JPWO2019066037A1 - Doping solution, products using it, structural protein fiber and its manufacturing method - Google Patents

Doping solution, products using it, structural protein fiber and its manufacturing method Download PDF

Info

Publication number
JPWO2019066037A1
JPWO2019066037A1 JP2019545177A JP2019545177A JPWO2019066037A1 JP WO2019066037 A1 JPWO2019066037 A1 JP WO2019066037A1 JP 2019545177 A JP2019545177 A JP 2019545177A JP 2019545177 A JP2019545177 A JP 2019545177A JP WO2019066037 A1 JPWO2019066037 A1 JP WO2019066037A1
Authority
JP
Japan
Prior art keywords
structural protein
doping solution
solution according
doping
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019545177A
Other languages
Japanese (ja)
Other versions
JP7231939B2 (en
Inventor
健久 前川
健久 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spiber Inc
Original Assignee
Spiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber Inc filed Critical Spiber Inc
Publication of JPWO2019066037A1 publication Critical patent/JPWO2019066037A1/en
Application granted granted Critical
Publication of JP7231939B2 publication Critical patent/JP7231939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

構造タンパク質と、金属原子及び有機基を有する金属化合物と、溶媒と、を含む、ドープ液。A doping solution containing a structural protein, a metal compound having a metal atom and an organic group, and a solvent.

Description

本発明は、ドープ液及びそれを用いた製品に関する。本発明はまた、構造タンパク質繊維及びその製造方法に関する。 The present invention relates to a doping solution and a product using the same. The present invention also relates to structural protein fibers and methods for producing them.

従来から、構造タンパク質繊維として、再生絹繊維である絹フィブロイン繊維、人工クモ糸繊維等が知られている。これらの製造方法もいくつか提案されている。例えば、絹フィブロインを含む構造タンパク質を無機塩及びジメチルスルホキシド(DMSO)等の溶解性に優れた極性溶媒に溶解させて構造タンパク質繊維を製造する方法(特許文献1)や、天然型クモ糸構造タンパク質由来の構造タンパク質繊維を湿熱における一段目延伸と乾熱における2段目延伸で延伸することにより、350MPa以上の応力を有する構造タンパク質繊維を製造する方法が提案されている(特許文献2)。さらに、構造タンパク質繊維をカルボジイミドやグルタルアルデヒド等の架橋剤と反応させて応力を向上させる方法も提案されている(特許文献3)。 Conventionally, as structural protein fibers, silk fibroin fibers, which are regenerated silk fibers, artificial spider silk fibers, and the like have been known. Some of these manufacturing methods have also been proposed. For example, a method for producing a structural protein fiber by dissolving a structural protein containing silk fibroin in an inorganic salt and a polar solvent having excellent solubility such as dimethylsulfoxide (DMSO) (Patent Document 1), or a natural spider silk structural protein. A method for producing a structural protein fiber having a stress of 350 MPa or more has been proposed by stretching the derived structural protein fiber by the first-stage stretching in moist heat and the second-stage stretching in dry heat (Patent Document 2). Further, a method of reacting structural protein fibers with a cross-linking agent such as carbodiimide or glutaraldehyde to improve stress has also been proposed (Patent Document 3).

国際公開第2013/065651号International Publication No. 2013/06651 特開2014−129639号公報Japanese Unexamined Patent Publication No. 2014-129638 国際公開第2012/165477号International Publication No. 2012/1654777

多様な用途への展開のため、更に高い応力を有する構造タンパク質繊維が求められている。 Structural protein fibers with even higher stress are required for development in various applications.

本発明は、高い応力を有する構造タンパク質繊維の製造に有用なドープ液を提供することを目的とする。また、本発明は、高い応力を有する構造タンパク質繊維を容易に製造することが可能な、構造タンパク質の製造方法を提供することを目的とする。また、本発明は、上記ドープ液を用いて形成された製品、特に、高い応力を有する構造タンパク質繊維を提供することを目的とする。 An object of the present invention is to provide a doping solution useful for producing structural protein fibers having high stress. Another object of the present invention is to provide a method for producing a structural protein, which can easily produce a structural protein fiber having a high stress. Another object of the present invention is to provide a product formed by using the above-mentioned doping solution, particularly a structural protein fiber having a high stress.

本発明者らは、上記課題に対して鋭意検討を重ねた結果、有機基を有する金属化合物と構造タンパク質とを含むドープ液を用いることで、応力の向上した構造タンパク質繊維を製造することが可能となることを初めて見出し、本発明を完成するに至った。すなわち、本発明は、例えば、以下の各発明に関する。 As a result of diligent studies on the above problems, the present inventors can produce structural protein fibers having improved stress by using a dope solution containing a metal compound having an organic group and a structural protein. For the first time, we have found that this is the case, and have completed the present invention. That is, the present invention relates to, for example, the following inventions.

本発明の一側面は、構造タンパク質と、金属原子及び有機基を有する金属化合物と、溶媒と、を含む、ドープ液に関する。 One aspect of the present invention relates to a doping solution containing a structural protein, a metal compound having a metal atom and an organic group, and a solvent.

一態様において、金属原子の価数は、2〜6価であってよい。 In one embodiment, the valence of the metal atom may be 2-6 valence.

一態様において、金属原子は、チタン、ジルコニウム、クロム、モリブデン、及びタングステンからなる群から選ばれる少なくとも1種であってよい。 In one aspect, the metal atom may be at least one selected from the group consisting of titanium, zirconium, chromium, molybdenum, and tungsten.

一態様において、ドープ液の粘度は、3,000mPa・sec以上60,000mPa・sec以下であってよい。 In one aspect, the viscosity of the doping solution may be 3,000 mPa · sec or more and 60,000 mPa · sec or less.

一態様において、金属化合物の含有量は、構造タンパク質1当量に対して0.5当量以上20当量以下であってよい。 In one embodiment, the content of the metal compound may be 0.5 equivalents or more and 20 equivalents or less with respect to 1 equivalent of the structural protein.

一態様において、溶媒は、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、N−メチル−2−ピロリドン、アセトニトリル、N−メチルモルホリンN−オキシド、水、及びヘキサフルオロイソプロノールからなる群より選ばれる少なくとも1種を含むものであってよい。 In one embodiment, the solvent is dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, N-methyl-2-pyrrolidone, acetonitrile, N-methylmorpholine N-. It may contain at least one selected from the group consisting of oxide, water, and hexafluoroisopronol.

一態様において、ドープ液は、無機塩をさらに含んでよい。 In one aspect, the doping solution may further contain an inorganic salt.

一態様において、無機塩は、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、及びアルカリ土類金属硝酸塩からなる群より選ばれる少なくとも1種であってよい。 In one aspect, the inorganic salt may be at least one selected from the group consisting of alkali metal halides, alkaline earth metal halides, and alkaline earth metal nitrates.

一態様において、構造タンパク質は、絹フィブロイン、クモ糸フィブロイン、コラ−ゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種であってよい。 In one embodiment, the structural protein may be at least one selected from the group consisting of silk fibroin, spider silk fibroin, collagen, resilin, elastin, and keratin.

一態様において、構造タンパク質は、クモ糸フィブロインであってよい。 In one embodiment, the structural protein may be spider silk fibroin.

本発明の他の一側面は、上記ドープ液を凝固液中に押し出して凝固させる凝固工程を含む、構造タンパク質繊維の製造方法に関する。 Another aspect of the present invention relates to a method for producing a structural protein fiber, which comprises a coagulation step of extruding the doping solution into a coagulation solution to coagulate it.

一態様に係る構造タンパク質繊維の製造方法は、凝固工程を経て得られた構造タンパク質繊維を乾熱処理する乾熱工程を更に含んでよい。 The method for producing a structural protein fiber according to one aspect may further include a dry heat step of drying and heat-treating the structural protein fiber obtained through the coagulation step.

本発明の他の一側面は、上記ドープ液の凝固物を含む製品に関する。この製品は、長繊維、短繊維、糸、紡績糸、フィラメント、フィルム、発泡体、球体、ナノフィブリル、ヒドロゲル、樹脂、紙及びそれら等価物からなる群から選択されてよい。 Another aspect of the present invention relates to a product containing a coagulated product of the above-mentioned doping solution. This product may be selected from the group consisting of long fibers, short fibers, yarns, spun yarns, filaments, films, foams, spheres, nanofibrils, hydrogels, resins, papers and their equivalents.

本発明の他の一側面は、クモ糸フィブロインと、当該クモ糸フィブロインに結合した金属原子と、を含む構造タンパク質繊維に関する。 Another aspect of the present invention relates to a structural protein fiber containing spider silk fibroin and a metal atom bonded to the spider silk fibroin.

本発明によれば、高い応力を有する構造タンパク質繊維の製造に有用なドープ液を提供することができる。また、本発明は、高い応力を有する構造タンパク質繊維を容易に製造することが可能な、構造タンパク質の製造方法を提供することができる。また、本発明は、上記ドープ液を用いて形成された製品、特に、高い応力を有する構造タンパク質繊維を提供することができる。 According to the present invention, it is possible to provide a doping solution useful for producing structural protein fibers having high stress. In addition, the present invention can provide a method for producing a structural protein, which can easily produce a structural protein fiber having a high stress. Further, the present invention can provide a product formed by using the above-mentioned doping solution, particularly a structural protein fiber having a high stress.

構造タンパク質繊維を製造するための紡糸装置の一例を示す概略図である。It is the schematic which shows an example of the spinning apparatus for manufacturing a structural protein fiber. 構造タンパク質繊維を加熱処理に供するための加熱装置の一例を示す概略図である。It is the schematic which shows an example of the heating apparatus for subjecting a structural protein fiber to heat treatment. 溶液中における構造タンパク質のH−NMRスペクトルの図である。It is a figure of 1 1 H-NMR spectrum of a structural protein in a solution. 溶液中における構造タンパク質の13C−NMRスペクトルの図である。It is a figure of the 13 C-NMR spectrum of the structural protein in a solution. SEM−EDSエネルギー分散型X線分光法による、構造タンパク質繊維の元素分析の図である。It is a figure of elemental analysis of a structural protein fiber by SEM-EDS energy dispersive X-ray spectroscopy.

以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings in some cases. However, the present invention is not limited to the following embodiments.

<ドープ液>
本実施形態に係るドープ液は、構造タンパク質と、金属原子及び有機基を有する金属化合物と、溶媒と、を含む。本実施形態に係るドープ液は、構造タンパク質及び金属化合物を溶媒に溶解させたドープ液ということもできる。
<Doping liquid>
The doping solution according to this embodiment contains a structural protein, a metal compound having a metal atom and an organic group, and a solvent. The doping solution according to the present embodiment can also be said to be a doping solution in which a structural protein and a metal compound are dissolved in a solvent.

ドープ液に含まれる溶媒の種類は、特に限定されず、構造タンパク質の種類等によって適宜選択すれば良い。溶媒としては、構造タンパク質を溶解することのできるものであればいずれも使用することができ、例えば、非プロトン性溶媒、プロトン性溶媒等を挙げることができる。非プロトン性溶媒としては、例えば、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)、1,3−ジメチル−2−イミダゾリドン(DMI)、N−メチル−2−ピロリドン(NMP)、アセトニトリル、N−メチルモルホリンN−オキシド(NMO)等、又はこれらの組み合わせであってもよい。プロトン性溶媒としては、例えば、水、ヘキサフルオロイソプロノール(HFIP)等が挙げられる。本実施形態においては、非プロトン性溶媒が好ましい。 The type of solvent contained in the doping solution is not particularly limited, and may be appropriately selected depending on the type of structural protein and the like. As the solvent, any solvent can be used as long as it can dissolve the structural protein, and examples thereof include an aprotic solvent and a protic solvent. Examples of the aprotonic solvent include dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidone (DMI), N-. Methyl-2-pyrrolidone (NMP), acetonitrile, N-methylmorpholine N-oxide (NMO), etc., or a combination thereof may be used. Examples of protic solvents include water, hexafluoroisoprenaline (HFIP) and the like. In this embodiment, aprotic solvents are preferred.

<金属化合物>
本実施形態に係る金属化合物は、金属原子及び有機基を有する。なお、本実施形態において有機基とは、有機化合物から水素原子の一部を除いた原子団、又は、金属原子と錯体を形成する有機配位子を示す。
<Metal compound>
The metal compound according to this embodiment has a metal atom and an organic group. In addition, in this embodiment, an organic group means an atomic group obtained by removing a part of a hydrogen atom from an organic compound, or an organic ligand forming a complex with a metal atom.

金属原子としては、第1族元素のアルカリ金属元素、第2族元素、第4族元素、第5族元素、第6族元素、第7族元素、第8族元素、第9族元素、第10族元素、第11族元素、第12族元素の金属元素等を挙げることができる。金属原子の種類は、特に限定されないが、チタン、ジルコニウム、クロム、モリブデン、タングステン等が好ましく、チタン、ジルコニウム、クロムが更に好ましい。 As metal atoms, group 1 element alkali metal elements, group 2 elements, group 4 elements, group 5 elements, group 6 elements, group 7 elements, group 8 elements, group 9 elements, and group 1 elements. Examples include group 10 elements, group 11 elements, and metal elements of group 12 elements. The type of metal atom is not particularly limited, but titanium, zirconium, chromium, molybdenum, tungsten and the like are preferable, and titanium, zirconium and chromium are more preferable.

金属原子の価数は1〜6価であればよく、2〜6価であってよく、3〜6価であってよく、3〜4価であってよく、4〜6価であってもよい。 The valence of the metal atom may be 1 to 6 valences, 2 to 6 valences, 3 to 6 valences, 3 to 4 valences, or 4 to 6 valences. Good.

