JPWO2019013336A1 - Conductive adhesive composition and connection structure using the same - Google Patents

Conductive adhesive composition and connection structure using the same Download PDF

Info

Publication number
JPWO2019013336A1
JPWO2019013336A1 JP2019529809A JP2019529809A JPWO2019013336A1 JP WO2019013336 A1 JPWO2019013336 A1 JP WO2019013336A1 JP 2019529809 A JP2019529809 A JP 2019529809A JP 2019529809 A JP2019529809 A JP 2019529809A JP WO2019013336 A1 JPWO2019013336 A1 JP WO2019013336A1
Authority
JP
Japan
Prior art keywords
adhesive composition
conductive adhesive
conductive
circuit board
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019529809A
Other languages
Japanese (ja)
Other versions
JP7331693B2 (en
Inventor
振一郎 須方
振一郎 須方
精吾 横地
精吾 横地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2019013336A1 publication Critical patent/JPWO2019013336A1/en
Application granted granted Critical
Publication of JP7331693B2 publication Critical patent/JP7331693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/04Printing inks based on proteins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/06Printing inks based on fatty oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Abstract

(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤、及び(D)硬化触媒を含有する導電性接着剤組成物が開示される。導電性粒子が、融点200℃以下の金属を含む。導電性粒子の平均粒径が0.01〜10μmである。フラックス活性剤が、水酸基及びカルボキシル基を有する化合物を含む。導電性接着剤組成物は、回路基板2と回路基板2に搭載される電子部品3とを電気的に接続するために用いられる。Disclosed is a conductive adhesive composition containing (A) conductive particles, (B) thermosetting resin, (C) flux activator, and (D) curing catalyst. The conductive particles include a metal having a melting point of 200° C. or lower. The average particle diameter of the conductive particles is 0.01 to 10 μm. The flux activator includes a compound having a hydroxyl group and a carboxyl group. The conductive adhesive composition is used to electrically connect the circuit board 2 and the electronic component 3 mounted on the circuit board 2.

Description

本発明は、電子部品と回路基板とを電気的に接続するために用いられる導電性接着剤組成物、及びこれを用いた接続構造体に関するものである。 The present invention relates to a conductive adhesive composition used for electrically connecting an electronic component and a circuit board, and a connection structure using the same.

近年、電子デバイスの小型、薄型化、及び電子部品の高集積化に伴い電子部品と回路基板に配された電極パッドサイズの小面積化、ならびに電極パッド間の狭ピッチ化が推し進められている。このような電子デバイスの微細な配線パターンに電子部品を高密度実装することが求められる。そのため、狭ピッチで配置された電極をもつ基板に電子部品を実装する場合に、電極間ショートを引き起こさずに基板と電子部品とを接続することが可能な接続材が提案されている。(特許文献1参照)。 2. Description of the Related Art In recent years, as electronic devices have become smaller and thinner, and electronic components have become highly integrated, the area of the electrode pads arranged on the electronic components and the circuit board has been reduced, and the pitch between the electrode pads has been narrowed. There is a demand for high-density mounting of electronic components on such fine wiring patterns of electronic devices. Therefore, when mounting an electronic component on a substrate having electrodes arranged at a narrow pitch, there has been proposed a connecting material capable of connecting the substrate and the electronic component without causing a short circuit between the electrodes. (See Patent Document 1).

しかしながら、電極間がさらに狭ピッチ化されると同時に、電極パッドサイズがさらに小型化した場合、従来の接続材を用いた場合では電極間ショートを起こし、導通不良を引き起こすことが課題となっている。また、電子デバイスの薄型化に伴い、加熱接続時の熱履歴によって反りが顕在化し、これを低減することも大きな課題となっている。そのため、狭ピッチ接続性と反り耐性を両立する接合法ならびに接続材が要求されている。 However, when the pitch between the electrodes is further narrowed and at the same time the electrode pad size is further reduced, a short circuit between the electrodes occurs when a conventional connecting material is used, which causes a conduction failure. .. Further, as electronic devices become thinner, warpage becomes apparent due to thermal history during heating connection, and it is also a major issue to reduce the warpage. Therefore, there is a demand for a joining method and a connecting material that achieve both narrow pitch connectivity and warpage resistance.

電子部品を回路基板等へ実装するには、鉛フリーはんだであるSn−Ag−Cuはんだなどを用いた接合法が広く知られている。ところが、Sn−Ag−Cuはんだは、接続温度が260℃と高く、電子デバイスが薄型化した場合、その熱履歴によって反りが著しく増大する問題がある。また、反りを低減するために、より低温で接続可能な鉛フリーはんだとして、融点が138℃であるSn−Biはんだも用いられている。しかしながら、Sn−Biはんだによる接続法では、基板の反りは低減できるものの、Sn−Biはんだ自身の脆弱性によって、温度サイクル試験時に金属接合部が破壊され、導通不良となる問題がある。 To mount electronic components on a circuit board or the like, a joining method using Sn-Ag-Cu solder, which is lead-free solder, is widely known. However, the Sn-Ag-Cu solder has a high connection temperature of 260° C., and when the electronic device is made thin, there is a problem that the warpage significantly increases due to the thermal history thereof. In order to reduce warpage, Sn-Bi solder having a melting point of 138° C. is also used as lead-free solder that can be connected at a lower temperature. However, although the connection method using Sn-Bi solder can reduce the warp of the substrate, the brittleness of the Sn-Bi solder itself causes a problem that the metal joint is broken during the temperature cycle test, resulting in poor conduction.

これらの問題を克服するために熱硬化性樹脂にSn−Bi金属粒子を分散させてペースト状にした導電性の接着剤が提案されている(特許文献2参照)。かかる熱硬化型の導電性接着剤は、熱硬化性樹脂をバインダ成分とすることで、温度サイクル試験耐性を向上することができる。 In order to overcome these problems, a conductive adhesive in which Sn-Bi metal particles are dispersed in a thermosetting resin to form a paste has been proposed (see Patent Document 2). Such a thermosetting conductive adhesive can improve the resistance to a temperature cycle test by using a thermosetting resin as a binder component.

特開2014−17248号公報JP, 2014-17248, A 特開2006−199937号公報JP, 2006-199937, A

小サイズ化した電極パッド、又は挟ピッチで配置された電極の接続のために導電性接着剤組成物を適用するにあたり、電極間ブリッジによるショートの防止、及び、少量の塗布での十分な導通を実現するためには、導電性接着剤組成物中の導電性粒子を小サイズ化することが、ある程度有効である。 When applying the conductive adhesive composition for connecting the electrode pads that are downsized or the electrodes that are arranged at a narrow pitch, to prevent a short circuit due to the bridge between the electrodes and to ensure sufficient conduction with a small amount of application. In order to realize it, it is effective to some extent to reduce the size of the conductive particles in the conductive adhesive composition.

しかしながら、平均粒径10μm以下の導電性粒子の場合、比表面積が大きいために、その表面に形成される酸化膜の量が増加し、それによって溶融性及び接合性が著しく低下する傾向がある。溶融性及び接合性が低下すると、導電性接着剤の導電性が低下する。また、未溶融の導電性粒子が電極パッド外の領域まで浮遊し、これが電極間のショートを引き起こす可能性がある。導電性粒子の溶融性及び接合性を維持するために、導電性粒子表面の酸化膜を除去するために添加されるフラックス活性剤を多量に添加すると、導電性接着剤の硬化性が低下して、硬化後の接着強度の低下が顕在化する傾向がある。 However, in the case of conductive particles having an average particle size of 10 μm or less, since the specific surface area is large, the amount of the oxide film formed on the surface of the conductive particles tends to increase, which tends to significantly lower the meltability and the bondability. When the meltability and the bondability decrease, the conductivity of the conductive adhesive decreases. In addition, the unmelted conductive particles may float to a region outside the electrode pad, which may cause a short circuit between the electrodes. If a large amount of flux activator is added to remove the oxide film on the surface of the conductive particles in order to maintain the meltability and bondability of the conductive particles, the curability of the conductive adhesive decreases. However, the decrease in the adhesive strength after curing tends to become apparent.

本発明は、上記事情に鑑みてなされたものであり、金属を含む平均粒径10μm以下の導電性粒子を含み、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられる導電性接着剤組成物に関して、電極間のショートを抑制するとともに、接着強度及び導通性の更なる改善を図ることにある。 The present invention has been made in view of the above circumstances, and is for electrically connecting a circuit board and an electronic component mounted on the circuit board, which contains conductive particles having an average particle diameter of 10 μm or less including a metal. With respect to the conductive adhesive composition used for, it is intended to suppress the short circuit between the electrodes and further improve the adhesive strength and the conductivity.

本発明の一側面は、(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤、及び(D)硬化触媒を含有する導電性接着剤組成物を提供する。導電性粒子が、融点200℃以下の金属を含む。導電性粒子の平均粒径が0.01〜10μmの粒子である。フラックス活性剤が、水酸基及びカルボキシル基を有する化合物を含む。当該導電性接着剤組成物は、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられる。言い換えると、本発明の一側面は、前記導電性接着剤組成物の、回路基板と該回路基板に搭載される電子部品とを電気的に接続するための応用、又は、前記導電性接着剤組成物の、回路基板と該回路基板に搭載された電子部品とを有する接続構造体を製造するための応用に関する。 One aspect of the present invention provides a conductive adhesive composition containing (A) conductive particles, (B) thermosetting resin, (C) flux activator, and (D) curing catalyst. The conductive particles include a metal having a melting point of 200° C. or lower. The average particle diameter of the conductive particles is 0.01 to 10 μm. The flux activator includes a compound having a hydroxyl group and a carboxyl group. The conductive adhesive composition is used to electrically connect a circuit board and an electronic component mounted on the circuit board. In other words, one aspect of the present invention is an application of the conductive adhesive composition for electrically connecting a circuit board and an electronic component mounted on the circuit board, or the conductive adhesive composition. The present invention relates to an application for manufacturing a connection structure having a circuit board and electronic components mounted on the circuit board.

上記本発明に係る導電性接着剤組成物は、金属を含む平均粒径10μm以下の導電性粒子を含みながら、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられたときに、電極間のショートを抑制しながら、接着強度及び導通性の更なる改善を図ることができる。例えば、導電性粒子が小粒径であっても、溶融性が低下することなく良好な導電性を与えることができる。さらに、挟ピッチで配置された電極(接続端子)をブリッジすることなく分離しながら、ショートすることなく良好な接続状態を形成する導電性接着剤組成物が提供される。 The conductive adhesive composition according to the present invention is for electrically connecting a circuit board and an electronic component mounted on the circuit board while containing conductive particles containing a metal and having an average particle size of 10 μm or less. When used, it is possible to further improve the adhesive strength and the conductivity while suppressing the short circuit between the electrodes. For example, even if the conductive particles have a small particle size, good conductivity can be provided without lowering the melting property. Further provided is a conductive adhesive composition that separates electrodes (connection terminals) arranged at a narrow pitch without bridging and forms a good connection state without short-circuiting.

フラックス活性剤の含有量が、導電性粒子の質量に対して4.0〜8.5質量%であってもよい。 The content of the flux activator may be 4.0 to 8.5 mass% with respect to the mass of the conductive particles.

導電性粒子に含まれる融点200℃以下の金属が、ビスマス、インジウム、スズ及び亜鉛から選ばれる少なくとも1種であってもよい。導電性粒子の比表面積が0.060〜90m/gであってもよい。The metal having a melting point of 200° C. or less contained in the conductive particles may be at least one selected from bismuth, indium, tin and zinc. The specific surface area of the conductive particles may be 0.060 to 90 m 2 /g.

硬化性樹脂がエポキシ樹脂を含んでいてもよい。 The curable resin may include an epoxy resin.

導電性接着剤組成物が、25℃でペースト状であってもよい。 The conductive adhesive composition may be in paste form at 25°C.

導電性接着剤組成物が、回路基板が基材及び該基材の主面上に配置された2以上の接続端子を有し、該2以上の接続端子と前記電子部品の接続端子とを電気的に接続するために用いられてもよい。この場合、回路基板の2以上の接続端子が、200μm以下の間隔を空けて基材の主面上に配置されていてもよい。 The conductive adhesive composition has a circuit board having a base material and two or more connecting terminals arranged on the main surface of the base material, and electrically connecting the two or more connecting terminals with the connecting terminals of the electronic component. May be used to make a physical connection. In this case, two or more connection terminals of the circuit board may be arranged on the main surface of the base material at intervals of 200 μm or less.

