JPWO2019051016A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019051016A5
JPWO2019051016A5 JP2020536491A JP2020536491A JPWO2019051016A5 JP WO2019051016 A5 JPWO2019051016 A5 JP WO2019051016A5 JP 2020536491 A JP2020536491 A JP 2020536491A JP 2020536491 A JP2020536491 A JP 2020536491A JP WO2019051016 A5 JPWO2019051016 A5 JP WO2019051016A5
Authority
JP
Japan
Prior art keywords
resonator
resonator according
opening
sample
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020536491A
Other languages
Japanese (ja)
Other versions
JP7102526B2 (en
JP2021501899A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/049649 external-priority patent/WO2019051016A1/en
Publication of JP2021501899A publication Critical patent/JP2021501899A/en
Publication of JPWO2019051016A5 publication Critical patent/JPWO2019051016A5/ja
Application granted granted Critical
Publication of JP7102526B2 publication Critical patent/JP7102526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (30)

キュービットを実現する量子物体のスケールで電磁放射を試料に結合する共振器であって、
導電性部材と、
前記部材に誘導性ループを画定する前記部材を通る開口部であって、前記試料を前記開口部内に少なくとも部分的に受け入れ可能な前記開口部と、
前記部材の境界と前記開口部との間に、ある長さを有する連続した屈曲した経路を画定する前記部材の細長いギャップと、を含み、
前記連続した屈曲した経路は、複数の経路セグメントと、前記経路セグメント間の方向の変化を含み、
前記導電性部材は、互いに入り組んだコンデンサを含み、前記互いに入り組んだコンデンサは複数の交差した脚部を含み、電流が前記複数の脚部のうち、交互になった脚部に沿って反対方向に流れて、対応する磁界が第1のオーダーまで打ち消し合い、
これにより、前記互いに入り組んだコンデンサの寄生インダクタンスが最小化されることを特徴とする共振器。
A resonator that couples electromagnetic radiation to a sample on the scale of a quantum object that realizes a qubit .
With conductive members
An opening through the member that defines an inductive loop in the member, wherein the sample is at least partially acceptable within the opening.
Includes an elongated gap in the member that defines a continuous curved path of length between the boundary of the member and the opening.
The continuous bent path includes a plurality of path segments and a change in direction between the path segments.
The conductive member comprises an intricate capacitor, the intricate capacitor comprises a plurality of intersecting legs, and an electric current is directed in opposite directions along the alternating legs of the plurality of legs. As it flows, the corresponding magnetic fields cancel each other up to the first order,
As a result, the resonator is characterized in that the parasitic inductance of the intricate capacitors is minimized .
前記導電性部材は、誘電体基板を覆う金属層を含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the conductive member includes a metal layer covering a dielectric substrate. 前記導電性部材は、平面状であることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the conductive member has a planar shape. 誘電材料であって、前記導電性部材の少なくとも一部を覆い、前記ギャップの少なくとも一部を埋める、前記誘電材料をさらに含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the resonator is a dielectric material, further comprising the dielectric material, which covers at least a part of the conductive member and fills at least a part of the gap. 前記連続した屈曲した経路の前記長さは、前記共振器のキャパシタンスに比例し、前記ギャップの幅は、前記共振器のキャパシタンスに反比例することを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the length of the continuous bent path is proportional to the capacitance of the resonator, and the width of the gap is inversely proportional to the capacitance of the resonator. .. 複数の隣り合う経路セグメントと反転は、前記導電性部材に互いに入り組んだ構造を画定することを特徴とする請求項に記載の共振器。 The resonator according to claim 1 , wherein the plurality of adjacent path segments and inversions define a structure in which the conductive member is intricately intertwined with each other. 前記経路は、少なくとも8つの方向の変化を含むことを特徴とする請求項に記載の共振器。 The resonator according to claim 1 , wherein the path includes at least eight directional changes. 前記開口部の最大の横方向寸法は、前記ギャップの最小幅以下であることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the maximum lateral dimension of the opening is equal to or less than the minimum width of the gap. 1つまたは複数のキュービットの量子状態の測定及び変更の少なくとも1つのためのシステムであって、
請求項1に記載の共振器と、
前記開口部内に少なくとも部分的に位置する試料と、
前記共振器に適用可能な外部の磁界源と、前記共振器に適用可能で、前記試料に共振を誘導するように選択された周波数を有する電磁放射源と、を含むことを特徴とする前記システム。
A system for at least one measurement and modification of the quantum state of one or more qubits.