第1族元素としては、リチウム(I)(Li)、ナトリウム(I)(Na)、カリウム(I)(K)、ルビジウム(I)(Rb)、セシウム(I)(Cs)、フランシウム(I)(Fr)等が挙げられる。第2族元素としては、ベリリウム(I)(Be)、ベリリウム(II)(Be2+)、ベリリウム(III)(Be3+)、マグネシウム(I)(Mg)、マグネシウム(II)(Mg2+)、カルシウム(I)(Ca)、カルシウム(II)(Ca2+)、ストロンチウム(I)(Sr)、ストロンチウム(II)(Sr2+)、バリウム(II)(Ba2+)等が挙げられる。第4族元素としては、チタン(I)(Ti)、チタン(II)(Ti2+)、チタン(III)(Ti3+)、チタン(IV)(Ti4+)、ジルコニウム(IV)(Zr4+)、ハフニウム(IV)(Hf4+)等が挙げられる。第5族元素としては、バナジウム(I)(V)、バナジウム(II)(V2+)、バナジウム(V)(V5+)、ニオブ(V)(Nb5+)、タンタル(V)(Ta5+)等が挙げられる。第6族元素としては、クロム(III)(Cr3+)、クロム(VI)(Cr6+)、モリブデン(I)(Mo)、モリブデン(II)(Mo2+)、モリブデン(III)(Mo3+)、モリブデン(IV)(Mo4+)、モリブデン(V)(Mo5+)、モリブデン(VI)(Mo6+)、タングステン(VI)(W6+)等が挙げられる。第7族元素としては、マンガン(II)(Mn2+)、マンガン(IV)(Mn4+)等が挙げられる。第8族元素としては、鉄(II)(Fe2+)、鉄(III)(Fe3+)、ルテニウム(II)(Ru2+)、ルテニウム(III)(Ru3+)、ルテニウム(IV)(Ru4+)等が挙げられる。第9族元素としては、コバルト(III)(Co3+)等が挙げられる。第10族元素としては、ニッケル(II)(Ni2+)、パラジウム(II)(Pd2+)、白金(II)(Pt2+)等が挙げられる。第11族元素としては、銅(I)(Cu)、銅(II)(Cu2+)、銀(I)(Ag)、金(I)(Au)、金(III)(Au3+)等が挙げられる。第12族元素としては、亜鉛(II)(Zn2+)等が挙げられる。第13族元素としては、アルミニウム(III)(Al3+)、ガリウム(III)(Ga3+)、インジウム(III)(In3+)、タリウム(I)(Tl)、タリウム(III)(Tl3+)等が挙げられる。第14族元素としては、スズ(IV)(Sn4+)、鉛(II)(Pb2+)等が挙げられる。第15族元素としては、ビスマス(III)(Bi3+)等が挙げられる。Group 1 elements include lithium (I) (Li + ), sodium (I) (Na + ), potassium (I) (K + ), rubidium (I) (Rb + ), cesium (I) (Cs + ). ), Francium (I) (Fr + ) and the like. Group 2 elements include beryllium (I) (Be + ), beryllium (II) (Be 2+ ), beryllium (III) (Be 3+ ), magnesium (I) (Mg + ), magnesium (II) (Mg 2+ ). ), Calcium (I) (Ca + ), Calcium (II) (Ca 2+ ), Strontium (I) (Sr + ), Strontium (II) (Sr 2+ ), Barium (II) (Ba 2+ ) and the like. .. Group 4 elements include titanium (I) (Ti + ), titanium (II) (Ti 2+ ), titanium (III) (Ti 3+ ), titanium (IV) (Ti 4+ ), zirconium (IV) (Zr 4+ ). ), Hafnium (IV) (Hf 4+ ) and the like. Group 5 elements include vanadium (I) (V + ), vanadium (II) (V 2+ ), vanadium (V) (V 5+ ), niobium (V) (Nb 5+ ), tantalum (V) (Ta 5+ ). ) Etc. can be mentioned. Group 6 elements include chromium (III) (Cr 3+ ), chromium (VI) (Cr 6+ ), molybdenum (I) (Mo + ), molybdenum (II) (Mo 2+ ), molybdenum (III) (Mo 3+ ). ), Molybdenum (IV) (Mo 4+ ), molybdenum (V) (Mo 5+ ), molybdenum (VI) (Mo 6+ ), tungsten (VI) (W 6+ ) and the like. Examples of Group 7 elements include manganese (II) (Mn 2+ ) and manganese (IV) (Mn 4+ ). Group 8 elements include iron (II) (Fe 2+ ), iron (III) (Fe 3+ ), ruthenium (II) (Ru 2+ ), ruthenium (III) (Ru 3+ ), ruthenium (IV) (Ru 4+ ). ) Etc. can be mentioned. Examples of Group 9 elements include cobalt (III) (Co 3+ ) and the like. Examples of Group 10 elements include nickel (II) (Ni 2+ ), palladium (II) (Pd 2+ ), platinum (II) (Pt 2+ ) and the like. Group 11 elements include copper (I) (Cu + ), copper (II) (Cu 2+ ), silver (I) (Ag + ), gold (I) (Au + ), gold (III) (Au 3+ ). ) Etc. can be mentioned. Examples of the Group 12 element include zinc (II) (Zn 2+ ) and the like. Group 13 elements include aluminum (III) (Al 3+ ), gallium (III) (Ga 3+ ), indium (III) (In 3+ ), thallium (I) (Tl + ), thallium (III) (Tl 3+ ). ) Etc. can be mentioned. Examples of Group 14 elements include tin (IV) (Sn 4+ ), lead (II) (Pb 2+ ) and the like. Examples of Group 15 elements include bismuth (III) (Bi 3+ ) and the like.

金属化合物が金属原子と有機配位子とを有する化合物である場合、有機配位子としては、例えば単座配位子、多座配位子が挙げられる。多座配位子としては、例えば、二座配位子、三座配位子、六座配位子が挙げられる。配位子としては、例えば、シクロペンタジエニルアニオン、アセチルアセトナート(以下、「acac」と称する。)、エチレンジアミン、グリシン、シュウ酸、2,2’−ビピリジン、1,2−(ビスホスフィノ)エタン、グリシナト、ジエチレントリアミン、エチレンジアミンテトラアセタト等が挙げられる。 When the metal compound is a compound having a metal atom and an organic ligand, examples of the organic ligand include a monodentate ligand and a polydentate ligand. Examples of the polydentate ligand include a bidentate ligand, a tridentate ligand, and a hexadentate ligand. Examples of the ligand include cyclopentadienyl anion, acetylacetonate (hereinafter referred to as "acac"), ethylenediamine, glycine, oxalic acid, 2,2'-bipyridine, 1,2- (bisphosphino) ethane. , Glycinato, diethylenetriamine, ethylenediaminetetraacetate and the like.

金属化合物は、例えば、金属キレート、金属アルコキシド、メタロセン等であってもよい。金属キレートの配位子は特に限定されず、使用する溶媒に合わせて適宜選択すればよい。 The metal compound may be, for example, a metal chelate, a metal alkoxide, a metallocene, or the like. The ligand of the metal chelate is not particularly limited, and may be appropriately selected according to the solvent used.

金属キレートとしては、金属アセチルアセトナート等が挙げられる。金属アセチルアセトナートの例としては、リチウムアセチルアセトナート(Li(acac))、カリウムアセチルアセトナート(K(acac))、ナトリウムアセチルアセトナート(Na(acac))、ルビジウムアセチルアセトナート(Rb(acac))、セシウムアセチルアセトナート(Cs(acac))、ベリリウム(II)アセチルアセトナート(Be(acac))、マグネシウム(II)アセチルアセトナート(Mg(acac))、カルシウム(II)アセチルアセトナート(Ca(acac))、ビス(アセチルアセトナート)ジアクアストロンチウム(II)(Sr(acac)(HO))、ビス(アセチルアセトナート)ジアクアバリウム(II)(Ba(acac)(HO))、バリウム(II)ヘキサフルオロアセチルアセトナート、チタニウム(IV)アセチルアセトナート(Ti(acac))、チタニウム(IV)オキシアセチルアセトナート、チタニウム(IV)(ジイソプロポキシド)ビス(アセチルアセトナート)、ヘキサクロロチタン酸ビス[トリス(アセチルアセトナート)チタン(IV)]、ジルコニウム(IV)アセチルアセトナート(Zr(acac))、ジルコニウム(IV)トリブトキシモノアセチルアセトナート、ジルコニウム(IV)ジブトキシビス(エチルアセトアセテート)、バナジウム(IV)ビス(アセチルアセトナート)オキシド、バナジウム(IV)オキシアセチルアセトナート、ニオブトリアセチルアセトナート、タンタル(I)アセチルアセトナート(Ta(acac))、クロム(III)アセチルアセトナート(Cr(acac))、ビス(2,4−ペンタンジオナト)モリブデン(VI)ジオキシド、タングステン(II)ビス(アセチルアセトナート)、マンガン(III)アセチルアセトナート(Mn(acac))、鉄(III)アセチルアセトナート(Fe(acac))、ルテニウム(III)アセチルアセトナート(Ru(acac))、コバルト(II)アセチルアセトナート(Co(acac))、ロジウム(III)アセチルアセトナート、イリジウム(III)アセチルアセトナート、ニッケル(II)アセチルアセトナート(Ni(acac))、パラジウム(II)アセチルアセトナート(Pd(acac))、白金(II)アセチルアセトナート(Pt(acac))、銅(II)アセチルアセトナート(Cu(acac))、ビニルトリエチルシラン(ヘキサフルオロアセチルアセトナート)銀(I)、ジメチルアセチルアセトナート金(III)、ジメチル(トリフルオロアセチルアセトナート)金(III)、亜鉛(II)アセチルアセトナート(Zn(acac))、アルミニウム(III)アセチルアセトナート(Al(acac))、ガリウム(III)アセチルアセトナート、インジウム(III)アセチルアセトナート、タリウム(I)アセチルアセトナート、スズ(IV)アセチルアセトナートジクロリド、鉛(II)アセチルアセトナート、及びビスマス(III)−2,4−ペンタンジオネート等が挙げられる。Examples of the metal chelate include metal acetylacetonates and the like. Examples of metallic acetylacetonate include lithium acetylacetonate (Li (acac)), potassium acetylacetonate (K (acac)), sodium acetylacetonate (Na (acac)), and rubidium acetylacetonate (Rb (acac)). )), Cesium Acetylacetone (Cs (acac)), Berylium (II) Acetylacetone (Be (acac) 2 ), Magnesium (II) Acetylacetone (Mg (acac) 2 ), Calcium (II) Acetylacetone inert (Ca (acac) 2), bis (acetylacetonato) di Aqua strontium (II) (Sr (acac) 2 (H 2 O) 2), bis (acetylacetonato) di Aqua barium (II) (Ba ( acac) 2 (H 2 O) 2 ), barium (II) hexafluoroacetylacetonate, titanium (IV) acetylacetonate (Ti (acac) 4 ), titanium (IV) oxyacetylacetonate, titanium (IV) ( Diisopropoxide) bis (acetylacetoneate), bishexachlorotitanate [tris (acetylacetonate) titanium (IV)], zirconium (IV) acetylacetonate (Zr (acac) 4 ), zirconium (IV) tributoxy Monoacetylacetonate, zirconium (IV) dibutoxybis (ethylacetoneacetate), vanadium (IV) bis (acetylacetonetate) oxide, vanadium (IV) oxyacetylacetonate, niobtriacetylacetonate, tantalum (I) acetylacetonate (Ta (acac)), Chromium (III) Acetylacetone (Cr (acac) 4 ), Bis (2,4-Pentandionato) Molybdenum (VI) Dioxide, Tungsten (II) Bis (Acetylacetone), Manganese (III) Acetylacetonate (Mn (acac) 3 ), Iron (III) Acetylacetonate (Fe (acac) 3 ), Luthenium (III) Acetylacetonate (Ru (acac) 3 ), Cobalt (II) Acetylacetone Nate (Co (acac) 2 ), rhodium (III) acetylacetoneate, iridium (III) acetylacetonate, nickel (II) acetylacetonate (Ni (acac) 2 ), palladium (II) acetylacetonate (Pd (acac) 2 ), Platinum (II) Acetylacetone (Pt (acac) 2 ), Copper (II) Acetylacetone (Cu (acac) 2 ), Vinyltriethylsilane (Hexafluoroacetylacetonate) Silver ( I), Dimethyl acetylacetonate gold (III), dimethyl (trifluoroacetylacetonate) gold (III), zinc (II) acetylacetonate (Zn (acac) 2 ), aluminum (III) acetylacetonate (Al ( acac) 3 ), gallium (III) acetylacetonate, indium (III) acetylacetonate, tallium (I) acetylacetonate, tin (IV) acetylacetonate dichloride, lead (II) acetylacetonate, and bismuth (III). ) -2,4-Pentandionate and the like.