本発明の別の一側面は、基材及び該基材の主面上に設けられた2以上の接続端子を有する回路基板と、回路基板の2以上の接続端子と対向する2以上の接続端子を有する電子部品と、回路基板と電子部品との間に配置され、これらを接合している接続部と、を備える接続構造体を提供する。接続部が、回路基板の接続端子と電子基板の接続端子との間に配置され、それらを電気的に接続している導電部を含み、該導電部が、上記本発明に係る導電性接着剤組成物に含まれていた導電性粒子を含む。接続部が、導電部の周囲に設けられた樹脂部を更に含んでいてもよい。電子部品は、ドライバーIC、センサ素子を内蔵したモジュール部品、ショットキーバリアダイオード、及び熱電変換素子からなる群より選ばれる少なくとも1種を含んでいてもよい。基材がフレキシブル基材であってもよい。 Another aspect of the present invention is a circuit board having a base material and two or more connection terminals provided on the main surface of the base material, and two or more connection terminals facing the two or more connection terminals of the circuit board. There is provided a connection structure including: an electronic component having: and a connection portion that is disposed between the circuit board and the electronic component and that joins them. The connection portion includes a conductive portion arranged between the connection terminal of the circuit board and the connection terminal of the electronic board and electrically connecting them, and the conductive portion has the conductive adhesive according to the present invention. The conductive particles included in the composition are included. The connection portion may further include a resin portion provided around the conductive portion. The electronic component may include at least one selected from the group consisting of a driver IC, a module component incorporating a sensor element, a Schottky barrier diode, and a thermoelectric conversion element. The substrate may be a flexible substrate.

本発明に係る導電性接着剤組成物は、金属を含む平均粒径10μm以下の導電性粒子を含みながら、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられたときに、電極間のショートを抑制しながら、接着強度及び導通性の更なる改善を図ることができる。本発明に係る導電性接着剤組成物は、回路基板に電子部品を実装する工程における、リフロー加熱温度の低温化、及び、小型及び薄型デバイスの反り抑制の点でも有利である。本発明に係る導電性接着剤組成物は、低い粘度を有し易いことから、少量の塗布によって微細な接続端子の接続のためにも適している。 The conductive adhesive composition according to the present invention is used for electrically connecting a circuit board and an electronic component mounted on the circuit board, while containing conductive particles containing a metal and having an average particle size of 10 μm or less. When this occurs, it is possible to further improve the adhesive strength and the conductivity while suppressing the short circuit between the electrodes. The conductive adhesive composition according to the present invention is also advantageous in terms of lowering the reflow heating temperature in the step of mounting electronic components on a circuit board and suppressing the warpage of small and thin devices. Since the conductive adhesive composition according to the present invention tends to have a low viscosity, it is also suitable for connecting fine connection terminals with a small amount of coating.

導電性接着剤組成物によって形成された接続部を有する接続構造体は、伸縮と屈曲に対する耐性だけでなく、温度サイクル試験に対する耐性の点でも優れている。 The connection structure having the connection portion formed of the conductive adhesive composition is excellent not only in resistance to expansion and contraction and bending but also in resistance to a temperature cycle test.

接続構造体の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a connection structure. 接続構造体の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a connection structure.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

一実施形態に係る導電性接着剤組成物は、(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤、及び(D)硬化触媒を含有する。 The conductive adhesive composition according to one embodiment contains (A) conductive particles, (B) thermosetting resin, (C) flux activator, and (D) curing catalyst.

(A)導電性粒子は、融点200℃以下の金属を含有する。導電性粒子に含まれる金属の融点は、180℃以下、又は150℃以下であってもよい。導電性粒子における金属の融点の下限は、特に限定されないが、100℃程度である。このような導電性粒子を導電性接着剤組成物に用いると、比較的低い温度で溶融して凝集し、この凝集体が接続端子の電気的接続に貢献するものと考えられる。導電性粒子に含まれる金属が2以上の金属種を含む合金である場合、合金の融点が200℃以下であればよい。 The conductive particles (A) contain a metal having a melting point of 200° C. or lower. The melting point of the metal contained in the conductive particles may be 180° C. or lower, or 150° C. or lower. The lower limit of the melting point of the metal in the conductive particles is not particularly limited, but is about 100°C. When such conductive particles are used in the conductive adhesive composition, it is considered that the conductive particles are melted and aggregated at a relatively low temperature, and the aggregates contribute to the electrical connection of the connection terminals. When the metal contained in the conductive particles is an alloy containing two or more metal species, the melting point of the alloy may be 200° C. or less.

導電性粒子における金属は、環境負荷の低減の観点から、鉛以外の金属から構成されてもよい。導電性粒子に含まれる金属としては、例えば、スズ(Sn)、ビスマス(Bi)、インジウム(In)、及び亜鉛(Zn)等から選ばれる1種の金属単体、又はこれらから選ばれる2以上の金属種を含む合金が挙げられる。合金は、より良好な接続信頼性を得ることができる点から、導電性粒子における金属全体としての融点が200℃以下となる範囲で、プラチナ(Pt)、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、アルミニウム(Al)等から選ばれる高融点の成分を更に含有してもよい。 The metal in the conductive particles may be composed of a metal other than lead from the viewpoint of reducing the environmental load. As the metal contained in the conductive particles, for example, one kind of metal simple substance selected from tin (Sn), bismuth (Bi), indium (In), zinc (Zn), or the like, or two or more selected from these Examples include alloys containing metal species. Since the alloy can obtain better connection reliability, platinum (Pt), gold (Au), silver (Ag), A high melting point component selected from copper (Cu), nickel (Ni), palladium (Pd), aluminum (Al) and the like may be further contained.

導電性粒子を構成する金属としては、具体的には、Sn42−Bi58はんだ(融点138℃)、Sn48−In52はんだ(融点117℃)、Sn42−Bi57−Ag1はんだ(融点139℃)、Sn90−Ag2−Cu0.5−Bi7.5はんだ(融点189℃)、Sn96−Zn8−Bi3はんだ(融点190℃)、Sn91−Zn9はんだ(融点197℃)などが挙げられる。これらは、明確な融解後の固化挙動を示す。固化挙動とは、金属が溶融後に冷えて固まることをいう。これらのなかでも入手容易性及び効果の観点からSn42−Bi58はんだを用いてもよい。これらは単独又は2種以上を組み合わせて用いられる。 Specific examples of the metal forming the conductive particles include Sn42-Bi58 solder (melting point 138°C), Sn48-In52 solder (melting point 117°C), Sn42-Bi57-Ag1 solder (melting point 139°C), Sn90-Ag2. Examples include -Cu0.5-Bi7.5 solder (melting point 189°C), Sn96-Zn8-Bi3 solder (melting point 190°C), Sn91-Zn9 solder (melting point 197°C). They show a distinctive solidification behavior after melting. Solidification behavior means that the metal cools and solidifies after melting. Among these, Sn42-Bi58 solder may be used from the viewpoint of availability and effect. These may be used alone or in combination of two or more.

導電性粒子の平均粒径は、0.01〜10μmであってもよい。この平均粒径が0.01μm以上であると、導電性接着剤組成物の粘度が高くなり過ぎないために作業性が向上する傾向、及び、導電性粒子表面に形成される金属酸化膜の量が抑制され、それにより導電性粒子が溶融し易くなるため、所望の接続状態を維持し易い傾向がある。導電性粒子の平均粒径が10μm以下であると、挟ピッチで配置された電極と電子部品との接続時に、隣り合う電極同士がブリッジして電極間でショートが起こる可能性が低下する。導電性接着剤組成物を塗布する場合、印刷法、転写法、ディスペンス法のいずれの方法によっても、小面積の電極パッドに対して少量の塗布が困難となる傾向がある。導電性接着剤組成物の塗布性及び作業性をさらに良好にする観点から、導電性粒子の平均粒径は0.1〜10μm又は0.1〜8μmであってもよい。特に、導電性接着剤組成物の保存安定性及び硬化物の実装信頼性を向上させる観点から、導電性粒子の平均粒径は1〜5μmであってもよい。ここで、導電性粒子の平均粒径は、レーザー回折・散乱法によって求められる値である。 The average particle size of the conductive particles may be 0.01 to 10 μm. When the average particle size is 0.01 μm or more, the viscosity of the conductive adhesive composition does not become too high, so that workability tends to be improved, and the amount of the metal oxide film formed on the surface of the conductive particles. Is suppressed, and the conductive particles are thereby easily melted, so that the desired connected state tends to be easily maintained. When the average particle diameter of the conductive particles is 10 μm or less, there is a reduced possibility that adjacent electrodes may be bridged to each other and a short circuit may occur between the electrodes when the electrodes arranged at a narrow pitch are connected to the electronic component. When the conductive adhesive composition is applied, it tends to be difficult to apply a small amount to an electrode pad having a small area by any of the printing method, the transfer method and the dispensing method. From the viewpoint of further improving the coatability and workability of the conductive adhesive composition, the average particle size of the conductive particles may be 0.1 to 10 μm or 0.1 to 8 μm. In particular, from the viewpoint of improving the storage stability of the conductive adhesive composition and the mounting reliability of the cured product, the average particle size of the conductive particles may be 1 to 5 μm. Here, the average particle diameter of the conductive particles is a value obtained by a laser diffraction/scattering method.

導電性粒子の比表面積が、0.060m/g〜90m/gであってもよい。The specific surface area of the conductive particles may be 0.060m 2 / g~90m 2 / g.

導電性粒子は、金属のみから構成される金属粒子であってもよいし、セラミックス、シリカ、樹脂材料等の金属以外の固体材料からなる核粒子と、核粒子の表面を被覆し、融点200℃以下の金属からなる金属膜とを有する複合粒子であってもよく、金属粒子と複合粒子との組合せであってもよい。 The conductive particles may be metal particles composed only of metal, or may be core particles made of a solid material other than metal such as ceramics, silica, and resin material, and the surface of the core particles may be coated to have a melting point of 200° C. It may be a composite particle having a metal film made of the following metal, or may be a combination of the metal particle and the composite particle.

導電性粒子の含有量は、導電性接着剤組成物の全体質量に対して5〜95質量%であってもよい。導電性粒子の含有量が5質量%以上の場合、導電性接着剤組成物の硬化物の導電性が向上する傾向にある。導電性粒子の含有量が95質量%以下であると、導電性接着剤組成物の粘度が低くなるため、作業性が向上する傾向、及び、相対的に導電性接着剤組成物中の接着剤成分が多くなるため、硬化物の実装信頼性が向上する傾向がある。導電性粒子の含有量は、作業性又は導電性を向上させる観点から、10〜90質量%であってもよく、導電性接着剤組成物の硬化物の実装信頼性を高める観点から、15〜85質量%であってもよい。ここで、導電性接着剤組成物が後述の希釈剤を含む場合、各成分の含有量は、希釈剤以外の成分の質量を基準として定められる。ここでの希釈剤は、後述の反応性希釈剤以外の有機溶剤等の成分を意味する。 The content of the conductive particles may be 5 to 95 mass% with respect to the total mass of the conductive adhesive composition. When the content of the conductive particles is 5% by mass or more, the conductivity of the cured product of the conductive adhesive composition tends to be improved. When the content of the conductive particles is 95% by mass or less, the viscosity of the conductive adhesive composition becomes low, so that workability tends to be improved, and the adhesive in the conductive adhesive composition is relatively present. Since the number of components increases, the mounting reliability of the cured product tends to improve. The content of the conductive particles may be 10 to 90% by mass from the viewpoint of improving workability or conductivity, and is 15 to 15 from the viewpoint of enhancing mounting reliability of the cured product of the conductive adhesive composition. It may be 85% by mass. Here, when the conductive adhesive composition includes a diluent described below, the content of each component is determined based on the mass of the component other than the diluent. The diluent here means a component such as an organic solvent other than the reactive diluent described later.

融点200℃以下の金属を含む導電性粒子に加えて、(a1)200℃を超える融点を有する金属を含む高融点の導電性粒子を導電性接着剤組成物が含んでいてもよい。融点が200℃より高い金属としては、例えば、Pt、Au、Ag、Cu、Ni、Pd、Al等から選ばれる1種の金属単体又は2以上の金属種からなる合金が挙げられる。高融点の導電性粒子の具体例としてはAu粉、Ag粉、Cu粉、AgめっきCu粉が挙げられる。高融点の導電性粒子の市販品としては、鍍銀銅粉である「MA05K」(日立化成株式会社製、商品名)が入手可能である。 In addition to the conductive particles containing a metal having a melting point of 200° C. or lower, the conductive adhesive composition may include (a1) high melting point conductive particles containing a metal having a melting point of higher than 200° C. Examples of the metal having a melting point higher than 200° C. include a single metal element selected from Pt, Au, Ag, Cu, Ni, Pd, Al and the like, or an alloy composed of two or more metal elements. Specific examples of the high-melting point conductive particles include Au powder, Ag powder, Cu powder, and Ag-plated Cu powder. As a commercially available high melting point conductive particle, "MA05K" (manufactured by Hitachi Chemical Co., Ltd.), which is a silver-plated copper powder, is available.