The resonator according to claim 1 and
With a sample that is at least partially located in the opening,
The system comprising an external magnetic field source applicable to the resonator and an electromagnetic radiation source applicable to the resonator and having a frequency selected to induce resonance in the sample. ..
キュービットを実現する量子物体のスケールで試料の量子状態の測定及び変更の少なくとも1つのための方法であって、
部材の境界と前記開口部と間に、ある長さを有する連続した屈曲した経路を画定し、前記共振器の前記開口部と外縁との間に延びる連続した屈曲したギャップによって画定される、キャパシタンスを有するループギャップ共振器の開口部内に、前記試料の少なくとも一部を配置することと、
磁界と電磁放射とに前記試料を同時にさらすことと、
前記試料から共振信号を検出することと、を含み、
前記ループギャップ共振器は、導電性部材を含み、
前記開口部は、前記部材に誘導ループを画定する前記部材を貫通する開口部を含み、
前記連続した屈曲した経路は、複数の経路セグメントと前記経路セグメント間の方向の変化を含み、
前記導電性部材は、互いに入り組んだコンデンサを含み、前記互いに入り組んだコンデンサは複数の交差した脚部を含み、電流が前記複数の脚部のうち、交互になった脚部に沿って反対方向に流れて、対応する磁界が第1のオーダーまで打ち消し合い、
これにより、前記互いに入り組んだコンデンサの寄生インダクタンスが最小化されることを特徴とする方法。
A method for at least one of measuring and altering the quantum state of a sample at the scale of a quantum object that realizes a qubit .
Capacitance defined by a continuous curved path of length between the boundary of the member and the opening and defined by a continuous curved gap extending between the opening and the outer edge of the resonator. Placing at least a portion of the sample within the opening of a loop gap resonator with
Simultaneous exposure of the sample to a magnetic field and electromagnetic radiation,
Including detecting a resonance signal from the sample.
The loop gap resonator includes a conductive member and contains a conductive member.
The opening comprises an opening through the member defining an induction loop in the member.
The continuous bent path includes a plurality of path segments and a change in direction between the path segments.
The conductive member comprises an intricate capacitor, the intricate capacitor comprises a plurality of intersecting legs, and an electric current is directed in opposite directions along the alternating legs of the plurality of legs. As it flows, the corresponding magnetic fields cancel each other up to the first order,
This method is characterized in that the parasitic inductance of the intricate capacitors is minimized .
キュービットを実現する量子物体のスケールで電磁放射を試料に結合する共振器であって、
表面を画定する導電性部材であって、前記表面上のエリアと、前記エリアの周囲の外側境界とを有し、前記表面に垂直な厚さを有する前記導電性部材と、
前記試料を受け入れる開口部であって、前記厚さ全体を通して延びる前記開口部と、
前記厚さ全体を通して、且つ、前記開口部を前記境界につなぐ連続した屈曲した経路に沿って延びる連続した細長いギャップであって、前記経路は、複数の隣り合う長さセグメントと前記長さセグメント間の方向の変化とを含む、前記ギャップと、を含み、
前記ギャップの幅と前記経路の長さとが、前記共振器のキャパシタンスを規定し、
前記導電性部材は、互いに入り組んだコンデンサを含み、前記互いに入り組んだコンデンサは複数の交差した脚部を含み、電流が前記複数の脚部のうち、交互になった脚部に沿って反対方向に流れて、対応する磁界が第1のオーダーまで打ち消し合い、
これにより、前記互いに入り組んだコンデンサの寄生インダクタンスが最小化されることを特徴とする共振器。
A resonator that couples electromagnetic radiation to a sample on the scale of a quantum object that realizes a qubit .
A conductive member that defines a surface and has an area on the surface and an outer boundary around the area, and has a thickness perpendicular to the surface.
An opening that receives the sample and extends through the entire thickness.
A continuous elongated gap extending through the entire thickness and along a continuous curved path connecting the opening to the boundary, the path between a plurality of adjacent length segments and the length segment. Includes said gaps, including, including changes in the direction of
The width of the gap and the length of the path define the capacitance of the resonator.
