JPWO2019103123A1 - Joined body, its manufacturing method and welding equipment - Google Patents

Joined body, its manufacturing method and welding equipment Download PDF

Info

Publication number
JPWO2019103123A1
JPWO2019103123A1 JP2019555381A JP2019555381A JPWO2019103123A1 JP WO2019103123 A1 JPWO2019103123 A1 JP WO2019103123A1 JP 2019555381 A JP2019555381 A JP 2019555381A JP 2019555381 A JP2019555381 A JP 2019555381A JP WO2019103123 A1 JPWO2019103123 A1 JP WO2019103123A1
Authority
JP
Japan
Prior art keywords
joint
width
raw fabrics
pair
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019555381A
Other languages
Japanese (ja)
Inventor
良太 中島
良太 中島
聖人 米田
聖人 米田
達矢 片山
達矢 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FABWELD INC.
AGC Inc
Original Assignee
JAPAN FABWELD INC.
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FABWELD INC., Asahi Glass Co Ltd filed Critical JAPAN FABWELD INC.
Publication of JPWO2019103123A1 publication Critical patent/JPWO2019103123A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure

Abstract

耐擦り傷性に優れた接合体の提供。熱可塑性樹脂フィルムからなる少なくとも2枚の原反が接合された接合体であって、隣り合う原反同士を接合する接合部の幅方向の外縁から外側に50mmの位置で測定される表面うねり形状の二乗平均平方根高さが0.5mm以下であることを特徴とする接合体。Providing a bonded body with excellent scratch resistance. A bonded body in which at least two raw fabrics made of a thermoplastic resin film are joined, and a surface waviness shape measured at a position 50 mm outward from the outer edge in the width direction of the joint portion that joins adjacent raw fabrics. A joint characterized by having a root mean square height of 0.5 mm or less.

Description

本発明は、接合体、その製造方法及び溶着装置に関する。 The present invention relates to a bonded body, a method for producing the same, and a welding device.

熱可塑性樹脂フィルムは、膜構造物用被覆材、農業用被覆材等の種々の用途に用いられる。熱可塑性樹脂フィルムの幅が必要な幅に満たない場合には、熱可塑性樹脂フィルムの幅方向の端部同士を接合し、接合体として使用される。
熱可塑性樹脂フィルムの接合方法としては、溶着法が工業的に多く用いられる(例えば特許文献1〜3)。溶着法による接合は、例えば、2枚の熱可塑性樹脂フィルムを、幅方向の端部を重ね合わせた状態で挟んで走行させる一対の無端帯状体と、その走行経路に対向して設置され、2枚の熱可塑性樹脂フィルムの重なり部分を押圧しながら加熱する加熱機構とを備える溶着装置を用いて行われる。
Thermoplastic resin films are used in various applications such as coating materials for membrane structures and coating materials for agriculture. When the width of the thermoplastic resin film is less than the required width, the ends of the thermoplastic resin film in the width direction are joined to each other and used as a bonded body.
As a method for joining the thermoplastic resin film, a welding method is widely used industrially (for example, Patent Documents 1 to 3). For joining by the welding method, for example, a pair of endless strips in which two thermoplastic resin films are sandwiched and run with their widthwise ends overlapped, and a pair of endless strips are installed facing the running path. This is performed by using a welding device provided with a heating mechanism that heats the overlapping portion of the thermoplastic resin films while pressing the overlapping portion.

特許第3952020号公報Japanese Patent No. 3952020 特許第4063049号公報Japanese Patent No. 4063049 特開2005−212311号公報JP-A-2005-212111

膜構造物用被覆資材や農業用被覆資材は、フレームに固定されて使用されることが多い。しかし、従来の接合体は、搬送時やフレームへの固定時にフレーム等と擦れて表面が傷付きやすい問題がある。接合体表面の傷は、外観不良及び歩留まりの低下を引き起こす。 Coating materials for membrane structures and agricultural coating materials are often used by being fixed to a frame. However, the conventional bonded body has a problem that the surface is easily scratched by rubbing against the frame or the like during transportation or fixing to the frame. Scratches on the surface of the joint cause poor appearance and reduced yield.

本発明は、耐擦り傷性に優れた接合体を提供することを目的とする。
本発明は、熱可塑性樹脂フィルム同士を接合する際のシワの発生を抑制できる接合体の製造方法、並びに該製造方法に好適に用いられる溶着装置を提供することを他の目的とする。
An object of the present invention is to provide a bonded body having excellent scratch resistance.
Another object of the present invention is to provide a method for producing a bonded body capable of suppressing the occurrence of wrinkles when bonding thermoplastic resin films to each other, and a welding device preferably used in the manufacturing method.

本発明は、以下の〔1〕〜〔15〕の構成を有する、接合体、その製造方法及び溶着装置を提供する。
〔1〕熱可塑性樹脂フィルムからなる少なくとも2枚の原反が接合された接合体であって、
隣り合う原反同士の接合部の幅方向の外縁から外側に50mmの位置で測定される表面うねり形状の二乗平均平方根高さが0.5mm以下であることを特徴とする接合体。
〔2〕前記接合部の幅方向の外縁から外側に1mmの位置で測定される表面うねり形状の二乗平均平方根高さが0.5mm以下である〔1〕の接合体。
〔3〕前記接合部の幅が1〜40mmである〔1〕又は〔2〕の接合体。
〔4〕前記熱可塑性樹脂フィルムが結晶性樹脂のフィルムである〔1〕〜〔3〕のいずれかの接合体。
〔5〕前記熱可塑性樹脂フィルムがフッ素樹脂のフィルムである〔1〕〜〔4〕のいずれかの接合体。
〔6〕前記フッ素樹脂が、エチレン−テトラフルオロエチレン共重合体、ペルフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン共重合体、ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、クロロトリフルオロエチレン重合体、ビニルフルオリド重合体、ビニリデンフルオリド重合体、ビニリデンフルオリド−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、テトラフルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−ビニリデンフルオリド−プロピレン共重合体、エチレン−クロロトリフルオロエチレン共重合体及びプロピレン−クロロトリフルオロエチレン共重合体からなる群から選ばれる少なくとも1種である〔5〕の接合体。
〔7〕膜構造物用フィルムである〔1〕〜〔6〕のいずれかの接合体。
〔8〕農業用フィルムである〔1〕〜〔6〕のいずれかの接合体。
〔9〕一対の無端帯状体を、相対向する部分が往動走行するように回動させ、熱可塑性樹脂フィルムからなる2枚の原反を、各原反の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で、前記一対の無端帯状体の前記相対向する部分の外周面の間に挟んで走行させ、前記2枚の原反が互いに接触する部分を含む溶着対象領域を両面から加熱及び押圧し、前記2枚の原反を溶着する工程を少なくとも1回行って、前記2枚の原反が少なくとも1回溶着された接合体を製造する方法であって、
前記溶着対象領域の加熱の際、前記溶着対象領域の幅方向の外縁から外側に50mmの位置で前記原反の表面に配置した熱電対で測定される温度を40℃以下にすることを特徴とする接合体の製造方法。
〔10〕前記2枚の原反の重なり幅が0〜40mmである〔9〕の製造方法。
〔11〕前記熱可塑性樹脂フィルムが結晶性樹脂のフィルムである〔9〕又は〔10〕の製造方法。
〔12〕前記熱可塑性樹脂フィルムがフッ素樹脂のフィルムである〔9〕〜〔11〕のいずれかの製造方法。
〔13〕前記2枚の原反が走行する走行経路の途中に少なくとも一対の熱板式加熱機構が設けられ、前記少なくとも一対の熱板式加熱機構により前記溶着対象領域を加熱するとともに、前記熱板式加熱機構から前記2枚の原反の溶着対象領域以外の領域への熱伝播を第1の冷却機構によって抑制する〔9〕〜〔12〕のいずれかの製造方法。
〔14〕前記第1の冷却機構が、水冷機構又は風冷機構である〔13〕の製造方法。
〔15〕回動したときに、相対向する部分が往動走行するように配置された一対の無端帯状体と、一対の溶着部とを備え、
前記一対の無端帯状体の前記相対向する部分の外周面の間に、熱可塑性樹脂フィルムからなる2枚の原反を、各原反の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で走行させる走行経路が形成され、前記一対の溶着部はそれぞれ、前記一対の無端帯状体の内側の、前記走行経路に対向する位置に配置され、
前記一対の溶着部はそれぞれ、少なくとも1つの熱板式加熱機構と、前記熱板式加熱機構の近傍に配置された第1の冷却機構と、前記熱板式加熱機構の下流側に配置された押圧ロールと、前記押圧ロールの下流側に配置された第2の冷却機構とを備え、
前記第1の冷却機構は、前記熱板式加熱機構から前記2枚の原反の対象領域以外の領域への熱伝播を抑制するように設けられることを特徴とする溶着装置。
The present invention provides a bonded body, a method for producing the same, and a welding device having the following configurations [1] to [15].
[1] A bonded body in which at least two raw fabrics made of a thermoplastic resin film are bonded.
A joint body characterized in that the root mean square height of the surface waviness measured at a position 50 mm outward from the outer edge in the width direction of the joint portion between adjacent raw fabrics is 0.5 mm or less.
[2] The joint of [1] in which the root mean square height of the surface waviness measured at a position 1 mm outward from the outer edge in the width direction of the joint is 0.5 mm or less.
[3] The joint body of [1] or [2] in which the width of the joint portion is 1 to 40 mm.
[4] The bonded body according to any one of [1] to [3], wherein the thermoplastic resin film is a crystalline resin film.
[5] The bonded body according to any one of [1] to [4], wherein the thermoplastic resin film is a fluororesin film.
[6] The fluororesin is an ethylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer, hexafluoropropylene-tetrafluoroethylene copolymer, chlorotrifluoroethylene polymer, vinyl fluoride. Dopolymer, vinylidene fluoride copolymer, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-vinylidene The conjugate of [5] which is at least one selected from the group consisting of a fluoride-propylene copolymer, an ethylene-chlorotrifluoroethylene copolymer and a propylene-chlorotrifluoroethylene copolymer.
[7] The bonded body according to any one of [1] to [6], which is a film for a membrane structure.
[8] A bonded body according to any one of [1] to [6], which is an agricultural film.
[9] A pair of endless strips are rotated so that the opposing portions travel forward, and two raw fabrics made of a thermoplastic resin film are overlapped with each other at the widthwise end portions of the raw fabrics. A region to be welded including a portion in which the two raw fabrics are in contact with each other when the pair of endless strips are sandwiched between the outer peripheral surfaces of the opposing portions of the pair of endless strips in a state of being brought into contact with each other. Is a method for producing a bonded body in which the two raw fabrics are welded at least once by heating and pressing the two raw fabrics from both sides and welding the two raw fabrics at least once.
When heating the welding target region, the temperature measured by a thermocouple arranged on the surface of the raw fabric at a position 50 mm outward from the outer edge in the width direction of the welding target region is set to 40 ° C. or less. A method for manufacturing a bonded body.
[10] The manufacturing method of [9], wherein the overlapping width of the two raw fabrics is 0 to 40 mm.
[11] The method for producing [9] or [10], wherein the thermoplastic resin film is a crystalline resin film.
[12] The production method according to any one of [9] to [11], wherein the thermoplastic resin film is a fluororesin film.
[13] At least a pair of hot plate type heating mechanisms are provided in the middle of the traveling path through which the two raw fabrics travel, and the welding target region is heated by the at least pair of hot plate type heating mechanisms, and the hot plate type heating is performed. The production method according to any one of [9] to [12], wherein the first cooling mechanism suppresses heat transfer from the mechanism to a region other than the welding target region of the two raw fabrics.
[14] The manufacturing method of [13], wherein the first cooling mechanism is a water cooling mechanism or an air cooling mechanism.
[15] A pair of endless strips arranged so that the portions facing each other travel forward when rotated, and a pair of welded portions are provided.
Two raw fabrics made of a thermoplastic resin film are brought into contact with each other by overlapping or abutting the widthwise ends of the raw fabrics between the outer peripheral surfaces of the opposite portions of the pair of endless strips. A traveling path is formed so that the traveling path is formed, and the pair of welded portions are arranged at positions inside the pair of endless strips facing the traveling path.
Each of the pair of welded portions includes at least one hot plate type heating mechanism, a first cooling mechanism arranged in the vicinity of the hot plate type heating mechanism, and a pressing roll arranged on the downstream side of the hot plate type heating mechanism. A second cooling mechanism arranged on the downstream side of the pressing roll is provided.
The first cooling mechanism is a welding device provided so as to suppress heat propagation from the hot plate type heating mechanism to a region other than the target region of the two raw fabrics.

本発明の接合体は、耐擦り傷性に優れる。
本発明の接合体の製造方法によれば、熱可塑性樹脂フィルム同士を接合する際のシワの発生を抑制できる。
本発明の溶着装置は、前記接合体の製造方法に好適に用いられる。
The bonded body of the present invention has excellent scratch resistance.
According to the method for producing a bonded body of the present invention, it is possible to suppress the occurrence of wrinkles when bonding thermoplastic resin films to each other.
The welding apparatus of the present invention is suitably used in the method for producing the bonded body.

接合体における原反の厚さ及び接合部の幅の測定方法を説明する図である。It is a figure explaining the method of measuring the thickness of the original fabric and the width of the joint part in a joint body. 接合体における原反の厚さ及び接合部の幅の測定方法を説明する図である。It is a figure explaining the method of measuring the thickness of the original fabric and the width of the joint part in a joint body. 表面うねり形状の二乗平均平方根高さ(高さ方向の標準偏差)の算出方法を説明する図である。It is a figure explaining the calculation method of the root mean square root height (standard deviation in the height direction) of the surface swell shape. 本発明の溶着装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the welding apparatus of this invention. 図4に示す溶着装置のIV−IV断面の一部を示す部分断面図である。It is a partial cross-sectional view which shows a part of IV-IV cross section of the welding apparatus shown in FIG. 無端帯状体の一例を示す概略構成図である。It is a schematic block diagram which shows an example of an endless band. 例1で原反を溶着したときの原反の重ね方、加熱及び押圧する位置及び幅(一回目:1段目の加熱ユニットでの加熱時、二回目:2段目の加熱ユニットでの加熱時)を説明する図である。How to stack the raw fabrics when the raw fabrics are welded in Example 1, the position and width of heating and pressing (1st time: when heating with the 1st stage heating unit, 2nd time: heating with the 2nd stage heating unit It is a figure explaining time). 例2で原反を溶着したときの原反の重ね方、加熱及び押圧する位置及び幅(一回目:1段目の加熱ユニットでの加熱時、二回目:2段目の加熱ユニットでの加熱時)を説明する図である。How to stack the raw fabrics when the raw fabrics are welded in Example 2, the position and width of heating and pressing (1st time: when heating with the 1st stage heating unit, 2nd time: heating with the 2nd stage heating unit It is a figure explaining time). 例3で原反を溶着したときの原反の重ね方、加熱及び押圧する位置及び幅(一回目:1段目の加熱ユニットでの加熱時、二回目:2段目の加熱ユニットでの加熱時)を説明する図である。How to stack the raw fabrics when the raw fabrics are welded in Example 3, the position and width of heating and pressing (first time: when heating with the first stage heating unit, second time: heating with the second stage heating unit It is a figure explaining time). 例4で原反を溶着したときの原反の重ね方、加熱及び押圧する位置及び幅(一回目:1段目の加熱ユニットでの加熱時、二回目:2段目の加熱ユニットでの加熱時)を説明する図である。How to stack the raw fabrics when the raw fabrics are welded in Example 4, the position and width of heating and pressing (first time: when heating with the first stage heating unit, second time: heating with the second stage heating unit It is a figure explaining time).