金属アルコキシドの例としては、リチウムメトキシド、リチウムイソプロポキシド、リチウム−tert−ブトキシド、リチウム−tert−ペントキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウム−tert−ブトキシド、セシウムエトキシド、マグネシウムエトキシド、カルシウムメトキシド、ストロンチウム(IV)オキシイソプロポキシド、バリウムエトキシド、チタン(IV)イソプロポキシド、チタン(IV)テトラプロポキシド、ジルコニウム(IV)テトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ハフニウム−tert−ブトキシド、バナジウム(IV)オキシイソプロポキシド、ニオブ(V)エトキシド、タンタル(V)エトキシド、タンタル(V)ブトキシド、クロム(III)テトラブトキシド、タングステン(VI)エトキシド、マンガンメトキシド、鉄(III)エトキシド、コバルト(II)イソプロポキシド、ニッケル2−メトキシエトキシド、白金エトキシド、銅(II)エトキシド、トリメトキシアルミニウム、アルミニウムエトキシド、ガリウムエトキシド、スズ(II)エトキシド、テトラノルマルブトキシスズ(IV)、テトラ−tert−ブトキシスズ(IV)、又はビスマス(IV)ノルマルブトキシド等が挙げられる。 Examples of metal alkoxides include lithium methoxyd, lithium isopropoxide, lithium-tert-butoxide, lithium-tert-pentoxide, sodium ethoxide, sodium ethoxide, potassium-tert-butoxide, cesium ethoxide, magnesium ethoxide, Calcium methoxyd, strontium (IV) oxyisopropoxide, barium ethoxide, titanium (IV) isopropoxide, titanium (IV) tetrapropoxide, zirconium (IV) tetranormal propoxide, zirconium tetranormalbutoxide, hafnium-tert -Butoxide, vanadium (IV) oxyisopropoxide, niobium (V) ethoxide, tantalum (V) ethoxide, tantalum (V) butoxide, chromium (III) tetrabutoxide, tungsten (VI) ethoxide, manganese methoxyd, iron (III ) Ethoxide, cobalt (II) isopropoxide, nickel 2-methoxyethoxydo, platinum ethoxide, copper (II) ethoxide, trimethoxyaluminum, aluminum ethoxide, gallium ethoxide, tin (II) ethoxide, tetranormal butoxystin ( IV), tetra-tert-butoxystin (IV), bismuth (IV) normal butoxide and the like.

メタロセンの例としては、チタノセンジクロリド(Ti(CCl)、ジルコノセンジクロリド(Zr(CCl)、トリクロロ(シクロペンタジエニル)ジルコニウム(IV)、ビス(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ジルコノセンクロリドヒドリド、トリクロロ(シクロペンタジエニル)チタニウム(IV)、ビス(シクロペンタジエニル)ジメチルジルコニウム(IV)、バナジノセンジクロリド、クロモセン、フェロセン、1,1‘−ビス(ジ−tert−ブチルホスフィノ)フェロセン、1,1‘−ビス(ジイソプロピルホスフィノ)フェロセン、シクロペンテニルフェロセン、ルテノセン、シクロペンタジエニルビス(トリフェニルホスフィン)ルテニウム(II)クロリド、シクロペンタジエニル(ジメチルフマラート)(トリエチルホスファイト)コバルト(I)、シクロペンタジエニルタリウム、コバルトセン(III)ヘキサフルオロホスファート、シクロペンタジエニルコバルトジカルボニル、ニッケロセン等が挙げられる。Examples of metallocenes are titanosendichloride (Ti (C 6 H 5 ) 2 Cl 2 ), zirconosen dichloride (Zr (C 6 H 5 ) 2 Cl 2 ), trichloro (cyclopentadienyl) zirconium (IV), bis ( Pentamethylcyclopentadienyl) zirconium (IV) dichloride, zirconocene chloride hydride, trichloro (cyclopentadienyl) titanium (IV), bis (cyclopentadienyl) dimethylzirconium (IV), vanadinosen dichloride, chromocene, ferrocene , 1,1'-bis (di-tert-butylphosphino) ferrocene, 1,1'-bis (diisopropylphosphino) ferrocene, cyclopentadienylferrocene, ruthenocene, cyclopentadienylbis (triphenylphosphine) ruthenium (II) ) Chloride, cyclopentadienyl (dimethylfumarate) (triethylphosphite) cobalt (I), cyclopentadienyltalium, cobaltsen (III) hexafluorophosphate, cyclopentadienyl cobaltdicarbonyl, nickelocene, etc. Be done.

ドープ液の調整方法は、特に限定されないが、通常、ドープ液は、構造タンパク質と、金属化合物と、必要によりその他の成分と、を溶媒に溶解させることを含む方法により、調製される。ドープ液は、ある程度の時間、撹拌又は振とうしてもよい。その際、ドープ液は、必要により加熱してもよい。例えば、ドープ液は、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、又は120℃以上に加熱してもよい。加熱温度の上限は、特に制限されないが、通常、130℃以下、又は85℃程度で十分である。 The method for preparing the doping solution is not particularly limited, but the doping solution is usually prepared by a method including dissolving a structural protein, a metal compound, and if necessary, other components in a solvent. The dope solution may be agitated or shaken for some time. At that time, the doping solution may be heated if necessary. For example, the doping solution may be heated to 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, or 120 ° C. or higher. The upper limit of the heating temperature is not particularly limited, but usually 130 ° C. or lower or about 85 ° C. is sufficient.

ドープ液の粘度は、紡糸可能な粘度であれば特に限定する必要はないが、工業的生産性を考慮すると、3,000〜70,000mPa・sec、3,000〜60,000mPa・secが好ましく、3,000〜55,000mPa・secがより好ましく、3,000〜50,000mPa・secがさらに好ましい。 The viscosity of the doping solution is not particularly limited as long as it can be spun, but in consideration of industrial productivity, it is preferably 3,000 to 70,000 mPa · sec and 3,000 to 60,000 mPa · sec. , 3,000 to 55,000 mPa · sec is more preferable, and 3,000 to 50,000 mPa · sec is even more preferable.

ドープ液に含まれる金属化合物の量は、特に限定されず、構造タンパク質の分子量、構造タンパク質の濃度等に応じて適宜に決定すればよい。例えば、金属化合物の含有量は、構造タンパク質1当量に対して0.5当量以上、1当量以上、2当量以上、3当量以上、4当量以上、5当量以上、6当量以上、7当量以上、10当量以上、13当量以上、15当量以上、17当量以上、20当量以上等であってよい。金属化合物の含有量は、ゲル化が生じない濃度であればよく、使用する構造タンパク質の分子量に応じて適宜決定することができる。また、金属化合物の含有量は、構造タンパク質1当量に対して、例えば28当量以下、26当量以下、24当量以下又は20当量以下であってよい。ここで、金属化合物の当量は、構造タンパク質1当量(mol)に対する金属化合物に含まれる金属原子の量(mol)の比率を意味する。 The amount of the metal compound contained in the doping solution is not particularly limited, and may be appropriately determined according to the molecular weight of the structural protein, the concentration of the structural protein, and the like. For example, the content of the metal compound is 0.5 equivalent or more, 1 equivalent or more, 2 equivalent or more, 3 equivalent or more, 4 equivalent or more, 5 equivalent or more, 6 equivalent or more, 7 equivalent or more, relative to 1 equivalent of the structural protein. It may be 10 equivalents or more, 13 equivalents or more, 15 equivalents or more, 17 equivalents or more, 20 equivalents or more, and the like. The content of the metal compound may be any concentration as long as it does not cause gelation, and can be appropriately determined according to the molecular weight of the structural protein to be used. The content of the metal compound may be, for example, 28 equivalents or less, 26 equivalents or less, 24 equivalents or less, or 20 equivalents or less with respect to 1 equivalent of the structural protein. Here, the equivalent of the metal compound means the ratio of the amount (mol) of the metal atom contained in the metal compound to 1 equivalent (mol) of the structural protein.

ドープ液における構造タンパク質の濃度は、特に限定されず、例えば、ドープ液の質量を基準として、10質量%以上、15質量%以上、17質量%以上、20質量%以上、22質量%以上等であってよい。また、ドープ液における構造タンパク質の濃度は、例えば、ドープ液の質量を基準として、35質量%以下、30質量%以下、28質量%以下、26質量%以下等であってよい。 The concentration of the structural protein in the doping solution is not particularly limited, and is, for example, 10% by mass or more, 15% by mass or more, 17% by mass or more, 20% by mass or more, 22% by mass or more, etc., based on the mass of the doping solution. It may be there. The concentration of the structural protein in the doping solution may be, for example, 35% by mass or less, 30% by mass or less, 28% by mass or less, 26% by mass or less, etc., based on the mass of the doping solution.

ドープ液は、無機塩を更に含有してもよい。無機塩は、構造タンパク質の溶解促進剤として機能し得る。無機塩としては、例えば、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、及びアルカリ土類金属硝酸塩等が挙げられる。無機塩の具体例としては、炭酸リチウム、塩化リチウム、塩化カルシウム、硝酸カルシウム、臭化リチウム、臭化バリウム、臭化カルシウム、塩素酸バリウム、過塩素酸ナトリウム、過塩素酸リチウム、過塩素酸バリウム、過塩素酸カルシウム、過塩素酸マグネシウムが挙げられる。これらのうちの少なくとも1種類の無機塩を溶媒に添加してもよい。 The doping solution may further contain an inorganic salt. Inorganic salts can function as solubilizers for structural proteins. Examples of the inorganic salt include alkali metal halides, alkaline earth metal halides, and alkaline earth metal nitrates. Specific examples of the inorganic salt include lithium carbonate, lithium chloride, calcium chloride, calcium nitrate, lithium bromide, barium bromide, calcium bromide, barium chlorate, sodium perchlorate, lithium perchlorate, and barium perchlorate. , Calcium perchlorate, magnesium perchlorate. At least one of these inorganic salts may be added to the solvent.

ドープ液に含まれる無機塩の量は、特に限定されず、無機塩の種類、構造タンパク質の量等に応じて適宜に決定される。無機塩の含有量は、例えば、構造タンパク質の全量100質量部に対して、1.0質量部以上、2.0質量部以上、4.0質量部以上、5.0質量部以上、9.0質量部以上、15質量部以上、20質量部以上であってもよい。また、無機塩の量は、例えば、構造タンパク質の全量100質量部に対して、40質量部以下、35質量部以下、30質量部以下であってもよい。 The amount of the inorganic salt contained in the doping solution is not particularly limited, and is appropriately determined according to the type of the inorganic salt, the amount of the structural protein, and the like. The content of the inorganic salt is, for example, 1.0 part by mass or more, 2.0 part by mass or more, 4.0 part by mass or more, 5.0 part by mass or more, and 9. It may be 0 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more. Further, the amount of the inorganic salt may be, for example, 40 parts by mass or less, 35 parts by mass or less, and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the structural protein.

<構造タンパク質> <Structural protein>

本実施形態に係る構造タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよい。あるいは、構造タンパク質は、天然由来の構造タンパク質を精製したものであってもよい。 The structural protein according to the present embodiment is not particularly limited, and may be produced by a microorganism or the like by a gene recombination technique, or may be produced by synthesis. Alternatively, the structural protein may be a purified naturally occurring structural protein.

上記構造タンパク質は、例えば、構造タンパク質及び当該構造タンパク質に由来する人造構造タンパク質であってもよい。構造タンパク質とは、生体内で構造及び形態等を形成又は保持する構造タンパク質を意味する。すなわち、構造タンパク質は、天然由来の構造タンパク質であってよく、天然由来の構造タンパク質のアミノ酸配列に依拠してそのアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した改変タンパク質であってもよい。構造タンパク質としては、例えば、フィブロイン、ケラチン、コラーゲン、エラスチン及びレシリン等を挙げることができる。 The structural protein may be, for example, a structural protein and an artificial structural protein derived from the structural protein. The structural protein means a structural protein that forms or retains a structure, morphology, etc. in a living body. That is, the structural protein may be a naturally occurring structural protein, and is a modified protein in which a part of the amino acid sequence (for example, 10% or less of the amino acid sequence) is modified depending on the amino acid sequence of the naturally occurring structural protein. It may be. Examples of the structural protein include fibroin, keratin, collagen, elastin, resilin and the like.

構造タンパク質は、フィブロインであってもよい。フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってよい。特に、構造タンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってよい。 The structural protein may be fibroin. The fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin. In particular, the structural protein may be silk fibroin, spider silk fibroin, or a combination thereof. When silk fibroin and spider silk fibroin are used in combination, the ratio of silk fibroin may be, for example, 40 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of spider fibroin.

絹糸は、カイコガ(Bombyx mori)の幼虫である蚕の作る繭から得られる繊維(繭糸)である。一般に、1本の繭糸は、2本の絹フィブロインと、これらを外側から覆うニカワ質(セリシン)とから構成される。絹フィブロインは、多数のフィブリルで構成される。絹フィブロインは、4層のセリシンで覆われる。実用的には、精練により外側のセリシンを溶解して取り除いて得られる絹フィラメントが、衣料用途に使用されている。一般的な絹糸は、1.33の比重、平均3.3decitexの繊度、及び1300〜1500m程度の繊維長を有する。絹フィブロインは、天然若しくは家蚕の繭、又は中古若しくは廃棄のシルク生地を原料として得られる。 Silk thread is a fiber (cocoon thread) obtained from a cocoon made by silkworm, which is a larva of Bombyx mori. Generally, one cocoon thread is composed of two silk fibroins and a sericin that covers them from the outside. Silk fibroin is composed of a large number of fibrils. Silk fibroin is covered with four layers of sericin. Practically, silk filaments obtained by dissolving and removing outer sericin by refining are used for clothing applications. A general silk thread has a specific gravity of 1.33, a fineness of 3.3 decitex on average, and a fiber length of about 1300 to 1500 m. Silk fibroin is obtained from natural or domestic silkworm cocoons, or used or discarded silk fabrics.

絹フィブロインとしては、セリシン除去絹フィブロイン、セリシン未除去絹フィブロイン、又はこれらの組み合わせであってもよい。セリシン除去絹フィブロインは、絹フィブロインを覆うセリシン、及びその他の脂肪分などを除去して精製したものである。このようにして精製した絹フィブロインは、好ましくは、凍結乾燥粉末として用いられる。セリシン未除去絹フィブロインは、セリシンなどが除去されていない未精製の絹フィブロインである。 The silk fibroin may be sericin-removed silk fibroin, sericin-unremoved silk fibroin, or a combination thereof. Sericin-removed silk fibroin is purified by removing sericin that covers silk fibroin and other fats. The silk fibroin purified in this way is preferably used as a lyophilized powder. Sericin-unremoved silk fibroin is unrefined silk fibroin from which sericin and the like have not been removed.