The conductive member comprises an intricate capacitor, the intricate capacitor comprises a plurality of intersecting legs, and an electric current is directed in opposite directions along the alternating legs of the plurality of legs. As it flows, the corresponding magnetic fields cancel each other up to the first order,
As a result, the resonator is characterized in that the parasitic inductance of the intricate capacitors is minimized .
前記表面は、平面状であることを特徴とする請求項1に記載の共振器。 The resonator according to claim 11 , wherein the surface is flat. 方向の前記変化の1つまたは複数は、隣り合うセグメント間での方向の反転を含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 11, wherein one or more of the changes in direction comprises reversing the direction between adjacent segments. 前記経路は、互いに入り組んだ構造を含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 11 , wherein the path includes an intricate structure with each other. 誘電材料であって、前記誘電材料は、前記ギャップの少なくとも一部を埋めることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the dielectric material is a dielectric material, wherein the dielectric material fills at least a part of the gap. 前記試料は、1つの磁性分子を含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the sample contains one magnetic molecule. 前記試料は、1つの磁性分子を含むことを特徴とする請求項10に記載の方法。 The method according to claim 10, wherein the sample contains one magnetic molecule. 前記試料は、1つの磁性分子を含むことを特徴とする請求項11に記載の共振器。 The resonator according to claim 11, wherein the sample contains one magnetic molecule. 前記経路セグメント間の方向の変化は偶数であり、それにより、前記複数の脚のうちの隣接するものに沿った磁場の打ち消しをサポートすることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the change in direction between the path segments is even, thereby supporting the cancellation of the magnetic field along the adjacent one of the plurality of legs. 前記経路セグメント間の方向の変化は偶数であり、それにより、前記複数の脚のうちの隣接するものに沿った磁場の打ち消しをサポートすることを特徴とする請求項10に記載の方法。 10. The method of claim 10, wherein the change in direction between the path segments is even, thereby supporting the cancellation of magnetic fields along adjacent ones of the plurality of legs. 前記経路セグメント間の方向の変化は偶数であり、それにより、前記複数の脚のうちの隣接するものに沿った磁場の打ち消しをサポートすることを特徴とする請求項11に記載の共振器。 11. The resonator according to claim 11, wherein the change in direction between the path segments is even, thereby supporting the cancellation of the magnetic field along the adjacent one of the plurality of legs. 前記細長いギャップの前記長さの少なくとも一部は、10ナノメートル未満のギャップ幅を有し、 At least a portion of the length of the elongated gap has a gap width of less than 10 nanometers.
前記開口部は、10ナノメートル未満の幅であることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the opening has a width of less than 10 nanometers.
前記細長いギャップの前記長さの少なくとも一部は、10ナノメートル未満のギャップ幅を有し、 At least a portion of the length of the elongated gap has a gap width of less than 10 nanometers.
前記開口部は、10ナノメートル未満の幅であることを特徴とする請求項10に記載の方法。 10. The method of claim 10, wherein the opening has a width of less than 10 nanometers.
前記細長いギャップの前記長さの少なくとも一部は、10ナノメートル未満のギャップ幅を有し、 At least a portion of the length of the elongated gap has a gap width of less than 10 nanometers.
前記開口部は、10ナノメートル未満の幅であることを特徴とする請求項11に記載の共振器。 11. The resonator according to claim 11, wherein the opening has a width of less than 10 nanometers.
前記共振器の寄生インダクタンスが最小化されることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the parasitic inductance of the resonator is minimized. 前記共振器の寄生インダクタンスが最小化されることを特徴とする請求項10に記載の方法。 The method according to claim 10, wherein the parasitic inductance of the resonator is minimized. 前記共振器の寄生インダクタンスが最小化されることを特徴とする請求項11に記載の共振器。 The resonator according to claim 11, wherein the parasitic inductance of the resonator is minimized. 前記試料は、キュービットを含むことを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the sample contains a qubit. 前記試料は、キュービットを含むことを特徴とする請求項10に記載の方法。 10. The method of claim 10, wherein the sample comprises a qubit. 前記試料は、キュービットを含むことを特徴とする請求項11に記載の共振器。 The resonator according to claim 11, wherein the sample contains a qubit.