本明細書における以下の用語の意味は、以下の通りである。
「引張破断強度」とは、JIS K6251:2010(ISO 37)に規定されるダンベル状5号形のサンプルについて、JIS K7127:1999に基づき、試験速度200mm/分にて測定される引張破壊応力(MPa)である。接合体の接合部の引張破断強度の測定において、サンプルは、サンプルの長さ方向が接合体のTDと一致し、且つサンプルの長さ方向の中央部を接合部が通るように接合体から切り出したものを使用する。
「融点」とは、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度を意味する。
「最大高さ粗さRz」とは、ISO4287:1997,Amd.1:2009(JIS B0601:2001)に基づき測定される値である。最大高さ粗さを求める際の、粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとする。なお、本明細書においては、単に「Rz」と記すことがある。
「原反」とは、溶着等の後加工をする前のフィルムである。原反は、ロール状に巻き取られた長尺(帯状)のフィルムでも枚葉のフィルムでもよい。
「溶着対象領域」とは、接合体の製造時に原反同士が溶着される領域、つまり加熱及び押圧される領域である。
本明細書においては、流れ方向を「MD」(Machine Direction)とも記し、MDと直交する方向を「TD」(Transverse Direction)とも記す。MDは原反の長さ方向と一致する。また、MDは、典型的には接合時(溶着時)の原反の走行方向であり、接合部(原反溶着部)が延びる方向である。TDは、典型的には原反の幅方向及び接合部の幅方向と一致する。
図1、図2および図4〜10における寸法比は、説明の便宜上、実際のものとは異なる。
The meanings of the following terms in the present specification are as follows.
"Tensile breaking strength" refers to the tensile breaking stress (tensile breaking stress) measured at a test speed of 200 mm / min based on JIS K7127: 1999 for a dumbbell-shaped No. 5 sample specified in JIS K6251: 2010 (ISO 37). MPa). In the measurement of the tensile breaking strength of the joint portion of the joint body, the sample is cut out from the joint body so that the length direction of the sample coincides with the TD of the joint body and the joint portion passes through the central portion in the length direction of the sample. Use the one.
"Melting point" means the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
“Maximum height roughness Rz” refers to ISO4287: 1997, Amd. It is a value measured based on 1: 2009 (JIS B0601: 2001). The reference length rl (cutoff value λc) for the roughness curve when determining the maximum height roughness is 0.8 mm. In addition, in this specification, it may be simply described as "Rz".
The "raw fabric" is a film before post-processing such as welding. The raw fabric may be a long (strip-shaped) film wound into a roll or a sheet-fed film.
The "welding target region" is a region where the raw fabrics are welded to each other during the production of the bonded body, that is, a region where the raw fabrics are heated and pressed.
In the present specification, the flow direction is also referred to as "MD" (Machine Direction), and the direction orthogonal to MD is also referred to as "TD" (Transverse Direction). MD coincides with the length direction of the original fabric. Further, the MD is typically the traveling direction of the original fabric at the time of joining (welding), and is the direction in which the joint portion (original fabric welding portion) extends. The TD typically coincides with the width direction of the original fabric and the width direction of the joint.
The dimensional ratios in FIGS. 1, 2 and 4 to 10 are different from the actual ones for convenience of explanation.

〔接合体〕
本発明の接合体は、熱可塑性樹脂フィルムからなる少なくとも2枚の原反が接合されたものであり、隣り合う原反同士を接合する接合部を有する。
本発明の接合体は、典型的には、2枚以上の原反が幅方向に沿って配置され、隣り合う原反の幅方向の端部同士が接合されたものである。原反は、長さを長くすることは容易であるが、幅を広くするには限界がある。原反を幅方向に2枚以上並べて接合することで、広幅かつ大面積にできる。
接合体を構成する原反の数は、所望の幅に応じて適宜選定でき、特に限定されないが、例えば2〜10枚である。
[Joint body]
The bonded body of the present invention is formed by joining at least two raw fabrics made of a thermoplastic resin film, and has a joint portion for joining adjacent raw fabrics.
In the bonded body of the present invention, two or more original fabrics are typically arranged along the width direction, and the ends of adjacent original fabrics in the width direction are joined to each other. It is easy to increase the length of the original fabric, but there is a limit to increasing the width. By arranging two or more raw fabrics in the width direction and joining them, a wide and large area can be obtained.
The number of raw fabrics constituting the bonded body can be appropriately selected according to a desired width, and is not particularly limited, but is, for example, 2 to 10 sheets.

接合部とは、隣り合う2枚の原反の端部同士が接触した部分であって、厚さが原反の厚さに対して101%以上である部分を示す。接合部の厚さは典型的には、原反の厚さに対して200%未満が好ましく、150%以下がより好ましい。 The joint portion is a portion where the ends of two adjacent raw fabrics are in contact with each other and has a thickness of 101% or more with respect to the thickness of the original fabric. The thickness of the joint is typically less than 200%, more preferably 150% or less with respect to the thickness of the original fabric.

接合部は、典型的には、接合する原反の幅方向の端部を互いに重ね合わせ、その重なり部分を溶着させることにより形成された溶着部である。
本発明では溶着時に重なり部分を両面から押圧するため、重なり部分で熱可塑性樹脂が溶融し、溶融した熱可塑性樹脂の一部が重なり部分の外側に押し出され、重なり部分の厚さが薄く、その近傍の部分が厚くなる。したがって、接合部は、重なり部分よりも広幅で形成されることが多い。
接合体を製造する際に重なり部分がよく延ばされて接合部が形成されると、延伸により接合部の結晶化度が高まり、接合部の幅が狭くても充分な引張強度を有する接合体が得られやすい。そのため、接合部の厚さは薄い方が好ましい。
The joint portion is typically a welded portion formed by overlapping the widthwise ends of the raw fabrics to be joined with each other and welding the overlapped portions.
In the present invention, since the overlapping portion is pressed from both sides at the time of welding, the thermoplastic resin is melted at the overlapping portion, a part of the melted thermoplastic resin is extruded to the outside of the overlapping portion, and the thickness of the overlapping portion is thin. The nearby part becomes thicker. Therefore, the joint is often formed wider than the overlap.
When the overlapping portion is well stretched to form a joint portion during manufacturing of the joint body, the crystallinity of the joint portion is increased by stretching, and the joint body has sufficient tensile strength even if the width of the joint portion is narrow. Is easy to obtain. Therefore, it is preferable that the thickness of the joint is thin.

接合部の幅は、1〜40mmが好ましく、1〜8mmがより好ましく、1〜5mmがさらに好ましく、1〜3mmが特に好ましい。接合部の幅が40mm以下であると、接合体に熱がかかる等によって接合体が収縮しても、接合部の幅が狭いために接合部の寸法変化量が相対的に少なく、シワ(後工程でのシワ)が生じにくい。特に8mm以下であると、搬送時やフレームへの固定時に接合部に傷が付いても、接合部の幅が狭いために接合部の傷の数が相対的に少なく、その傷が目立ちにくい。そのため、接合体の外観が悪化しにくく、また歩留りも低下しにくい。接合部の幅が1mm以上であると、接合部の引張破断強度が優れる。 The width of the joint is preferably 1 to 40 mm, more preferably 1 to 8 mm, even more preferably 1 to 5 mm, and particularly preferably 1 to 3 mm. If the width of the joint is 40 mm or less, even if the joint shrinks due to heat applied to the joint, the amount of dimensional change of the joint is relatively small because the width of the joint is narrow, and wrinkles (rear). Wrinkles in the process) are less likely to occur. In particular, when it is 8 mm or less, even if the joint portion is scratched during transportation or fixing to the frame, the number of scratches on the joint portion is relatively small because the width of the joint portion is narrow, and the scratches are not noticeable. Therefore, the appearance of the bonded body is unlikely to deteriorate, and the yield is also unlikely to decrease. When the width of the joint is 1 mm or more, the tensile breaking strength of the joint is excellent.

接合体における原反の厚さ及び接合部の幅は、以下の測定方法により測定される。
図1に示すように、接合体1を、MDの任意の位置で、隣り合う原反3同士を接合する接合部1aがTDの中央を通るように20cm×20cmの正方形状に切り出してサンプル5を得る。接合部1aの位置は目視で確認できる。
サンプル5のMDの一方の外縁から内側に10cmの位置で、光学顕微鏡によりTD断面を観察し、図2に示すように、TD断面の両方の外縁から内側に2cmの位置b,e及び4cmの位置c,d(合計4カ所)でサンプル5の厚さを測定し、それらの平均値を原反3の厚さとする。
サンプル5のMDの一方の外縁から内側に10cmの位置で、光学顕微鏡によりTD断面を観察し、図2に示すように、厚さが原反3の厚さに対して101%以上である部分(接合部1a)の幅Wを求める。サンプル5のMDの一方の外縁から他方の外縁に向かって5cm及び15cmの位置でもそれぞれ前記と同様にして、厚さが原反3の厚さに対して101%以上である部分の幅Wを求める。それらの幅Wの平均値を接合部1aの幅とする。
The thickness of the original fabric and the width of the joint in the joint are measured by the following measuring methods.
As shown in FIG. 1, the joint body 1 is cut into a square shape of 20 cm × 20 cm so that the joint portion 1a for joining the adjacent raw fabrics 3 at an arbitrary position of the MD passes through the center of the TD, and the sample 5 To get. The position of the joint portion 1a can be visually confirmed.
The TD cross section was observed with an optical microscope at a position 10 cm inward from one outer edge of the MD of the sample 5, and as shown in FIG. 2, positions b, e and 4 cm 2 cm inward from both outer edges of the TD cross section. The thickness of the sample 5 is measured at the positions c and d (4 locations in total), and the average value thereof is taken as the thickness of the original fabric 3.
A TD cross section was observed with an optical microscope at a position 10 cm inward from one outer edge of the MD of the sample 5, and as shown in FIG. 2, a portion having a thickness of 101% or more with respect to the thickness of the original fabric 3. Request width W a of the (junction 1a). From each one of the outer edge of the MD of the sample 5 toward the other outer edge in the position of 5cm and 15cm above and in the same manner, the width W a of the portion is thick 101% or more with respect to the thickness of the original fabric 3 Ask for. Let the average value of those widths Wa be the width of the joint portion 1a.

接合部の引張破断強度は、原反の引張破断強度の50%以上が好ましく、60%以上がより好ましく、80%以上が特に好ましい。接合部の引張破断強度が前記上限値以下であると、接合部の耐擦り傷性、寸法安定性がより優れる。接合部の引張破断強度の上限は特に限定されず、100%でもよい。 The tensile breaking strength of the joint portion is preferably 50% or more, more preferably 60% or more, and particularly preferably 80% or more of the tensile breaking strength of the original fabric. When the tensile breaking strength of the joint portion is not more than the upper limit value, the scratch resistance and dimensional stability of the joint portion are more excellent. The upper limit of the tensile breaking strength of the joint is not particularly limited and may be 100%.

接合部表面のRzは、15μm以下が好ましく、5μm以下がより好ましく、1μm以下がさらに好ましく、0.7μm以下が特に好ましい。Rzが前記上限値以下であると、接合部の耐擦り傷性がより優れる。
接合部表面のRzは小さいほど好ましく、0μmでもよい。
The Rz on the surface of the joint is preferably 15 μm or less, more preferably 5 μm or less, further preferably 1 μm or less, and particularly preferably 0.7 μm or less. When Rz is not more than the upper limit value, the scratch resistance of the joint is more excellent.
The smaller the Rz on the surface of the joint, the more preferable, and it may be 0 μm.

原反は熱可塑性樹脂フィルムからなる。
熱可塑性樹脂フィルムは、熱可塑性樹脂を含む。
熱可塑性樹脂としては、非晶性樹脂及び結晶性樹脂が挙げられる。
非晶性樹脂としては、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル等が挙げられる。
結晶性樹脂としては、フッ素樹脂、ポリエステル樹脂、ポリオレフィン樹脂等が挙げられる。
The raw fabric is made of a thermoplastic resin film.
The thermoplastic resin film contains a thermoplastic resin.
Examples of the thermoplastic resin include amorphous resins and crystalline resins.
Examples of the amorphous resin include polystyrene, polyvinyl chloride, polycarbonate, polymethyl methacrylate and the like.
Examples of the crystalline resin include fluororesin, polyester resin, and polyolefin resin.

フッ素樹脂としては、エチレン−テトラフルオロエチレン共重合体(以下、「ETFE」とも記す。)、ペルフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン共重合体(以下、「PFA」とも記す。)、ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体(以下、「FEP」とも記す。)、クロロトリフルオロエチレン重合体(以下、「PCTFE」とも記す。)、ビニルフルオリド重合体(以下、「PVDF」とも記す。)、ビニリデンフルオリド重合体(以下、「PVF」とも記す。)、ビニリデンフルオリド−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、テトラフルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−ビニリデンフルオリド−プロピレン共重合体、エチレン−クロロトリフルオロエチレン共重合体及びプロピレン−クロロトリフルオロエチレン共重合体等が挙げられる。これらのフッ素樹脂はそれぞれ、他の単位をさらに有してもよい。 Examples of the fluororesin include ethylene-tetrafluoroethylene copolymer (hereinafter, also referred to as “ETFE”), perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer (hereinafter, also referred to as “PFA”), and hexafluoropropylene. -Tetrafluoroethylene copolymer (hereinafter, also referred to as "FEP"), chlorotrifluoroethylene polymer (hereinafter, also referred to as "PCTFE"), vinyl fluoropolymer (hereinafter, also referred to as "PVDF"). , Vinylidene fluoride polymer (hereinafter, also referred to as "PVF"), vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-propylene copolymer. Examples thereof include a combination, a tetrafluoroethylene-vinylidene fluoride-propylene copolymer, an ethylene-chlorotrifluoroethylene copolymer and a propylene-chlorotrifluoroethylene copolymer. Each of these fluororesins may further have other units.

ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂等が挙げられる。
ポリオレフィン樹脂としては、ポリエチレン、エチレン−αオレフィン共重合体、エチレン−ビニルアセテート共重合体、エチレン−ビニルアルコール共重合体、ポリプロピレン、エチレン−プロピレン共重合体等が挙げられる。これらのポリオレフィン樹脂はそれぞれ、他の単位をさらに有してもよい。
Examples of the polyester resin include polyethylene terephthalate resin, polybutylene terephthalate resin, and polylactic acid resin.
Examples of the polyolefin resin include polyethylene, ethylene-α-olefin copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, ethylene-propylene copolymer and the like. Each of these polyolefin resins may further have other units.