クモ糸フィブロインは、天然クモ糸構造タンパク質、及び天然クモ糸構造タンパク質に由来するポリペプチド(人造クモ糸構造タンパク質)からなる群より選ばれるクモ糸ポリペプチドを含有していてもよい。 The spider silk fibroin may contain a spider silk polypeptide selected from the group consisting of a natural spider silk structure protein and a polypeptide derived from the natural spider silk structure protein (artificial spider silk structure protein).

天然クモ糸構造タンパク質としては、例えば、大吐糸管しおり糸構造タンパク質、横糸タンパク質、及び小瓶状腺構造タンパク質が挙げられる。大吐糸管しおり糸は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。クモ糸の横糸は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。 Examples of the natural spider silk structure protein include a large spider canal bookmark thread structure protein, a weft thread protein, and a vial-shaped gland structure protein. Since the large spit tube bookmark thread has a repeating region consisting of a crystalline region and an amorphous region (also referred to as an amorphous region), it has both high stress and elasticity. The weft of the spider silk has a characteristic that it does not have a crystalline region but has a repeating region consisting of an amorphous region. The weft yarn has a lower stress than the large discharge pipe bookmark yarn, but has high elasticity.

大吐糸管しおり糸構造タンパク質は、クモの大瓶状腺で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸構造タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。天然クモ糸構造タンパク質に由来するポリペプチドは、これらのしおり糸構造タンパク質に由来するポリペプチドであってもよい。ADF3に由来するポリペプチドは、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。 The large spider canal bookmark thread structure protein is produced in the large bottle-shaped gland of a spider and has a characteristic of being excellent in toughness. Examples of the large spider thread structure protein include large bottle-shaped gland spiders MaSp1 and MaSp2 derived from Nephila clavipes, and ADF3 and ADF4 derived from Angulate orbweaver spider (Araneus diadematus). ADF3 is one of the two major bookmark thread proteins of the European garden spider. The polypeptide derived from the natural spider silk structure protein may be a polypeptide derived from these bookmark thread structure proteins. The polypeptide derived from ADF3 is relatively easy to synthesize, and has excellent properties in terms of strength and elongation and toughness.

横糸構造タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸構造タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹構造タンパク質(flagelliform silk protein)が挙げられる。 Weft structural proteins are produced in the flagelliform gland of spiders. Examples of the weft structure protein include flagelliform silk protein derived from the American silk spider (Nephila clavipes).

天然クモ糸構造タンパク質に由来するポリペプチドは、組換えクモ糸構造タンパク質であってよい。組換えクモ糸構造タンパク質としては、天然型クモ糸構造タンパク質の変異体、類似体又は誘導体等が挙げられる。このようなポリペプチドの好適な一例は、大吐糸管しおり糸タンパク質の組換えクモ糸構造タンパク質(「大吐糸管しおり糸構造タンパク質に由来するポリペプチド」ともいう。)である。 The polypeptide derived from the natural spider silk structure protein may be a recombinant spider silk structure protein. Examples of the recombinant spider silk structure protein include variants, analogs and derivatives of the natural spider silk structure protein. A preferred example of such a polypeptide is a recombinant spider silk structure protein of a large spit tube bookmark thread protein (also referred to as a "polypeptide derived from a large spit tube bookmark thread structure protein").

フィブロイン様構造タンパク質である大吐糸管しおり糸由来の構造タンパク質及びカイコシルク由来の構造タンパク質としては、例えば、式1:[(A)nモチーフ−REP1]mで表されるドメイン配列を含むタンパク質が挙げられる。ここで、式1中、(A)nモチーフの、Aはアラニン残基を示し、nは2〜27の整数が好ましく、4〜20、8〜20、10〜20、4〜16、8〜16、10〜16の整数であって良く、かつ(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は40%以上であれば良く、60%以上、70%以上、80%以上、90%以上、100%(アラニン残基のみで構成されることを意味する)であっても良い。REP1は10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは10〜300の整数を示す。複数存在する(A)nモチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREP1は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。 Examples of the fibroin-like structural protein, a structural protein derived from a large spit tube bookmark thread and a structural protein derived from silkworm silk, include a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP1] m. Can be mentioned. Here, in the formula 1, in the (A) n motif, A represents an alanine residue, and n is preferably an integer of 2 to 27, preferably 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to. It may be an integer of 16, 10 to 16, and the number of alanine residues with respect to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more. , 90% or more, 100% (meaning that it is composed only of alanine residues). REP1 shows an amino acid sequence composed of 10 to 200 amino acid residues. m represents an integer of 10 to 300. The plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences. The plurality of REP1s may have the same amino acid sequence or different amino acid sequences.

上記において、式1中の(A)nモチーフを欠失させることにより、強度と伸度を維持したまま、工業的生産性を向上させた構造タンパク質でもよい。欠失させる頻度としては、例えば、N末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ−REP1]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる上記隣合う2つの[(A)nモチーフ−REP1]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、上記ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが50%以上となる構造タンパク質があげられる。 In the above, a structural protein in which the industrial productivity is improved while maintaining the strength and elongation by deleting the n motif (A) in the formula 1 may be used. As the frequency of deletion, for example, the number of amino acid residues of REP of two adjacent [(A) n motif-REP1] units is sequentially compared from the N-terminal side to the C-terminal side, and the amino acid residues are deleted. When the number of amino acid residues of the REP having a small number is 1, the ratio of the number of amino acid residues of the other REP is 1.8 to 11.3. The above two adjacent [(A) n motif-REP1] units. When x is the maximum value of the total value obtained by adding the number of amino acid residues in the above domain sequence and y is the total number of amino acid residues in the domain sequence, a structural protein having x / y of 50% or more can be mentioned.

また、式1中のREPにおいて、少なくともREP中の1又は複数のグリシン残基を別のアミノ酸残基に置換したことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する構造タンパク質でもよい。このような構造タンパク質として、グリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上である構造タンパク質があげられる。 Further, in the REP in the formula 1, a structural protein having an amino acid sequence having a reduced content of the glycine residue, which corresponds to replacing at least one or a plurality of glycine residues in the REP with another amino acid residue. It may be. Examples of such a structural protein include a structural protein in which the ratio of the motif sequence in which the glycine residue is replaced with another amino acid residue is 10% or more of the total motif sequence.

大吐糸管しおり糸由来の構造タンパク質の具体例としては、配列番号1及び配列番号2で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。 Specific examples of the structural protein derived from the large spit tube bookmark thread include a structural protein containing the amino acid sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2.

横糸構造タンパク質に由来する構造タンパク質としては、例えば、式2:[REP2]で表されるドメイン配列を含む構造タンパク質(ここで、式2中、REP2はGly−Pro−Gly−Gly−Xから構成されるアミノ酸配列を示し、Xはアラニン(Ala)、セリン(Ser)、チロシン(Tyr)及びバリン(Val)からなる群から選ばれる一つのアミノ酸を示す。oは8〜300の整数を示す。)を挙げることができる。具体的には配列番号2で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号3で示されるアミノ酸配列は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹構造タンパク質の部分的な配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹構造タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に配列番号4で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。Examples of the structural protein derived from the weft structural protein include a structural protein containing a domain sequence represented by the formula 2: [REP2] o (here, in the formula 2, REP2 is derived from Gly-Pro-Gly-Gly-X. The constituent amino acid sequence is shown, where X represents one amino acid selected from the group consisting of alanine (Ala), serine (Ser), tyrosine (Tyr) and valine (Val). O represents an integer of 8 to 300. .) Can be mentioned. Specifically, a structural protein containing the amino acid sequence shown in SEQ ID NO: 2 can be mentioned. The amino acid sequence shown in SEQ ID NO: 3 is the N-terminal corresponding to the repeat portion and motif of the partial sequence (NCBI accession number: AAF36090, GI: 7106224) of the woolen silk structure protein of the American jellyfish obtained from the NCBI database. Amino acid sequence from residues 1220 to 1659 (referred to as PR1 sequence) and partial sequence of fluffy silk structure protein of American jellyfish obtained from NCBI database (NCBI accession number: AAC38847, GI: 2833649). ) C-terminal amino acid sequences from the 816th residue to the 907th residue were bound, and the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 4 was added to the N-terminal of the bound sequence. It is a thing.

コラーゲン由来の構造タンパク質として、例えば、式3:[REP3]で表されるドメイン配列を含む構造タンパク質(ここで、式3中、pは5〜300の整数を示す。REP3は、Gly一X一Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号5で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号5で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号4で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。As a collagen-derived structural protein, for example, a structural protein containing a domain sequence represented by the formula 3: [REP3] p (where, in formula 3, p represents an integer of 5 to 300. REP3 is Gly-X. An amino acid sequence composed of one Y is shown, and X and Y indicate arbitrary amino acid residues other than Gly. A plurality of REP3s may have the same amino acid sequence or different amino acid sequences.) Can be done. Specifically, a structural protein containing the amino acid sequence shown in SEQ ID NO: 5 can be mentioned. The amino acid sequence shown in SEQ ID NO: 5 corresponds to the repeat portion and motif of a partial sequence of human collagen type 4 (NCBI GenBank accession number: CAA5635.1, GI: 3702452) obtained from the NCBI database. The amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 4 is added to the N-terminal of the amino acid sequence from the 301st residue to the 540th residue.

レシリン由来の構造タンパク質として、例えば、式4:[REP4]で表されるドメイン配列を含む構造タンパク質(ここで、式4中、qは4〜300の整数を示す。REP4はSer一J一J一Tyr一Gly一U−Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号6で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号6で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号9で示されるアミノ酸配列(タグ配列)が付加されたものである。As a structural protein derived from resilin, for example, a structural protein containing a domain sequence represented by the formula 4: [REP4] q (here, in formula 4, q represents an integer of 4 to 300. REP4 is Ser-J1. The amino acid sequence composed of J-Tyr-Gly-U-Pro is shown. J indicates an arbitrary amino acid residue, and it is particularly preferable that it is an amino acid residue selected from the group consisting of Asp, Ser and Thr. Indicates an arbitrary amino acid residue, and is particularly preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr, and Ser. A plurality of REP4s may have the same amino acid sequence or different amino acid sequences. Good.) Can be mentioned. Specifically, a structural protein containing the amino acid sequence shown in SEQ ID NO: 6 can be mentioned. The amino acid sequence shown in SEQ ID NO: 6 replaces Thr at residue 87 with Ser and Asn at residue 95 in the amino acid sequence of recillin (Axion No. NP 61157, Gl: 24654243 of NCBI GenBank). The amino acid sequence (tag sequence) shown by SEQ ID NO: 9 is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence in which is replaced with Asp.

エラスチン由来の構造タンパク質として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有する構造タンパク質を挙げることができる。具体的には、配列番号7で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号7で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号4で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 Examples of the structural protein derived from elastin include structural proteins having an amino acid sequence such as NCBI GenBank accession numbers AAC98395 (human), I47076 (sheep), and NP786966 (bovine). Specifically, a structural protein containing the amino acid sequence shown in SEQ ID NO: 7 can be mentioned. The amino acid sequence shown by SEQ ID NO: 7 is the amino acid sequence shown by SEQ ID NO: 4 at the N-terminal of the amino acid sequence from residue 121 to 390 of the amino acid sequence of accession number AAC98395 of NCBI GenBank. And the hinge arrangement) are added.

ケラチン由来の構造タンパク質として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。具体的には、配列番号8で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含む構造タンパク質を挙げることができる。 Examples of the keratin-derived structural protein include Type I keratin of Capra hilcus. Specifically, a structural protein containing the amino acid sequence shown in SEQ ID NO: 8 (amino acid sequence of accession number ACY30466 of GenBank of NCBI) can be mentioned.

上述した構造タンパク質及び当該構造タンパク質に由来する構造タンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。 As the above-mentioned structural protein and the structural protein derived from the structural protein, one type can be used alone, or two or more types can be used in combination.

ドープ液に含まれる構造タンパク質は、例えば、当該構造タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。 The structural protein contained in the dope solution is, for example, by a host transformed with an expression vector having a nucleic acid sequence encoding the structural protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing the nucleic acid.

構造タンパク質をコードする核酸の製造方法は、特に制限されない。例えば、天然の構造タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した構造タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、構造タンパク質の精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる構造タンパク質をコードする核酸を合成してもよい。 The method for producing the nucleic acid encoding the structural protein is not particularly limited. For example, the nucleic acid can be produced by a method of amplifying and cloning by a polymerase chain reaction (PCR) or the like using a gene encoding a natural structural protein, or a method of chemically synthesizing the nucleic acid. The chemical synthesis method of nucleic acid is also not particularly limited. For example, based on the amino acid sequence information of the structural protein obtained from the NCBI web database or the like, AKTA oligonucleotide plus 10/100 (GE Healthcare Japan Co., Ltd.), etc. The gene can be chemically synthesized by a method of linking the oligonucleotides automatically synthesized in (1) by PCR or the like. At this time, in order to facilitate purification and / or confirmation of the structural protein, a nucleic acid encoding a structural protein consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N-terminal of the above amino acid sequence is synthesized. You may.

調節配列は、宿主における組換え構造タンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするタンパク質を発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。 The regulatory sequence is a sequence that controls the expression of the recombinant structural protein in the host (for example, promoter, enhancer, ribosome binding sequence, transcription termination sequence, etc.), and can be appropriately selected depending on the type of host. As the promoter, an inducible promoter that functions in the host cell and can induce the expression of the protein of interest may be used. An inducible promoter is a promoter that can control transcription by the presence of an inducing substance (expression inducer), the absence of a repressor molecule, or physical factors such as an increase or decrease in temperature, osmotic pressure, or pH value.