JP2020536491A 2017-09-07 2018-09-06 Loop gap resonator for spin resonance spectroscopy Active JP7102526B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762555127P 2017-09-07 2017-09-07
US62/555,127 2017-09-07
PCT/US2018/049649 WO2019051016A1 (en) 2017-09-07 2018-09-06 Loop-gap resonators for spin resonance spectroscopy

Publications (3)

Publication Number Publication Date
JP2021501899A JP2021501899A (en) 2021-01-21
JPWO2019051016A5 true JPWO2019051016A5 (en) 2022-01-12
JP7102526B2 JP7102526B2 (en) 2022-07-19

Family

ID=65517457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536491A Active JP7102526B2 (en) 2017-09-07 2018-09-06 Loop gap resonator for spin resonance spectroscopy

Country Status (5)

Country Link
US (3) US11171400B2 (en)
EP (1) EP3679385B1 (en)
JP (1) JP7102526B2 (en)
CA (1) CA3075078C (en)
WO (1) WO2019051016A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3679385B1 (en) 2017-09-07 2022-10-26 Amherst College Loop-gap resonators for spin resonance spectroscopy
KR20220142428A (en) * 2019-11-15 2022-10-21 뉴사우스 이노베이션즈 피티와이 리미티드 Global Control for Quantum Computing Systems
JP7327808B2 (en) 2020-03-24 2023-08-16 国立研究開発法人産業技術総合研究所 Planar loop gap resonator, quantum sensing system and quantum magnetic sensor unit
CN114611704B (en) * 2022-05-11 2022-10-25 苏州浪潮智能科技有限公司 Quantum bit coupling method and structure

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446429A (en) * 1981-10-09 1984-05-01 Medical College Of Wisconsin Microwave resonator
US4480239A (en) * 1983-02-07 1984-10-30 The Medical College Of Wisconsin Inc. Loop-gap resonator network
IT1207069B (en) * 1986-05-14 1989-05-17 Gte Telecom Spa MICROSTRIP TRANSMISSION LINE FOR COUPLING WITH DIELECTRIC RESONATOR.
US4751464A (en) * 1987-05-04 1988-06-14 Advanced Nmr Systems, Inc. Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices
JPH07333310A (en) 1994-06-10 1995-12-22 Junkosha Co Ltd Loop gap resonator, and its combination structure
US5821827A (en) * 1996-12-18 1998-10-13 Endgate Corporation Coplanar oscillator circuit structures
US6255816B1 (en) * 1998-10-20 2001-07-03 The Ohio State University Electromagnetic resonator devices and systems incorporating same, resonance and imaging methods
US6560567B1 (en) * 1999-03-03 2003-05-06 Sitaramao S. Yechuri Method and apparatus for measuring on-wafer lumped capacitances in integrated circuits
US6400576B1 (en) * 1999-04-05 2002-06-04 Sun Microsystems, Inc. Sub-package bypass capacitor mounting for an array packaged integrated circuit
JP3854059B2 (en) 1999-11-18 2006-12-06 株式会社東芝 Quantum information processing method and quantum information processing apparatus
US6313719B1 (en) * 2000-03-09 2001-11-06 Avaya Technology Corp. Method of tuning a planar filter with additional coupling created by bent resonator elements
US7184555B2 (en) 2001-04-11 2007-02-27 Magiq Technologies, Inc. Quantum computation
US20030021518A1 (en) 2001-06-01 2003-01-30 D-Wave Systems, Inc. Optical transformer device
WO2002101872A1 (en) * 2001-06-13 2002-12-19 Conductus, Inc. Resonator and filter comprising the same
US6700459B2 (en) * 2002-05-29 2004-03-02 Superconductor Technologies, Inc. Dual-mode bandpass filter with direct capacitive couplings and far-field suppression structures
US7423427B2 (en) 2004-05-14 2008-09-09 Massachusetts Institute Of Technology Arbitrarily accurate composite pulse sequences
US7863892B2 (en) 2005-10-07 2011-01-04 Florida State University Research Foundation Multiple SQUID magnetometer
US7697262B2 (en) * 2005-10-31 2010-04-13 Avx Corporation Multilayer ceramic capacitor with internal current cancellation and bottom terminals
US8836439B2 (en) * 2007-10-12 2014-09-16 Los Alamos National Security Llc Dynamic frequency tuning of electric and magnetic metamaterial response
US8222629B2 (en) 2007-12-07 2012-07-17 Japan Science And Technology Agency Electronic device using quantum dot
US20090147440A1 (en) * 2007-12-11 2009-06-11 Avx Corporation Low inductance, high rating capacitor devices