熱可塑性樹脂としては、耐傷付き性、耐薬品性等に優れ、延伸等により高い強度が得られやすい点で、結晶性樹脂が好ましい。すなわち、熱可塑性樹脂フィルムが結晶性樹脂のフィルムであることが好ましい。
結晶性樹脂の中でも、耐候性、耐薬品性に優れる点で、フッ素樹脂が好ましい。すなわち、熱可塑性樹脂フィルムがフッ素樹脂のフィルムであることが好ましい。
フッ素樹脂の中でも、耐候性と比重、価格の面に優れる点で、ETFE、PFA、FEP、PCTFE、PVDF及びPVFからなる群から選ばれる少なくとも1種が好ましく、ETFE、PFA及びFEPからなる群から選ばれる少なくとも1種がより好ましく、ETFEが特に好ましい。
As the thermoplastic resin, a crystalline resin is preferable because it is excellent in scratch resistance, chemical resistance and the like, and high strength can be easily obtained by stretching or the like. That is, it is preferable that the thermoplastic resin film is a crystalline resin film.
Among the crystalline resins, fluororesins are preferable because they are excellent in weather resistance and chemical resistance. That is, it is preferable that the thermoplastic resin film is a fluororesin film.
Among the fluororesins, at least one selected from the group consisting of ETFE, PFA, FEP, PCTFE, PVDF and PVF is preferable in terms of excellent weather resistance, specific gravity and price, and from the group consisting of ETFE, PFA and FEP. At least one selected is more preferred, and ETFE is particularly preferred.

熱可塑性樹脂フィルムは、必要に応じて、熱可塑性樹脂以外の他の成分をさらに含んでいてもよい。他の成分としては、難燃剤、紫外光吸収剤、紫外線遮断剤、フィラー、顔料等が挙げられる。 The thermoplastic resin film may further contain components other than the thermoplastic resin, if necessary. Examples of other components include flame retardants, ultraviolet light absorbers, ultraviolet blocking agents, fillers, pigments and the like.

熱可塑性樹脂フィルムの表面のRzは典型的には5μm以下であるが、エンボス加工等を行った際は前記の限りではない。
熱可塑性樹脂フィルムの厚さは典型的には10〜1,000μmである。
熱可塑性樹脂フィルムの幅は典型的には0.5〜3mである。
The Rz on the surface of the thermoplastic resin film is typically 5 μm or less, but this is not the case when embossing or the like is performed.
The thickness of the thermoplastic resin film is typically 10 to 1,000 μm.
The width of the thermoplastic resin film is typically 0.5 to 3 m.

本発明の接合体の、隣り合う原反同士を接合する接合部の幅方向の外縁から外側に50mmの位置で測定される表面うねり形状の二乗平均平方根高さ(以下、「二乗平均平方根高さ(外縁から50mm)」とも記す。)は、0.5mm以下であり、0.45mm以下が好ましく、0.40mm以下が特に好ましい。二乗平均平方根高さ(外縁から50mm)が前記上限値以下であると、接合体の耐擦り傷性が優れる。二乗平均平方根高さ(外縁から50mm)は小さいほど好ましく、0mmでもよい。
「表面うねり形状の二乗平均平方根高さ」は、シワの大きさを示す指標であり、下記の測定方法により測定される。
溶着対象領域を加熱及び押圧して原反同士を溶着する際に、その熱が原反の溶着対象領域以外の領域に加わると、二乗平均平方根高さ(外縁から50mm)が大きくなる。溶着対象領域の幅方向の外縁から外側に50mmの位置で原反の表面に配置した熱電対で測定される温度を40℃以下にすることで、二乗平均平方根高さ(外縁から50mm)を0.5mm以下にできる。
The root mean square height of the surface waviness measured at a position 50 mm outward from the outer edge in the width direction of the joint portion of the joined body of the present invention that joins adjacent raw fabrics (hereinafter, "root mean square height"). (50 mm from the outer edge) ”is 0.5 mm or less, preferably 0.45 mm or less, and particularly preferably 0.40 mm or less. When the root mean square height (50 mm from the outer edge) is not more than the above upper limit value, the scratch resistance of the joint is excellent. The smaller the root mean square height (50 mm from the outer edge), the more preferable, and 0 mm may be used.
The "root mean square height of the surface swell shape" is an index indicating the size of wrinkles, and is measured by the following measuring method.
When the raw fabrics are welded to each other by heating and pressing the welding target region, if the heat is applied to a region other than the welding target region of the raw fabrics, the root mean square height (50 mm from the outer edge) becomes large. The root mean square height (50 mm from the outer edge) is set to 0 by setting the temperature measured by the thermocouple placed on the surface of the original fabric at a position 50 mm outward from the outer edge in the width direction of the welding target region to 40 ° C or less. It can be 1.5 mm or less.

(二乗平均平方根高さの測定方法)
水平に、73.7g重の張力で流れ方向の両端が展張された幅250mm、長さ700mmの接合体の直上80mmの位置に設置されたラインレーザから、前記接合体の接合部の幅方向の外縁から外側に50mmの位置に、流れ方向に沿って150mmの長さで、波長635nmのレーザ光を照射する。前記接合体のレーザ光が照射された部分を照射部とする。照射部から幅方向外側に250mm、高さ方向上側に25mmの位置に設置されたエリアカメラ(分解能0.08mm、シャッター速度10ミリ秒、F値F16、焦点距離55mm)で、照射部に投影された像を、接合部幅方向水平に、照射部をフォーカス位置として撮影する。撮影した像のうねりを幾何変換して表面うねり形状を得る。幾何変換では、画素座標に0.08倍(分解能)してmm座標に変換する。得られた表面うねり形状の高さ方向の標準偏差を算出し、その値を二乗平均平方根高さとする。
(Measuring method of root mean square height)
Horizontally, from a line laser installed at a position 80 mm directly above a joint having a width of 250 mm and a length of 700 mm in which both ends in the flow direction are stretched with a tension of 73.7 g, in the width direction of the joint of the joint. A laser beam having a wavelength of 635 nm is irradiated at a position 50 mm outward from the outer edge with a length of 150 mm along the flow direction. The portion of the bonded body irradiated with the laser beam is used as the irradiation portion. It is projected onto the irradiation area by an area camera (resolution 0.08 mm, shutter speed 10 ms, F value F16, focal length 55 mm) installed at a position 250 mm outside the irradiation area and 25 mm above the height direction. The image is taken horizontally in the width direction of the joint with the irradiation part as the focus position. The swell of the captured image is geometrically transformed to obtain the surface swell shape. In the geometric transformation, the pixel coordinates are multiplied by 0.08 (resolution) and converted to the mm coordinates. Calculate the standard deviation of the obtained surface swell shape in the height direction, and use that value as the root mean square height.

図3を用いて、高さ方向の標準偏差の算出方法をより詳細に説明する。図3は、撮影した像の画素座標を幾何変換した表面うねり形状を模式的に示す図である。
n個の画素座標をそれぞれ幾何変換したn個のmm座標の高さデータX(i=1〜nの整数)の平均値を平均高さXaveとし、下式1により高さ方向の標準偏差を算出する。nは画素数であり、n=710である。
A method of calculating the standard deviation in the height direction will be described in more detail with reference to FIG. FIG. 3 is a diagram schematically showing the surface waviness shape obtained by geometrically transforming the pixel coordinates of the captured image.
The average value of the height data X i (integer of i = 1 to n) of n mm coordinates obtained by geometrically transforming the n pixel coordinates is defined as the average height X ave, and the standard in the height direction is calculated by the following equation 1. Calculate the deviation. n is the number of pixels, and n = 710.

Figure 2019103123
Figure 2019103123

本発明の接合体の、接合部の幅方向の外縁から外側に1mmの位置で測定される表面うねり形状の二乗平均平方根高さ(以下、「二乗平均平方根高さ(外縁から1mm)」とも記す。)は、0.5mm以下が好ましく、0.45mm以下が特に好ましい。二乗平均平方根高さ(外縁から1mm)が前記上限値以下であると、接合体の耐擦り傷性がより優れる。二乗平均平方根高さ(外縁から1mm)は小さいほど好ましく、0mmでもよい。
溶着対象領域を加熱及び押圧して原反同士を溶着する際に、その熱が原反の溶着対象領域以外の領域に加わると、二乗平均平方根高さ(外縁から1mm)が大きくなる傾向がある。溶着対象領域の幅方向の外縁から外側に50mmの位置で原反の表面に配置した熱電対で測定される温度を40℃以下にすることで、二乗平均平方根高さ(外縁から1mm)を0.5mm以下にできる。
The root mean square height of the surface waviness measured at a position 1 mm outward from the outer edge of the joint in the width direction of the joint of the present invention (hereinafter, also referred to as "root mean square height (1 mm from the outer edge)"). ) Is preferably 0.5 mm or less, and particularly preferably 0.45 mm or less. When the root mean square height (1 mm from the outer edge) is not more than the upper limit value, the scratch resistance of the joint is more excellent. The smaller the root mean square height (1 mm from the outer edge) is, the more preferable, and 0 mm may be used.
When the raw fabrics are welded to each other by heating and pressing the welding target region, if the heat is applied to a region other than the welding target region of the raw fabric, the root mean square height (1 mm from the outer edge) tends to increase. .. The root mean square height (1 mm from the outer edge) is set to 0 by setting the temperature measured by the thermocouple placed on the surface of the original fabric at a position 50 mm outward from the outer edge in the width direction of the welding target region to 40 ° C or less. It can be 1.5 mm or less.

本発明の接合体の、接合部の幅方向の中心から外側に50mmの位置で測定される表面うねり形状の二乗平均平方根高さ(以下、「二乗平均平方根高さ(中心から50mm)」とも記す。)は、0.5mm以下が好ましい。二乗平均平方根高さ(中心から50mm)が前記上限値以下であると、接合体の耐擦り傷性がより優れる。二乗平均平方根高さ(中心から50mm)は小さいほど好ましく、0mmでもよい。
溶着対象領域を加熱及び押圧して原反同士を溶着する際に、その熱が原反の溶着対象領域以外の領域に加わると、二乗平均平方根高さ(中心から50mm)が大きくなる。また、接合部の幅が広いほど、二乗平均平方根高さ(中心から50mm)が大きくなりやすい。溶着対象領域の幅方向の外縁から外側に50mmの位置で原反の表面に配置した熱電対で測定される温度を40℃以下とし、接合部の幅を8mm以下にすることで、二乗平均平方根高さ(中心から50mm)を0.5mm以下にできる。
The root mean square height of the surface waviness measured at a position 50 mm outward from the center of the width direction of the joint of the joint of the present invention (hereinafter, also referred to as "root mean square height (50 mm from the center)"). ) Is preferably 0.5 mm or less. When the root mean square height (50 mm from the center) is not more than the upper limit value, the scratch resistance of the joint is more excellent. The smaller the root mean square height (50 mm from the center), the more preferable, and 0 mm may be used.
When the raw fabrics are welded to each other by heating and pressing the welding target region, if the heat is applied to a region other than the welding target region of the raw fabrics, the root mean square height (50 mm from the center) becomes large. Further, the wider the joint portion, the larger the root mean square height (50 mm from the center) tends to be. The root mean square root is obtained by setting the temperature measured by the thermocouple placed on the surface of the original fabric at a position 50 mm outward from the outer edge in the width direction of the welding target region to 40 ° C or lower and the width of the joint to 8 mm or lower. The height (50 mm from the center) can be 0.5 mm or less.

接合体の引張破断強度は、25MPa以上が好ましく、35MPa以上がより好ましく、45MPa以上が特に好ましい。引張破断強度が前記下限値以上であると、接合体の強度が要求される用途、例えば膜構造物用途に使用できる。
接合体の引張破断強度の上限は特に限定されず、例えば60MPaである。
The tensile breaking strength of the bonded body is preferably 25 MPa or more, more preferably 35 MPa or more, and particularly preferably 45 MPa or more. When the tensile breaking strength is at least the above lower limit value, it can be used in applications where the strength of the bonded body is required, for example, for membrane structures.
The upper limit of the tensile breaking strength of the bonded body is not particularly limited, and is, for example, 60 MPa.

本発明の接合体は、後述する本発明の接合体の製造方法により製造できる。
前記製造方法において、接合部の幅は、2枚の原反の重なり幅、及び加熱及び押圧する対象領域の幅により調整できる。重なり幅が大きいほど接合部の幅が広くなる。通常、重なり幅は対象領域の幅よりも狭く、対象領域の最大幅は概ね接合部の幅と一致する。接合部の幅が1〜8mmの接合体を得る際の重なり幅は0〜5mmが好ましく、0mm超5mm以下が特に好ましい。
ただし、本発明の接合体を製造する方法はこれに限定されない。
The bonded body of the present invention can be produced by the method for producing a bonded body of the present invention described later.
In the manufacturing method, the width of the joint can be adjusted by the overlapping width of the two raw fabrics and the width of the target region to be heated and pressed. The larger the overlap width, the wider the width of the joint. Usually, the overlapping width is narrower than the width of the target area, and the maximum width of the target area roughly matches the width of the joint. When obtaining a bonded body having a joint portion width of 1 to 8 mm, the overlapping width is preferably 0 to 5 mm, particularly preferably more than 0 mm and 5 mm or less.
However, the method for producing the bonded body of the present invention is not limited to this.

本発明の接合体にあっては、接合部の幅方向の外縁から外側に50mmの位置での表面うねり形状の二乗平均平方根高さが0.5mm以下であるため、耐擦り傷性に優れる。
本発明者らの検討によれば、接合部近傍のシワが大きいほど、接合部近傍での原反の結晶化度のばらつきが大きい傾向がある。結晶化度が低い部分は擦り傷が付きやすく、このような部分があると接合体の耐擦り傷性が低くなる。また、シワが大きいために他部材と擦れやすいことによっても接合体の耐擦り傷性が低くなる。
本発明の接合体にあっては、前記位置での表面うねり形状の二乗平均平方根高さが0.5mm以下であるために、接合部近傍での結晶化度のばらつきが小さく、擦り傷の付きやすい部分が少ない。また、うねりが小さいために他部材と擦れにくい。そのため、耐擦り傷性に優れると考えられる。
The joint body of the present invention has excellent scratch resistance because the root mean square height of the surface waviness at a position 50 mm outward from the outer edge in the width direction of the joint portion is 0.5 mm or less.
According to the study by the present inventors, the larger the wrinkles in the vicinity of the joint, the greater the variation in the crystallinity of the raw fabric in the vicinity of the joint. The portion having a low degree of crystallinity is easily scratched, and the presence of such a portion reduces the scratch resistance of the bonded body. Further, since the wrinkles are large, the joints are easily rubbed with other members, so that the scratch resistance of the joint is lowered.
In the bonded body of the present invention, since the root mean square height of the surface waviness shape at the above position is 0.5 mm or less, the variation in crystallinity in the vicinity of the joint portion is small and scratches are likely to occur. There are few parts. In addition, since the swell is small, it does not easily rub against other members. Therefore, it is considered to be excellent in scratch resistance.