発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、目的とする構造タンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。 The type of expression vector can be appropriately selected depending on the type of host, such as a plasmid vector, a viral vector, a cosmid vector, a phosmid vector, and an artificial chromosome vector. As the expression vector, one that can be autonomously replicated in the host cell or can be integrated into the chromosome of the host and contains a promoter at a position where a nucleic acid encoding a target structural protein can be transcribed is preferably used. Be done.

宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。 As the host, any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be preferably used.

原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。 Preferred examples of prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, Pseudomonas and the like. Examples of microorganisms belonging to the genus Escherichia include Escherichia coli and the like. Examples of microorganisms belonging to the genus Brevibacillus include Brevibacillus agri and the like. Examples of microorganisms belonging to the genus Serratia include Serratia marcescens and the like. Examples of microorganisms belonging to the genus Bacillus include Bacillus satirus and the like. Examples of microorganisms belonging to the genus Microbacterium include Microbacterium, Ammonia Philum and the like. Examples of microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatum and the like. Examples of microorganisms belonging to the genus Corynebacterium include Corynebacterium and Ammonia Genes. Examples of microorganisms belonging to the genus Pseudomonas include Pseudomonas putida and the like.

原核生物を宿主とする場合、目的構造タンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002−238569号公報)等を挙げることができる。 When a prokaryote is used as a host, examples of the vector into which the nucleic acid encoding the target structural protein is introduced include pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110 , PNCO2 (Japanese Unexamined Patent Publication No. 2002-238569) and the like.

真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。 Eukaryotic hosts include, for example, yeast and filamentous fungi (molds, etc.). Examples of the yeast include yeasts belonging to the genus Saccharomyces, Pichia, Schizosaccharomyces and the like. Examples of filamentous fungi include filamentous fungi belonging to the genus Aspergillus, the genus Penicillium, the genus Trichoderma, and the like.

真核生物を宿主とする場合、目的構造タンパク質をコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。 When a eukaryote is used as a host, examples of the vector into which the nucleic acid encoding the target structural protein is introduced include YEP13 (ATCC37115) and YEp24 (ATCC37051). As a method for introducing an expression vector into the host cell, any method for introducing DNA into the host cell can be used. For example, a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], electroporation method, spheroplast method, protoplast method, lithium acetate method, competent method and the like.

発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。 As a method for expressing nucleic acid by a host transformed with an expression vector, in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning 2nd Edition. ..

構造タンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該構造タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。 The structural protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the structural protein in the culture medium, and collecting the structural protein from the culture medium. The method of culturing the host in the culture medium can be carried out according to the method usually used for culturing the host.

宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。 When the host is a prokaryote such as Escherichia coli or a eukaryote such as yeast, the culture medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the host, and the host can be efficiently cultured. If so, either a natural medium or a synthetic medium may be used.

炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。 The carbon source may be any assimilated by the transforming microorganisms, for example, glucose, fructose, sucrose, carbohydrates containing them such as molasses, starch and starch hydrolyzate, acetic acid and propionic acid. Organic acids and alcohols such as ethanol and propanol can be used. Examples of the nitrogen source include ammonium salts of inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract and corn steep liquor. Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented bacterial cells and their digests can be used. As the inorganic salts, for example, primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.

大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15〜40℃である。培養時間は、通常16時間〜7日間である。培養中の培養培地のpHは3.0〜9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。 Culturing of prokaryotes such as Escherichia coli or eukaryotes such as yeast can be carried out under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is, for example, 15-40 ° C. The culture time is usually 16 hours to 7 days. The pH of the culture medium during culturing is preferably maintained at 3.0 to 9.0. The pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.

また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル−β−D−チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。 In addition, antibiotics such as ampicillin and tetracycline may be added to the culture medium during the culture, if necessary. When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as needed. For example, isopropyl-β-D-thiogalactopyranoside and the like are used when culturing microorganisms transformed with an expression vector using the lac promoter, and indol acrylic is used when culturing microorganisms transformed with an expression vector using the trp promoter. Acids and the like may be added to the medium.

発現させた構造タンパク質の単離、精製は通常用いられている方法で行うことができる。例えば、当該構造タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、構造タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)−セファロース、DIAION HPA−75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S−Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。 Isolation and purification of the expressed structural protein can be carried out by a commonly used method. For example, when the structural protein is expressed in a lysed state in cells, the host cells are collected by centrifugation after the completion of culture, suspended in an aqueous buffer, and then an ultrasonic crusher, a French press, or a manton. Crush the host cells with a gaulin homogenizer, dynomil, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, methods usually used for isolating and purifying structural proteins, that is, a solvent extraction method, a salting-out method using sulfite, a desalting method, an organic solvent, etc. Precipitation method according to, diethylaminoethyl (DEAE) -Sepharose, anion exchange chromatography method using a resin such as DIAION HPA-75 (manufactured by Mitsubishi Kasei), and a resin such as S-Sepharose FF (manufactured by Pharmacia). Cation exchange chromatography method, hydrophobic chromatography method using resin such as butyl Sepharose, phenyl Sepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis such as isoelectric point electrophoresis Purified preparations can be obtained by using methods such as the law alone or in combination.

また、構造タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として構造タンパク質の不溶体を回収する。回収した構造タンパク質の不溶体は構造タンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により構造タンパク質の精製標品を得ることができる。当該タンパク質が細胞外に分泌された場合には、培養上清から当該構造タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。 When the structural protein is expressed by forming an insoluble matter in the cell, the host cell is similarly recovered, crushed, and centrifuged to recover the insoluble matter of the structural protein as a precipitation fraction. The insoluble form of the recovered structural protein can be solubilized with a structural protein denaturing agent. After the operation, a purified preparation of the structural protein can be obtained by the same isolation and purification method as described above. When the protein is secreted extracellularly, the structural protein can be recovered from the culture supernatant. That is, a purified sample can be obtained by treating the culture by a method such as centrifugation to obtain a culture supernatant, and using the same isolation and purification method as described above from the culture supernatant.

<構造タンパク質繊維の製造方法>
構造タンパク質繊維を製造する方法の一例について、以下に説明する。
<Manufacturing method of structural protein fiber>
An example of a method for producing structural protein fibers will be described below.

本実施形態に係る構造タンパク質繊維の製造方法は、凝固工程を含む。凝固工程は、上記実施形態に係るドープ液を凝固液中に押し出して凝固させる工程であってよく、上記実施形態に係るドープ液を空気中に押し出して溶媒を加熱して気化させて凝固させる工程であってよい。図1は、構造タンパク質繊維を製造するための紡糸装置の一例を示す概略図である。図1に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、凝固浴槽20を有する凝固装置2と、洗浄浴槽21を有する洗浄装置3と、加熱装置17を有する乾燥装置4とを上流側から順に有している。 The method for producing a structural protein fiber according to the present embodiment includes a coagulation step. The coagulation step may be a step of extruding the doping solution according to the above embodiment into the coagulating solution to coagulate it, and is a step of extruding the doping solution according to the above embodiment into the air to heat the solvent to vaporize and solidify it. It may be. FIG. 1 is a schematic view showing an example of a spinning apparatus for producing structural protein fibers. The spinning device 10 shown in FIG. 1 is an example of a spinning device for dry / wet spinning, and includes an extrusion device 1, a coagulation device 2 having a coagulation bath 20, a cleaning device 3 having a washing bath 21, and a heating device 17. The drying apparatus 4 to be provided is provided in order from the upstream side.

押出し装置1は貯槽7を有しており、ここに紡糸原液6が貯留される。紡糸原液6として、上述の実施形態に係るドープ液が用いられる。凝固浴槽20に凝固液11(例えば、メタノール)が貯留される。紡糸原液6は、貯槽7の下端部に取り付けられたギヤポンプ8により、凝固液11との間にエアギャップ19を開けて設けられたノズル9から押し出される。押し出された紡糸原液6は、エアギャップ19を経て凝固液11内に供給される。凝固液11内で紡糸原液6から溶媒が除去されて構造タンパク質が凝固し、構造タンパク質繊維が形成される。形成された構造タンパク質繊維は、糸ガイド18a、18b、18c及び18dを経て洗浄浴槽21に導かれ、洗浄浴槽21内の洗浄液12により洗浄される。洗浄された構造タンパク質繊維は、洗浄浴槽21内に設置された第一ニップローラ13と第二ニップローラ14により送られて、糸ガイド18e、18f及び18gを経て加熱装置17へと導入される。このとき、例えば、第二ニップローラ14の回転速度を第一ニップローラ13の回転速度よりも速く設定すると、回転速度比に応じた倍率で延伸された、構造タンパク質繊維36が得られる。洗浄液12中で延伸された構造タンパク質繊維36は、洗浄浴槽21を離脱してから、加熱装置17内の経路22を通過する際に乾燥され、その後、ワインダー23にて巻き取られる。このようにして、構造タンパク質繊維36が、紡糸装置10により、最終的にワインダー23に巻き取られた巻回物5として得られる。 The extrusion device 1 has a storage tank 7, in which the spinning stock solution 6 is stored. As the spinning stock solution 6, the doping solution according to the above-described embodiment is used. The coagulation liquid 11 (for example, methanol) is stored in the coagulation bath 20. The spinning stock solution 6 is pushed out from a nozzle 9 provided with an air gap 19 between the spinning stock solution 6 and the coagulating solution 11 by a gear pump 8 attached to the lower end of the storage tank 7. The extruded spinning stock solution 6 is supplied into the coagulating solution 11 through the air gap 19. In the coagulation liquid 11, the solvent is removed from the spinning stock solution 6 to coagulate the structural protein, and structural protein fibers are formed. The formed structural protein fibers are guided to the washing tub 21 via the thread guides 18a, 18b, 18c and 18d, and are washed by the washing liquid 12 in the washing tub 21. The washed structural protein fibers are sent by the first nip roller 13 and the second nip roller 14 installed in the washing bath 21, and are introduced into the heating device 17 via the thread guides 18e, 18f and 18g. At this time, for example, if the rotation speed of the second nip roller 14 is set to be faster than the rotation speed of the first nip roller 13, the structural protein fiber 36 stretched at a magnification corresponding to the rotation speed ratio can be obtained. The structural protein fibers 36 stretched in the washing liquid 12 are dried when passing through the path 22 in the heating device 17 after leaving the washing bath 21, and then wound up by the winder 23. In this way, the structural protein fiber 36 is finally obtained as a wound product 5 wound around the winder 23 by the spinning device 10.

凝固液は、紡糸原液を脱溶媒できる溶液であればよい。凝固液としては、例えば、メタノール、エタノール及び2−プロパノール等の炭素数1〜5の低級アルコール、並びにアセトンを挙げることができる。凝固液は、水を含んでいてもよい。凝固液の温度は、0〜30℃であることが好ましい。凝固液槽の長さは、脱溶媒が効率的に行える長さであればよく、例えば、200〜500mmである。凝固によって形成された構造タンパク質繊維の凝固液中の滞留時間は、例えば、0.01〜3分であってよく、0.05〜0.15分であることが好ましい。構造タンパク質繊維を凝固液中で延伸(又は前延伸)してもよい。前延伸によって前延伸糸が形成される。前延伸では、未延伸糸を、例えば、1倍〜10倍に延伸することができ、2〜8倍に延伸することが好ましい。 The coagulating solution may be a solution capable of desolving the spinning stock solution. Examples of the coagulating liquid include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol and 2-propanol, and acetone. The coagulant may contain water. The temperature of the coagulating liquid is preferably 0 to 30 ° C. The length of the coagulation liquid tank may be any length as long as the solvent can be efficiently removed, and is, for example, 200 to 500 mm. The residence time of the structural protein fibers formed by coagulation in the coagulation liquid may be, for example, 0.01 to 3 minutes, preferably 0.05 to 0.15 minutes. Structural protein fibers may be stretched (or pre-stretched) in the coagulation fluid. Pre-drawing yarn is formed by pre-drawing. In the pre-drawing, the undrawn yarn can be drawn, for example, 1 to 10 times, and preferably 2 to 8 times.

構造タンパク質繊維の延伸は、洗浄浴槽21内で洗浄液を加温しながら行う。洗浄液は、例えば、水、又は、水と有機溶剤との混合溶媒であってもよい。加温した洗浄液(又は溶媒)中で行う延伸は、湿熱延伸と当業者に称されることがある。湿熱延伸の温度(洗浄液の温度)は、例えば、50〜90℃であってよく、75〜85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1倍〜10倍に延伸することができ、2〜8倍、5〜10倍、6〜10倍、5〜8倍、又は6〜8倍に延伸することが好ましい。 The structural protein fibers are stretched while heating the washing liquid in the washing bath 21. The cleaning liquid may be, for example, water or a mixed solvent of water and an organic solvent. Stretching performed in a heated cleaning solution (or solvent) may be referred to by those skilled in the art as moist heat stretching. The temperature of moist heat stretching (temperature of the washing liquid) may be, for example, 50 to 90 ° C, preferably 75 to 85 ° C. In moist heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times, 2 to 8 times, 5 to 10 times, 6 to 10 times, 5 to 8 times, or. It is preferably stretched 6 to 8 times.

