary ammonium salt. 前記ベンジル四級アンモニウム塩は、臭化ベンジルトリプロピルアンモニウム、臭化ベンジルトリブチルアンモニウム、塩化ベンジルトリプロピルアンモニウム、及び塩化ベンジルトリブチルアンモニウムのうちの少なくとも1種である、請求項9に記載の方法。The method according to claim 9, wherein the benzyl quaternary ammonium salt is at least one of benzyltripropylammonium bromide, benzyltributylammonium bromide, benzyltripropylammonium chloride, and benzyltributylammonium chloride. ステップ(3)では、前記乾燥プロセスは、100~150℃で1~4h乾燥することであり、前記焙焼プロセスは、500~700℃で2~6h焙焼処理することである、請求項7に記載の方法。 In step (3), the drying process is to dry at 100 to 150 ° C. for 1 to 4 hours, and the roasting process is to roast at 500 to 700 ° C. for 2 to 6 hours. The method described in. ステップ(1)では、前記前処理プロセスは、アンモニウムイオン交換、水熱脱アルミニウム、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、及び酸による脱アルミニウムのうちの1つ又は複数の組み合わせを含む、請求項7~11のいずれか1項に記載の方法。 In step (1), the pretreatment process involves one or more combinations of ammonium ion exchange, hydrothermal dealuminum, aluminum salt dealuminum, fluorosilicate dealuminum, and acid dealuminum. The method according to any one of claims 7 to 11 , including. ステップ(1)では、前記前処理プロセスは、
NaY分子篩とアンモニウム塩水溶液とをアンモニウムイオン交換反応して、脱ナトリウムY型分子篩を得るステップ(a)と、
前記脱ナトリウムY型分子篩を水熱脱アルミニウムして、水熱脱アルミニウムの生成物を得るステップ(b)と、
前記水熱脱アルミニウムの生成物を化学的脱アルミニウムして、前記脱ナトリウム・脱アルミニウムY型分子篩を得るステップ(c)と、を含み、
前記化学的脱アルミニウムは、アルミニウム塩による脱アルミニウム、フルオロケイ酸塩による脱アルミニウム、又は酸による脱アルミニウムである、請求項12に記載の方法。
In step (1), the pretreatment process is
The step (a) of obtaining a desodium Y-type molecular sieve by subjecting a NaY molecular sieve and an aqueous ammonium salt solution to an ammonium ion exchange reaction,
The step (b) of obtaining the product of hydrothermally dealuminum by hydrothermally dealuminating the desodium Y-type molecular sieve.
The step (c) of chemically dealuminating the hydrothermally dealuminum product to obtain the desodium-dealuminum-dealuminum Y-type molecular sieve is included.
The method according to claim 12 , wherein the chemical dealuminum is dealuminum with an aluminum salt, dealuminum with a fluorosilicate, or dealuminum with an acid.
ステップ(a)では、前記アンモニウム塩イオン交換反応のプロセスは、NaY分子篩とアンモニウム塩水溶液とを、60~120℃で、1~4回、1~3h交換させ、Na O含有量が3重量%未満の前記脱ナトリウムY型分子篩を得ることであり、
NaY分子篩は、SiO /Al モル比(3~6):1、Na O含有量6~12重量%であり、アンモニウム塩は、塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、及びシュウ酸アンモニウムから選ばれる1種又は複数種であり、前記アンモニウム塩水溶液のモル濃度は0.3~6mol/Lである、請求項13に記載の方法。
In step (a), the ammonium salt ion exchange reaction process involves exchanging the NaY molecular sieve and the ammonium salt aqueous solution at 60 to 120 ° C. 1 to 4 times for 1 to 3 hours, and the Na 2 O content is 3 weight by weight. Is to obtain the above-mentioned desodium Y-type molecular sieve of less than%.
The NaY molecular sieve has a SiO 2 / Al 2 O 3 molar ratio (3 to 6): 1, a Na 2 O content of 6 to 12% by weight, and the ammonium salts are ammonium chloride, ammonium nitrate, ammonium sulfate, ammonium acetate, and oxalate. The method according to claim 13 , wherein the method is one or more selected from ammonium acid, and the molar concentration of the ammonium salt aqueous solution is 0.3 to 6 mol / L.
ステップ(b)では、前記水熱脱アルミニウムのプロセスは、前記脱ナトリウムY型分子篩と水蒸気とを、温度520~700℃、圧力0.01~0.5MPaの条件で1~6h接触させることである、請求項13に記載の方法。 In step (b), the hydrothermal dealuminum process involves contacting the desodium Y-type molecular sieve with steam under the conditions of a temperature of 520 to 700 ° C. and a pressure of 0.01 to 0.5 MPa for 1 to 6 hours. The method according to claim 13 . ステップ(c)では、前記化学的脱アルミニウムのプロセスは、前記水熱脱アルミニウムの生成物を、アルミニウム塩溶液、フルオロケイ酸アンモニウム溶液又は硝酸溶液と、50~120℃の温度で0.5~3h恒温反応させることである、請求項13に記載の方法。 In step (c), the chemical dealumination process takes the hydrothermal dealumination product from 0.5 to 0.5 to 120 ° C. with an aluminum salt solution, an ammonium fluorosilicate solution or a nitric acid solution. The method according to claim 13 , wherein the reaction is carried out at a constant temperature for 3 hours. 水素化分解触媒の製造方法であって、