US20090295509A1 (en) * 2008-05-28 2009-12-03 Universal Phase, Inc. Apparatus and method for reaction of materials using electromagnetic resonators
US8315969B2 (en) 2008-10-10 2012-11-20 Nec Laboratories America, Inc. Estimating a quantum state of a quantum mechanical system
US20100177457A1 (en) * 2009-01-10 2010-07-15 Simon Edward Willard Interdigital capacitor with Self-Canceling Inductance
US20100188799A1 (en) * 2009-01-28 2010-07-29 Avx Corporation Controlled esr low inductance capacitor
US8507860B2 (en) * 2009-05-20 2013-08-13 Nutech Ventures Terahertz resonator
CN102483350B (en) * 2009-06-03 2014-10-29 皇家飞利浦电子股份有限公司 Thz frequency range antenna
US9208445B2 (en) 2009-11-16 2015-12-08 International Business Machines Corporation System and method of quantum computing using three-state representation of a qubit
US8711897B2 (en) * 2010-08-11 2014-04-29 Miles Technologies, Llc Split-ring resonator creating a photonic metamaterial
US8642998B2 (en) 2011-06-14 2014-02-04 International Business Machines Corporation Array of quantum systems in a cavity for quantum computing
JP2014523163A (en) 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrically small vertical split ring resonator antenna
US9194922B2 (en) * 2011-10-18 2015-11-24 Technion Research & Development Foundation Limited System and method for electron spin resonance
US9079043B2 (en) * 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
GB201209246D0 (en) * 2012-05-25 2012-07-04 Imp Innovations Ltd Structures and materials
US8908251B2 (en) * 2013-01-30 2014-12-09 Hrl Laboratories, Llc Tunable optical metamaterial
US9059305B2 (en) * 2013-03-04 2015-06-16 International Business Machines Corporation Planar qubits having increased coherence times
US10145743B2 (en) * 2013-03-05 2018-12-04 Teknologian Tutkimuskeskus Vtt Oy Superconducting thermal detector (bolometer) of terahertz (sub-millimeter wave) radiation
WO2015175047A2 (en) * 2014-02-13 2015-11-19 President And Fellows Of Harvard College Optically detected magnetic resonance imaging with an electromagnetic field resonator
PE20170595A1 (en) * 2014-05-16 2017-05-24 Plasma Igniter LLC COMBUSTION ENVIRONMENT DIAGNOSIS
FR3033103A1 (en) * 2015-02-24 2016-08-26 Univ Paris Diderot Paris 7 THREE DIMENSIONAL ELECTRICAL RESONATOR DEVICE OF INDUCTANCE-CAPACITY TYPE
CA2977662A1 (en) * 2015-02-27 2016-09-01 Yale University Techniques for coupling plannar qubits to non-planar resonators and related systems and methods
US9891297B2 (en) 2015-03-13 2018-02-13 President And Fellows Of Harvard College Magnetic sensing and imaging using interactions between surface electron spins and solid state spins
EP3082073B1 (en) 2015-04-12 2019-01-16 Hitachi Ltd. Quantum information processing
US10381542B2 (en) * 2015-04-30 2019-08-13 International Business Machines Corporation Trilayer Josephson junction structure with small air bridge and no interlevel dielectric for superconducting qubits
US10355642B2 (en) * 2015-05-27 2019-07-16 Silicon Laboratories Inc. Comb terminals for planar integrated circuit inductor
EP3303212A4 (en) 2015-05-28 2019-07-03 NewSouth Innovations Pty Limited A quantum processing apparatus and a method of operating a quantum processing apparatus
AU2016287781B2 (en) 2015-06-30 2022-01-13 The University Of Melbourne Determining a spatial configuration of multiple nuclei
US9443810B1 (en) * 2015-09-14 2016-09-13 Qualcomm Incorporated Flip-chip employing integrated cavity filter, and related components, systems, and methods
US9589236B1 (en) * 2015-09-28 2017-03-07 International Business Machines Corporation High fidelity and high efficiency qubit readout scheme
US9454061B1 (en) * 2015-12-17 2016-09-27 International Business Machines Corporation Quantum coherent microwave to optical conversion scheme employing a mechanical element and a squid