構造タンパク質繊維の最終的な延伸倍率の下限値は、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、又は9倍のうちの何れかである。構造タンパク質繊維の最終的な延伸倍率の上限値は、好ましくは40倍、30倍、20倍、15倍、14倍、13倍、12倍、11倍、又は10倍のうちの何れかである。 The lower limit of the final draw ratio of the structural protein fiber is preferably 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, and 7 times with respect to the undrawn yarn (or the pre-drawn yarn). , 8 times, or 9 times. The upper limit of the final draw ratio of the structural protein fiber is preferably any one of 40 times, 30 times, 20 times, 15 times, 14 times, 13 times, 12 times, 11 times, or 10 times. ..

本実施形態に係る構造タンパク質繊維の製造方法は、凝固工程の後に、乾熱工程をさらに含んでいてもよい。乾熱工程は、凝固工程を経て得られた構造タンパク質繊維を乾熱処理する工程である。図2は、上述のようにして得られた構造タンパク質繊維を、後処理としての加熱(乾熱)処理に供するための加熱装置の一例を示す概略図である。図2に示す加熱装置62は、フィードローラ42及びワインダー44と、これらの間に設けられた乾熱板64とを有している。乾熱板64は、フィードローラ42からワインダー44に向かう方向に延在する乾熱面66を有する。 The method for producing a structural protein fiber according to the present embodiment may further include a dry heat step after the coagulation step. The dry heat step is a step of dry heat treating the structural protein fibers obtained through the coagulation step. FIG. 2 is a schematic view showing an example of a heating device for subjecting the structural protein fiber obtained as described above to a heating (dry heat) treatment as a post-treatment. The heating device 62 shown in FIG. 2 has a feed roller 42 and a winder 44, and a drying heat plate 64 provided between them. The dry heat plate 64 has a dry heat surface 66 extending in the direction from the feed roller 42 toward the winder 44.

構造タンパク質繊維36がフィードローラ42から連続的に送り出され、送り出された構造タンパク質繊維36が乾熱面66に沿って移動しながら加熱される。この乾熱処理の条件は特に限定されず、金属化合物の種類、構造タンパク質の種類等に応じて適宜に決定される。例えば、乾熱温度は150℃、180℃、200℃、220℃、240℃であってもよく、乾熱時間は10秒以上、20秒以上、30秒以上、1分間以上、2分間以上、3分間以上であってもよい。図1の紡糸装置10と図2の加熱装置62とを組み合わせて、ドープ液から加熱処理後の構造タンパク質繊維を連続的に製造することも可能である。この場合、紡糸後の構造タンパク質繊維をワインダーに巻き取らず、そのまま加熱(乾熱)処理に供してもよく、また、紡糸後の構造タンパク質繊維36に対して、乾燥を経ることなく、そのまま加熱(乾熱)による後処理を行ってもよい。 The structural protein fibers 36 are continuously fed from the feed roller 42, and the fed structural protein fibers 36 are heated while moving along the dry heat surface 66. The conditions of this dry heat treatment are not particularly limited, and are appropriately determined according to the type of metal compound, the type of structural protein, and the like. For example, the dry heat temperature may be 150 ° C., 180 ° C., 200 ° C., 220 ° C., 240 ° C., and the dry heat time is 10 seconds or longer, 20 seconds or longer, 30 seconds or longer, 1 minute or longer, 2 minutes or longer. It may be 3 minutes or more. It is also possible to continuously produce the heat-treated structural protein fibers from the doping solution by combining the spinning device 10 of FIG. 1 and the heating device 62 of FIG. In this case, the structural protein fiber after spinning may be subjected to heating (dry heat) treatment as it is without being wound around the winder, or the structural protein fiber 36 after spinning may be heated as it is without undergoing drying. Post-treatment by (dry heat) may be performed.

<製品>
本実施形態に係るドープ液から形成された構造タンパク質繊維は、繊維又は糸として、織物、編物、組み物、不織布等に応用できる。また、ロープ、手術用縫合糸、電気部品用の可撓性止め具、さらには移植用生理活性材料(例えば、人工靭帯及び大動脈バンド)等の高強度用途にも応用できる。これらは、特許第5427322号公報等に記載の方法に準じて製造することができる。
<Product>
The structural protein fiber formed from the doping solution according to the present embodiment can be applied to woven fabrics, knitted fabrics, braids, non-woven fabrics and the like as fibers or threads. It can also be applied to high-strength applications such as ropes, surgical sutures, flexible fasteners for electrical components, and bioactive materials for transplantation (eg, artificial ligaments and aortic bands). These can be produced according to the method described in Japanese Patent No. 5427322 and the like.

また、本実施形態に係る構造タンパク質繊維は、長繊維、短繊維、紡績糸、フィラメント、フィルム、紙、発泡体、球体、ナノフィブリル、ヒドロゲル、樹脂及びその等価物にも応用でき、これらは、特開2009−505668号公報、特開2009−505668号公報、特許第5678283号公報、特許第4638735号公報等に記載の方法に準じて製造することができる。 The structural protein fibers according to the present embodiment can also be applied to long fibers, short fibers, spun yarns, filaments, films, papers, foams, spheres, nanofibrils, hydrogels, resins and their equivalents. It can be produced according to the methods described in JP-A-2009-505668, JP-A-2009-505668, Patent No. 5678283, Patent No. 4638735 and the like.

これらの製品は、本実施形態に係るドープ液の凝固物を含む製品ということができ、構造タンパク質と構造タンパク質に結合した金属原子とを含む製品ということもできる。 These products can be said to be products containing a coagulated product of the doping solution according to the present embodiment, and can also be said to be products containing a structural protein and a metal atom bonded to the structural protein.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

1.クモ糸構造タンパク質(クモ糸フィブロイン:PRT799)の製造
(クモ糸構造タンパク質をコードする遺伝子の合成、及び発現ベクターの構築)
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号1で示されるアミノ酸配列を有する分子量約200KDaの改変フィブロイン(以下、「PRT799」ともいう。)を設計した。
1. 1. Production of spider silk structure protein (spider silk fibroin: PRT799) (synthesis of gene encoding spider silk structure protein and construction of expression vector)
Based on the nucleotide sequence and amino acid sequence of fibroin (GenBank accession number: P4684.1, GI: 11744415) derived from Nephila clavipes, a modified fibroin having the amino acid sequence shown in SEQ ID NO: 1 and having a molecular weight of about 200 kDa ( Hereinafter, it is also referred to as “PRT799”).

配列番号1で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列と、そのN末端に付加された配列番号4で示されるアミノ酸配列(タグ配列及びヒンジ配列)とを有する。 The amino acid sequence shown in SEQ ID NO: 1 is an amino acid sequence obtained by substituting, inserting and deleting amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes, and its N-terminal. It has the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 4 added to.

設計したPRT799をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、構造タンパク質発現ベクターpET−22b(+)に組換えて発現ベクターを得た。 Nucleic acid encoding the designed PRT799 was synthesized. An NdeI site was added to the nucleic acid at the 5'end and an EcoRI site was added downstream of the stop codon. The nucleic acid was cloned into a cloning vector (pUC118). Then, the nucleic acid was cut out by restriction enzyme treatment with NdeI and EcoRI, and then recombinant into the structural protein expression vector pET-22b (+) to obtain an expression vector.

得られたpET22b(+)発現ベクターによって、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表1)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまで約15時間、フラスコ培養を行って、シード培養液を得た。Escherichia coli BLR (DE3) was transformed with the obtained pET22b (+) expression vector. The transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours. The culture solution was added to 100 mL of seed culture medium (Table 1) containing ampicillin so that the OD 600 was 0.005. The culture solution temperature was maintained at 30 ° C., and flask culture was carried out for about 15 hours until the OD 600 reached 5, to obtain a seed culture solution.

500mlの生産培地(下記表2)を添加したジャーファーメンターに、OD600が0.05となるように当該シード培養液を添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持した。The seed culture solution was added to the jar fermenter to which 500 ml of the production medium (Table 2 below) was added so that the OD 600 was 0.05. The temperature of the culture solution was maintained at 37 ° C., and the cells were cultured at a constant pH of 6.9. Moreover, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.

生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持しながら、20時間培養を行った。その後、1Mのイソプロピル−β−チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、PRT799を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS−PAGEを行い、IPTG添加に依存したPRT799に相当するサイズのバンドの出現により、PRT799の発現を確認した。 Immediately after the glucose in the production medium was completely consumed, the feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min. The temperature of the culture solution was maintained at 37 ° C., and the cells were cultured at a constant pH of 6.9. The culture was carried out for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Then, 1 M of isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce the expression of PRT799. When 20 hours had passed after the addition of IPTG, the culture solution was centrifuged and the cells were collected. SDS-PAGE was performed using cells prepared from the culture broths before and after the addition of IPTG, and the expression of PRT799 was confirmed by the appearance of a band having a size corresponding to PRT799 depending on the addition of IPTG.

(クモ糸フィブロインの精製)
IPTGを添加してから2時間後に回収した菌体を20mM Tris−HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris−HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris−HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris−HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集構造タンパク質(PRT799)を遠心分離により回収した。回収した凝集構造タンパク質から凍結乾燥機で水分を除き、PRT799の凍結乾燥粉末を得た。
(Purification of spider silk fibroin)
The cells collected 2 hours after the addition of IPTG were washed with 20 mM Tris-HCl buffer (pH 7.4). The washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi). The crushed cells were centrifuged to obtain a precipitate. The resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until high purity. The washed precipitate was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL and at 60 ° C. Stir with a stirrer for 30 minutes to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated structure protein (PRT799) obtained after dialysis was recovered by centrifugation. Moisture was removed from the recovered aggregated structural protein with a lyophilizer to obtain a lyophilized powder of PRT799.

得られた凍結乾燥粉末におけるPRT799の精製度は、粉末のポリアクリルアミドゲル電気泳動の結果をTotallab(nonlinear dynamics ltd.)を用いて画像解析することにより確認した。その結果、PRT799の精製度は約85%であった。 The degree of purification of PRT799 in the obtained lyophilized powder was confirmed by image analysis of the results of polyacrylamide gel electrophoresis of the powder using Totallab (nonliner dynamics ltd.). As a result, the degree of purification of PRT799 was about 85%.

2.構造タンパク質繊維の製造
(実施例1)
<ドープ液の調製>
溶媒としてジメチルスルホキシド(DMSO)を用いた。DMSOに金属化合物としてジルコニウム(IV)アセチルアセトナートZr(acac)を添加し、メカニカルスターラーを使用して撹拌させながら、80℃に加熱して溶解させた。さらに、クモ糸フィブロイン(PRT799)の乾燥粉末を濃度11質量%となるように添加し、120℃に加熱してクモ糸フィブロインを溶解させた。3μmのメッシュサイズの金属フィルターで濾過した後、脱泡してZr4+含有ドープ液(Zr4+含有ドープ液)を得た。Zr(acac)の添加量は、クモ糸フィブロイン(PRT799)の1当量(1mol)に対して5当量(5mol)とした。また、調製したドープ液の90℃における粘度を測定した。結果を表3に示した。なお、当該紡糸原液の粘度は、電気磁気紡糸粘度計(京都電子工業株式会社)を用いて、密封下、回転速度1000rpmの条件で測定した。なお、Zr4+添加によるドープ液の着色は生じなかった。
2. Production of structural protein fibers (Example 1)
<Preparation of doping solution>
Dimethyl sulfoxide (DMSO) was used as the solvent. Zirconium (IV) acetylacetonate Zr (acac) 4 was added to DMSO as a metal compound, and the mixture was dissolved by heating to 80 ° C. with stirring using a mechanical stirrer. Further, a dry powder of spider silk fibroin (PRT799) was added so as to have a concentration of 11% by mass, and the mixture was heated to 120 ° C. to dissolve the spider silk fibroin. After filtering with a metal filter having a mesh size of 3 μm, defoaming was performed to obtain a Zr 4+ -containing doping solution (Zr 4+ -containing doping solution). The amount of Zr (acac) 4 added was 5 equivalents (5 mol) with respect to 1 equivalent (1 mol) of spider silk fibroin (PRT799). Moreover, the viscosity of the prepared doping solution at 90 ° C. was measured. The results are shown in Table 3. The viscosity of the spinning stock solution was measured using an electromagnetic spinning viscometer (Kyoto Denshi Kogyo Co., Ltd.) under the condition of a rotation speed of 1000 rpm under sealing. The doping solution was not colored by the addition of Zr 4+ .

<紡糸>
得られたドープ液を紡糸原液とし、図1に示される紡糸装置10を用いた乾湿式紡糸によって、紡糸及び延伸された構造タンパク質繊維を形成させた。形成された構造タンパク質繊維を乾燥してから巻き取った。乾湿式紡糸の条件は以下のとおりである。
押出しノズル直径:0.2mm
凝固液(メタノール)の温度:5℃
凝固浴延伸倍率:1.06倍
水洗浄浴延伸倍率:5倍
総延伸倍率:6.56倍
乾燥温度:60℃
<Spinning>
The obtained doping solution was used as a spinning stock solution, and spinning and stretched structural protein fibers were formed by dry-wet spinning using the spinning device 10 shown in FIG. The formed structural protein fibers were dried and then wound up. The conditions for dry-wet spinning are as follows.
Extruded nozzle diameter: 0.2 mm
Coagulant (methanol) temperature: 5 ° C
Coagulation bath stretching ratio: 1.06 times Water washing bath stretching ratio: 5 times Total stretching ratio: 6.56 times Drying temperature: 60 ° C

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、20℃、相対湿度65%の恒温恒湿槽(エスペック製LHL−113型)中に24時間静置後、INSTRON(登録商標)のFORCE TRANSDUCER 2519−101を用いて測定した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was allowed to stand in a constant temperature and humidity chamber (LHL-113 type manufactured by ESPEC) at 20 ° C. and a relative humidity of 65% for 24 hours, and then INSTRON (registered trademark) FORCE TRANSDUCER 2519- It was measured using 101.