請求項1~6のいずれか1項に記載の変性Y型分子篩、アモルファスシリカ-アルミナ及び/又は酸化アルミニウムを、(5~90):(0~50):(0.6~80)の重量比で混合して担体混合材料とし、次に、前記担体混合材料に質量百分率3~30重量%の硝酸水溶液を加えてスラリーとし、押出成形を行うステップ(I)と、
ステップ(I)で得た押出生成物を80~120℃で1~5h乾燥させ、次に400~500℃で1~5h焙焼し、シリカ-アルミナ担体を得るステップ(II)と、
前記シリカ-アルミナ担体を、水素化活性金属を含有する溶液において飽和浸漬して、得た生成物を乾燥させて焙焼し、水素化分解触媒を得るステップ(III)と、を含む水素化分解触媒の製造方法。
It is a method for manufacturing a hydrogenation decomposition catalyst.
The modified Y-type molecular sieve, amorphous silica-alumina and / or aluminum oxide according to any one of claims 1 to 6 is weighted at (5 to 90) :( 0 to 50) :( 0.6 to 80). In step (I), the carrier mixed material is mixed by a ratio to form a slurry, and then an aqueous nitrate solution having a mass percentage of 3 to 30% by weight is added to the carrier mixed material to form a slurry, and extrusion molding is performed.
The extrusion product obtained in step (I) is dried at 80 to 120 ° C. for 1 to 5 hours and then roasted at 400 to 500 ° C. for 1 to 5 hours to obtain a silica-alumina carrier in step (II).
The silica-alumina carrier is saturated and immersed in a solution containing an active metal hydride, and the obtained product is dried and roasted to obtain a hydrocracking catalyst (III). Method for producing a catalyst.
リカ-アルミナ担体と、水素化活性金属とを含み、前記水素化分解触媒の全量を基準として、前記シリカ-アルミナ担体の含有量は55~85重量%であり、前記水素化活性金属の含有量は金属酸化物で15~45重量%であり、前記シリカ-アルミナ担体は、請求項1~6のいずれか1項に記載の変性Y型分子篩を含有し、前記シリカ-アルミナ担体における前記変性Y型分子篩の含有量が5~90重量%である、請求項17に記載の製造方法The content of the silica -alumina carrier is 55 to 85% by weight based on the total amount of the hydride decomposition catalyst, and the content of the hydride-active metal is contained. The amount is 15 to 45% by weight of the metal oxide, and the silica-alumina carrier contains the modified Y-type molecular sieve according to any one of claims 1 to 6, and the modification in the silica-alumina carrier. The production method according to claim 17, wherein the content of the Y-type molecular sieve is 5 to 90% by weight. 前記水素化活性金属は、第VIII族及び/又は第VI族から選ばれる金属であり、
記第VIII族金属はNi及び/又はCoであり、第VI族金属はW及び/又はMoである、請求項18に記載の製造方法。
The hydrogenated active metal is a metal selected from Group VIII and / or Group VI.
The production method according to claim 18, wherein the Group VIII metal is Ni and / or Co, and the Group VI metal is W and / or Mo.
前記触媒の全量を基準として、前記水素化分解触媒は、金属酸化物で、前記第VIII族金属3~15重量%、前記第VI族金属10~40重量%を含む、請求項19に記載の製造方法。19. Production method. 炭化水素油の水素化分解方法であって、
請求項18~20のいずれか1項に記載の製造方法を行い、水素化分解触媒を製造するステップ、及び、
水素ガス存在下、炭化水素油を、前記ステップで製造された水素化分解触媒と接触させて水素化分解反応させるステップを含み、反応温度は340~420℃であり、反応圧力は8~20MPaであり、前記炭化水素油の供給時の体積空間速度は0.1~2h -1 であり、水素ガスと前記炭化水素油との体積比は(200~2000):1である、炭化水素油の水素化分解方法。
It is a method of hydrocracking and decomposing hydrocarbon oil.
A step of producing a hydrocracking catalyst by performing the production method according to any one of claims 18 to 20, and
Including the step of bringing the hydrocarbon oil into contact with the hydrocracking catalyst produced in the above step to cause a hydrocracking reaction in the presence of hydrogen gas, the reaction temperature is 340 to 420 ° C., and the reaction pressure is 8 to 20 MPa. Yes, the volumetric space velocity at the time of supply of the hydrocarbon oil is 0.1 to 2h -1 , and the volume ratio of hydrogen gas to the hydrocarbon oil is (200 to 2000): 1. Hydrodecomposition method.
JP2020529328A 2017-11-29 2017-11-29 Modified Y-type molecular sieve and production method, hydrocracking catalyst and production method, and hydrocracking method for hydrocarbon oil Active JP7169354B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113629 WO2019104543A1 (en) 2017-11-29 2017-11-29 Modified y-type molecular sieve and preparation method therefor, hydrocracking catalyst and preparation method therefor, and method for hydrocracking hydrocarbon oil