〔接合体の製造方法〕
本発明の接合体の製造方法では、一対の無端帯状体を、相対向する部分が往動走行するように回動させ、熱可塑性樹脂フィルムからなる2枚の原反を、各原反の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で、前記一対の無端帯状体の前記相対向する部分の外周面の間に挟んで走行させ、前記2枚の原反が互いに接触する部分を含む溶着対象領域を両面から加熱及び押圧し、2枚の原反を溶着する工程を少なくとも1回行う。
以下、本発明の接合体の製造方法の一例として、図4に例示した溶着装置100を用いる場合について説明する。
[Manufacturing method of bonded body]
In the method for manufacturing a bonded body of the present invention, a pair of endless strips are rotated so that opposing portions travel forward, and two raw fabrics made of a thermoplastic resin film are formed into the width of each raw fabric. In a state where the ends in the directions are overlapped or abutted against each other and brought into contact with each other, the pair of endless strips are sandwiched between the outer peripheral surfaces of the opposing portions, and the two original fabrics come into contact with each other. The step of welding the two raw fabrics by heating and pressing the welding target area including the portion to be welded from both sides is performed at least once.
Hereinafter, a case where the welding device 100 illustrated in FIG. 4 is used will be described as an example of the method for producing the bonded body of the present invention.

(溶着装置)
図4は、溶着装置100の概略構成図である。図5は、図4中のIV−IV断面の一部を示す部分断面図である。
図4〜5に示すように、溶着装置100は一対の無端帯状体10A,10Bと、一対の溶着部20A,20Bとを備える。
(Welding device)
FIG. 4 is a schematic configuration diagram of the welding device 100. FIG. 5 is a partial cross-sectional view showing a part of the IV-IV cross section in FIG.
As shown in FIGS. 4 to 5, the welding device 100 includes a pair of endless strips 10A and 10B and a pair of welding portions 20A and 20B.

無端帯状体は、帯状体が、長さ方向の端部同士を接合する等によって、環状とされた部材である。
一対の無端帯状体10A,10Bは上下に配置される。また、無端帯状体10A,10Bはそれぞれ、複数の支持ロール11によって、第1方向(図4中の矢印X方向)に回動可能に支持される。
一対の無端帯状体10A,10Bは、第1方向に回動したときに、一対の無端帯状体10A,10Bの相対向する部分、つまり無端帯状体10Aの無端帯状体10Bと対向する部分および無端帯状体10Bの無端帯状体10Aと対向する部分がそれぞれ往動走行するように配置される。往動走行するとは、MDの上流側から下流側に走行することである。このように往動走行することにより、一対の無端帯状体10A,10Bの相対向する部分の外周面10a,10bの間に、2枚の原反3の走行経路が形成される。走行経路は、2枚の原反3を、各々の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で走行させる。図5には、2枚の原反3の幅方向の端部を互いに重ね合わせて接触させた例を示した。
The endless band-shaped body is a member in which the band-shaped body is made into an annular shape by joining the ends in the length direction to each other.
The pair of endless strips 10A and 10B are arranged one above the other. Further, the endless strip-shaped bodies 10A and 10B are each rotatably supported in the first direction (direction of arrow X in FIG. 4) by a plurality of support rolls 11.
When the pair of endless strips 10A and 10B are rotated in the first direction, the pair of endless strips 10A and 10B face each other, that is, the portion of the endless strip 10A facing the endless strip 10B and the endless. The portions of the strip 10B facing the endless strip 10A are arranged so as to travel in the forward direction. The forward travel is to travel from the upstream side to the downstream side of the MD. By traveling in the forward direction in this way, two traveling paths of the original fabric 3 are formed between the outer peripheral surfaces 10a and 10b of the opposite portions of the pair of endless strips 10A and 10B. The traveling path is such that the two original fabrics 3 are traveled in a state where the ends in the width direction of each are overlapped or abutted against each other and brought into contact with each other. FIG. 5 shows an example in which the widthwise ends of the two original fabrics 3 are overlapped with each other and brought into contact with each other.

溶着部20Aは、無端帯状体10Aの内側の、走行経路に対向する位置に配置される。溶着部20Aは、2つの加熱ユニット21A,23A(加熱機構)と、加熱ユニット21A,23Aの近傍に配置された2つの冷却ユニット31A,33A(第1の冷却機構)と、加熱ユニット21A,23Aの下流側に配置された押圧ロール25Aと、押圧ロール25Aの下流側に配置された冷却ユニット27A(第2の冷却機構)とを備える。2つの加熱ユニット21A,23Aのうち、加熱ユニット23Aは、加熱ユニット21Aの下流側に配置される。 The welded portion 20A is arranged at a position facing the traveling path inside the endless strip-shaped body 10A. The welded portion 20A includes two heating units 21A and 23A (heating mechanism), two cooling units 31A and 33A (first cooling mechanism) arranged in the vicinity of the heating units 21A and 23A, and heating units 21A and 23A. A pressing roll 25A arranged on the downstream side of the pressing roll 25A and a cooling unit 27A (second cooling mechanism) arranged on the downstream side of the pressing roll 25A are provided. Of the two heating units 21A and 23A, the heating unit 23A is arranged on the downstream side of the heating unit 21A.

溶着部20Bは、無端帯状体10Bの内側の、走行経路に対向する位置に配置される。溶着部20Bは、2つの加熱ユニット21B,23B(加熱機構)と、加熱ユニット21B,23Bの近傍に配置された2つの冷却ユニット31B,33B(第1の冷却機構)と、加熱ユニット21B,23Bの下流側に配置された押圧ロール25Bと、押圧ロール25Bの下流側に配置された冷却ユニット27B(第2の冷却機構)とを備える。2つの加熱ユニット21B,23Bのうち、加熱ユニット23Bは、加熱ユニット21Bの下流側に配置される。 The welded portion 20B is arranged at a position facing the traveling path inside the endless strip-shaped body 10B. The welded portion 20B includes two heating units 21B and 23B (heating mechanism), two cooling units 31B and 33B (first cooling mechanism) arranged in the vicinity of the heating units 21B and 23B, and heating units 21B and 23B. A pressing roll 25B arranged on the downstream side of the pressing roll 25B and a cooling unit 27B (second cooling mechanism) arranged on the downstream side of the pressing roll 25B are provided. Of the two heating units 21B and 23B, the heating unit 23B is arranged on the downstream side of the heating unit 21B.

溶着部20A,20Bそれぞれの2つの加熱ユニットのうち、上流側の加熱ユニット21A及び加熱ユニット21Bは、走行経路を間に挟んで対向する位置に配置される。下流側の加熱ユニット23A及び加熱ユニット23Bも同様に、走行経路を間に挟んで対向する位置に配置される。つまり2枚の原反が走行する走行経路の途中に二対の加熱ユニット21A,21B及び23A,23Bが設けられ、走行経路を走行する2枚の原反の溶着対象領域を両面から二段階で加熱できる。
4つの冷却ユニット31A,31B,33A,33Bはそれぞれ、4つの加熱ユニット21A,21B,23A,23Bに取り付けられ、各加熱ユニットから、走行経路を走行する2枚の原反3の溶着対象領域以外の領域への熱伝播を抑制できる。
押圧ロール25A及び押圧ロール25Bは、走行経路を介して対向する位置に配置され、走行経路を走行する、上流側で加熱された2枚の原反3の溶着対象領域を両面から押圧できる。押圧ロール25A,25Bの幅は、無端帯状体10A、10Bの幅と同様又はそれ未満とされる。
冷却ユニット27A及び冷却ユニット27Bは、走行経路を介して対向する位置に配置され、走行経路を走行する、上流側で加熱及び押圧された2枚の原反の溶着対象領域を両面から冷却し、固化できる。冷却ユニット27A,27Bは、例えば水冷板式冷却ユニットである。
Of the two heating units of the welded portions 20A and 20B, the heating unit 21A and the heating unit 21B on the upstream side are arranged at positions facing each other with the traveling path in between. Similarly, the heating unit 23A and the heating unit 23B on the downstream side are also arranged at positions facing each other with the traveling path in between. That is, two pairs of heating units 21A, 21B and 23A, 23B are provided in the middle of the traveling path on which the two raw fabrics travel, and the welding target area of the two raw fabrics traveling on the traveling route is divided into two stages from both sides. Can be heated.
The four cooling units 31A, 31B, 33A, and 33B are attached to the four heating units 21A, 21B, 23A, and 23B, respectively, and from each heating unit, other than the welding target area of the two raw fabrics 3 traveling on the traveling path. Heat transfer to the region can be suppressed.
The pressing roll 25A and the pressing roll 25B are arranged at positions facing each other via the traveling path, and can press the welding target regions of the two raw fabrics 3 heated on the upstream side traveling on the traveling path from both sides. The widths of the pressing rolls 25A and 25B are the same as or less than the widths of the endless strips 10A and 10B.
The cooling unit 27A and the cooling unit 27B are arranged at positions facing each other via the traveling path, and cool the welding target regions of the two raw fabrics heated and pressed on the upstream side traveling on the traveling path from both sides. Can be solidified. The cooling units 27A and 27B are, for example, water cooling plate type cooling units.

<無端帯状体>
図6に、無端帯状体10A,10Bとして用い得る無端帯状体の一例を示す。
図6に示す無端帯状体10は、無端帯状の織布層13と、織布層13の外周面上に積層されたポリテトラフルオロエチレン(以下、「PTFE」とも記す。)層15とを備える。PTFE層15は、織布層13側から順に、PTFEコート層17とPTFEフィルム層19とが積層した多層構造である。無端帯状体10の外周面10c、つまりPTFE層15の外周面のRzは、15μm以下が好ましく、5μm以下がより好ましく、1μm以下がさらに好ましく、0.7μm以下が特に好ましい。
織布層13は、繊維によって表面に凹凸がある。織布層13上にPTFE層15が設けられるため、無端帯状体10の外周面10c、つまり原反3と接する面が平坦化され、Rzが前記上限値以下である。
無端帯状体10の幅は、例えば1〜10cmである。
<Endless band>
FIG. 6 shows an example of an endless band-shaped body that can be used as the endless band-shaped bodies 10A and 10B.
The endless band-shaped body 10 shown in FIG. 6 includes an endless band-shaped woven fabric layer 13 and a polytetrafluoroethylene (hereinafter, also referred to as “PTFE”) layer 15 laminated on the outer peripheral surface of the woven fabric layer 13. .. The PTFE layer 15 has a multilayer structure in which the PTFE coat layer 17 and the PTFE film layer 19 are laminated in this order from the woven fabric layer 13 side. The Rz of the outer peripheral surface 10c of the endless strip 10, that is, the outer peripheral surface of the PTFE layer 15 is preferably 15 μm or less, more preferably 5 μm or less, further preferably 1 μm or less, and particularly preferably 0.7 μm or less.
The surface of the woven fabric layer 13 is uneven due to the fibers. Since the PTFE layer 15 is provided on the woven fabric layer 13, the outer peripheral surface 10c of the endless strip-shaped body 10, that is, the surface in contact with the original fabric 3 is flattened, and Rz is equal to or less than the upper limit value.
The width of the endless strip 10 is, for example, 1 to 10 cm.

無端帯状体10の外周面10cのRz、つまり無端帯状体10A,10Bの外周面10a,10bのRzが前記上限値以下であると、2枚の原反3の溶着強度が優れる。例えば溶着対象領域の幅、つまり原反同士が溶着される原反溶着部(接合部)の幅が1〜8mmでも、原反溶着部の引張破断強度を、原反3の引張破断強度の50%以上にできる。外周面10a,10bの最大高さ粗さRzは小さいほど好ましく、0μmでもよい。
一般的に、広い溶着幅で溶着する場合、無端帯状体10A,10Bの外周面10a,10bは、溶着過程で溶融した樹脂が付着し、その付着力の影響でかえって溶着強度を弱めてしまうこともあるため、Rzを大きくする方が好ましいといえる。
しかし本発明では、原反溶着部の幅が1〜8mmである場合、比較的溶融樹脂が外周面10a,10bに付着しにくく、付着力も小さい。冷却ユニット等によってその付着を抑えることもできる。Rzを小さくすることで原反の重なり部が効果的に延ばされ、結晶化度を高めることにも繋がると考えられる。
When the Rz of the outer peripheral surface 10c of the endless band-shaped body 10, that is, the Rz of the outer peripheral surfaces 10a and 10b of the endless band-shaped bodies 10A and 10B is not more than the upper limit value, the welding strength of the two raw fabrics 3 is excellent. For example, even if the width of the area to be welded, that is, the width of the raw fabric welded portion (joint portion) where the raw fabrics are welded to each other is 1 to 8 mm, the tensile breaking strength of the raw fabric welded portion is 50, which is the tensile breaking strength of the original fabric 3. Can be over%. The smaller the maximum height roughness Rz of the outer peripheral surfaces 10a and 10b is, the more preferable, and 0 μm may be used.
Generally, when welding is performed with a wide welding width, the resin melted in the welding process adheres to the outer peripheral surfaces 10a and 10b of the endless strips 10A and 10B, and the welding strength is rather weakened by the influence of the adhesive force. Therefore, it can be said that it is preferable to increase Rz.
However, in the present invention, when the width of the raw fabric welded portion is 1 to 8 mm, the molten resin is relatively difficult to adhere to the outer peripheral surfaces 10a and 10b, and the adhesive force is also small. The adhesion can be suppressed by a cooling unit or the like. It is considered that by reducing Rz, the overlapping portion of the original fabric is effectively extended, which leads to an increase in crystallinity.

織布層13を構成する繊維としては、ガラス繊維、アラミド繊維、炭素繊維等が挙げられる。これらの繊維はいずれか1種を単独で用いても2種以上を併用してもよい。前記の中でも、耐熱性に優れ、又低価格である点で、ガラス繊維が好ましい。
織布層13の織りの種類としては、平織り、綾織り、繻子織り等が挙げられる。
織布層13の厚さは、例えば10〜100μmである。
なお、織布層13の表面のRzは通常、15μm超100μm以下程度である。
Examples of the fibers constituting the woven fabric layer 13 include glass fibers, aramid fibers, carbon fibers and the like. Any one of these fibers may be used alone or two or more thereof may be used in combination. Among the above, glass fiber is preferable because it has excellent heat resistance and is inexpensive.
Examples of the type of weaving of the woven fabric layer 13 include plain weave, twill weave, satin weave and the like.
The thickness of the woven fabric layer 13 is, for example, 10 to 100 μm.
The Rz on the surface of the woven fabric layer 13 is usually more than 15 μm and less than 100 μm.