(A)融点200℃以下の金属を含む導電性粒子と、(a1)200℃を超える融点を有する金属を含む導電性粒子とを組み合わせる場合、(A):(a1)の質量比が99:1〜50:50、又は99:1〜60:40の範囲内であってもよい。 When (A) conductive particles containing a metal having a melting point of 200° C. or less and (a1) conductive particles containing a metal having a melting point of more than 200° C. are combined, the mass ratio of (A):(a1) is 99: It may be in the range of 1 to 50:50, or 99:1 to 60:40.

(B)熱硬化性樹脂は、被着体を接着する作用を有すると共に、導電性接着剤組成物中の導電性粒子及び必要に応じて添加されるフィラーを互いに結合するバインダ成分として作用する。このような熱硬化性樹脂としては、例えばエポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂及びシアネート樹脂等の熱硬化性の有機高分子化合物、並びにそれらの前駆体が挙げられる。ここで(メタ)アクリル樹脂とは、メタクリル樹脂及びアクリル樹脂を示す。熱硬化性樹脂は、(メタ)アクリル樹脂及びマレイミド樹脂に代表される、重合可能な炭素−炭素二重結合を有する化合物、又はエポキシ樹脂であってもよい。これらの熱硬化性樹脂は、耐熱性及び接着性に優れ、しかも必要に応じて有機溶剤中に溶解又は分散させれば液体の状態で取り扱うこともできるため、作業性にも優れている。入手容易性と信頼性の観点からエポキシ樹脂を用いてもよい。上述の熱硬化性樹脂は1種を単独で又は2種以上を組み合わせて用いられる。 The thermosetting resin (B) has a function of adhering an adherend, and also functions as a binder component that bonds the conductive particles in the conductive adhesive composition and a filler added as necessary to each other. Examples of such thermosetting resin include thermosetting organic polymer compounds such as epoxy resin, (meth)acrylic resin, maleimide resin and cyanate resin, and precursors thereof. Here, the (meth)acrylic resin means a methacrylic resin and an acrylic resin. The thermosetting resin may be a compound having a polymerizable carbon-carbon double bond, which is represented by a (meth)acrylic resin and a maleimide resin, or an epoxy resin. These thermosetting resins are excellent in heat resistance and adhesiveness, and can be handled in a liquid state if dissolved or dispersed in an organic solvent as required, and thus are excellent in workability. An epoxy resin may be used from the viewpoint of easy availability and reliability. The above-mentioned thermosetting resins may be used alone or in combination of two or more.

エポキシ樹脂は、その1分子中に2個以上のエポキシ基を有する化合物であれば特に制限されない。エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールADなどとエピクロロヒドリドンとから誘導されるエポキシ樹脂などが挙げられる。 The epoxy resin is not particularly limited as long as it is a compound having two or more epoxy groups in its molecule. Examples of the epoxy resin include epoxy resins derived from bisphenol A, bisphenol F, bisphenol AD and the like and epichlorohydridone.

エポキシ樹脂は市販のものを入手することができる。その具体例としては、ビスフェノールA型エポキシ樹脂であるAER−X8501(旭化成株式会社製、商品名)、R−301(三菱ケミカル株式会社製、商品名)、YL−980(三菱ケミカル株式会社製、商品名)、ビスフェノールF型エポキシ樹脂であるYDF−170(東都化成株式会社製、商品名)、YL−983U(三菱ケミカル株式会社製、商品名)、ビスフェノールAD型エポキシ樹脂であるR−1710(三井化学株式会社製、商品名)、フェノールノボラック型エポキシ樹脂であるN−730S(DIC株式会社製、商品名)、Quatrex−2010(ダウ・ケミカル株式会社製、商品名)、クレゾールノボラック型エポキシ樹脂であるYDCN−702S(新日鉄住金化学株式会社製、商品名)、EOCN−100(日本化薬株式会社製、商品名)、多官能エポキシ樹脂であるEPPN−501(日本化薬社製、商品名)、TACTIX−742(ダウ・ケミカル株式会社製、商品名)、VG−3010(三井化学株式会社製、商品名)、1032S(三菱ケミカル株式会社製、商品名)、ナフタレン骨格を有するエポキシ樹脂であるHP−4032(DIC株式会社製、商品名)、脂環式エポキシ樹脂であるEHPE−3150、CEL−3000(共に株式会社ダイセル製、商品名)、DME−100(新日本理化株式会社製、商品名)、EX−216L(ナガセ化成工業株式会社製、商品名)、脂肪族エポキシ樹脂であるW−100(新日本理化株式会社製、商品名)、アミン型エポキシ樹脂であるELM−100(住友化学株式会社製、商品名)、YH−434L(新日鉄住金化学株式会社製、商品名)、TETRAD−X、TETRAD−C(共に三菱ガス化学株式会社製、商品名)、630、630LSD(共に三菱ケミカル株式会社製、商品名)、レゾルシン型エポキシ樹脂であるデナコールEX−201(ナガセ化成工業株式会社製、商品名)、ネオペンチルグリコール型エポキシ樹脂であるデナコールEX−211(ナガセ化成工業株式会社製、商品名)、1,6−ヘキサンジオールジグリシジルエーテルであるデナコールEX−212(ナガセ化成工業株式会社製、商品名)、エチレン・プロピレングリコール型エポキシ樹脂であるデナコールEXシリーズ(EX−810、811、850、851、821、830、832、841、861(いずれもナガセ化成工業株式会社製、商品名))、下記一般式(I)で表されるエポキシ樹脂E−XL−24、E−XL−3L(共に三井化学株式会社製、商品名)が挙げられる。これらのエポキシ樹脂の中でも、イオン性不純物が少なく、かつ反応性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、及びアミン型エポキシ樹脂から選ばれる1種以上を選択してもよい。 A commercially available epoxy resin can be obtained. Specific examples thereof include AER-X8501 (manufactured by Asahi Kasei Co., Ltd., trade name) which is a bisphenol A type epoxy resin, R-301 (manufactured by Mitsubishi Chemical Co., trade name), YL-980 (manufactured by Mitsubishi Chemical Co., Ltd., (Trade name), YDF-170 (manufactured by Tohto Kasei Co., Ltd., trade name) which is a bisphenol F type epoxy resin, YL-983U (manufactured by Mitsubishi Chemical Co., trade name), R-1710 (bisphenol AD type epoxy resin). Mitsui Chemicals, Inc., trade name), phenol novolac type epoxy resin N-730S (DIC Co., Ltd. product name), Quatrex-2010 (Dow Chemical Co., Ltd., trade name), cresol novolac type epoxy resin YDCN-702S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name), EOCN-100 (manufactured by Nippon Kayaku Co., Ltd., trade name), EPPN-501 (manufactured by Nippon Kayaku Co., Ltd., trade name) which is a polyfunctional epoxy resin. ), TACTIX-742 (trade name, manufactured by Dow Chemical Co., Ltd.), VG-3010 (trade name, manufactured by Mitsui Chemicals Co., Ltd.), 1032S (trade name, manufactured by Mitsubishi Chemical Co., Ltd.), an epoxy resin having a naphthalene skeleton. HP-4032 (manufactured by DIC Corporation, trade name), alicyclic epoxy resin EHPE-3150, CEL-3000 (both manufactured by Daicel Corporation, trade name), DME-100 (manufactured by Shin Nippon Rika Co., Ltd., Trade name), EX-216L (Nagase Kasei Co., Ltd., trade name), Aliphatic epoxy resin W-100 (New Nippon Rika Co., Ltd. trade name), Amine type epoxy resin ELM-100 ( Sumitomo Chemical Co., Ltd. product name), YH-434L (Nippon Steel & Sumikin Chemical Co., Ltd. product name), TETRAD-X, TETRAD-C (both Mitsubishi Gas Chemical Co., Ltd. product name), 630, 630LSD (both Mitsubishi Chemical Co., Ltd., trade name), Resorcin-type epoxy resin Denacol EX-201 (Nagase Kasei Kogyo Co., Ltd., trade name), Neopentyl glycol type epoxy resin Denacol EX-211 (Nagase Kasei Co., Ltd.) , Trade name), 1,6-hexanediol diglycidyl ether Denacol EX-212 (manufactured by Nagase Chemical Industry Co., Ltd., trade name), ethylene-propylene glycol type epoxy resin Denacol EX series (EX-810, 811, 850, 851, 821, 830, 832, 841, 861 (all are Nagase Kasei Co., Ltd. Formula company, trade name)), and epoxy resins E-XL-24 and E-XL-3L represented by the following general formula (I) (both manufactured by Mitsui Chemicals, Inc., trade name). Among these epoxy resins, one or more selected from bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and amine type epoxy resin, which have few ionic impurities and excellent reactivity, are selected. May be.

Figure 2019013336
式(I)中、kは1〜5の整数を示す。
Figure 2019013336
In formula (I), k represents an integer of 1 to 5.

上述のエポキシ樹脂は1種を単独で又は2種以上を組み合わせて用いられる。 The above epoxy resins may be used alone or in combination of two or more.

熱硬化性樹脂がエポキシ樹脂を含む場合、反応性希釈剤として、1分子中に1個のみエポキシ基を有するエポキシ化合物を導電性接着剤組成物が更に含有してもよい。そのようなエポキシ化合物は市販品として入手可能である。その具体例としては、PGE(日本化薬株式会社製、商品名)、PP−101(新日鉄住金化学株式会社製、商品名)、ED−502、ED−509、ED−509S(株式会社ADEKA製、商品名)、YED−122(三菱ケミカル株式会社製、商品名)、KBM−403(信越化学工業株式会社製、商品名)、TSL−8350、TSL−8355、TSL−9905(東芝シリコーン株式会社製、商品名)が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。 When the thermosetting resin contains an epoxy resin, the conductive adhesive composition may further contain an epoxy compound having only one epoxy group in one molecule as a reactive diluent. Such epoxy compounds are commercially available. Specific examples thereof include PGE (manufactured by Nippon Kayaku Co., Ltd., trade name), PP-101 (manufactured by Nippon Steel & Sumitomo Metal Corporation, trade name), ED-502, ED-509, ED-509S (manufactured by ADEKA CORPORATION). , Trade name), YED-122 (manufactured by Mitsubishi Chemical Corporation, trade name), KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name), TSL-8350, TSL-8355, TSL-9905 (Toshiba Silicone Co., Ltd.) Manufactured, trade name). These may be used alone or in combination of two or more.

反応性希釈剤を導電性接着剤組成物が含有する場合、その含有量は、本発明による効果を著しく阻害しない範囲であればよく、エポキシ樹脂の全量に対して0.1〜30質量%であってもよい。 When the conductive adhesive composition contains the reactive diluent, the content thereof may be in the range that does not significantly impair the effects of the present invention, and is 0.1 to 30% by mass with respect to the total amount of the epoxy resin. It may be.

熱硬化性樹脂は(メタ)アクリル樹脂を含んでもよい。(メタ)アクリル樹脂は、重合可能な炭素−炭素二重結合を有する化合物から構成される。かかる化合物としては、例えば、モノアクリレート化合物、モノメタクリレート化合物、ジアクリレート化合物、及びジメタクリレート化合物が挙げられる。 The thermosetting resin may include a (meth)acrylic resin. The (meth)acrylic resin is composed of a compound having a polymerizable carbon-carbon double bond. Examples of such compounds include monoacrylate compounds, monomethacrylate compounds, diacrylate compounds, and dimethacrylate compounds.

モノアクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、アミルアクリレート、イソアミルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ヘキサデシルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、ジエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート、2−メトキシエチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、ジシクロペンテニルオキシエチルアクリレート、2−フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2−ベンゾイルオキシエチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、ベンジルアクリレート、2−シアノエチルアクリレート、γ−アクリロキシエチルトリメトキシシラン、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、アクリロキシエチルホスフェート及びアクリロキシエチルフェニルアシッドホスフェートが挙げられる。 Examples of the monoacrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, amyl acrylate, isoamyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, and 2-. Ethylhexyl acrylate, nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl acrylate, tridecyl acrylate, hexadecyl acrylate, stearyl acrylate, isostearyl acrylate, cyclohexyl acrylate, isobornyl acrylate, diethylene glycol acrylate, polyethylene glycol acrylate, polypropylene glycol acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-butoxyethyl acrylate, methoxydiethylene glycol acrylate, methoxypolyethylene glycol acrylate, dicyclopentenyloxyethyl acrylate, 2-phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxypolyethylene glycol acrylate, 2 -Benzoyloxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, benzyl acrylate, 2-cyanoethyl acrylate, γ-acryloxyethyl trimethoxysilane, glycidyl acrylate, tetrahydrofurfuryl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, Included are acryloxyethyl phosphate and acryloxyethyl phenyl acid phosphate.

モノメタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、t−ブチルメタクリレート、アミルメタクリレート、イソアミルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、ヘキサデシルメタクリレート、ステアリルメタクリレート、イソステアリルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、ポリプロピレングリコールメタクリレート、2−メトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、2−フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシポリエチレングリコールメタクリレート、2−ベンゾイルオキシエチルメタクリレート、2−ヒドロキシ−3−フェノキシプロピルメタクリレート、ベンジルメタクリレート、2−シアノエチルメタクリレート、γ−メタクリロキシエチルトリメトキシシラン、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、メタクリロキシエチルホスフェート及びメタクリロキシエチルフェニルアシッドホスフェートが挙げられる。 Examples of the monomethacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2- Ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, stearyl methacrylate, isostearyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, diethylene glycol methacrylate, polyethylene glycol methacrylate, polypropylene glycol methacrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2-butoxyethyl methacrylate, methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, dicyclopentenyloxyethyl methacrylate, 2-phenoxyethyl methacrylate, phenoxydiethylene glycol methacrylate, phenoxypolyethylene glycol methacrylate, 2 -Benzoyloxyethyl methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, benzyl methacrylate, 2-cyanoethyl methacrylate, γ-methacryloxyethyl trimethoxysilane, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, Methacryloxyethyl phosphate and methacryloxyethyl phenyl acid phosphate are mentioned.

ジアクリレート化合物としては、例えば、エチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、1,3−ブタンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルアクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジアクリレート、ビス(アクリロキシプロピル)ポリジメチルシロキサン及びビス(アクリロキシプロピル)メチルシロキサン−ジメチルシロキサンコポリマーが挙げられる。 Examples of the diacrylate compound include ethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,3-butanediol diacrylate, neo. Pentyl glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, bisphenol A, bisphenol F or bisphenol AD 1 mol and glycidyl acrylate 2 Moles of reactants, bisphenol A, bisphenol F or bisphenol AD polyethylene oxide adduct diacrylate, bisphenol A, bisphenol F or bisphenol AD polypropylene oxide adduct diacrylate, bis(acryloxypropyl)polydimethylsiloxane and bis (Acryloxypropyl)methylsiloxane-dimethylsiloxane copolymers.

ジメタクリレート化合物としては、例えば、エチレングリコールジメタクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、1,3−ブタンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルメタクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジメタクリレート、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物、ビス(メタクリロキシプロピル)ポリジメチルシロキサン及びビス(メタクリロキシプロピル)メチルシロキサン−ジメチルシロキサンコポリマーが挙げられる。 Examples of the dimethacrylate compound include ethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,3-butanediol dimethacrylate, and neo. Pentyl glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, bisphenol A, bisphenol F or bisphenol AD 1 mol and glycidyl methacrylate 2 Moles of reactant, dimethacrylate of polyethylene oxide adduct of bisphenol A, bisphenol F or bisphenol AD, polypropylene oxide adduct of bisphenol F or bisphenol AD, bis(methacryloxypropyl)polydimethylsiloxane and bis(methacryloxypropyl)methyl Included are siloxane-dimethyl siloxane copolymers.

これらの化合物は1種を単独で又は2種以上を組み合わせて用いられる。熱硬化性樹脂が(メタ)アクリル樹脂を含む場合、これらの化合物をあらかじめ重合してから用いてもよく、これらの化合物を導電性粒子、フラックス活性剤等とともに混合し、混合と同時に重合を行ってもよい。これらの分子中に重合可能な炭素−炭素二重結合を有する化合物は1種を単独で又は2種以上を組み合わせて用いられる。 These compounds may be used alone or in combination of two or more. When the thermosetting resin contains a (meth)acrylic resin, these compounds may be preliminarily polymerized before use, and these compounds are mixed with conductive particles, a flux activator, etc., and polymerization is performed at the same time as mixing. May be. The compound having a polymerizable carbon-carbon double bond in these molecules may be used alone or in combination of two or more.

熱硬化性樹脂が(メタ)アクリル樹脂を含む場合、導電性接着剤組成物はラジカル重合開始剤を含有してもよい。ラジカル重合開始剤は、ボイドを有効に抑制する観点等から、有機過酸化物であってもよい。接着剤成分の硬化性及び粘度安定性を向上させる観点から、有機過酸化物の分解温度が130℃〜200℃であってもよい。 When the thermosetting resin contains a (meth)acrylic resin, the conductive adhesive composition may contain a radical polymerization initiator. The radical polymerization initiator may be an organic peroxide from the viewpoint of effectively suppressing voids. From the viewpoint of improving the curability and viscosity stability of the adhesive component, the decomposition temperature of the organic peroxide may be 130°C to 200°C.

ラジカル重合開始剤としては、通常用いられているものを使用できる。その例としては、過酸化ベンゾイル、t−ブチルパーオキシ−2−エチルヘキサノエートなどの過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物などが挙げられる。 As the radical polymerization initiator, a commonly used one can be used. Examples thereof include benzoyl peroxide, peroxides such as t-butylperoxy-2-ethylhexanoate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile.

ラジカル重合開始剤の含有量は、導電性接着剤組成物の総量に対して0.01〜20質量%、0.1〜10質量%、又は0.5〜5質量%であってもよい。 The content of the radical polymerization initiator may be 0.01 to 20% by mass, 0.1 to 10% by mass, or 0.5 to 5% by mass with respect to the total amount of the conductive adhesive composition.

(メタ)アクリル樹脂としては市販のものを用いることができる。その具体例としては、FINEDIC A−261(DIC株式会社製、商品名)、FINEDIC A−229−30(DIC株式会社製、商品名)等が挙げられる。 As the (meth)acrylic resin, commercially available products can be used. Specific examples thereof include FINEDIC A-261 (manufactured by DIC Corporation, trade name), FINEDIC A-229-30 (manufactured by DIC Corporation, trade name) and the like.

導電性接着剤組成物における熱硬化性樹脂の含有量は、導電性接着剤組成物の全体質量に対して、1〜60質量%、5〜40質量%、又は10〜30質量%であってもよい。 The content of the thermosetting resin in the conductive adhesive composition is 1 to 60% by mass, 5 to 40% by mass, or 10 to 30% by mass with respect to the total mass of the conductive adhesive composition. Good.

(C)フラックス活性剤は、導電性粒子の表面に形成された酸化膜を除去する機能を示す成分である。このようなフラックス活性剤を用いることにより、導電性粒子の溶融凝集の妨げとなる酸化膜が除去される。一実施形態に係るフラックス活性剤は、水酸基及びカルボキシル基を含有する化合物を含む。この化合物は、良好なフラックス活性を示し、かつ熱硬化性樹脂として用いることのできるエポキシ樹脂と反応性を示すことができる。水酸基及びカルボキシル基を有する化合物は、導電性粒子の粒径が小さく、酸化膜量が多い場合であっても良好な酸化膜除去能を示す点から、脂肪族ジヒドロキシカルボン酸であってもよい。具体的には、フラックス活性剤は、下記一般式(V)で表される化合物又は酒石酸を含んでもよい。 The flux activator (C) is a component having a function of removing an oxide film formed on the surface of the conductive particles. By using such a flux activator, the oxide film that hinders the melting and aggregation of the conductive particles is removed. The flux activator according to one embodiment includes a compound containing a hydroxyl group and a carboxyl group. This compound has good flux activity and can be reactive with epoxy resins that can be used as thermosetting resins. The compound having a hydroxyl group and a carboxyl group may be an aliphatic dihydroxycarboxylic acid from the viewpoint of exhibiting a good oxide film removing ability even when the conductive particles have a small particle size and a large oxide film amount. Specifically, the flux activator may contain a compound represented by the following general formula (V) or tartaric acid.

Figure 2019013336
Figure 2019013336

式(V)中、R5は炭素数1〜5のアルキル基を示す。本発明による上述の効果をより有効に発揮する観点から、R5がメチル基、エチル基又はプロピル基であってもよい。m及びnはそれぞれ独立に0〜5の整数を示す。本発明による上述の効果をより有効に発揮する観点から、mが0でnが1であってもよいし、又は、m及びnの両方が1であってもよい。 In formula (V), R5 represents an alkyl group having 1 to 5 carbon atoms. From the viewpoint of more effectively exerting the above-mentioned effects of the present invention, R5 may be a methyl group, an ethyl group or a propyl group. m and n each independently represent an integer of 0 to 5. From the viewpoint of more effectively exerting the above-mentioned effects of the present invention, m may be 0 and n may be 1, or both m and n may be 1.

上記一般式(V)で表される化合物としては、例えば、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(ヒドロキシメチル)ブタン酸、2,2−ビス(ヒドロキシメチル)ペンタン酸等が挙げられる。フラックス活性剤は、これらから選ばれる少なくとも1種の化合物を含んでいてもよい。 Examples of the compound represented by the general formula (V) include 2,2-bis(hydroxymethyl)propionic acid, 2,2-bis(hydroxymethyl)butanoic acid, and 2,2-bis(hydroxymethyl)pentane. Acid etc. are mentioned. The flux activator may contain at least one compound selected from these.

フラックス活性剤の含有量は、本発明による上記効果をより有効に発揮する観点から、導電性粒子の質量に対して、0.5〜50質量%、0.5〜40質量%、又は4.0〜8.5質量%であてもよい。さらに、保存安定性、導電性の観点から、フラックス活性剤の含有量は1〜35質量%であってもよい。フラックス活性剤の含有量が0.5質量%以上であると、金属の溶融性が増加するために導電性向上の効果が小さくなく傾向がある。フラックス活性剤の含有量が50質量%以下であると、保存安定性、印刷性が向上する傾向がある。 The content of the flux activator is 0.5 to 50% by mass, 0.5 to 40% by mass, or 4. with respect to the mass of the conductive particles, from the viewpoint of more effectively exhibiting the above-described effects of the present invention. It may be 0 to 8.5 mass %. Further, the content of the flux activator may be 1 to 35% by mass from the viewpoint of storage stability and conductivity. When the content of the flux activator is 0.5% by mass or more, the meltability of the metal increases, so that the effect of improving conductivity tends to be small. When the content of the flux activator is 50% by mass or less, storage stability and printability tend to be improved.

(D)硬化触媒は、(B)熱硬化性樹脂の硬化を促進する成分である。(D)硬化触媒は、所望の硬化温度における硬化性、可使時間の長さ、硬化物の耐熱性などの観点からイミダゾール基を有する化合物であってもよく、イミダゾール系エポキシ樹脂硬化剤であってもよい。イミダゾール系エポキシ樹脂硬化剤の市販品としては、2P4MHZ―PW(2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール)、2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)、C11Z−CN(1−シアノエチル−2−ウンデシルイミダゾール)、2E4MZ−CN(1−シアノエチル−2−エチル−4−メチルイミダゾール)、2PZ―CN(1−シアノエチル−2−フェニルイミダゾール)、2MZ―A(2,4−ジアミノ−6−[2’メチルイミダゾリル−(1’)]−エチル−s−トリアジン)、2E4MZ−A(2,4−ジアミノ−6−[2’−エチル−4’メチルイミダゾリル−(1’)]−エチル−s−トリアジン)、2MAOK―PW(2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物)(いずれも四国化成工業株式会社製、商品名)等が挙げられる。これらの硬化触媒は1種を単独で又は2種以上を組み合わせて用いられる。 The (D) curing catalyst is a component that accelerates the curing of the (B) thermosetting resin. The curing catalyst (D) may be a compound having an imidazole group from the viewpoints of curability at a desired curing temperature, length of pot life, heat resistance of the cured product, etc., and is an imidazole-based epoxy resin curing agent. May be. Commercially available imidazole-based epoxy resin curing agents include 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole), 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole), C11Z-. CN (1-cyanoethyl-2-undecylimidazole), 2E4MZ-CN (1-cyanoethyl-2-ethyl-4-methylimidazole), 2PZ-CN (1-cyanoethyl-2-phenylimidazole), 2MZ-A (2 ,4-diamino-6-[2'methylimidazolyl-(1')]-ethyl-s-triazine), 2E4MZ-A(2,4-diamino-6-[2'-ethyl-4'methylimidazolyl-( 1')]-Ethyl-s-triazine), 2MAOK-PW (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct) (both Shikoku Kasei Co., Ltd., trade name) and the like. These curing catalysts may be used alone or in combination of two or more.