Publications (3)

Publication Number Publication Date
JP2021504281A JP2021504281A (en) 2021-02-15
JPWO2019104543A5 true JPWO2019104543A5 (en) 2022-02-28
JP7169354B2 JP7169354B2 (en) 2022-11-10

Family

ID=66663729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529328A Active JP7169354B2 (en) 2017-11-29 2017-11-29 Modified Y-type molecular sieve and production method, hydrocracking catalyst and production method, and hydrocracking method for hydrocarbon oil

Country Status (8)

Country Link
US (1) US11179705B2 (en)
EP (1) EP3718629A4 (en)
JP (1) JP7169354B2 (en)
KR (1) KR102428229B1 (en)
CA (1) CA3083830C (en)
RU (1) RU2744001C1 (en)
SG (1) SG11202005027XA (en)
WO (1) WO2019104543A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403507B (en) * 2019-08-20 2023-07-25 中国石油天然气股份有限公司 High-yield naphtha type hydrocracking catalyst and application thereof
CN112717981B (en) * 2019-10-28 2022-04-08 中国石油化工股份有限公司 Hydrocracking catalyst, and preparation method and application thereof
CN112723370B (en) * 2019-10-28 2022-08-12 中国石油化工股份有限公司 High-acid-content modified Y-type molecular sieve and preparation method and application thereof
CN112723372B (en) * 2019-10-28 2022-08-12 中国石油化工股份有限公司 Modified Y-type molecular sieve rich in medium-strong acid and preparation method and application thereof
CN110862096A (en) * 2019-11-19 2020-03-06 上海绿强新材料有限公司 High-silicon NaY molecular sieve and preparation method and application thereof
CN114433204B (en) * 2020-10-19 2023-09-01 中国石油化工股份有限公司 Hydrocracking catalyst and preparation method thereof
CN113441169B (en) * 2020-10-19 2022-11-15 宁波中科远东催化工程技术有限公司 Catalyst capable of removing sulfur impurities and preparation method thereof
CN114433184A (en) * 2020-10-19 2022-05-06 中国石油化工股份有限公司 Hydrocracking catalyst, and preparation method and application thereof
CN114477215B (en) * 2020-10-23 2023-07-14 中国石油化工股份有限公司 Low-sodium content Y-type molecular sieve and preparation method thereof
CN114471687B (en) * 2020-10-26 2023-10-10 中国石油化工股份有限公司 Process for preparing bulk hydrocracking catalyst
CN114471675B (en) * 2020-10-27 2023-09-01 中国石油化工股份有限公司 Modified ZSM-5 molecular sieve for hydrodewaxing and preparation method thereof
CN114471742A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Modified Y-type molecular sieve and preparation method and application thereof
CN114534773A (en) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 USY type molecular sieve modification method and application thereof
CN116060091A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Modified Y-type molecular sieve and preparation method and application thereof
CN116062766A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Modified ZSM-5 molecular sieve and preparation method and application thereof
CN116060117B (en) * 2021-10-29 2024-04-05 中国石油化工股份有限公司 Catalytic diesel hydrocracking catalyst and preparation method thereof
CN114956956B (en) * 2022-05-07 2023-12-19 万华化学集团股份有限公司 Method for producing neopentyl glycol