PTFEコート層17の単位面積当たりの質量(PTFEの塗布量)は、例えば50〜150g/mである。
PTFEフィルム層19の厚さは、10〜200μmが好ましく、50〜150μmが特に好ましい。PTFEフィルム層19の厚さが前記下限値以上であると、織布層13表面の凹凸がPTFEフィルム層19の外周面に反映されにくく、無端帯状体10の外周面10cのRzが前記上限値以下となりやすい。その結果、原反溶着部の表面のRzが前記上限値以下となり、原反溶着部の耐擦り性や引張破断強度が優れる。PTFEフィルム層19の厚さが前記上限値以下であると、取扱性に優れる。
The mass per unit area of the PTFE coat layer 17 (the amount of PTFE applied) is, for example, 50 to 150 g / m 2 .
The thickness of the PTFE film layer 19 is preferably 10 to 200 μm, particularly preferably 50 to 150 μm. When the thickness of the PTFE film layer 19 is equal to or greater than the lower limit, the unevenness on the surface of the woven fabric layer 13 is less likely to be reflected on the outer peripheral surface of the PTFE film layer 19, and the Rz of the outer peripheral surface 10c of the endless strip 10 is the upper limit. It tends to be as follows. As a result, the Rz on the surface of the raw fabric welded portion becomes equal to or less than the upper limit value, and the scratch resistance and tensile breaking strength of the raw fabric welded portion are excellent. When the thickness of the PTFE film layer 19 is not more than the upper limit value, the handleability is excellent.

無端帯状体10の製造方法としては、例えば、無端帯状の織布(織布層13)の外周面にPTFE及び分散媒を含むPTFE分散液を塗布し、乾燥してPTFEコート層17を形成し、PTFEコート層17上にPTFEフィルムを積層する方法が挙げられる。
無端帯状の織布は、帯状の織布の長さ方向の一端と他端とを接合して環状にすることにより得られる。織布の接合は、常法により実施できる。既存の無端帯状の織布を用いてもよい。
PTFE分散液の塗布方法としては、PTFE分散液をダイコート、ディップコート、スプレーコート等により塗布する方法が挙げられる。PTFE分散液は市販品を使用してもよい。乾燥方法としては、例えば分散媒の沸点以上での加熱である。
PTFEフィルムの表面のRzは15μm以下であることが好ましく、さらに好ましい範囲は前記のとおりである。PTFEフィルムの好ましい厚さは、PTFEフィルム層19の好ましい厚さと同様である。
PTFEフィルムの積層方法としては、熱ラミネート、粘着層を用いた貼合等が挙げられる。
なお、帯状の織布を無端帯状とする前に、PTFEコート層17を形成してもよい。
As a method for producing the endless band-shaped body 10, for example, a PTFE dispersion liquid containing PTFE and a dispersion medium is applied to the outer peripheral surface of the endless band-shaped woven fabric (woven fabric layer 13) and dried to form a PTFE coat layer 17. , A method of laminating a PTFE film on the PTFE coat layer 17 can be mentioned.
The endless strip-shaped woven fabric is obtained by joining one end and the other end of the strip-shaped woven fabric in the length direction to form an annular shape. The woven fabrics can be joined by a conventional method. An existing endless band-shaped woven fabric may be used.
Examples of the method for applying the PTFE dispersion liquid include a method of applying the PTFE dispersion liquid by die coating, dip coating, spray coating or the like. A commercially available product may be used as the PTFE dispersion. The drying method is, for example, heating above the boiling point of the dispersion medium.
The Rz on the surface of the PTFE film is preferably 15 μm or less, and a more preferable range is as described above. The preferred thickness of the PTFE film is similar to the preferred thickness of the PTFE film layer 19.
Examples of the method for laminating the PTFE film include thermal laminating and laminating using an adhesive layer.
The PTFE coat layer 17 may be formed before the strip-shaped woven fabric is made into an endless strip.

本発明に用いられる無端帯状体は無端帯状体10に限定されない。
例えば、PTFE層15がPTFEフィルム層19のみからなってもよく、PTFEコート層17のみからなってもよい。
織布層13の両面上にPTFEコート層17が設けられてもよい。織布層13の両面上にPTFEフィルム層19が設けられてもよい。
The endless band-shaped body used in the present invention is not limited to the endless band-shaped body 10.
For example, the PTFE layer 15 may consist of only the PTFE film layer 19 or only the PTFE coat layer 17.
The PTFE coat layer 17 may be provided on both sides of the woven fabric layer 13. The PTFE film layer 19 may be provided on both sides of the woven fabric layer 13.

PTFE分散液の1回の塗布では通常、PTFEの一部が織布に含浸し、PTFEコート層17の表面に凹凸が生じる。PTFE分散液の塗布を繰り返すことで、PTFEコート層17のみでRzを前記上限値以下とすることも可能であるが、工程が煩雑であり、コストもかかる。したがって、PTFEフィルムを積層する方法が簡便であり、好ましい。
PTFEコート層17を形成せず、PTFEフィルムを直接織布層13の外周面に積層してもよい。
無端帯状の織布層13をそのまま無端帯状体として用いてもよい。
In a single application of the PTFE dispersion, a part of the PTFE is usually impregnated into the woven fabric, and the surface of the PTFE coat layer 17 is uneven. By repeating the application of the PTFE dispersion liquid, it is possible to set Rz to the above upper limit value or less only with the PTFE coat layer 17, but the process is complicated and costly. Therefore, the method of laminating the PTFE film is convenient and preferable.
The PTFE film may be directly laminated on the outer peripheral surface of the woven fabric layer 13 without forming the PTFE coat layer 17.
The endless band-shaped woven fabric layer 13 may be used as it is as the endless band-shaped body.

<加熱ユニット>
加熱ユニット21Aは熱板式加熱ユニット(熱板式加熱機構)であり、熱板29とこれを加熱するヒータ(図示略)とを備える。
熱板29は、平板状の基部29aと、基部29aから無端帯状体10A側に突出する凸部29bとを有し、TD断面がT字状である。
凸部29bは、先端面29c、並びに先端面29cのTD両端それぞれから基部29a方向に延びる第1側面29d及び第2側面29eを有する。熱板29は、先端面29cを走行経路側に向けて配置される。先端面29cは無端帯状体10Aの内周面に接触し、ヒータによって熱板29が任意の温度に加熱されたときに、無端帯状体10Aの先端面29cと接触する部分が加熱され、その熱によって、走行経路を走行する原反3の溶着対象領域が加熱される。
先端面29cの幅は、2枚の原反3の溶着対象領域の幅Wと同じである。溶着対象領域の幅Wは典型的には、2枚の原反3の重なり幅Wに対して広幅である。したがって、先端面29cのTDにおける幅も典型的には、2枚の原反3の重なり幅Wに対して広幅である。
<Heating unit>
The heating unit 21A is a hot plate type heating unit (hot plate type heating mechanism), and includes a hot plate 29 and a heater (not shown) for heating the hot plate 29.
The hot plate 29 has a flat plate-shaped base portion 29a and a convex portion 29b protruding from the base portion 29a toward the endless band-shaped body 10A, and has a T-shaped TD cross section.
The convex portion 29b has a front end surface 29c and a first side surface 29d and a second side surface 29e extending from both ends of the TD of the tip surface 29c in the direction of the base portion 29a. The hot plate 29 is arranged with the tip surface 29c facing the traveling path side. The tip surface 29c is in contact with the inner peripheral surface of the endless band 10A, and when the hot plate 29 is heated to an arbitrary temperature by the heater, the portion in contact with the tip surface 29c of the endless band 10A is heated and the heat thereof is generated. Heats the welding target region of the original fabric 3 traveling on the traveling path.
Width of the end surface 29c is the same as the width W 1 of the two raw 3 of the welding target area. The width W 1 of the region to be welded is typically wider than the overlapping width W 2 of the two original fabrics 3. Therefore, the width of the tip surface 29c in TD is also typically wider than the overlapping width W 2 of the two original fabrics 3.

他の加熱ユニット21B,23A,23Bも熱板式加熱ユニットであり、それぞれ加熱ユニット21Aと同様の構成である。 The other heating units 21B, 23A, and 23B are also hot plate type heating units, and each has the same configuration as the heating unit 21A.

上流側の加熱ユニット21A,21Bの先端面29cの幅と、下流側の加熱ユニット23A,23Bの先端面29c幅とは、同じでも異なってもよい。例えば、加熱ユニット21A,21Bの先端面29cの幅を、加熱ユニット23A,23Bの先端面29cの幅より狭くしてもよい。
加熱ユニット21A,21Bの先端面29cの幅、及び加熱ユニット23A,23Bの先端面29cの幅のうち最も広い幅が、得られる接合体の原反溶着部の幅となる。
The width of the tip surface 29c of the heating units 21A and 21B on the upstream side and the width of the tip surface 29c of the heating units 23A and 23B on the downstream side may be the same or different. For example, the width of the tip surface 29c of the heating units 21A and 21B may be narrower than the width of the tip surface 29c of the heating units 23A and 23B.
The widest of the width of the tip surface 29c of the heating units 21A and 21B and the width of the tip surface 29c of the heating units 23A and 23B is the width of the raw fabric welded portion of the obtained bonded body.

<冷却ユニット>
冷却ユニット31Aは、図5に示すように、加熱ユニット21AのTD両側に配置された一対の水冷板35,37を備える水冷板式冷却ユニット(水冷機構)である。
一方の水冷板35は、TD断面がL字状で、熱板29の凸部29bの第1側面29d側(図5中左側)に、熱板29との間に間隔をあけて配置される。水冷板35によって、基部29aの無端帯状体10A側の面及び側面のうち第1側面29d側の面、並びに第1側面29dが覆われる。
他方の水冷板37は、TD断面が水冷板35と左右対象のL字状で、熱板29の凸部29bの第2側面29e側(図5中右側)に、熱板29との間に間隔をあけて配置される。水冷板37によって、基部29aの無端帯状体10A側の面及び側面のうち第2側面29e側の面、並びに第2側面29eが覆われる。
水冷板35,37としては、例えば、チラーを用いる構成のものが挙げられる。
<Cooling unit>
As shown in FIG. 5, the cooling unit 31A is a water cooling plate type cooling unit (water cooling mechanism) including a pair of water cooling plates 35 and 37 arranged on both sides of the TD of the heating unit 21A.
On the other hand, the water cooling plate 35 has an L-shaped TD cross section, and is arranged on the first side surface 29d side (left side in FIG. 5) of the convex portion 29b of the hot plate 29 at a distance from the hot plate 29. .. The water cooling plate 35 covers the surface and side surface of the base 29a on the endless band 10A side, the surface on the first side surface 29d side, and the first side surface 29d.
The other water-cooled plate 37 has a TD cross section L-shaped symmetrical with that of the water-cooled plate 35, and is located on the second side surface 29e side (right side in FIG. 5) of the convex portion 29b of the hot plate 29 and between the hot plate 29. Arranged at intervals. The water-cooled plate 37 covers the surface and side surface of the base 29a on the endless strip 10A side, the surface on the second side surface 29e side, and the second side surface 29e.
Examples of the water cooling plates 35 and 37 include those using a chiller.

冷却ユニット31Aにあっては、水冷板35,37によって、熱板29と無端帯状体10Aとの間の雰囲気を冷却することで、熱板29の先端面29c以外の面から放射された熱が原反3の溶着対象領域以外の領域に伝播し、原反3の温度を上昇させるのを抑制できる。
また、水冷板35,37は、熱板29の凸部29bの先端部が、水冷板35,37の無端帯状体10A側の面35a,37aよりも無端帯状体10A側に突出するように配置される。つまり、凸部29bの先端面29cが無端帯状体10Aに接触するときに、水冷板35,37が無端帯状体10Aに接触しない。これにより、回動する無端帯状体10Aへの水冷板35,37の接触による無端帯状体10Aの摩耗を抑制できる。
In the cooling unit 31A, the water cooling plates 35 and 37 cool the atmosphere between the hot plate 29 and the endless strip 10A, so that the heat radiated from the surface other than the tip surface 29c of the hot plate 29 is released. It can be prevented from propagating to a region other than the welding target region of the raw fabric 3 and raising the temperature of the raw fabric 3.
Further, the water cooling plates 35 and 37 are arranged so that the tip of the convex portion 29b of the hot plate 29 protrudes toward the endless strip 10A side from the surfaces 35a and 37a on the endless strip 10A side of the water cooling plates 35 and 37. Will be done. That is, when the tip surface 29c of the convex portion 29b comes into contact with the endless strip 10A, the water cooling plates 35 and 37 do not come into contact with the endless strip 10A. As a result, wear of the endless strip 10A due to contact of the water cooling plates 35 and 37 with the rotating endless strip 10A can be suppressed.

熱板29の第1側面29dと、水冷板35,37との間の間隔は、0.1〜10mmが好ましく、0.5〜5mmが特に好ましい。この間隔が前記範囲にあると、溶着対象領域以外の領域への熱伝播を抑制する効果がより優れる。 The distance between the first side surface 29d of the hot plate 29 and the water cooling plates 35 and 37 is preferably 0.1 to 10 mm, particularly preferably 0.5 to 5 mm. When this interval is within the above range, the effect of suppressing heat transfer to a region other than the welding target region is more excellent.

水冷板35,37の無端帯状体10A側の面35a,37aと、凸部29bの先端面29cとの差は、0.1〜10mmが好ましく、0.5〜5mmが特に好ましい。この差が前記上限値以下であると、溶着対象領域以外の領域への熱伝播を抑制する効果がより優れ、前記下限値以上であると、無端帯状体への物理的接触が回避されるため、無端帯状体の摩耗が抑制され耐久性が優れる。 The difference between the surfaces 35a and 37a on the endless strip 10A side of the water cooling plates 35 and 37 and the tip surface 29c of the convex portion 29b is preferably 0.1 to 10 mm, particularly preferably 0.5 to 5 mm. When this difference is not more than the upper limit value, the effect of suppressing heat propagation to a region other than the welding target region is more excellent, and when it is more than the lower limit value, physical contact with the endless band is avoided. , The wear of the endless band is suppressed and the durability is excellent.

他の冷却ユニット31B,33A,33Bもそれぞれ冷却ユニット31Aと同様の構成である。 The other cooling units 31B, 33A, and 33B have the same configuration as the cooling unit 31A, respectively.