硬化触媒の含有量は、エポキシ樹脂100質量部に対して0.01〜90質量部、又は0.1〜50質量部であってもよい。硬化触媒の含有量が0.01質量部以上であると硬化性が向上する傾向がある。硬化触媒の含有量が90質量部以下であると、導電性接着剤組成物を取り扱う際の作業性が向上する傾向がある。 The content of the curing catalyst may be 0.01 to 90 parts by mass, or 0.1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin. When the content of the curing catalyst is 0.01 part by mass or more, the curability tends to be improved. When the content of the curing catalyst is 90 parts by mass or less, workability when handling the conductive adhesive composition tends to be improved.

導電性接着剤組成物は、上述の各成分の他、必要に応じて、応力緩和のための可撓剤、作業性向上のための希釈剤、接着力向上剤、濡れ性向上剤及び消泡剤からなる群より選ばれる1種以上の添加剤を含んでもよい。これらの成分の他、本発明による効果を阻害しない範囲において各種添加剤を導電性接着剤組成物が含んでいてもよい。 In addition to the above-mentioned components, the conductive adhesive composition may include a flexible agent for stress relaxation, a diluent for improving workability, an adhesive strength improving agent, a wettability improving agent, and a defoaming agent, if necessary. One or more additives selected from the group consisting of agents may be included. In addition to these components, the conductive adhesive composition may contain various additives as long as the effects of the present invention are not impaired.

導電性接着剤組成物は、接着力向上の目的で、シランカップリング剤、チタンカップリング剤などのカップリング剤を含有していてもよい。シランカップリング剤としては、例えば、信越化学工業株式会社製、商品名「KBM−573」などが挙げられる。濡れ性向上の目的で、アニオン系界面活性剤、フッ素系界面活性剤等を導電性接着剤組成物が含有してもよい。導電性接着剤組成物は、消泡剤としてシリコーン油等を含有してもよい。接着力向上剤、濡れ性向上剤、消泡剤は、それぞれ1種を単独で又は2種以上を組み合わせて用いられる。これらの含有量は、導電性接着剤組成物の全体質量に対して、0.1〜10質量%であってもよい。 The conductive adhesive composition may contain a coupling agent such as a silane coupling agent or a titanium coupling agent for the purpose of improving the adhesive strength. Examples of the silane coupling agent include "KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd., and the like. For the purpose of improving wettability, the conductive adhesive composition may contain an anionic surfactant, a fluorinated surfactant and the like. The conductive adhesive composition may contain silicone oil or the like as a defoaming agent. The adhesiveness improver, the wettability improver, and the defoaming agent may be used alone or in combination of two or more. The content of these may be 0.1 to 10 mass% with respect to the total mass of the conductive adhesive composition.

可撓剤としては、液状ポリブタジエン(宇部興産株式会社製、商品名「CTBN−1300×31」、「CTBN−1300×9」、日本曹達株式会社製、商品名「NISSO−PB−C−2000」)などが挙げられる。可撓剤の含有量は、熱硬化性樹脂の質量100質量部に対して、0.1〜500質量部であってもよい。 As the flexibilizer, liquid polybutadiene (manufactured by Ube Industries, Ltd., trade name “CTBN-1300×31”, “CTBN-1300×9”, manufactured by Nippon Soda Co., Ltd., trade name “NISSO-PB-C-2000” ) And the like. The content of the flexible agent may be 0.1 to 500 parts by mass with respect to 100 parts by mass of the thermosetting resin.

導電性接着剤組成物は、ペースト組成物の作製時の作業性及び使用時の塗布作業性をより良好にするため、必要に応じて希釈剤を含有することができる。希釈剤は、ブチルカルビトール、ブチルカルビトールアセテート、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、ジプロピレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、α−テルピネオール等の比較的沸点の高い有機溶剤であってもよい。希釈剤の含有量は、導電性接着剤組成物の全体質量に対して0.1〜30質量%であってもよい。 The conductive adhesive composition may contain a diluent, if necessary, in order to improve workability during preparation of the paste composition and coating workability during use. The diluent is an organic solvent having a relatively high boiling point such as butyl carbitol, butyl carbitol acetate, butyl cellosolve, carbitol, butyl cellosolve acetate, carbitol acetate, dipropylene glycol monomethyl ether, ethylene glycol diethyl ether and α-terpineol. May be. The content of the diluent may be 0.1 to 30 mass% with respect to the total mass of the conductive adhesive composition.

導電性接着剤組成物は、フィラーを含有してもよい。フィラーとしては、例えば、アクリルゴム、ポリスチレンなどのポリマー粒子、ダイヤモンド、窒化ホウ素、窒化アルミニウム、アルミナ、シリカなどの無機粒子が挙げられる。これらのフィラーは1種を単独で又は2種以上を混合して用いてもよい。 The conductive adhesive composition may contain a filler. Examples of the filler include polymer particles such as acrylic rubber and polystyrene, and inorganic particles such as diamond, boron nitride, aluminum nitride, alumina, and silica. You may use these fillers individually by 1 type or in mixture of 2 or more types.

導電性接着剤組成物は、エポキシ樹脂の硬化速度を調整するために硬化剤を更に含有してもよい。 The conductive adhesive composition may further contain a curing agent to adjust the curing rate of the epoxy resin.

硬化剤としては、従来用いられるものであれば特に限定されず、市販のものが入手可能である。市販の硬化剤としては、例えば、フェノールノボラック樹脂であるH−1(明和化成株式会社製、商品名)、VR−9300(三井化学株式会社製、商品名)、フェノールアラルキル樹脂であるXL−225(三井化学株式会社製、商品名)、下記一般式(II)で表されるp−クレゾールノボラック樹脂であるMTPC(本州化学工業株式会社製、商品名)、アリル化フェノールノボラック樹脂であるAL−VR−9300(三井化学株式会社製、商品名)、下記一般式(III)で表される特殊フェノール樹脂であるPP−700−300(JXTGエネルギー株式会社製、商品名)が挙げられる。 The curing agent is not particularly limited as long as it is conventionally used, and a commercially available one is available. Examples of commercially available curing agents include phenol novolac resin H-1 (manufactured by Meiwa Kasei Co., Ltd., trade name), VR-9300 (Mitsui Chemicals, Inc., trade name), and phenol aralkyl resin XL-225. (Trade name, manufactured by Mitsui Chemicals, Inc.), MTPC (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), which is a p-cresol novolac resin represented by the following general formula (II), and AL-, which is an allylated phenol novolac resin. VR-9300 (manufactured by Mitsui Chemicals, Inc., trade name) and PP-700-300 (manufactured by JXTG Energy Co., Ltd., trade name), which is a special phenol resin represented by the following general formula (III), may be mentioned.

Figure 2019013336
Figure 2019013336

式(II)中、複数のR1は、それぞれ独立に1価の炭化水素基を示す。R1はメチル基又はアリル基であってもよい。qは1〜5の整数を示す。式(III)中、R2はアルキル基を示す。R2はメチル基又はエチル基であってもよい。R3は水素原子又は1価の炭化水素基を示す。pは2〜4の整数を示す。 In formula (II), a plurality of R1's each independently represent a monovalent hydrocarbon group. R1 may be a methyl group or an allyl group. q represents an integer of 1 to 5. In formula (III), R2 represents an alkyl group. R2 may be a methyl group or an ethyl group. R3 represents a hydrogen atom or a monovalent hydrocarbon group. p shows the integer of 2-4.

硬化剤としては、ジシアンジアミド等、従来硬化剤として用いられているものを用いることができ、市販品が入手可能である。市販品としては、例えば、下記一般式(IV)で表される二塩基酸ジヒドラジドであるADH、PDH及びSDH(いずれも株式会社日本ファインケム製、商品名)、エポキシ樹脂とアミン化合物との反応物からなるマイクロカプセル型硬化剤であるノバキュア(旭化成株式会社製、商品名)が挙げられる。これらの硬化剤は1種を単独で又は2種以上を組み合わせて用いられる。 As the curing agent, those conventionally used as a curing agent such as dicyandiamide can be used, and commercially available products are available. Examples of commercially available products include, for example, dibasic acid dihydrazide represented by the following general formula (IV): ADH, PDH, and SDH (all manufactured by Nippon Fine Chem Co., Ltd., trade name), a reaction product of an epoxy resin and an amine compound. Microcapsule type hardener consisting of Novacure (manufactured by Asahi Kasei Corp., trade name). These curing agents may be used alone or in combination of two or more.

Figure 2019013336
Figure 2019013336

式(IV)中、R4は2価の芳香族基又は炭素数1〜12の直鎖若しくは分岐鎖のアルキレン基を示す。R4はm−フェニレン基又はp−フェニレン基であってもよい。 In formula (IV), R4 represents a divalent aromatic group or a linear or branched alkylene group having 1 to 12 carbon atoms. R4 may be a m-phenylene group or a p-phenylene group.

保存安定性及び硬化時間の観点からは、導電性接着剤は硬化剤を実質的に含有しなくてもよい。「実質的に含有しない」とは、導電性接着剤組成物の全体質量に対して0.05質量%以下であることをいう。 From the viewpoint of storage stability and curing time, the conductive adhesive may not contain a curing agent substantially. The term "substantially free from" means that the content is 0.05% by mass or less based on the total mass of the conductive adhesive composition.

導電性接着剤組成物において、上記効果をより有効に発揮する観点から、(A)導電性粒子に対する(A)導電性粒子以外の成分(以下、接着剤成分という)の配合比(接着剤成分/導電性粒子)は、これらの合計を100としたときに、質量比で5/95〜50/50であってもよい。接着性、導電性及び作業性の観点から、上記配合比は10/90〜30/70であってもよい。この配合比が5/95以上であると、導電性接着剤組成物の粘度が高くなり過ぎないために作業性が確保し易い傾向、及び、接着性向上の効果が大きくなる傾向がある。この配合比率が50/50以上であると、導電性向上の効果が大きくなる傾向がある。 In the conductive adhesive composition, from the viewpoint of more effectively exhibiting the above effects, the compounding ratio of the component (hereinafter referred to as the adhesive component) other than the (A) conductive particles to the (A) conductive particles (the adhesive component). The mass ratio of the conductive particles may be 5/95 to 50/50 when the total of these particles is 100. From the viewpoint of adhesiveness, conductivity, and workability, the compounding ratio may be 10/90 to 30/70. When the blending ratio is 5/95 or more, the viscosity of the conductive adhesive composition does not become too high, so that workability tends to be ensured, and the effect of improving the adhesiveness tends to increase. If the mixing ratio is 50/50 or more, the effect of improving the conductivity tends to be large.

以上説明した各成分は、それぞれにおいて例示されたもののいずれを組み合わせてもよい。 Each of the components described above may be combined with any of those exemplified.

導電性接着剤組成物は、上述の各成分を一度に又は複数回に分けて、必要に応じて加熱すると共に、混合、溶解、解粒混練又は分散することにより得られる。導電性接着剤組成物は、各成分が均一に分散したペースト状であってもよい。この際に用いられる分散・溶解装置としては、通常の撹拌器、らいかい器、3本ロール、プラネタリーミキサー等が挙げられる。導電性接着剤組成物は、25℃でペースト状であってもよい。導電性接着剤組成物の粘度が25℃で5〜400Pa・sであってもよい。 The electrically conductive adhesive composition can be obtained by heating each of the above-mentioned components at once or a plurality of times, if necessary, and mixing, dissolving, disintegrating, kneading, or dispersing. The conductive adhesive composition may be in the form of a paste in which each component is uniformly dispersed. Examples of the dispersing/dissolving device used in this case include a usual stirrer, a raker, a three-roller, and a planetary mixer. The conductive adhesive composition may be in paste form at 25°C. The viscosity of the conductive adhesive composition may be 5 to 400 Pa·s at 25°C.