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036739A (en) 1971-10-20 1977-07-19 Union Oil Company Of America Catalytic cracking process using ammonia-stable zeolite catalyst
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
CN1055063C (en) 1996-09-27 2000-08-02 中国石油化工总公司 Modified zeolite and manufacture thereof
CN1064929C (en) 1996-10-09 2001-04-25 中国石油化工集团公司抚顺石油化工研究院 High silicon high crystallinity Y type molecular sieve and its preparing method
CN100422081C (en) * 2005-10-19 2008-10-01 中国石油化工股份有限公司 Modified Y zeolite and its preparation method
RU2310509C1 (en) * 2006-09-18 2007-11-20 ООО "Компания Катахим" Method of preparing catalyst for hydrocracking of petroleum feedstock
JP5417969B2 (en) * 2008-12-17 2014-02-19 東ソー株式会社 Method for producing chabazite using N, N, N-trimethyl-benzylammonium ion
FR2951193B1 (en) * 2009-10-13 2011-12-09 Inst Francais Du Petrole HYDROCRACKING PROCESS USING MODIFIED ZEOLITHE
FR2952380B1 (en) * 2009-11-10 2012-05-18 Inst Francais Du Petrole PROCESS FOR PRODUCING MEDIUM DISTILLATE FROM FISCHER TROPSCH WAXES USING ZEOLITHE CATALYST MODIFIED BY BASIC TREATMENT
CN103447069B (en) * 2012-06-01 2016-04-06 中国石油天然气股份有限公司 A kind of catalytic cracking catalyst comprising Y zeolite and preparation method thereof
BR102014002154A2 (en) * 2014-01-28 2015-10-27 Whirlpool Sa alkylaryl compound production process, polyalkyl aromatic transalkylation process for selective production of monoalkyl aromatic compound, and alkylation and transalkylation process of aromatic and / or polyaromatic compounds
CN105621444B (en) * 2014-11-03 2018-02-09 中国石油化工股份有限公司 A kind of modified Y molecular sieve and preparation method thereof
CN106669786B (en) * 2015-11-11 2019-04-12 中国石油化工股份有限公司 A kind of catalytic diesel oil hydrocracking catalyst and preparation method thereof
CN107304373B (en) * 2016-04-22 2019-03-19 中国石油化工股份有限公司 A kind of catalytic diesel oil hydroconversion process

Similar Documents

Publication Publication Date Title
JP2021504281A (en) Modified Y-type molecular sieve and production method, hydrogenation decomposition catalyst and production method, and hydrogenation decomposition method of hydrocarbon oil
JPWO2019104543A5 (en)
RU2411999C2 (en) Hydrotreatment using mixtures of zsm-48 catalysts
AU2012240093B2 (en) Mesoporous framework-modified zeolites
JP4855475B2 (en) Hydrocracking catalyst containing beta and Y zeolite and its use for producing naphtha
CN106694025B (en) Ultra-deep hydrodesulfurization catalyst carrier for poor diesel oil and preparation method and application thereof
WO2010116603A1 (en) Production method for alkyl benzenes, and catalyst used in same
JP2004066234A (en) Catalyst based on group vi metal and group viii metal present at least partially in form of hetero polyanion in oxide precursor
RU2622382C2 (en) Method for hydrocracking catalyst compositions production
JPS594474B2 (en) Most middle distillate producing hydrocracking
RU2617987C2 (en) Method for production of hydroconversion catalyst, comprising at least one nu-86 zeolite
JP5330056B2 (en) Method for producing monocyclic aromatic hydrocarbons
CN109701589B (en) Hydroisomerization catalyst, preparation method thereof and hydrotreating method of hydrocracking tail oil
JP2009543693A (en) Hydrocracking catalyst containing beta and Y zeolite and its use for producing distillate
JP2003500194A (en) Catalyst comprising partially amorphous zeolite Y and its use in hydroconversion of hydrocarbon petroleum feedstocks
CN107345155A (en) A kind of method for hydrogen cracking
RU2626396C1 (en) Hydrocarbons crude hydrocraking catalyst
CN111097484A (en) Hydrocracking catalyst for producing high-quality lubricating oil base oil and preparation method and application thereof
RU2607905C1 (en) Catalyst for hydrocracking hydrocarbon material
CN107345154B (en) A kind of method for hydrogen cracking of poor ignition quality fuel
CN114746176A (en) Platinum-encapsulated zeolite hydrocracking catalyst and method for preparing platinum-encapsulated zeolite hydrocracking catalyst
CN107345156B (en) A method of it is hydrocracked
CN106582781B (en) High-sulfur-resistance hydrocracking catalyst and preparation method thereof
CN107345159B (en) A kind of method for hydrogen cracking producing low-coagulation diesel oil
CN112742450A (en) Hydrocracking catalyst, preparation method and application thereof