(比較例1)
Zr(acac)を添加しなかった他は、実施例1と同様にしてドープ液を調製し、得られたドープ液の90℃における粘度を測定した。また、得られたドープ液を用いて、実施例1と同様にして構造タンパク質繊維を形成し、得られた構造タンパク質繊維の機械的強度を測定した。実施例1における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表3に示した。
(Comparative Example 1)
A doping solution was prepared in the same manner as in Example 1 except that Zr (acac) 4 was not added, and the viscosity of the obtained doping solution at 90 ° C. was measured. Further, using the obtained doping solution, structural protein fibers were formed in the same manner as in Example 1, and the mechanical strength of the obtained structural protein fibers was measured. Table 3 shows the relative stress values when the maximum stress value of the structural protein fiber in Example 1 is 100%.

比較例1のドープ液の粘度90℃における粘度は1,000mPa・secであり、実施例1のドープ液の粘度90℃における粘度は5,000mPa・secであった。比較例1のドープ液は、比較例1のドープ液と比較して曳糸性が格段に向上した。 The viscosity of the doping solution of Comparative Example 1 at 90 ° C. was 1,000 mPa · sec, and the viscosity of the doping solution of Example 1 at 90 ° C. was 5,000 mPa · sec. The dope solution of Comparative Example 1 had significantly improved spinnability as compared with the dope solution of Comparative Example 1.

実施例1と比較例1とを比較すると、比較例1の構造タンパク質繊維の相対応力値は、100%より低かった。言い換えると、金属化合物を添加していないドープ液を用いて形成した構造タンパク質繊維に比べて、金属化合物を添加したドープ液を用いて形成した構造タンパク質繊維では最大応力値の向上が確認された。 Comparing Example 1 and Comparative Example 1, the relative stress value of the structural protein fiber of Comparative Example 1 was lower than 100%. In other words, it was confirmed that the maximum stress value was improved in the structural protein fiber formed by using the doping solution to which the metal compound was added, as compared with the structural protein fiber formed by using the doping solution to which the metal compound was not added.

(実施例2)
<ドープ液の調製>
溶媒として、LiClを溶解させたジメチルスルホキシド(LiCl/DMSO)を使用した他は、実施例1と同様にして、ドープ液を調製した。LiClの添加量は、クモ糸フィブロイン1当量(1mol)に対して630当量(630mol)とした。また、実施例1と同様にして、得られたドープ液の90℃における粘度を測定した。得られたドープ液の90℃における粘度は、4,940mPa・secであった。
(Example 2)
<Preparation of doping solution>
A dope solution was prepared in the same manner as in Example 1 except that dimethyl sulfoxide (LiCl / DMSO) in which LiCl was dissolved was used as a solvent. The amount of LiCl added was 630 equivalents (630 mol) with respect to 1 equivalent (1 mol) of spider silk fibroin. Further, the viscosity of the obtained doping solution at 90 ° C. was measured in the same manner as in Example 1. The viscosity of the obtained doping solution at 90 ° C. was 4,940 mPa · sec.

<紡糸>
得られたドープ液を紡糸原液とし、実施例1と同様にして構造タンパク質繊維を形成した。
<Spinning>
The obtained doping solution was used as a spinning stock solution, and structural protein fibers were formed in the same manner as in Example 1.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様にして測定した。実施例1における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表4に示した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. Table 4 shows the relative stress values when the maximum stress value of the structural protein fiber in Example 1 is 100%.

表4に示される様に、ドープ液がLiClを含む場合、ドープ液がLiClを含まない場合と比較して、構造タンパク質繊維の最大応力値の更なる向上がみられた。 As shown in Table 4, when the doping solution contained LiCl, the maximum stress value of the structural protein fiber was further improved as compared with the case where the doping solution did not contain LiCl.

(実施例3)
<ドープ液の調製>
クモ糸フィブロイン(PRT799)の濃度を24質量%とした他は、実施例2と同様にして、ドープ液を調製し、得られたドープ液の90℃における粘度を測定した。測定結果を表5に示した。
(Example 3)
<Preparation of doping solution>
A dope solution was prepared in the same manner as in Example 2 except that the concentration of spider silk fibroin (PRT799) was 24% by mass, and the viscosity of the obtained dope solution at 90 ° C. was measured. The measurement results are shown in Table 5.

<紡糸>
得られたドープ液を紡糸原液とし、実施例1と同様にして構造タンパク質繊維を形成した。
<Spinning>
The obtained doping solution was used as a spinning stock solution, and structural protein fibers were formed in the same manner as in Example 1.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。後述の比較例2における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表5に示した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. Table 5 shows the relative stress values when the maximum stress value of the structural protein fiber in Comparative Example 2 described later is 100%.

(実施例4)
<ドープ液の調製>
金属化合物としてチタノセンジクロリド(Ti(CCl)を用いた他は、実施例3と同様にして、ドープ液を調製し、得られたドープ液の90℃における粘度を測定した。結果を表5に示した。
(Example 4)
<Preparation of doping solution>
A dope solution was prepared in the same manner as in Example 3 except that titanocene dichloride (Ti (C 5 H 5 ) 2 Cl 2 ) was used as the metal compound, and the viscosity of the obtained dope solution at 90 ° C. was measured. .. The results are shown in Table 5.

<紡糸>
得られたドープ液を紡糸原液とし、実施例1と同様にして構造タンパク質繊維を形成した。
<Spinning>
The obtained doping solution was used as a spinning stock solution, and structural protein fibers were formed in the same manner as in Example 1.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。後述の比較例2における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表5に示した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. Table 5 shows the relative stress values when the maximum stress value of the structural protein fiber in Comparative Example 2 described later is 100%.

(実施例5)
<ドープ液の調製>
金属化合物として、クロムアセチルアセトナート(III)(Cr(acac))を用いた他は、実施例3と同様にして、ドープ液を調製し、得られたドープ液の90℃における粘度を測定した。結果を表5に示した。
(Example 5)
<Preparation of doping solution>
A dope solution was prepared in the same manner as in Example 3 except that chromium acetylacetonate (III) (Cr (acac) 3 ) was used as the metal compound, and the viscosity of the obtained dope solution at 90 ° C. was measured. did. The results are shown in Table 5.

<紡糸>
得られたドープ液を紡糸原液とし、実施例1と同様に構造タンパク質繊維を形成した。
<Spinning>
The obtained doping solution was used as a spinning stock solution to form structural protein fibers in the same manner as in Example 1.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。後述の比較例2における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表5に示した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. Table 5 shows the relative stress values when the maximum stress value of the structural protein fiber in Comparative Example 2 described later is 100%.

(比較例2)
<ドープ液の調製>
ドープ液が金属化合物を添加しなかった他は、実施例3と同様にして、ドープ液を調製し、得られたドープ液の90℃における粘度を測定した。結果を表5に示した。
(Comparative Example 2)
<Preparation of doping solution>
A doping solution was prepared in the same manner as in Example 3 except that no metal compound was added to the doping solution, and the viscosity of the obtained doping solution at 90 ° C. was measured. The results are shown in Table 5.

<紡糸>
得られたドープ液を紡糸原液とし、実施例1と同様に構造タンパク質繊維を形成した。
<Spinning>
The obtained doping solution was used as a spinning stock solution to form structural protein fibers in the same manner as in Example 1.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1.

実施例3〜6のドープ液では、比較例2のドープ液と比較して曳糸性が格段に向上した。また、表5に示される様に、金属化合物を添加していない比較例2では、5倍までの延伸が可能であったが、金属化合物を添加した実施例3〜5では、7倍まで延伸倍率を高めることができた。また、比較例2と比較して、実施例3〜5では、最大応力値の向上が認められた。 In the doping solutions of Examples 3 to 6, the spinnability was significantly improved as compared with the doping solution of Comparative Example 2. Further, as shown in Table 5, in Comparative Example 2 to which the metal compound was not added, stretching up to 5 times was possible, but in Examples 3 to 5 to which the metal compound was added, stretching was possible up to 7 times. I was able to increase the magnification. In addition, an improvement in the maximum stress value was observed in Examples 3 to 5 as compared with Comparative Example 2.

(実施例6〜18)
<ドープ液の調製>
クモ糸フィブロイン(PRT799)の濃度、Zr(acac)の添加量を表6中に示す濃度に変更した以外は、実施例2と同様にして、ドープ液を調製した。
(Examples 6 to 18)
<Preparation of doping solution>
A doping solution was prepared in the same manner as in Example 2 except that the concentration of spider silk fibroin (PRT799) and the amount of Zr (acac) 4 added were changed to the concentrations shown in Table 6.

<紡糸>
得られたドープ液を紡糸原液とし、水洗浄浴延伸倍率を表6中に示す倍率とした他は、実施例1と同様に構造タンパク質繊維を形成した。
<Spinning>
Structural protein fibers were formed in the same manner as in Example 1 except that the obtained doping solution was used as a spinning stock solution and the drawing ratio in a water washing bath was set to the ratio shown in Table 6.

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。比較例2における構造タンパク質繊維の最大応力値を100%とした場合の、相対応力値を表6及び7に示した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. Tables 6 and 7 show the relative stress values when the maximum stress value of the structural protein fiber in Comparative Example 2 is 100%.

表6及び表7に示される様に、Zr(acac)添加量を5当量、クモ糸フィブロイン(PRT799)の濃度を24質量%としたドープ液を用いて形成した構造タンパク質繊維において、最大の応力値が得られた。As shown in Tables 6 and 7, the largest structural protein fiber formed using a dope solution in which the amount of Zr (acac) 4 added was 5 equivalents and the concentration of spider silk fibroin (PRT799) was 24% by mass. The stress value was obtained.

(実施例19〜21)
<乾熱処理>
実施例2で得られたZr4+を添加したドープ液を用いて形成した構造タンパク質繊維を、図2に示される加熱装置62を用いて後処理としての乾熱処理に供し、乾熱処理後の構造タンパク質繊維を巻き取った。乾熱処理の条件は以下のとおりである。なお、処理温度(乾熱板温度)は、それぞれ、表8に示す温度とした。
送り出し速度:100cm/min
巻取り速度:100cm/min
乾熱板長さ:100cm
(Examples 19 to 21)
<Dry heat treatment>
The structural protein fiber formed by using the doping solution to which Zr 4+ obtained in Example 2 was added was subjected to dry heat treatment as a post-treatment using the heating device 62 shown in FIG. 2, and the structural protein after dry heat treatment was performed. The fiber was wound up. The conditions of the dry heat treatment are as follows. The processing temperature (dry-bulb plate temperature) was the temperature shown in Table 8, respectively.
Delivery speed: 100 cm / min
Winding speed: 100 cm / min
Dry heat plate length: 100 cm

<繊維の物性測定>
得られた構造タンパク質繊維の機械的強度を、実施例1と同様に測定した。結果を表8に示した。表8の相対応力値は、実施例2にて得られた構造タンパク質繊維の応力値を100%とした時の相対値[%]で表した。
<Measurement of physical properties of fibers>
The mechanical strength of the obtained structural protein fiber was measured in the same manner as in Example 1. The results are shown in Table 8. The relative stress values in Table 8 are represented by relative values [%] when the stress values of the structural protein fibers obtained in Example 2 are taken as 100%.

表8に示される様に、乾熱処理により構造タンパク質繊維の最大応力値が向上した。150℃で乾熱処理した構造タンパク質繊維では、最大応力値が1.5倍に向上した。 As shown in Table 8, the maximum stress value of the structural protein fiber was improved by the dry heat treatment. The maximum stress value of the structural protein fiber subjected to dry heat treatment at 150 ° C. was improved 1.5 times.

(実施例22)
構造タンパク質とZr4+との解析を行うため、クモ糸フィブロイン(PRT799)を2wt%になるようにZr(acac)を含むDMSO−dに溶解させ400MHzでH−NMRを測定した。タンパク質の各アミノ酸のケミカルシフトに大きな変化はなかったものの、5.65ppm付近にZr(acac)から遊離したアセチルアセトンに帰属される特徴的なシグナルが観測された(図3中、星印により示されるシグナル)。また、高磁場側でも同じ化合物に由来するシグナルが1.99、2.10、3.65ppmに観測されている。同じサンプルの13C−NMRでも204、190、58、31ppmにシグナルが現れ、これらのケミカルシフトはアセチルアセトンの文献値とほぼ一致した(図4)。以上より、溶液中にアセチルアセトンが存在するため、構造タンパク質に対してZr4+が配位していることが確認された。
(Example 22)
In order to analyze the structural protein and Zr 4+ , spider fibroin (PRT799) was dissolved in DMSO-d 6 containing Zr (acac) 4 so as to be 2 wt%, and 1 H-NMR was measured at 400 MHz. Although there was no significant change in the chemical shift of each amino acid in the protein, a characteristic signal attributed to acetylacetone liberated from Zr (acac) 4 was observed around 5.65 ppm (indicated by a star in FIG. 3). Signal). In addition, signals derived from the same compound were observed at 1.99, 2.10 and 3.65 ppm on the high magnetic field side. Signals appeared at 204, 190, 58, and 31 ppm in 13 C-NMR of the same sample, and these chemical shifts were almost in agreement with the literature values of acetylacetone (Fig. 4). From the above, it was confirmed that Zr 4+ was coordinated with respect to the structural protein due to the presence of acetylacetone in the solution.