以上説明した本実施形態の導電性接着剤組成物によると、小面積の電極パッド、又は挟ピッチで配置された電極を有する回路基板に対して、電極間のショートを引き起こすことなく搭載部品を良好な導電性で接続することが可能である。本実施形態の導電性接着剤組成物は、挟ピッチで配置された電極を有する回路基板に電子部品を実装する工程において、リフロー加熱温度を低温化することができる。低温化すると回路基板の反りを抑制することができる。本実施形態の導電性接着剤組成物によって形成される接続部は、導電性粒子を含む導電部と、絶縁性の接着剤成分から形成された樹脂部とを有することができる。樹脂部による補強は、接続構造体の温度サイクル試験耐性向上に寄与し得る。 According to the conductive adhesive composition of the present embodiment described above, it is possible to provide a mounted component to a circuit board having a small area electrode pad or electrodes arranged at a narrow pitch without causing a short circuit between the electrodes. It is possible to connect with various conductivity. The conductive adhesive composition of this embodiment can lower the reflow heating temperature in the step of mounting an electronic component on a circuit board having electrodes arranged at a sandwiching pitch. When the temperature is lowered, the warp of the circuit board can be suppressed. The connection part formed by the conductive adhesive composition of the present embodiment can have a conductive part containing conductive particles and a resin part formed of an insulating adhesive component. Reinforcement with the resin portion can contribute to improving the temperature cycle test resistance of the connection structure.

次に、接続構造体の一例としての電子部品搭載基板について、図1及び図2を参照して説明する。 Next, an electronic component mounting board as an example of the connection structure will be described with reference to FIGS. 1 and 2.

図1は、接続構造体の一実施形態を示す模式断面図である。図1に示す接続構造体1は、基材5及び基材5の主面上に形成された2以上の接続端子7を有する回路基板2と、回路基板2と対向する電子部品3と、回路基板2と電子部品3との間に配置され、これらを接合している接続部8と、を備える、電子部品搭載基板である。電子部品3は、本体部4及び2以上の接続端子6を有する。接続部8は、導電部8aと、導電部8aの周囲に形成された樹脂部8bとから構成される。接続部8は、回路基板2の接続端子7と電子部品3の接続端子6との間に配置され、それらを電気的に接続している。接続部8は、上述の実施形態に係る導電性接着剤組成物の硬化物である。導電部8aは、主として、導電性接着剤組成物に含まれていた導電性粒子の凝集体を含む。樹脂部8bは、主として、導電性接着剤組成物に含まれていた、熱硬化性樹脂及び硬化触媒を含む接着剤成分の硬化物を含む。ただし、適切な絶縁性が維持される範囲で、樹脂部8bが少量の導電性粒子を含み得る。回路基板2と電子部品3とは、接続部8によって互いに接合されると共に電気的に接続されている。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a connection structure. The connection structure 1 shown in FIG. 1 includes a circuit board 2 having a base material 5 and two or more connection terminals 7 formed on the main surface of the base material 5, an electronic component 3 facing the circuit board 2, and a circuit. The electronic component mounting substrate is provided with a connecting portion 8 that is disposed between the substrate 2 and the electronic component 3 and that joins them. The electronic component 3 has a main body portion 4 and two or more connection terminals 6. The connecting portion 8 is composed of a conductive portion 8a and a resin portion 8b formed around the conductive portion 8a. The connection portion 8 is arranged between the connection terminal 7 of the circuit board 2 and the connection terminal 6 of the electronic component 3, and electrically connects them. The connection part 8 is a cured product of the conductive adhesive composition according to the above-described embodiment. The conductive portion 8a mainly includes an aggregate of conductive particles contained in the conductive adhesive composition. The resin portion 8b mainly includes a cured product of an adhesive component that is contained in the conductive adhesive composition and includes a thermosetting resin and a curing catalyst. However, the resin portion 8b may include a small amount of conductive particles as long as the appropriate insulating property is maintained. The circuit board 2 and the electronic component 3 are joined to each other and electrically connected by the connecting portion 8.

接続構造体1は、例えば、それぞれ2以上の接続端子7,6を有する回路基板2及び電子部品3を準備し、回路基板2の接続端子7又は電子部品3の接続端子6上に導電性接着剤組成物を塗布する工程と、塗布された導電性接着剤組成物を介して回路基板2の接続端子7と電子部品3の接続端子6とが対向するように、回路基板2上に電子部品3を配置して、回路基板2、導電性接着剤組成物及び電子部品3を有する仮接続体を得る工程と、仮接続体を加熱することによって、導電性接着剤組成物を硬化するとともに、導電性接着剤組成物中の導電性粒子を含み回路基板2の接続端子7と電子部品3の接続端子6とを電気的に接続する導電部8aを形成し、それにより、導電部8aを含む接続部8によって回路基板2と電子部品3とが接合されている接続構造体を得る工程とを含む方法によって、製造することができる。 For the connection structure 1, for example, a circuit board 2 and an electronic component 3 each having two or more connection terminals 7 and 6 are prepared, and conductive bonding is performed on the connection terminal 7 of the circuit substrate 2 or the connection terminal 6 of the electronic component 3. Of the electronic component on the circuit board 2 such that the step of applying the agent composition and the connection terminal 7 of the circuit board 2 and the connection terminal 6 of the electronic component 3 face each other via the applied conductive adhesive composition. 3 is arranged to obtain a temporary connection body having the circuit board 2, the conductive adhesive composition and the electronic component 3, and the conductive connection agent is cured by heating the temporary connection body, and A conductive portion 8a containing conductive particles in the conductive adhesive composition and electrically connecting the connection terminal 7 of the circuit board 2 and the connection terminal 6 of the electronic component 3 is formed, thereby containing the conductive portion 8a. It can be manufactured by a method including a step of obtaining a connection structure in which the circuit board 2 and the electronic component 3 are joined by the connection portion 8.

導電性接着剤組成物は、ディスペンス法、スクリーン印刷法、スタンピング法等の方法によって回路基板又は電子部品の接続端子に塗布することができる。仮接続体の加熱は、オーブン又はリフロー炉等の加熱装置を用いて行うことができる。必要により仮接続体を加圧下で加熱してもよい。導電性接着剤組成物の加熱硬化の過程で、通常、導電部8a及び樹脂部8bを有する接続部8が形成される。導電部8aは、加熱により溶融した導電性粒子が融合することで形成された凝集体を含む。この凝集体が回路基板及び電子部品の接続端子と接合して金属接続パスを形成する。 The conductive adhesive composition can be applied to a connection terminal of a circuit board or an electronic component by a method such as a dispensing method, a screen printing method, a stamping method. The heating of the temporary connection body can be performed using a heating device such as an oven or a reflow furnace. If necessary, the temporary connection body may be heated under pressure. In the process of heat-curing the conductive adhesive composition, the connecting portion 8 having the conductive portion 8a and the resin portion 8b is usually formed. The conductive portion 8a includes an aggregate formed by fusing conductive particles melted by heating. This aggregate joins with the connection terminals of the circuit board and the electronic component to form a metal connection path.

図2に示す接続構造体1の場合、導電性接着剤組成物から形成された導電部8aと、はんだボール10とが設けられている。はんだボール10は、電子部品3の接続端子6上に設けられている。はんだボール10と回路基板2の接続端子7とが、導電部8aによって電気的に接続されている。すなわち、導電部8a及びはんだボール10を介して、回路基板2の接続端子7と電子部品3の接続端子6とが電気的に接続されている。回路基板2の接続端子7は、互いに200μm以下の間隔を空けて基材5の主面上に配置されていてもよい。 In the case of the connection structure 1 shown in FIG. 2, a conductive portion 8a formed of a conductive adhesive composition and a solder ball 10 are provided. The solder balls 10 are provided on the connection terminals 6 of the electronic component 3. The solder ball 10 and the connection terminal 7 of the circuit board 2 are electrically connected by the conductive portion 8a. That is, the connection terminal 7 of the circuit board 2 and the connection terminal 6 of the electronic component 3 are electrically connected via the conductive portion 8a and the solder ball 10. The connection terminals 7 of the circuit board 2 may be arranged on the main surface of the base material 5 with a space of 200 μm or less from each other.

これら接続構造体において、樹脂部8bによって導電部8aが補強されている。接続構造体が温度サイクル試験による熱履歴を受けると、反りの発生等のために、接続部及びその他の構成部材に大きな歪みが掛かる。導電部8aが樹脂部8bによって補強されていることから、基材の変形が樹脂部7bで食い止められ、接続部におけるクラックの発生が抑制される。 In these connection structures, the conductive portion 8a is reinforced by the resin portion 8b. When the connection structure is subjected to heat history due to the temperature cycle test, a large amount of strain is applied to the connection portion and other constituent members due to warpage and the like. Since the conductive portion 8a is reinforced by the resin portion 8b, the deformation of the base material is stopped by the resin portion 7b, and the generation of cracks at the connection portion is suppressed.

接続構造体の厚み方向に沿う断面を、電子部品の接続端子が最大幅を示す位置で見たときに、導電部と樹脂部との面積比が、5:95〜80:20であってもよい。 Even when the cross-section along the thickness direction of the connection structure is viewed at the position where the connection terminal of the electronic component shows the maximum width, the area ratio between the conductive portion and the resin portion is 5:95 to 80:20. Good.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.

例えば、回路基板がLED搭載用の支持基板で、電子部品がLED素子であると、LED搭載用の支持基板と、LED素子と、支持基板とLED素子とを接着するとともに電気的に接続する接続部とを備えるLED装置が構成される。接続部は、導電性接着剤組成物の硬化物である。LED搭載用の支持基板及びLED素子は、特に制限されない。 For example, when the circuit board is a support board for mounting LEDs and the electronic component is an LED element, the connection board for mounting LEDs, the LED elements, and the connection for bonding and electrically connecting the support board and the LED elements And an LED device are configured. The connection part is a cured product of the conductive adhesive composition. The support substrate for mounting the LED and the LED element are not particularly limited.

回路基板がセンサ素子搭載用の支持基板で、電子部品がセンサ素子であると、センサ素子搭載用の支持基板と、センサ素子と、支持基板とセンサ素子とを接着するとともに電気的に接続する接続部とを備える、センサ素子を内蔵したモジュールが構成される。接続部は、導電性接着剤組成物の硬化物である。センサ素子搭載用の支持基板及びセンサ素子は、特に制限されない。 When the circuit board is the support substrate for mounting the sensor element and the electronic component is the sensor element, the connection for electrically connecting the support substrate for mounting the sensor element, the sensor element, and the support substrate and the sensor element together And a module having a built-in sensor element. The connection part is a cured product of the conductive adhesive composition. The support substrate for mounting the sensor element and the sensor element are not particularly limited.

電子部品は、ドライバーIC、センサ素子を内蔵したモジュール部品、ショットキーバリアダイオード、及び熱電変換素子からなる群より選ばれる少なくとも1種であってもよい。基材がフレキシブル基材であってもよい。接続構造体は、樹脂部の周囲に設けられた封止部材を更に有していてもよい。 The electronic component may be at least one selected from the group consisting of a driver IC, a module component incorporating a sensor element, a Schottky barrier diode, and a thermoelectric conversion element. The substrate may be a flexible substrate. The connection structure may further include a sealing member provided around the resin portion.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例で用いた材料は、下記の方法で作製したもの、あるいは入手したものである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The materials used in Examples and Comparative Examples are those produced by the following method or those obtained.

[実施例1]
YL980(三菱ケミカル株式会社製、ビスフェノールF型エポキシ樹脂の商品名)17.7質量部と、2P4MHZ−PW(四国化成工業株式会社製、イミダゾール化合物の商品名)0.9質量部と、フラックス活性剤としてのBHPA(2,2−ビス(ヒドロキシメチル)プロピオン酸)6.4質量部とを混合し、混合物を3本ロールに3回通して、接着剤成分を調製した。
[Example 1]
17.7 parts by mass of YL980 (trade name of bisphenol F type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd.), 0.9 parts by mass of 2P4MHZ-PW (trade name of imidazole compound manufactured by Shikoku Chemicals Co., Ltd.), and flux activity BHPA (2,2-bis(hydroxymethyl)propionic acid) as an agent was mixed with 6.4 parts by mass, and the mixture was passed through a three-roll three times to prepare an adhesive component.