(接合体の製造)
溶着装置100を用いた接合体の製造方法では、一対の無端帯状体10A,10Bを、相対向する部分が往動走行するように回動させる。熱可塑性樹脂フィルムからなる2枚の原反3を、各原反3の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で、一対の無端帯状体10A,10Bの相対向する部分の外周面10a,10bの間に形成された走行経路を走行させつつ、2枚の原反3が互いに接触する部分を含む溶着対象領域を、走行経路の上下に配置された一対の加熱ユニット21A,21Bで、無端帯状体10A,10Bを介して両面から加熱し、融着させる(第1加熱工程)。
次いで前記溶着対象領域を、走行経路の上下に配置された一対の加熱ユニット23A,23Bで、無端帯状体10A,10Bを介して両面から加熱し、融着させる(第2加熱工程)。
次いで前記溶着対象領域を、走行経路の上下に配置された押圧ロール25A,25Bで両面から押圧し、圧着させる(押圧工程)。
次いで前記溶着対象領域を、走行経路の上下に配置された冷却ユニット27A,27Bで両面から冷却し、固化させる(固化工程)。
第1加熱工程では、冷却ユニット31A,31Bにより、加熱ユニット21A,21Bから、2枚の原反3の前記溶着対象領域以外の領域(以下、「他領域」とも記す。)への熱伝播を抑制し、前記溶着対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される温度を40℃以下にする。
第2加熱工程では、冷却ユニット33A,33Bにより、加熱ユニット23A,23Bから、2枚の原反3の前記他領域への熱伝播を抑制し、前記溶着対象領域の幅方向の外縁から外側に50mmの位置での原反3の表面に配置した熱電対で測定される温度を40℃以下にする。
これにより、2枚の原反3が接合された接合体が連続的に製造される。
(Manufacturing of joints)
In the method for manufacturing a bonded body using the welding device 100, the pair of endless strip-shaped bodies 10A and 10B are rotated so that the opposing portions travel forward. A pair of endless strips 10A and 10B face each other in a state where two raw fabrics 3 made of a thermoplastic resin film are brought into contact with each other by overlapping or abutting the ends of the original fabrics 3 in the width direction. A pair of heating units arranged above and below the traveling path in a welding target region including a portion where the two raw fabrics 3 are in contact with each other while traveling on a traveling path formed between the outer peripheral surfaces 10a and 10b of the portion. 21A and 21B are heated from both sides via the endless strips 10A and 10B to be fused (first heating step).
Next, the welding target region is heated from both sides by a pair of heating units 23A and 23B arranged above and below the traveling path via the endless band-shaped bodies 10A and 10B to be fused (second heating step).
Next, the welding target region is pressed from both sides by pressing rolls 25A and 25B arranged above and below the traveling path, and crimped (pressing step).
Next, the welding target region is cooled from both sides by cooling units 27A and 27B arranged above and below the traveling path and solidified (solidification step).
In the first heating step, the cooling units 31A and 31B transfer heat from the heating units 21A and 21B to a region other than the welding target region (hereinafter, also referred to as “other region”) of the two raw fabrics 3. It is suppressed, and the temperature measured by the thermocouple arranged on the surface of the original fabric 3 at a position 50 mm outward from the outer edge in the width direction of the welding target region is set to 40 ° C. or less.
In the second heating step, the cooling units 33A and 33B suppress the heat propagation of the two raw fabrics 3 from the heating units 23A and 23B to the other region, and from the outer edge in the width direction of the welding target region to the outside. The temperature measured by the thermocouple placed on the surface of the original fabric 3 at the position of 50 mm is set to 40 ° C. or lower.
As a result, a joined body in which two raw fabrics 3 are joined is continuously manufactured.

必要に応じ、得られた接合体を、2枚の原反3のいずれか一方又は両方の代わりに用いて前記の各工程を繰り返す。これにより、3枚以上の原反3が接合された接合体が得られる。
得られた接合体に対し、必要に応じて、コロナ処理や流滴処理等の処理を行ってもよい。
If necessary, the obtained bonded body is used in place of either one or both of the two raw fabrics 3, and each of the above steps is repeated. As a result, a bonded body in which three or more original fabrics 3 are bonded can be obtained.
The obtained bonded body may be subjected to a treatment such as a corona treatment or a drip treatment, if necessary.

固化した後の前記溶着対象領域を原反溶着部ともいう。原反溶着部は接合部であってよい。幅方向の端部を互いに重ね合わせた状態で2枚の原反を走行させる場合、原反溶着部の少なくとも一部は、厚さが原反の厚さの101%以上、つまり接合部となる。幅方向の端部を互いに突き合わせた状態で2枚の原反を走行させる場合、原反溶着部の厚さは原反の厚さの100%未満となる。 The region to be welded after solidification is also referred to as a raw fabric welded portion. The raw fabric welded portion may be a joint portion. When running two raw fabrics with their widthwise ends overlapped with each other, at least a part of the raw fabric welded portion has a thickness of 101% or more of the thickness of the original fabric, that is, a joint. .. When two raw fabrics are run with their widthwise ends abutting against each other, the thickness of the raw fabric welded portion is less than 100% of the thickness of the original fabric.

無端帯状体10A,10Bの回動速度、つまり2枚の原反3の搬送速度は、例えば0.5〜10m/分であり、好ましくは1.0〜9.0m/分であり、より好ましくは2.0〜8.0m/分である。上記範囲内であれば、原反溶着部の引張破断強度が優れる傾向がある。
2枚の原反の重なり幅は、0〜40mmが好ましく、0〜8mmがより好ましく、0mm超8mm以下がさらに好ましく、1〜7mmが特に好ましく、1〜3mmが最も好ましい。
ここで、重なり幅が0mmとは、幅方向の端部を互いに突き合わせた状態で2枚の原反を走行させることを示す。重なり幅が0mm超であることは、幅方向の端部を互いに重ね合わせた状態で2枚の原反を走行させることを示す。
重なり幅が前記上限値以下であると、原反溶着部(接合部)の幅が狭いために原反溶着部の寸法変化量が相対的に少なく、後工程でのシワが生じにくい。特に8mm以下であると、搬送時やフレームへの固定時に原反溶着部に傷が付いても、原反溶着部の幅が狭いために原反溶着部の傷の数が相対的に少なく、その傷が目立ちにくい。そのため、接合体の外観が悪化しにくく、また歩留りも低下しにくい。重なり幅が1mm以上であると、接合部の引張破断強度が優れる。
The rotation speed of the endless strips 10A and 10B, that is, the transport speed of the two raw fabrics 3, is, for example, 0.5 to 10 m / min, preferably 1.0 to 9.0 m / min, and more preferably. Is 2.0 to 8.0 m / min. Within the above range, the tensile breaking strength of the raw fabric welded portion tends to be excellent.
The overlapping width of the two raw fabrics is preferably 0 to 40 mm, more preferably 0 to 8 mm, further preferably more than 0 mm and 8 mm or less, particularly preferably 1 to 7 mm, and most preferably 1 to 3 mm.
Here, the overlapping width of 0 mm means that the two original fabrics are run in a state where the ends in the width direction are butted against each other. When the overlapping width is more than 0 mm, it means that the two original fabrics are run in a state where the ends in the width direction are overlapped with each other.
When the overlapping width is not more than the upper limit value, the width of the raw fabric welded portion (joint portion) is narrow, so that the amount of dimensional change of the raw fabric welded portion is relatively small, and wrinkles are less likely to occur in the subsequent process. In particular, if it is 8 mm or less, even if the raw fabric welded portion is scratched during transportation or fixing to the frame, the number of scratches on the raw fabric welded portion is relatively small because the width of the raw fabric welded portion is narrow. The scratches are inconspicuous. Therefore, the appearance of the bonded body is unlikely to deteriorate, and the yield is also unlikely to decrease. When the overlapping width is 1 mm or more, the tensile breaking strength of the joint is excellent.

第1加熱工程及び第2加熱工程での加熱温度はそれぞれ、原反を構成する熱可塑性樹脂の融点(℃)がTであるときに、(T−20)℃以上(T+20)℃以下が好ましく、(T−10)℃以上(T+10)℃以下がより好ましく、(T−5)℃以上(T+5)℃以下が特に好ましい。
第1加熱工程及び第2加熱工程での押圧時の圧力は、特に限定されず、例えば0.1〜0.5MPaであってよい。
各加熱工程での加熱温度及び圧力は同じでも異なってもよい。
The heating temperatures in the first heating step and the second heating step are preferably (T-20) ° C. or higher and (T + 20) ° C. or lower, respectively, when the melting point (° C.) of the thermoplastic resin constituting the raw fabric is T. , (T-10) ° C. or higher and (T + 10) ° C. or lower are more preferable, and (T-5) ° C. or higher and (T + 5) ° C. or lower are particularly preferable.
The pressure at the time of pressing in the first heating step and the second heating step is not particularly limited and may be, for example, 0.1 to 0.5 MPa.
The heating temperature and pressure in each heating step may be the same or different.

第1加熱工程及び第2加熱工程において、2枚の原反3の前記溶着対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される温度は、40℃以下であり、35℃以下が好ましく、30℃以下が特に好ましい。前記温度が前記上限値以下であれば、2枚の原反3の重なり幅が狭くても、原反溶着部の引張破断強度を原反の引張破断強度の50%以上にできる。前記温度の下限は特に限定されず、例えば10℃である。 In the first heating step and the second heating step, the temperature measured by the thermocouple arranged on the surface of the raw fabric 3 at a position 50 mm outward from the outer edge in the width direction of the welding target region of the two raw fabrics 3 is , 40 ° C. or lower, preferably 35 ° C. or lower, and particularly preferably 30 ° C. or lower. When the temperature is not more than the upper limit value, the tensile breaking strength of the raw fabric welded portion can be 50% or more of the tensile breaking strength of the raw fabric even if the overlapping width of the two raw fabrics 3 is narrow. The lower limit of the temperature is not particularly limited, and is, for example, 10 ° C.

押圧工程での押圧時の圧力は、0.1〜5MPaが好ましく、0.5〜2.5MPaが特に好ましい。
押圧工程での押圧時の温度、つまり押圧ロール25A,25Bの表面温度は特に限定されず、例えば25℃である。
固化工程での冷却は、冷却後の前記溶着対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される温度が、10〜40℃となるように行うことが好ましく、15〜35℃となるように行うことがより好ましく、20〜30℃となるように行うことが特に好ましい。
The pressure at the time of pressing in the pressing step is preferably 0.1 to 5 MPa, particularly preferably 0.5 to 2.5 MPa.
The temperature at the time of pressing in the pressing step, that is, the surface temperature of the pressing rolls 25A and 25B is not particularly limited, and is, for example, 25 ° C.
In the cooling in the solidification step, the temperature measured by the thermocouple arranged on the surface of the original fabric 3 at a position 50 mm outward from the outer edge in the width direction of the welding target region after cooling is 10 to 40 ° C. It is preferably carried out at 15 to 35 ° C., more preferably 20 to 30 ° C., and particularly preferably 20 to 30 ° C.

本発明の製造方法にあっては、加熱ユニット21A,21B,23A,23Bでの加熱の際、2枚の原反3の溶着対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される近傍の雰囲気温度を前記上限値以下にするため、シワの発生を抑制できる。
無端帯状体10A,10Bの外周面は、加熱された溶着対象領域の表面に押し当てられる。
従来の技術では、溶着対象領域以外の領域(他領域)に熱が伝播すると、他領域、特に加熱される溶着対象領域に近い部分で、熱収縮による配向緩和、それに伴うヒケやうねりが生じ、シワとなる。具体的には、他領域の一部で、伝播した熱によって温度が上昇し、熱可塑性樹脂のガラス転移温度(Tg)を超え、その部分が非晶領域となり分子鎖が動き、その後、再結晶化し、結果、部分的に結晶領域が成長し、結晶化度のばらつきが生じてシワとなったと考えられる。
前記製造方法にあっては、対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される温度を前記上限値以下とすることで、2枚の原反3の他領域への熱伝播が充分に抑制され、他領域での配向緩和が抑制される。そのため、シワの少ない接合体が得られる。また、接合部近傍での結晶化度のばらつきも抑制できる。
In the manufacturing method of the present invention, when heating is performed by the heating units 21A, 21B, 23A, 23B, the raw fabric 3 is located 50 mm outward from the outer edge in the width direction of the welding target region of the two raw fabrics 3. Since the ambient temperature in the vicinity measured by the thermocouple arranged on the surface of the above upper limit is set to be equal to or lower than the upper limit, the occurrence of wrinkles can be suppressed.
The outer peripheral surfaces of the endless strips 10A and 10B are pressed against the surface of the heated welding target region.
In the conventional technique, when heat propagates to a region other than the welding target region (other region), orientation relaxation due to heat shrinkage occurs in the other region, especially in a portion close to the welding target region to be heated, and sink marks and swells associated therewith occur. It becomes wrinkled. Specifically, in a part of another region, the temperature rises due to the propagated heat, exceeds the glass transition temperature (Tg) of the thermoplastic resin, that portion becomes an amorphous region, the molecular chain moves, and then recrystallization occurs. As a result, it is considered that the crystal region partially grew and the crystallinity varied, resulting in wrinkles.
In the manufacturing method, the temperature measured by the thermocouple arranged on the surface of the original fabric 3 at a position 50 mm outward from the outer edge in the width direction of the target region is set to be equal to or lower than the upper limit value, so that the two sheets are formed. The heat propagation of the original fabric 3 to other regions is sufficiently suppressed, and the relaxation of orientation in other regions is suppressed. Therefore, a joint with less wrinkles can be obtained. In addition, variations in crystallinity in the vicinity of the joint can be suppressed.

対象領域が加熱により高温下にある場合、無端帯状10A、10Bの外周面に原反3が付着しやすい状態にある。この付着力が高い場合、原反3の一部が無端帯状10A、10Bに付着することで、原反3の一部が欠落して凹凸が発生したり、接合部の一部に剥離が生じる原因になる。また、原反3が局部的に引張られ、歪みが生じやすくなることで、シワが生じる原因にもなる。
前記製造方法において、溶着対象領域を狭く、例えば8mm以下にすると、無端帯状10A、10Bの外周面と原反3の間で生じる付着力が低く抑えられる。また、加熱された対象領域の温度が速やかに下がることでも、無端帯状10A、10Bに原反3が付着しにくい。無端帯状10A、10Bの外周面と原反3の付着が抑えられることで、シワがより発生しにくい。
When the target region is at a high temperature due to heating, the original fabric 3 is likely to adhere to the outer peripheral surfaces of the endless strips 10A and 10B. When this adhesive force is high, a part of the original fabric 3 adheres to the endless strips 10A and 10B, so that a part of the original fabric 3 is missing and unevenness is generated, or a part of the joint portion is peeled off. It causes. In addition, the original fabric 3 is locally pulled and easily distorted, which causes wrinkles.
In the manufacturing method, when the welding target region is narrowed, for example, 8 mm or less, the adhesive force generated between the outer peripheral surfaces of the endless strips 10A and 10B and the original fabric 3 can be suppressed to a low level. Further, even if the temperature of the heated target region is rapidly lowered, the raw fabric 3 is less likely to adhere to the endless strips 10A and 10B. By suppressing the adhesion between the outer peripheral surfaces of the endless strips 10A and 10B and the original fabric 3, wrinkles are less likely to occur.