FR3046701B1 (en) * 2016-01-08 2018-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives NETWORK ANTENNA, IN PARTICULAR FOR NUCLEAR MAGNETIC RESONANCE IMAGING, COMPRISING LINEAR ELECTROMAGNETIC RESONATORS AND AT LEAST ONE DECOUPLING DEVICE
FI126944B (en) * 2016-01-27 2017-08-15 Stealthcase Oy Apparatus and method for receiving and further emitting electromagnetic signals
US10381704B2 (en) * 2016-02-16 2019-08-13 GM Global Technology Operations LLC Embedded broadband glass coplanar waveguide coupler
US10740688B2 (en) * 2016-03-11 2020-08-11 Rigetti & Co, Inc. Impedance-matched microwave quantum circuit systems
EP3220113B1 (en) * 2016-03-16 2019-05-01 Centre National de la Recherche Scientifique - CNRS - Optomechanical transducer for terahertz electromagnetic waves
US10811755B2 (en) * 2016-04-29 2020-10-20 Commscope Technologies Llc Microstrip capacitors with complementary resonator structures
CN108074789B (en) * 2016-11-15 2019-10-11 北京北方华创微电子装备有限公司 A kind of microwave transmission unit and semiconductor processing equipment
WO2018182571A1 (en) * 2017-03-28 2018-10-04 Intel Corporation Controlled current flux bias lines in qubit devices
US11282638B2 (en) * 2017-05-26 2022-03-22 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
EP3679385B1 (en) 2017-09-07 2022-10-26 Amherst College Loop-gap resonators for spin resonance spectroscopy
US20190094306A1 (en) * 2017-09-25 2019-03-28 Fujitsu Limited Battery's residual energy measurement circuit and sensor node
US20190186456A1 (en) * 2017-12-20 2019-06-20 Plasma Igniter, LLC Magnetic Direction of a Plasma Corona Provided Proximate to a Resonator
US10847705B2 (en) * 2018-02-15 2020-11-24 Intel Corporation Reducing crosstalk from flux bias lines in qubit devices
US10468578B2 (en) * 2018-02-20 2019-11-05 Intel Corporation Package substrates with top superconductor layers for qubit devices
US11177912B2 (en) * 2018-03-06 2021-11-16 Intel Corporation Quantum circuit assemblies with on-chip demultiplexers
US11552030B2 (en) * 2018-07-31 2023-01-10 Intel Corporation High frequency capacitor with inductance cancellation
IT201900016193A1 (en) * 2019-09-12 2021-03-12 St Microelectronics Srl POWER DEVICE, SYSTEM INCLUDING THE POWER DEVICE, METHOD OF MANUFACTURING THE POWER DEVICE AND METHOD OF CONTROL OF THE POWER DEVICE

Similar Documents

Publication Publication Date Title
JP6399559B2 (en) Position detection system
US8098061B2 (en) Linear inductive position sensor
US6751847B1 (en) Laser-assisted fabrication of NMR resonators
US20100127707A1 (en) Wearable magnetic resonator for mri resolution improvement, and application device including the same
US11611137B2 (en) Loop gap resonators for spin resonance spectroscopy
EP3198233B1 (en) Position sensor
JP2013145165A (en) Current sensor mechanism
JPWO2019051016A5 (en)
CN108351373B (en) Current detecting device
JP2008530541A (en) Use of magneto-impedance in non-contact position sensors and related sensors
JP2007012608A (en) Inductive presence, proximity or position sensor
KR20230118580A (en) A quantum processing unit comprising one or more superconducting qubits based on phase-biased linear and non-linear induced-energy elements
JP6228663B2 (en) Current detector
JP2022150153A (en) magnetic sensor
JP6210358B2 (en) Displacement sensor
KR20200020871A (en) Inductive position sensor with secondary turn extending through the printed circuit board
RU2380797C1 (en) Band-elimination filter
JP4237465B2 (en) RF receiving coil device for superconducting NMR device
Jylhä et al. High-order resonant modes of a metasolenoid
FI92437B (en) Magnetic measurement method for determining gap size and profile
JP2010511301A (en) Optimized solenoid winding
Belyaev et al. Scattering of Electromagnetic Waves on a Subwave Lattice of Square Strip Conductors
Yoo et al. Calculations of AC current losses and AC magnetic losses from the scanning Hall probe measurements for a coated conductor
Kistenmacher et al. Low-frequency shielding effectiveness of inhomogeneous enclosures
JP4249529B2 (en) Electromagnetic induction type transducer