次に、接着剤成分20質量部に対して、導電性粒子であるSn42−Bi58粒子(平均粒径5μm、三井金属鉱業株式会社製、融点:138℃)75質量部を加え、得られた混合物をプラネタリーミキサーを用いて撹拌し、500Pa以下で10分間脱泡処理を行うことにより導電性接着剤組成物を得た。 Next, 75 parts by mass of Sn42-Bi58 particles (average particle size 5 μm, manufactured by Mitsui Mining & Smelting Co., Ltd., melting point: 138° C.), which are conductive particles, were added to 20 parts by mass of the adhesive component, and the resulting mixture was obtained. Was stirred using a planetary mixer, and defoaming treatment was performed at 500 Pa or less for 10 minutes to obtain a conductive adhesive composition.

[実施例2〜9、比較例1〜9]
表1に示す組成に変更した以外は実施例1と同様にして、実施例2〜9及び比較例1〜6の導電性接着剤組成物を得た。比較例7〜9では下記の市販の導電性接着剤を用いた。
<導電性粒子>
Sn42−Bi58はんだ粒子(三井金属鉱業株式会社製、融点138℃)
・Sn42−Bi58 10μm粒子:平均粒径10μm
・Sn42−Bi58 10〜25μm粒子:平均粒径10μmを超えて25μm以下
・Sn42−Bi58 20〜38μm粒子:平均粒径20〜38μm
Sn42−Bi57−Ag1はんだ粒子(三井金属鉱業株式会社製、融点139℃)
・Sn42−Bi57−Ag1 5μm粒子:平均粒径5μm
<フラックス活性剤>
BHBA:2,2−ビスヒドロキシメチルブタン酸
酒石酸
グルタル酸
アジピン酸
<その他導電性接着剤>
Agペースト:藤倉化成株式会社製、ドータイト(商品名)
Sn42−Bi58クリームはんだ:千住金属工業株式会社製、エコソルダー(商品名)
Sn96.5−Ag3−Cu0.5クリームはんだ:千住金属工業株式会社製、エコソルダー(商品名)
[Examples 2-9, Comparative Examples 1-9]
The conductive adhesive compositions of Examples 2 to 9 and Comparative Examples 1 to 6 were obtained in the same manner as in Example 1 except that the composition shown in Table 1 was changed. In Comparative Examples 7 to 9, the following commercially available conductive adhesives were used.
<Conductive particles>
Sn42-Bi58 solder particles (Mitsui Mining & Smelting Co., Ltd., melting point 138° C.)
・Sn42-Bi58 10 μm particles: average particle size 10 μm
-Sn42-Bi58 10-25 [mu]m particles: average particle size exceeding 10 [mu]m and 25 [mu]m or less-Sn42-Bi58 20-38 [mu]m particles: average particle size 20-38 [mu]m
Sn42-Bi57-Ag1 solder particles (Mitsui Mining & Smelting Co., Ltd., melting point 139° C.)
-Sn42-Bi57-Ag1 5 μm particles: average particle size 5 μm
<Flux activator>
BHBA: 2,2-bishydroxymethylbutanoic acid tartaric acid glutaric acid adipic acid <other conductive adhesives>
Ag paste: Fujikura Kasei Co., Ltd. DOTITE (trade name)
Sn42-Bi58 cream solder: Senju Metal Industry Co., Ltd., Eco solder (trade name)
Sn96.5-Ag3-Cu0.5 cream solder: Eco-solder (trade name) manufactured by Senju Metal Industry Co., Ltd.

(接着性、導電性、耐TCT性の評価)
実施例1〜9、比較例1〜9に係る導電性接着剤組成物の特性を下記の方法で測定した。その結果を表1、表2にまとめて示した。表中、「フラックス/金属比率(%)」は、導電性粒子に対するフラックス活性剤の比率(質量%)を意味する。
(Adhesion, conductivity, TCT resistance evaluation)
The characteristics of the conductive adhesive compositions according to Examples 1-9 and Comparative Examples 1-9 were measured by the following methods. The results are summarized in Tables 1 and 2. In the table, "flux/metal ratio (%)" means the ratio (mass %) of the flux activator to the conductive particles.

(1)接着性(接着強度)
導電性接着剤組成物を銀めっき付き銅板上に約0.5mg塗布し、その上に2mm×2mm×0.25mmの矩形平板状の錫めっき付き銅板を圧着して試験片を得た。その後、実施例1〜9及び比較例1〜8に係る試験片に対しては、150℃、10分間の熱履歴を加えた。比較例9の試験片に対しては、260℃、10分間の熱履歴を加えた。熱履歴を加えた後の各試験片の25℃における接着強度(シェア強度)を、シェア速度500μm/sec、クリアランス100μmの条件でボンドテスター(DAGE社製、2400)を用いて測定した。
(1) Adhesiveness (adhesive strength)
About 0.5 mg of the conductive adhesive composition was applied on a silver-plated copper plate, and a rectangular plate-shaped copper plate with tin plating of 2 mm×2 mm×0.25 mm was pressure-bonded onto the copper plate to obtain a test piece. Then, the test pieces according to Examples 1 to 9 and Comparative Examples 1 to 8 were subjected to a heat history of 150° C. for 10 minutes. A thermal history of 260° C. for 10 minutes was applied to the test piece of Comparative Example 9. The adhesive strength (shear strength) at 25° C. of each test piece after the heat history was added was measured using a bond tester (2400, manufactured by DAGE) under the conditions of a shear rate of 500 μm/sec and a clearance of 100 μm.

(2)導電性(体積抵抗率)
1mm×50mm×0.03mmの帯状の金めっき付き銅板2枚を、上記導電性接着剤組成物を介して、互いに直交するように貼り合わせて試験片を得た。銅板の直交部分における接着剤の層の寸法は1mm×1mm×0.03mmであった。続いて、上記(1)と同様の熱履歴を試験片に加えた。その後の試験片について、四端子法で体積抵抗率を測定した。
(2) Conductivity (volume resistivity)
Two 1 mm×50 mm×0.03 mm strip-shaped gold-plated copper plates were attached so as to be orthogonal to each other via the conductive adhesive composition to obtain a test piece. The dimension of the adhesive layer in the orthogonal portion of the copper plate was 1 mm×1 mm×0.03 mm. Then, the same thermal history as the above (1) was added to the test piece. The volume resistivity of the subsequent test piece was measured by the four-terminal method.

(3)耐TCT性
隣り合う2つの銅箔ランド(0.2mm×0.4mm)を備え、銅箔ランド間の距離が100μmである、100mm×50mm×0.5mmの矩形平板状の薄型FR4基板を準備した。次いで、銅箔ランド上に導電性接着剤組成物をメタルマスク(厚み100μm、開口寸法0.2mm×0.3mm)を用いて印刷した。その上に、電極間距離が100μmの小型チップ抵抗(0.2mm×0.4mm)を、導電性接着剤組成物を介して電極と銅箔ランドが対向するように載せた。得られた部品搭載基板に上記(1)と同様の熱履歴を加え、耐TCT性評価用の試験基板を得た。この試験基板の初期抵抗を簡易テスターを用いて確認した。その後、試験基板を、熱衝撃試験機を用いて、−55℃で30分間保持、125℃まで5分間で昇温、125℃で30分間保持、及び−55℃まで5分間で降温の順の温度変化を1サイクルとする熱衝撃試験に供した。熱衝撃試験後の試験基板の接続抵抗を測定した。サイクル数を増やしながら試験基板の接続抵抗を測定し、初期抵抗に対して±10%以内の抵抗変化率を示した時点までのサイクル数を、耐TCT性の指標とした。表中、「初期オープン」は初期導通性が著しく低かったことを意味する。「初期ショート」は熱衝撃試験前にショートが発生していたことを意味する。
(3) TCT resistance A rectangular flat plate-shaped thin FR4 of 100 mm×50 mm×0.5 mm in which two adjacent copper foil lands (0.2 mm×0.4 mm) are provided and the distance between the copper foil lands is 100 μm. The substrate was prepared. Then, the conductive adhesive composition was printed on the copper foil land using a metal mask (thickness 100 μm, opening size 0.2 mm×0.3 mm). A small chip resistor (0.2 mm×0.4 mm) having a distance between electrodes of 100 μm was placed thereon so that the electrode and the copper foil land were opposed to each other via the conductive adhesive composition. The same thermal history as in (1) above was added to the obtained component mounting board to obtain a test board for TCT resistance evaluation. The initial resistance of this test board was confirmed using a simple tester. Then, using a thermal shock tester, the test substrate was kept at −55° C. for 30 minutes, heated to 125° C. for 5 minutes, held at 125° C. for 30 minutes, and cooled to −55° C. for 5 minutes. It was subjected to a thermal shock test in which the temperature change was one cycle. The connection resistance of the test board after the thermal shock test was measured. The connection resistance of the test substrate was measured while increasing the number of cycles, and the number of cycles until the time when the resistance change rate within ±10% of the initial resistance was shown was used as an index of TCT resistance. In the table, "initial open" means that the initial conductivity was extremely low. "Initial short" means that a short had occurred before the thermal shock test.

Figure 2019013336
Figure 2019013336

Figure 2019013336
Figure 2019013336

実施例1〜9はいずれも良好な接着強度、体積低効率、及び耐TCT性を示した。試験基板の反りもほとんど認められなかった。 Examples 1 to 9 all showed good adhesive strength, low volume efficiency, and TCT resistance. Almost no warp of the test substrate was observed.

比較例1では導電性粒子が凝集しないために体積低効率が大きく、接続性に問題があることが確認された。比較例2は低い体積低効率を示すものの、実施例1〜8と比較して耐TCT性が低下することが認できた。 In Comparative Example 1, it was confirmed that since the conductive particles did not aggregate, the low volume efficiency was large and there was a problem in connectivity. Although Comparative Example 2 showed low volume and low efficiency, it was confirmed that the TCT resistance was lowered as compared with Examples 1-8.

比較例3、4は体積低効率が大きく、耐TCT性に関しては、初期導通性が著しく低下し、絶縁していることが確認された。比較例5、6は接着強度、体積低効率は良好であったが、耐TCT性サンプル作製後に電極間でショートしていることが確認された。 It was confirmed that Comparative Examples 3 and 4 have a large volume low efficiency, and the TCT resistance is significantly lowered in the initial conductivity and that they are insulated. Although Comparative Examples 5 and 6 had good adhesive strength and low volume efficiency, it was confirmed that short-circuiting occurred between the electrodes after the TCT resistant sample was prepared.

比較例7は接着強度が低く、耐TCT性も著しく低下した。比較例8に関しては接着強度、体積低効率ともに比較的良好であったが、耐TCT性は低下した。 In Comparative Example 7, the adhesive strength was low and the TCT resistance was significantly reduced. Regarding Comparative Example 8, both the adhesive strength and the volume low efficiency were relatively good, but the TCT resistance was lowered.

比較例9は260℃で加熱接続した際に、基板が大きく反り、接続部が破損したため耐TCT性は測定不可であった。 In Comparative Example 9, the TCT resistance could not be measured because the substrate was largely warped and the connection portion was damaged when heated and connected at 260°C.

1…接続構造体、2…回路基板、3…電子部品、4…電子部品の本体部、5…基材、6…電子部品の接続端子、7…回路基板の接続端子、8…接続部、8a…導電部、8b…樹脂部、10…はんだボール。 DESCRIPTION OF SYMBOLS 1... Connection structure, 2... Circuit board, 3... Electronic component, 4... Electronic component main body, 5... Base material, 6... Electronic component connection terminal, 7... Circuit board connection terminal, 8... Connection portion, 8a... Conductive part, 8b... Resin part, 10... Solder ball.

小サイズ化した電極パッド、又はピッチで配置された電極の接続のために導電性接着剤組成物を適用するにあたり、電極間ブリッジによるショートの防止、及び、少量の塗布での十分な導通を実現するためには、導電性接着剤組成物中の導電性粒子を小サイズ化することが、ある程度有効である。 When applying the conductive adhesive composition for connecting the electrode pads that are downsized or the electrodes that are arranged at a narrow pitch, the short circuit due to the bridge between the electrodes is prevented, and sufficient conduction is achieved with a small amount of application. In order to realize it, it is effective to some extent to reduce the size of the conductive particles in the conductive adhesive composition.