(他の実施形態)
本発明の接合体の製造方法は、図示例の溶着装置100を用いた方法に限定されない。
例えば、加熱機構からの熱伝播を抑制する第1の冷却機構として、水冷板式の冷却機構(冷却ユニット31A,31B,33A,33B)を用いる例を示したが、他の水冷機構を用いてもよく、風冷機構を用いてもよい。例えば風冷機構の場合、加熱ユニット21A,21B,23A,23Bと無端帯状体10A,10Bとの間の雰囲気に、任意の温度の気流を送ることによって、他領域への熱伝播を抑制できる。
溶着部20A,20Bがそれぞれ2つの加熱機構(加熱ユニット21A,21B、加熱ユニット23A,23B)を備え、溶着対象領域を2段階で加熱する例を示したが、溶着部20A,20Bそれぞれが備える加熱機構を1つ又は3つ以上とし、溶着対象領域を1段階又は3段階以上で加熱してもよい。
(Other embodiments)
The method for producing a bonded body of the present invention is not limited to the method using the welding device 100 of the illustrated example.
For example, an example of using a water cooling plate type cooling mechanism (cooling units 31A, 31B, 33A, 33B) as the first cooling mechanism for suppressing heat transfer from the heating mechanism has been shown, but other water cooling mechanisms may also be used. Often, an air cooling mechanism may be used. For example, in the case of an air cooling mechanism, heat propagation to other regions can be suppressed by sending an air flow of an arbitrary temperature to the atmosphere between the heating units 21A, 21B, 23A, 23B and the endless strips 10A, 10B.
An example is shown in which the welding portions 20A and 20B each have two heating mechanisms (heating units 21A and 21B, heating units 23A and 23B) and the welding target region is heated in two stages, but each of the welding portions 20A and 20B has. The heating mechanism may be one or three or more, and the welding target region may be heated in one step or three steps or more.

以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。「%」は、特に規定のない場合、「質量%」を示す。
例1は実施例であり、例2〜5は比較例である。
各例で使用した評価方法および材料を以下に示す。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following description. “%” Indicates “mass%” unless otherwise specified.
Example 1 is an example, and Examples 2 to 5 are comparative examples.
The evaluation methods and materials used in each example are shown below.

〔最大高さ粗さRz及び算術平均粗さRa〕
ISO4287:1997,Amd.1:2009(JIS B0601:2001)に基づき、粗さ曲線用の基準長さlr(カットオフ値λc)を0.8mmとして、Rz及び算術平均粗さRaを測定した。
[Maximum Height Roughness Rz and Arithmetic Mean Roughness Ra]
ISO4287: 1997, Amd. Based on 1: 2009 (JIS B0601: 2001), Rz and the arithmetic mean roughness Ra were measured with the reference length rl (cutoff value λc) for the roughness curve set to 0.8 mm.

〔表面うねり形状の二乗平均平方根高さ〕
幅250mmの接合体を700mmの長さで水平に、MDの両端に73.7g重の張力をかけて展張した。展張された接合体の直上80mmの位置に設置されたラインレーザから、接合体の接合部の幅方向の外縁から外側に50mmの位置に、MDに沿って150mmの長さで、波長635nmのレーザ光を照射した。照射部(接合体のレーザ光が照射された部分)から幅方向外側に250mm、高さ方向上側に25mmの位置に設置されたエリアカメラ(分解能0.08mm、シャッター速度10ミリ秒、F値F16、焦点距離55mm)で、照射部に投影された像を、接合部幅方向水平に、照射部をフォーカス位置として撮影した。撮影した像のうねりを幾何変換して表面うねり形状を得た。幾何変換では、710個の画素座標をそれぞれ0.08倍(分解能)してmm座標に変換した。これらのmm座標の高さデータX(i=1〜710の整数)の平均値を平均高さXaveとし、前記式1により高さ方向の標準偏差(mm)を算出し、その値を二乗平均平方根高さとした。
接合体の接合部の幅方向の外縁から外側に1mmの位置、及び接合部の幅方向の中心から外側に50mmの位置についてもそれぞれ、前記と同様にして二乗平均平方根高さを求めた。
なお、溶着自体が不可能であった場合には「×」と記載した。
[Square mean square root height of surface swell shape]
A 250 mm wide joint was horizontally stretched with a length of 700 mm by applying a tension of 73.7 g to both ends of the MD. From a line laser installed 80 mm directly above the stretched joint, a laser with a length of 150 mm along the MD and a wavelength of 635 nm, 50 mm outward from the outer edge of the joint in the width direction of the joint. Irradiated with light. An area camera (resolution 0.08 mm, shutter speed 10 ms, F value F16) installed at a position 250 mm outward in the width direction and 25 mm upward in the height direction from the irradiation part (the part of the junction irradiated with the laser beam). , The focal length is 55 mm), and the image projected on the irradiation portion was photographed horizontally in the width direction of the joint portion with the irradiation portion as the focus position. The swell of the photographed image was geometrically transformed to obtain a surface swell shape. In the geometric transformation, the coordinates of 710 pixels were each multiplied by 0.08 (resolution) and converted into mm coordinates. The average value of the height data X i (integer of i = 1 to 710) of these mm coordinates is defined as the average height X ave , the standard deviation (mm) in the height direction is calculated by the above equation 1, and the value is used as the value. The root mean square height was used.
The root mean square height was obtained in the same manner as described above for the position 1 mm outward from the outer edge of the joint portion in the width direction and the position 50 mm outward from the center in the width direction of the joint portion.
When welding itself was impossible, it was described as "x".

〔材料〕
原反として、以下のものを用意した。
ETFEフィルム:厚さ100μmのETFEフィルム(融点:約270℃)。
〔material〕
The following items were prepared as the original fabric.
ETFE film: An ETFE film having a thickness of 100 μm (melting point: about 270 ° C.).

無端帯状体として、以下のものを用意した。
無端帯状体1:図6に示す構成の無端帯状体(織布層:ガラス繊維織布、平織り。PTFEフィルム層の厚さ:100μm、外周面のRz:0.63μm、外周面の算術平均粗さRa:0.1μm)。
The following items were prepared as endless strips.
Endless band shape 1: Endless band shape having the structure shown in FIG. 6 (woven fabric layer: glass fiber woven fabric, plain weave. Thickness of PTFE film layer: 100 μm, Rz of outer peripheral surface: 0.63 μm, arithmetic average coarseness of outer peripheral surface Ra: 0.1 μm).

〔例1〕
図4〜5に示した構成の溶着装置100を用い、以下の手順で接合体を製造した。無端帯状体10A,10Bとしては無端帯状体1を用いた。1段目の加熱ユニット21A,21Bの先端面の幅は3mmとし、2段目の加熱ユニット23A,23Bの先端面の幅は5mmとした。
2枚のETFEフィルム(幅250mm)の端部を、図7に示すように、重なり幅1mmにて重ね合わせ、回動する一対の無端帯状体10A,10Bの相対向する部分の外周面10a,10bの間に形成された走行経路を走行させた。1段目の加熱ユニット21A,21B及び2段目の加熱ユニット23A,23Bにて順次、両面から加熱し、押圧ロール25A,25Bにて両面から押圧し、冷却ユニット27A,27Bにて両面から冷却し、接合体を得た。加熱ユニット21A,21B,23A,23Bでの加熱の際には、冷却ユニット31A,31B,33A,33Bにより、各加熱ユニットから、2枚の原反の他領域への熱伝播を抑制した。
無端帯状体10A,10Bの回動速度、つまり原反の搬送速度は、2m/分、5m/分、又は8m/分とした。加熱ユニット21A,21Bでの加熱条件は、加熱温度270℃、275℃又は280℃、圧力0MPaとした。加熱ユニット23A,23Bでの加熱条件は、圧力0.1MPaとする以外は、加熱ユニット21A,21Bと同じとした。押圧ロール25A,25Bでの押圧条件は、温度25℃、圧力2.5MPaとした。冷却ユニット27A,27Bでの冷却は、対象領域の表面温度が30℃になるようにした。冷却ユニット31A,31B,33A,33Bでの冷却は、第1加熱工程および第2加熱工程の加熱時の対象領域の幅方向の外縁から外側に50mmの位置で原反3の表面に配置した熱電対で測定される温度が表1に示す温度になるようにした。熱電対としてはGLARHTEC社製データロガーGL220を用いた。得られた接合体の接合部の幅は3.9mm、接合部の厚さは120μm(原反さの120%)であった。
[Example 1]
A bonded body was manufactured by the following procedure using the welding device 100 having the configuration shown in FIGS. 4 to 5. As the endless band-shaped bodies 10A and 10B, the endless band-shaped body 1 was used. The width of the tip surfaces of the first-stage heating units 21A and 21B was 3 mm, and the width of the tip surfaces of the second-stage heating units 23A and 23B was 5 mm.
As shown in FIG. 7, the ends of the two ETFE films (width 250 mm) are overlapped with each other with an overlapping width of 1 mm, and the outer peripheral surfaces 10a of the opposing portions of the pair of endless strips 10A and 10B that rotate. The traveling path formed between 10b was traveled. The first-stage heating units 21A and 21B and the second-stage heating units 23A and 23B sequentially heat from both sides, press the pressing rolls 25A and 25B from both sides, and cool the cooling units 27A and 27B from both sides. And obtained a joint. During heating in the heating units 21A, 21B, 23A, 23B, the cooling units 31A, 31B, 33A, 33B suppressed heat transfer from each heating unit to other regions of the two raw fabrics.
The rotation speed of the endless strips 10A and 10B, that is, the transport speed of the original fabric was set to 2 m / min, 5 m / min, or 8 m / min. The heating conditions in the heating units 21A and 21B were a heating temperature of 270 ° C., 275 ° C. or 280 ° C., and a pressure of 0 MPa. The heating conditions in the heating units 23A and 23B were the same as those in the heating units 21A and 21B except that the pressure was 0.1 MPa. The pressing conditions on the pressing rolls 25A and 25B were a temperature of 25 ° C. and a pressure of 2.5 MPa. For cooling in the cooling units 27A and 27B, the surface temperature of the target area was set to 30 ° C. The cooling in the cooling units 31A, 31B, 33A, 33B is performed by thermoelectrics arranged on the surface of the original fabric 3 at a position 50 mm outward from the outer edge in the width direction of the target region during heating in the first heating step and the second heating step. The temperature measured in pairs was set to the temperature shown in Table 1. As the thermocouple, a data logger GL220 manufactured by GLARHTEC was used. The width of the joint portion of the obtained joint body was 3.9 mm, and the thickness of the joint portion was 120 μm (120% of the original fabric).

〔例2〕
溶着装置100において、冷却ユニット31A,31B,33A,33Bを取り外し、各加熱ユニットから2枚の原反の他領域への熱伝播を抑制しなかったこと、1段目の加熱ユニット21A,21Bの先端面の幅(1回目に加熱する領域の幅)を25mm、2段目の加熱ユニット23A,23Bの先端面の幅(2回目に加熱する領域の幅)を30mmとしたこと、及び2枚のETFEフィルム(幅250mm)の端部を、図8に示すように、重なり幅20mmにて重ね合わせ、重なり部分の上に、幅30mmのETFEフィルムを、重なり部分をまたがるように重ね、走行経路を走行させたこと以外は例1と同様にして接合体を製造した。得られた接合体の接合部の幅は28.6mm、接合部の厚さは280μm(原反厚さの280%)であった。
[Example 2]
In the welding device 100, the cooling units 31A, 31B, 33A, 33B were removed, and the heat transfer from each heating unit to the other region of the two raw films was not suppressed, and the first stage heating units 21A, 21B The width of the tip surface (width of the area to be heated for the first time) was set to 25 mm, and the width of the tip surface (width of the area to be heated for the second time) of the second stage heating units 23A and 23B was set to 30 mm, and two sheets. As shown in FIG. 8, the ends of the ETFE film (width 250 mm) are overlapped with an overlapping width of 20 mm, and the ETFE film having a width of 30 mm is overlapped on the overlapping portion so as to straddle the overlapping portion. A joint was produced in the same manner as in Example 1 except that The width of the joint portion of the obtained joint body was 28.6 mm, and the thickness of the joint portion was 280 μm (280% of the original fabric thickness).

〔例3〕
1段目の加熱ユニット21A,21Bの先端面の幅(1回目に加熱する領域の幅)を10mm、2段目の加熱ユニット23A,23Bの先端面の幅(2回目に加熱する領域の幅)を20mmとしたこと、及び図9に示すように、2枚のETFEフィルムの重なり部分の上に幅30mmのETFEフィルムを重ねなかったこと以外は例2と同様にして接合体を製造した。得られた接合体の接合部の幅は18.9mm、接合部の厚さは170μm(原反厚さの170%)であった。
[Example 3]
The width of the tip surfaces of the first-stage heating units 21A and 21B (width of the region to be heated for the first time) is 10 mm, and the width of the tip surfaces of the second-stage heating units 23A and 23B (width of the region to be heated for the second time). ) Was set to 20 mm, and as shown in FIG. 9, a bonded body was produced in the same manner as in Example 2 except that the ETFE film having a width of 30 mm was not superposed on the overlapping portion of the two ETFE films. The width of the joint portion of the obtained joint body was 18.9 mm, and the thickness of the joint portion was 170 μm (170% of the original fabric thickness).

〔例4〕
1段目の加熱ユニット21A,21Bの先端面の幅(1回目に加熱する領域の幅)及び2段目の加熱ユニット23A,23Bの先端面の幅(2回目に加熱する領域の幅)をそれぞれ30mmとしたこと、及び図10に示すように、2枚のETFEフィルムの端部を重ねず突き合わせたこと以外は例2と同様にして接合体を製造した。幅30mmのETFEフィルムは、幅方向の中央の位置が、2枚のETFEフィルムの突き合わせ位置と一致するように配置した。得られた接合体の接合部の幅は29.1mm、接合部の厚さは180μm(原反厚さの180%)であった。
[Example 4]
The width of the tip surface of the first-stage heating units 21A and 21B (width of the region to be heated for the first time) and the width of the tip surface of the second-stage heating units 23A and 23B (width of the region to be heated for the second time). A bonded body was manufactured in the same manner as in Example 2 except that the respective ends were set to 30 mm and the edges of the two ETFE films were butted without overlapping as shown in FIG. The ETFE film having a width of 30 mm was arranged so that the central position in the width direction coincided with the abutting position of the two ETFE films. The width of the joint portion of the obtained joint body was 29.1 mm, and the thickness of the joint portion was 180 μm (180% of the original fabric thickness).

〔例5〕
溶着装置100において、冷却ユニット31A,31B,33A,33Bを取り外し、各加熱ユニットから2枚の原反の他領域への熱伝播を抑制しなかったこと以外は例1と同様にして接合体を製造した。得られた接合体の接合部の幅は3.9mm、接合部の厚さは130μm(原反厚さの130%)であった。
[Example 5]
In the welding device 100, the cooling units 31A, 31B, 33A, and 33B were removed, and the bonded body was formed in the same manner as in Example 1 except that the heat transfer from each heating unit to the other region of the two raw fabrics was not suppressed. Manufactured. The width of the joint portion of the obtained joint body was 3.9 mm, and the thickness of the joint portion was 130 μm (130% of the original fabric thickness).

例1〜5で得た接合体の接合部の幅方向の外縁から外側に50mm及び1mmの位置、並びに接合部の幅方向の中心から外側に50mmの位置での表面うねり形状の二乗平均平方根高さを表1に示す。 The root mean square height of the surface swell shape at positions 50 mm and 1 mm outward from the outer edge of the joint portion in the width direction of the joints obtained in Examples 1 to 5 and at a position 50 mm outward from the center in the width direction of the joint portion. The results are shown in Table 1.