<繊維の元素分析(SEM−EDSエネルギー分散型X線分光法)>
Phenom−world社製Pro−Xに内蔵されているエネルギー分散型X線分光器を用いて、実施例2で得られた構造タンパク質繊維の元素分析を行った。構造タンパク質繊維をピンスタブホルダーに固定し、4000〜6000倍の反射電子像(SEM像)を確認した後、加速電圧を15kVとして電子線を照射し、EDS(エネルギー分散型X線分光器:Energy dispersive spectrometer)で測定して元素分析を行った。試料から発せられるZrのLα線(2.04kV)の強度からZrの半定量分析を行った。
<Elemental analysis of fibers (SEM-EDS energy dispersive X-ray spectroscopy)>
Elemental analysis of the structural protein fibers obtained in Example 2 was performed using an energy dispersive X-ray spectroscope built into Pro-X manufactured by Phoenix-world. After fixing the structural protein fiber to the pin stub holder and confirming a reflected electron image (SEM image) of 4000 to 6000 times, an electron beam is irradiated with an accelerating voltage of 15 kV, and EDS (energy dispersive X-ray spectrometer: Energy). Elemental analysis was performed by measuring with a dispersive spectrometer). A semi-quantitative analysis of Zr was performed from the intensity of the Zr Lα ray (2.04 kV) emitted from the sample.

図5に示される様に、構造タンパク質繊維にZrが含まれていることが確認された。 As shown in FIG. 5, it was confirmed that the structural protein fiber contained Zr.

<繊維の無機分析(ICP発光分光分析法)>
株式会社日立ハイテクサイエンス社製のICP(高周波誘導結合プラズマ)発光分光分析装置を用いて、実施例2で得られた構造タンパク質繊維のLiの残存量を測定した。
具体的には、マイルストーンゼネラル株式会社製のマイクロ波試料前処理装置を用いて、構造タンパク質繊維(試料)の前処理を行った。前処理後の試料0.3gに硝酸7ml、過酸化水素1mlを加えて溶解して溶液を調製し、ICP発光分光分析を行った(検出限界:5mg/kg)。
<Inorganic analysis of fibers (ICP emission spectroscopy)>
The residual amount of Li in the structural protein fibers obtained in Example 2 was measured using an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer manufactured by Hitachi High-Tech Science Corporation.
Specifically, a structural protein fiber (sample) was pretreated using a microwave sample pretreatment apparatus manufactured by Milestone General Co., Ltd. 7 ml of nitric acid and 1 ml of hydrogen peroxide were added to 0.3 g of the pretreated sample and dissolved to prepare a solution, and ICP emission spectroscopic analysis was performed (detection limit: 5 mg / kg).

構造タンパク質繊維からLiは検出されず、無機塩として添加したLiClが残存していないことが確認された。 Li was not detected in the structural protein fibers, and it was confirmed that LiCl added as an inorganic salt did not remain.

本発明によれば、高い応力を有する構造タンパク質繊維の製造に有用なドープ液を提供することができる。 According to the present invention, it is possible to provide a doping solution useful for producing structural protein fibers having high stress.

1…押出し装置、2…凝固装置、3…洗浄装置、4…乾燥装置、6…紡糸原液、10…紡糸装置、12…洗浄液、13…第一ニップローラ、14…第二ニップローラ、19…エアギャップ、20…凝固浴槽、64…乾熱板、36…構造タンパク質繊維、42…フィードローラ、44…ワインダー、62…加熱装置。 1 ... Extruder, 2 ... Coagulant, 3 ... Cleaning device, 4 ... Drying device, 6 ... Spinning stock solution, 10 ... Spinning device, 12 ... Cleaning solution, 13 ... First nip roller, 14 ... Second nip roller, 19 ... Air gap , 20 ... coagulation bathtub, 64 ... drying plate, 36 ... structural protein fiber, 42 ... feed roller, 44 ... winder, 62 ... heating device.

Claims (15)

構造タンパク質と、金属原子及び有機基を有する金属化合物と、溶媒と、を含む、ドープ液。 A doping solution containing a structural protein, a metal compound having a metal atom and an organic group, and a solvent. 前記金属原子の価数が、2〜6価である、請求項1に記載のドープ液。 The doping solution according to claim 1, wherein the metal atom has a valence of 2 to 6 valences. 前記金属原子が、チタン、ジルコニウム、クロム、モリブデン、及びタングステンからなる群から選ばれる少なくとも1種である、請求項1又は2に記載のドープ液。 The dope solution according to claim 1 or 2, wherein the metal atom is at least one selected from the group consisting of titanium, zirconium, chromium, molybdenum, and tungsten. 前記ドープ液の粘度が、3,000mPa・sec以上60,000mPa・sec以下である、請求項1〜3のいずれか1項に記載のドープ液。 The doping solution according to any one of claims 1 to 3, wherein the doping solution has a viscosity of 3,000 mPa · sec or more and 60,000 mPa · sec or less. 前記金属化合物の含有量が、前記構造タンパク質1当量に対して0.5当量以上20当量以下である、請求項1〜4のいずれか1項に記載のドープ液。 The doping solution according to any one of claims 1 to 4, wherein the content of the metal compound is 0.5 equivalents or more and 20 equivalents or less with respect to 1 equivalent of the structural protein. 前記溶媒が、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、N−メチル−2−ピロリドン、アセトニトリル、N−メチルモルホリンN−オキシド、水、及びヘキサフルオロイソプロノールからなる群より選ばれる少なくとも1種を含む、請求項1〜5のいずれか1項に記載のドープ液。 The solvent is dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, N-methyl-2-pyrrolidone, acetonitrile, N-methylmorpholine N-oxide, water. The dope solution according to any one of claims 1 to 5, which comprises at least one selected from the group consisting of hexafluoroisopronol and. 前記ドープ液が、無機塩をさらに含む、請求項1〜6のいずれか1項に記載のドープ液。 The doping solution according to any one of claims 1 to 6, wherein the doping solution further contains an inorganic salt. 前記無機塩が、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、及びアルカリ土類金属硝酸塩からなる群より選ばれる少なくとも1種である、請求項7に記載のドープ液。 The dope solution according to claim 7, wherein the inorganic salt is at least one selected from the group consisting of alkali metal halides, alkaline earth metal halides, and alkaline earth metal nitrates. 前記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、コラーゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種である、請求項1〜8のいずれか1項に記載のドープ液。 The dope solution according to any one of claims 1 to 8, wherein the structural protein is at least one selected from the group consisting of silk fibroin, spider silk fibroin, collagen, resilin, elastin, and keratin. 前記構造タンパク質が、クモ糸フィブロインである、請求項1〜9のいずれか1項に記載のドープ液。 The doping solution according to any one of claims 1 to 9, wherein the structural protein is spider silk fibroin. 請求項1〜10のいずれか1項に記載のドープ液を使用した構造タンパク質繊維の製造方法であって、
前記ドープ液を凝固液中に押し出して凝固させる凝固工程を含む、構造タンパク質繊維の製造方法。
A method for producing a structural protein fiber using the doping solution according to any one of claims 1 to 10.
A method for producing a structural protein fiber, which comprises a coagulation step of extruding the dope solution into a coagulation solution to coagulate it.
前記凝固工程を経て得られた構造タンパク質繊維を乾熱処理する乾熱工程を更に含む、請求項11に記載の構造タンパク質繊維の製造方法。 The method for producing a structural protein fiber according to claim 11, further comprising a dry heat step of drying and heat-treating the structural protein fiber obtained through the coagulation step. 請求項1〜10のいずれか1項に記載のドープ液の凝固物を含む製品であって、
長繊維、短繊維、糸、紡績糸、フィラメント、フィルム、発泡体、球体、ナノフィブリル、ヒドロゲル、樹脂、紙及びそれらの等価物からなる群から選択される、製品。
A product containing a coagulated product of the doping solution according to any one of claims 1 to 10.
A product selected from the group consisting of long fibers, short fibers, yarns, spun yarns, filaments, films, foams, spheres, nanofibrils, hydrogels, resins, paper and their equivalents.
クモ糸フィブロイン及び金属原子を含む構造タンパク質繊維。 Structural protein fibers containing spider silk fibroin and metal atoms. 前記金属原子が前記クモ糸フィブロインと結合している、請求項14に記載の構造タンパク質繊維。 The structural protein fiber according to claim 14, wherein the metal atom is bonded to the spider silk fibroin.
JP2019545177A 2017-09-29 2018-09-28 Dope solution and product using the same, structural protein fiber and method for producing the same Active JP7231939B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017191668 2017-09-29
JP2017191668 2017-09-29
PCT/JP2018/036472 WO2019066037A1 (en) 2017-09-29 2018-09-28 Dope liquid and product using same, and structural protein fiber and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019066037A1 true JPWO2019066037A1 (en) 2020-11-05
JP7231939B2 JP7231939B2 (en) 2023-03-02

Family

ID=65901989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545177A Active JP7231939B2 (en) 2017-09-29 2018-09-28 Dope solution and product using the same, structural protein fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JP7231939B2 (en)
WO (1) WO2019066037A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065812A1 (en) * 2019-09-30 2021-04-08 Spiber株式会社 Doping liquid and method for producing engineered fibroin molded article using same
CN113024260B (en) * 2021-03-22 2023-03-31 浙江理工大学 Preparation and melt spinning method of polyaluminosilazane ceramic precursor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496126A (en) * 1978-01-12 1979-07-30 Kanebo Ltd Preparation of fibroin dope
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
CN101081932A (en) * 2007-06-06 2007-12-05 浙江理工大学 Silk fibroin /calcium carbonate nano composite material and preparation method thereof
WO2014002605A1 (en) * 2012-06-28 2014-01-03 スパイバー株式会社 Spun-dyed protein fiber and method for producing same
CN104311848A (en) * 2014-09-25 2015-01-28 苏州印丝特纺织数码科技有限公司 Preparation method of regenerated fibroin-nano titanium oxide composite membrane
WO2017110922A1 (en) * 2015-12-25 2017-06-29 Spiber株式会社 Method for producing polymer aggregate
JP2017170082A (en) * 2016-03-25 2017-09-28 優一郎 新崎 Brush bristle material and brush

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779824B2 (en) * 2006-06-27 2011-09-28 和光純薬工業株式会社 Method for supporting metal catalyst on fibrous protein
CN102418263A (en) * 2010-05-26 2012-04-18 新加坡国立大学 Nano material modified or functionalized silk protein-based material and preparation method thereof
WO2012165477A1 (en) * 2011-06-01 2012-12-06 スパイバー株式会社 Protein fiber and method for producing same
WO2013065651A1 (en) * 2011-11-02 2013-05-10 スパイバー株式会社 Protein solution and production method for protein fiber using same
JP2014152436A (en) * 2013-02-05 2014-08-25 Sankaseiren Corp Method of modifying animal protein based fiber material
JP2017014404A (en) * 2015-07-01 2017-01-19 日立化成株式会社 Fibroin molded body and fibroin composition
JP6528278B2 (en) * 2015-09-24 2019-06-12 国立大学法人信州大学 Method for producing nanofibers and dope for electrospinning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496126A (en) * 1978-01-12 1979-07-30 Kanebo Ltd Preparation of fibroin dope
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
CN101081932A (en) * 2007-06-06 2007-12-05 浙江理工大学 Silk fibroin /calcium carbonate nano composite material and preparation method thereof
WO2014002605A1 (en) * 2012-06-28 2014-01-03 スパイバー株式会社 Spun-dyed protein fiber and method for producing same
CN104311848A (en) * 2014-09-25 2015-01-28 苏州印丝特纺织数码科技有限公司 Preparation method of regenerated fibroin-nano titanium oxide composite membrane
WO2017110922A1 (en) * 2015-12-25 2017-06-29 Spiber株式会社 Method for producing polymer aggregate
JP2017170082A (en) * 2016-03-25 2017-09-28 優一郎 新崎 Brush bristle material and brush

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF HANGZHOU UNIVERSITY(NATURAL SCIENCE), 1998, VOL.25, P.70-74, JPN6022032173, ISSN: 0004942596 *

Also Published As

Publication number Publication date
JP7231939B2 (en) 2023-03-02
WO2019066037A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JPWO2018034111A1 (en) Composite molding composition containing fibroin-like protein and method for producing the same
WO2018221680A1 (en) Protein molded article and method for producing same, protein solution, and protein molded article plasticizer
JP7454853B2 (en) Method for producing protein fiber
EP3922763A1 (en) Method for manufacturing artificially-structured protein fiber
JP7231939B2 (en) Dope solution and product using the same, structural protein fiber and method for producing the same
JPWO2018164189A1 (en) Protein molded article, method for producing the same, and protein solution
JP7104960B2 (en) Method for producing fibroin fiber
CN113692460B (en) Recombinant structural protein multifilament yarn and method for producing the same
JPWO2019065735A1 (en) Method of manufacturing fiber or fabric
JP7281139B2 (en) Method for producing protein fiber
CN111655913A (en) Method for producing protein fiber
JPWO2019044982A1 (en) High-density knitted fabric and manufacturing method of high-density knitted fabric
JP7458619B2 (en) Fibroin fiber manufacturing method and fibroin solution
WO2019151425A1 (en) Spinning dope, fibroin fiber, and method for producing same
JP2021120402A (en) Protein composition
JP7198481B2 (en) Flame retardant agent and method for imparting flame retardancy
WO2020067514A1 (en) Modified spider silk fibroin fiber and method for producing same
JP2020122248A (en) Method for producing fibroin fiber and fibroin solution
WO2024034631A1 (en) Modified fibroin
JP2023007506A (en) Fiber for artificial hair and manufacturing method therefor
JP2022001669A (en) Method of manufacturing protein fiber
JPWO2019194263A1 (en) High shrinkage artificial fibroin twisted yarn and its manufacturing method, and artificial fibroin twisted yarn and its shrinking method
JPWO2020067547A1 (en) Modified fibroin fiber
JP2021152224A (en) High-density unwoven fabric and method for manufacturing the same
CN118302205A (en) Deodorizing material, deodorizing agent, and deodorizing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7231939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350