Figure 2019103123
Figure 2019103123

例1の接合体は、接合部の幅方向の外縁から外側に50mm及び1mmの位置、接合部の幅方向の中心から外側に50mmの位置のいずれにおいても、二乗平均平方根高さが0.5mm以下であり、シワの少なかった。
対象領域の加熱の際に対象領域の幅方向の外縁から外側に50mmの位置での原反の表面に配置した熱電対で測定される温度が40℃超であった例2〜5の接合体は、接合部の幅方向の外縁から外側に50mmの位置での二乗平均平方根高さが全て0.5mmを超え、シワが大きかった。
The joint of Example 1 has a root mean square height of 0.5 mm at both positions 50 mm and 1 mm outward from the outer edge in the width direction of the joint and 50 mm outside the center in the width direction of the joint. It was below, and there were few wrinkles.
The bonded body of Examples 2 to 5 in which the temperature measured by a thermocouple placed on the surface of the original fabric at a position 50 mm outward from the outer edge in the width direction of the target region when heating the target region was over 40 ° C. The root mean square height at a position 50 mm outward from the outer edge in the width direction of the joint exceeded 0.5 mm, and wrinkles were large.

本発明の接合体は、膜構造物用フィルム(例えば膜構造物用外部被覆フィルム)、又は農業用フィルム(例えば農業用ハウス被覆フィルム)として使用できる。
膜構造物は、フィルムを用いた屋根、外壁、施設等の構造物である。施設の例としては、スポーツ施設(プール、体育館、テニスコート、サッカー場等。)、倉庫、集会場、展示場、園芸施設(園芸ハウス、農業用ハウス等。)が挙げられる。
なお、2017年11月27日に出願された日本特許出願2017−226590号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The bonded film of the present invention can be used as a film for a film structure (for example, an outer coating film for a film structure) or an agricultural film (for example, an agricultural house coating film).
Membrane structures are structures such as roofs, outer walls, and facilities that use film. Examples of facilities include sports facilities (pools, gymnasiums, tennis courts, soccer fields, etc.), warehouses, meeting places, exhibition halls, and horticultural facilities (horticultural houses, agricultural houses, etc.).
The entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2017-226590 filed on November 27, 2017 are cited here as the disclosure of the specification of the present invention. It is something to incorporate.

1 接合体、1a 接合部、3 原反、5 サンプル、W 接合部の幅、10,10A,10B 無端帯状体、10a,10b,10c 無端帯状体の外周面、11 支持ロール、20A,20B 溶着部、21A,21B,23A,23B 加熱ユニット(加熱機構)、25A,25B 押圧ロール、27A,27B 冷却ユニット(第2の冷却機構)、29 熱板、29a 基部、29b 凸部、29c 先端面、29d 第1側面、29e 第2側面、W 溶着対象領域の幅、W 重なり幅、30 冷却機構、31A,31B,33A,33B 冷却ユニット(第1の冷却機構)、35,37 水冷板、100 溶着装置1 assembly, 1a joints, 3 raw, 5 samples, W a junction width, 10, 10A, 10B endless strip, 10a, 10b, the outer peripheral surface of 10c the endless strip, 11 the support rolls, 20A, 20B Welding part, 21A, 21B, 23A, 23B heating unit (heating mechanism), 25A, 25B pressing roll, 27A, 27B cooling unit (second cooling mechanism), 29 heating plate, 29a base, 29b convex part, 29c tip surface , 29d 1st side surface, 29e 2nd side surface, W 1 width of welding target area, W 2 overlapping width, 30 cooling mechanism, 31A, 31B, 33A, 33B cooling unit (first cooling mechanism), 35, 37 water cooling plate , 100 Welding device

Claims (15)

熱可塑性樹脂フィルムからなる少なくとも2枚の原反が接合された接合体であって、
隣り合う原反同士の接合部の幅方向の外縁から外側に50mmの位置で測定される表面うねり形状の二乗平均平方根高さが0.5mm以下であることを特徴とする接合体。
It is a bonded body in which at least two raw fabrics made of a thermoplastic resin film are bonded.
A joint body characterized in that the root mean square height of the surface waviness measured at a position 50 mm outward from the outer edge in the width direction of the joint portion between adjacent raw fabrics is 0.5 mm or less.
前記接合部の幅方向の外縁から外側に1mmの位置で測定される表面うねり形状の二乗平均平方根高さが0.5mm以下である請求項1に記載の接合体。 The joint according to claim 1, wherein the root mean square height of the surface waviness measured at a position 1 mm outward from the outer edge in the width direction of the joint is 0.5 mm or less. 前記接合部の幅が1〜40mmである請求項1又は2に記載の接合体。 The joint according to claim 1 or 2, wherein the width of the joint is 1 to 40 mm. 前記熱可塑性樹脂フィルムが結晶性樹脂のフィルムである請求項1〜3のいずれか一項に記載の接合体。 The bonded body according to any one of claims 1 to 3, wherein the thermoplastic resin film is a crystalline resin film. 前記熱可塑性樹脂フィルムがフッ素樹脂のフィルムである請求項1〜4のいずれか一項に記載の接合体。 The bonded body according to any one of claims 1 to 4, wherein the thermoplastic resin film is a fluororesin film. 前記フッ素樹脂が、エチレン−テトラフルオロエチレン共重合体、ペルフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン共重合体、ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、クロロトリフルオロエチレン重合体、ビニルフルオリド重合体、ビニリデンフルオリド重合体、ビニリデンフルオリド−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、テトラフルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−ビニリデンフルオリド−プロピレン共重合体、エチレン−クロロトリフルオロエチレン共重合体及びプロピレン−クロロトリフルオロエチレン共重合体からなる群から選ばれる少なくとも1種である請求項5に記載の接合体。 The fluororesin is an ethylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer, hexafluoropropylene-tetrafluoroethylene copolymer, chlorotrifluoroethylene polymer, vinyl fluoride polymer. , Vinylidene fluoride copolymer, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-vinylidene fluoride- The conjugate according to claim 5, which is at least one selected from the group consisting of a propylene copolymer, an ethylene-chlorotrifluoroethylene copolymer and a propylene-chlorotrifluoroethylene copolymer. 膜構造物用フィルムである請求項1〜6のいずれか一項に記載の接合体。 The bonded body according to any one of claims 1 to 6, which is a film for a film structure. 農業用フィルムである請求項1〜6のいずれか一項に記載の接合体。 The bonded body according to any one of claims 1 to 6, which is an agricultural film. 一対の無端帯状体を、相対向する部分が往動走行するように回動させ、熱可塑性樹脂フィルムからなる2枚の原反を、各原反の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で、前記一対の無端帯状体の前記相対向する部分の外周面の間に挟んで走行させ、前記2枚の原反が互いに接触する部分を含む溶着対象領域を両面から加熱及び押圧し、前記2枚の原反を溶着する工程を少なくとも1回行って、前記2枚の原反が少なくとも1回溶着された接合体を製造する方法であって、
前記溶着対象領域の加熱の際、前記溶着対象領域の幅方向の外縁から外側に50mmの位置で前記原反の表面に配置した熱電対で測定される温度を40℃以下にすることを特徴とする接合体の製造方法。
A pair of endless strips are rotated so that the opposing portions travel forward, and two raw fabrics made of a thermoplastic resin film are overlapped with each other at the widthwise end portions of the raw fabrics. In a state of being in contact with each other, the pair of endless strips are sandwiched between the outer peripheral surfaces of the opposing portions of the pair of endless strips, and the welding target region including the portion where the two raw fabrics are in contact with each other is covered from both sides. It is a method of producing a bonded body in which the two raw fabrics are welded at least once by performing the step of heating and pressing and welding the two raw fabrics at least once.
When heating the welding target region, the temperature measured by a thermocouple arranged on the surface of the raw fabric at a position 50 mm outward from the outer edge in the width direction of the welding target region is set to 40 ° C. or less. A method for manufacturing a bonded body.
前記2枚の原反の重なり幅が0〜40mmである請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the overlapping width of the two raw fabrics is 0 to 40 mm. 前記熱可塑性樹脂フィルムが結晶性樹脂のフィルムである請求項9又は10に記載の製造方法。 The production method according to claim 9 or 10, wherein the thermoplastic resin film is a crystalline resin film. 前記熱可塑性樹脂フィルムがフッ素樹脂のフィルムである請求項9〜11のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 11, wherein the thermoplastic resin film is a fluororesin film. 前記2枚の原反が走行する走行経路の途中に少なくとも一対の熱板式加熱機構が設けられ、前記少なくとも一対の熱板式加熱機構により前記溶着対象領域を加熱するとともに、前記熱板式加熱機構から前記2枚の原反の溶着対象領域以外の領域への熱伝播を第1の冷却機構によって抑制する請求項9〜12のいずれか一項に記載の製造方法。 At least a pair of hot plate type heating mechanisms are provided in the middle of the traveling path through which the two raw fabrics travel, and the welding target region is heated by the at least pair of hot plate type heating mechanisms, and the hot plate type heating mechanism is used to heat the region. The production method according to any one of claims 9 to 12, wherein the heat transfer of the two raw fabrics to a region other than the welding target region is suppressed by the first cooling mechanism. 前記第1の冷却機構が、水冷機構又は風冷機構である請求項13に記載の製造方法。 The manufacturing method according to claim 13, wherein the first cooling mechanism is a water cooling mechanism or an air cooling mechanism. 回動したときに、相対向する部分が往動走行するように配置された一対の無端帯状体と、一対の溶着部とを備え、
前記一対の無端帯状体の前記相対向する部分の外周面の間に、熱可塑性樹脂フィルムからなる2枚の原反を、各原反の幅方向の端部を互いに重ね合わせて又は突き合わせて接触させた状態で走行させる走行経路が形成され、前記一対の溶着部はそれぞれ、前記一対の無端帯状体の内側の、前記走行経路に対向する位置に配置され、
前記一対の溶着部はそれぞれ、少なくとも1つの熱板式加熱機構と、前記熱板式加熱機構の近傍に配置された第1の冷却機構と、前記熱板式加熱機構の下流側に配置された押圧ロールと、前記押圧ロールの下流側に配置された第2の冷却機構とを備え、
前記第1の冷却機構は、前記熱板式加熱機構から前記2枚の原反の対象領域以外の領域への熱伝播を抑制するように設けられることを特徴とする溶着装置。
It is provided with a pair of endless strips arranged so that opposing portions travel forward when rotated, and a pair of welded portions.
Two raw fabrics made of a thermoplastic resin film are brought into contact with each other by overlapping or abutting the widthwise ends of the raw fabrics between the outer peripheral surfaces of the opposite portions of the pair of endless strips. A traveling path is formed so that the traveling path is formed, and the pair of welded portions are arranged at positions inside the pair of endless strips facing the traveling path.
Each of the pair of welded portions includes at least one hot plate type heating mechanism, a first cooling mechanism arranged in the vicinity of the hot plate type heating mechanism, and a pressing roll arranged on the downstream side of the hot plate type heating mechanism. A second cooling mechanism arranged on the downstream side of the pressing roll is provided.
The first cooling mechanism is a welding device provided so as to suppress heat propagation from the hot plate type heating mechanism to a region other than the target region of the two raw fabrics.
JP2019555381A 2017-11-27 2018-11-22 Joined body, its manufacturing method and welding equipment Pending JPWO2019103123A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017226590 2017-11-27
JP2017226590 2017-11-27
PCT/JP2018/043276 WO2019103123A1 (en) 2017-11-27 2018-11-22 Joined body, production method therefor, and welding device

Publications (1)

Publication Number Publication Date
JPWO2019103123A1 true JPWO2019103123A1 (en) 2020-12-03

Family

ID=66630647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555381A Pending JPWO2019103123A1 (en) 2017-11-27 2018-11-22 Joined body, its manufacturing method and welding equipment

Country Status (2)

Country Link
JP (1) JPWO2019103123A1 (en)
WO (1) WO2019103123A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101223A1 (en) 2022-01-19 2023-07-20 Vector Foiltec Gmbh Process for welding an architectural foil along a weld seam and architectural foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058298A (en) * 1990-12-20 1993-01-19 Nippon Valqua Ind Ltd Method and apparatus for fusion-welding thermoplastic resin
JP2005212311A (en) * 2004-01-30 2005-08-11 Hagihara Industries Inc Method for joining thermoplastic resin sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634091Y2 (en) * 1990-08-02 1994-09-07 三ツ星ベルト株式会社 Joint press for thermoplastic resin belt
JPH0735096B2 (en) * 1992-06-23 1995-04-19 クインライト電子精工株式会社 Hot plate type continuous welding device for synthetic resin sheets
JP5346561B2 (en) * 2008-11-18 2013-11-20 シーアイ化成株式会社 Manufacturing method of sheet joined body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058298A (en) * 1990-12-20 1993-01-19 Nippon Valqua Ind Ltd Method and apparatus for fusion-welding thermoplastic resin
JP2005212311A (en) * 2004-01-30 2005-08-11 Hagihara Industries Inc Method for joining thermoplastic resin sheet

Also Published As

Publication number Publication date
WO2019103123A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
TWI607858B (en) Knurling device and method, and manufacturing method of film roll
US20040154734A1 (en) Apparatus and method for producing a thermoplastic resin continuous laminated sheet
KR100928862B1 (en) Film bonding method, wide film produced by this bonding method and agricultural coating material made from this wide film
JPWO2019103123A1 (en) Joined body, its manufacturing method and welding equipment
JP2005534542A (en) Method for producing low-orientation thermoplastic film, produced film and use thereof
JP4116314B2 (en) Manufacturing method of micro embossed sheet
JPWO2019103117A1 (en) Joined body, its manufacturing method, welding device and endless band
US20110011390A1 (en) Continuous lamination of polymethylemethacrylate (pmma) film in the manufacture of a fresnel lens
US6066385A (en) Laminator film
JP6597623B2 (en) Ethylene-tetrafluoroethylene copolymer sheet and method for producing the same
EP1486316B1 (en) Method of bonding fluororesin films
TW201031513A (en) Method for producing surface treated fluororesin film
JP4802389B2 (en) Plastic hollow plate, manufacturing method and manufacturing apparatus thereof
JP4217226B2 (en) Laminated molded body
US20020188085A1 (en) Ethylene-tetrafluoroethylene and tetrafluoroethylene-hexafluoropropylene copolymer films excellent in light transparency
JP2002240144A (en) Fluoroplastic film of low double refraction
JP2005212311A (en) Method for joining thermoplastic resin sheet
JP4228000B2 (en) Laminated molded body
JP6022184B2 (en) Method for producing hollow structure plate
JP6095447B2 (en) Hollow structure plate manufacturing method and hollow structure plate
JP2005088893A (en) Bag having mouth whose shape can be maintained
JP4273827B2 (en) Method for producing thermoplastic resin film and thermoplastic resin film
JP2005113532A (en) Curing sheet
JPH06155579A (en) Method for lamination by thermocompression bonding
JP2010115831A (en) Process for manufacturing laminated sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129