本発明の一側面は、(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤、及び(D)硬化触媒を含有する導電性接着剤組成物を提供する。導電性粒子が、融点200℃以下の金属を含む。導電性粒子の平均粒径が0.01〜10μmである。フラックス活性剤が、水酸基及びカルボキシル基を有する化合物を含む。当該導電性接着剤組成物は、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられる。言い換えると、本発明の一側面は、前記導電性接着剤組成物の、回路基板と該回路基板に搭載される電子部品とを電気的に接続するための応用、又は、前記導電性接着剤組成物の、回路基板と該回路基板に搭載された電子部品とを有する接続構造体を製造するための応用に関する。 One aspect of the present invention provides a conductive adhesive composition containing (A) conductive particles, (B) thermosetting resin, (C) flux activator, and (D) curing catalyst. The conductive particles include a metal having a melting point of 200° C. or lower. The average particle diameter of the conductive particles is 0.01~10μ m. The flux activator includes a compound having a hydroxyl group and a carboxyl group. The conductive adhesive composition is used to electrically connect a circuit board and an electronic component mounted on the circuit board. In other words, one aspect of the present invention is an application of the conductive adhesive composition for electrically connecting a circuit board and an electronic component mounted on the circuit board, or the conductive adhesive composition. The present invention relates to an application for manufacturing a connection structure having a circuit board and electronic components mounted on the circuit board.

上記本発明に係る導電性接着剤組成物は、金属を含む平均粒径10μm以下の導電性粒子を含みながら、回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられたときに、電極間のショートを抑制しながら、接着強度及び導通性の更なる改善を図ることができる。例えば、導電性粒子が小粒径であっても、溶融性が低下することなく良好な導電性を与えることができる。さらに、ピッチで配置された電極(接続端子)をブリッジすることなく分離しながら、ショートすることなく良好な接続状態を形成する導電性接着剤組成物が提供される。 The conductive adhesive composition according to the present invention is for electrically connecting a circuit board and an electronic component mounted on the circuit board while containing conductive particles containing a metal and having an average particle size of 10 μm or less. When used, it is possible to further improve the adhesive strength and the conductivity while suppressing the short circuit between the electrodes. For example, even if the conductive particles have a small particle size, good conductivity can be provided without lowering the melting property. Further, there is provided a conductive adhesive composition that forms a good connection state without short-circuiting while separating electrodes (connection terminals) arranged at a narrow pitch without bridging.

硬化性樹脂がエポキシ樹脂を含んでいてもよい。 The thermosetting resin may include an epoxy resin.

本発明の別の一側面は、基材及び該基材の主面上に設けられた2以上の接続端子を有する回路基板と、回路基板の2以上の接続端子と対向する2以上の接続端子を有する電子部品と、回路基板と電子部品との間に配置され、これらを接合している接続部と、を備える接続構造体を提供する。接続部が、回路基板の接続端子と電子部品の接続端子との間に配置され、それらを電気的に接続している導電部を含み、該導電部が、上記本発明に係る導電性接着剤組成物に含まれていた導電性粒子を含む。接続部が、導電部の周囲に設けられた樹脂部を更に含んでいてもよい。電子部品は、ドライバーIC、センサ素子を内蔵したモジュール部品、ショットキーバリアダイオード、及び熱電変換素子からなる群より選ばれる少なくとも1種を含んでいてもよい。基材がフレキシブル基材であってもよい。 Another aspect of the present invention is a circuit board having a base material and two or more connection terminals provided on the main surface of the base material, and two or more connection terminals facing the two or more connection terminals of the circuit board. There is provided a connection structure including: an electronic component having: and a connection portion that is disposed between the circuit board and the electronic component and that joins them. The connecting portion includes a conductive portion that is arranged between the connecting terminal of the circuit board and the connecting terminal of the electronic component and electrically connects them, and the conductive portion is the conductive adhesive according to the present invention. The conductive particles included in the composition are included. The connection portion may further include a resin portion provided around the conductive portion. The electronic component may include at least one selected from the group consisting of a driver IC, a module component incorporating a sensor element, a Schottky barrier diode, and a thermoelectric conversion element. The substrate may be a flexible substrate.

導電性粒子の平均粒径は、0.01〜10μmであってもよい。この平均粒径が0.01μm以上であると、導電性接着剤組成物の粘度が高くなり過ぎないために作業性が向上する傾向、及び、導電性粒子表面に形成される金属酸化膜の量が抑制され、それにより導電性粒子が溶融し易くなるため、所望の接続状態を維持し易い傾向がある。導電性粒子の平均粒径が10μm以下であると、ピッチで配置された電極と電子部品との接続時に、隣り合う電極同士がブリッジして電極間でショートが起こる可能性が低下する。導電性接着剤組成物を塗布する場合、印刷法、転写法、ディスペンス法のいずれの方法によっても、小面積の電極パッドに対して少量の塗布が困難となる傾向がある。導電性接着剤組成物の塗布性及び作業性をさらに良好にする観点から、導電性粒子の平均粒径は0.1〜10μm又は0.1〜8μmであってもよい。特に、導電性接着剤組成物の保存安定性及び硬化物の実装信頼性を向上させる観点から、導電性粒子の平均粒径は1〜5μmであってもよい。ここで、導電性粒子の平均粒径は、レーザー回折・散乱法によって求められる値である。 The average particle size of the conductive particles may be 0.01 to 10 μm. When the average particle size is 0.01 μm or more, the viscosity of the conductive adhesive composition does not become too high, so that workability tends to be improved, and the amount of the metal oxide film formed on the surface of the conductive particles. Is suppressed, and the conductive particles are thereby easily melted, so that the desired connected state tends to be easily maintained. When the average particle diameter of the conductive particles is 10 μm or less, there is a reduced possibility that adjacent electrodes may bridge and short-circuit between electrodes when connecting the electrodes arranged at a narrow pitch and the electronic component. When the conductive adhesive composition is applied, it tends to be difficult to apply a small amount to an electrode pad having a small area by any of the printing method, the transfer method and the dispensing method. From the viewpoint of further improving the coatability and workability of the conductive adhesive composition, the average particle size of the conductive particles may be 0.1 to 10 μm or 0.1 to 8 μm. In particular, from the viewpoint of improving the storage stability of the conductive adhesive composition and the mounting reliability of the cured product, the average particle size of the conductive particles may be 1 to 5 μm. Here, the average particle diameter of the conductive particles is a value obtained by a laser diffraction/scattering method.

エポキシ樹脂は、その1分子中に2個以上のエポキシ基を有する化合物であれば特に制限されない。エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールADなどとエピクロロヒドリンとから誘導されるエポキシ樹脂などが挙げられる。 The epoxy resin is not particularly limited as long as it is a compound having two or more epoxy groups in its molecule. Examples of the epoxy resin include bisphenol A, bisphenol F, and epoxy resins derived from such a Epikurorohido phosphorus bisphenol AD.

フラックス活性剤の含有量は、本発明による上記効果をより有効に発揮する観点から、導電性粒子の質量に対して、0.5〜50質量%、0.5〜40質量%、又は4.0〜8.5質量%であてもよい。さらに、保存安定性、導電性の観点から、フラックス活性剤の含有量は1〜35質量%であってもよい。フラックス活性剤の含有量が0.5質量%以上であると、金属の溶融性が増加するために導電性向上の効果が小さくな傾向がある。フラックス活性剤の含有量が50質量%以下であると、保存安定性、印刷性が向上する傾向がある。 The content of the flux activator is 0.5 to 50% by mass, 0.5 to 40% by mass, or 4. with respect to the mass of the conductive particles, from the viewpoint of more effectively exhibiting the above-described effects of the present invention. 0 to 8.5 may be mass% Tsu der. Further, the content of the flux activator may be 1 to 35% by mass from the viewpoint of storage stability and conductivity. When the content of the flux active agent is 0.5 mass% or more, the effect is not a small tendency of improving conductivity to fusible metal is increased. When the content of the flux activator is 50% by mass or less, storage stability and printability tend to be improved.

(D)硬化触媒は、(B)熱硬化性樹脂の硬化を促進する成分である。(D)硬化触媒は、所望の硬化温度における硬化性、可使時間の長さ、硬化物の耐熱性などの観点からイミダゾール基を有する化合物であってもよく、イミダゾール系エポキシ樹脂硬化剤であってもよい。イミダゾール系エポキシ樹脂硬化剤の市販品としては、2P4MHZ−PW(2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール)、2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)、C11Z−CN(1−シアノエチル−2−ウンデシルイミダゾール)、2E4MZ−CN(1−シアノエチル−2−エチル−4−メチルイミダゾール)、2PZ−CN(1−シアノエチル−2−フェニルイミダゾール)、2MZ−A(2,4−ジアミノ−6−[2’メチルイミダゾリル−(1’)]−エチル−s−トリアジン)、2E4MZ−A(2,4−ジアミノ−6−[2’−エチル−4’メチルイミダゾリル−(1’)]−エチル−s−トリアジン)、2MAOK−PW(2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物)(いずれも四国化成工業株式会社製、商品名)等が挙げられる。これらの硬化触媒は1種を単独で又は2種以上を組み合わせて用いられる。 The (D) curing catalyst is a component that accelerates the curing of the (B) thermosetting resin. (D) The curing catalyst may be a compound having an imidazole group from the viewpoint of curability at a desired curing temperature, length of pot life, heat resistance of the cured product, and the like, and is an imidazole-based epoxy resin curing agent. May be. Commercially available imidazole-based epoxy resin curing agents include 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole), 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole), C11Z-. CN (1-cyanoethyl-2-undecylimidazole), 2E4MZ-CN (1-cyanoethyl-2-ethyl-4-methylimidazole), 2PZ-CN (1-cyanoethyl-2-phenylimidazole), 2MZ-A (2 , 4-diamino-6- [2 '- methylimidazolyl- - (1')] - ethyl -s- triazine), 2E4MZ-A (2,4-diamino-6- [2'-ethyl-4 'methylimidazolyl - (1′)]-Ethyl-s-triazine), 2MAOK-PW (2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine isocyanuric acid adduct) (any Also manufactured by Shikoku Chemicals Co., Ltd., etc. are listed. These curing catalysts may be used alone or in combination of two or more.

保存安定性及び硬化時間の観点からは、導電性接着剤組成物は硬化剤を実質的に含有しなくてもよい。「実質的に含有しない」とは、導電性接着剤組成物の全体質量に対して0.05質量%以下であることをいう。 From the viewpoint of storage stability and curing time, the conductive adhesive composition may not contain a curing agent substantially. The term "substantially free from" means that the content is 0.05% by mass or less based on the total mass of the conductive adhesive composition.

導電性接着剤組成物において、上記効果をより有効に発揮する観点から、(A)導電性粒子に対する(A)導電性粒子以外の成分(以下、接着剤成分という)の配合比(接着剤成分/導電性粒子)は、これらの合計を100としたときに、質量比で5/95〜50/50であってもよい。接着性、導電性及び作業性の観点から、上記配合比は10/90〜30/70であってもよい。この配合比が5/95以上であると、導電性接着剤組成物の粘度が高くなり過ぎないために作業性が確保し易い傾向、及び、接着性向上の効果が大きくなる傾向がある。この配合比が50/50以下であると、導電性向上の効果が大きくなる傾向がある。 In the conductive adhesive composition, from the viewpoint of more effectively exhibiting the above effects, the compounding ratio of the component (hereinafter referred to as the adhesive component) other than the (A) conductive particles to the (A) conductive particles (the adhesive component). The mass ratio of the conductive particles may be 5/95 to 50/50 when the total of these particles is 100. From the viewpoint of adhesiveness, conductivity, and workability, the compounding ratio may be 10/90 to 30/70. When the blending ratio is 5/95 or more, the viscosity of the conductive adhesive composition does not become too high, so that workability tends to be ensured, and the effect of improving the adhesiveness tends to increase. If the mixing ratio is 50/50 or less , the effect of improving the conductivity tends to be large.

以上説明した本実施形態の導電性接着剤組成物によると、小面積の電極パッド、又はピッチで配置された電極を有する回路基板に対して、電極間のショートを引き起こすことなく搭載部品を良好な導電性で接続することが可能である。本実施形態の導電性接着剤組成物は、ピッチで配置された電極を有する回路基板に電子部品を実装する工程において、リフロー加熱温度を低温化することができる。低温化すると回路基板の反りを抑制することができる。本実施形態の導電性接着剤組成物によって形成される接続部は、導電性粒子を含む導電部と、絶縁性の接着剤成分から形成された樹脂部とを有することができる。樹脂部による補強は、接続構造体の温度サイクル試験耐性向上に寄与し得る。 According to the conductive adhesive composition of the present embodiment described above, it is possible to provide a mounted component to a circuit board having a small area electrode pad or electrodes arranged at a narrow pitch without causing a short circuit between the electrodes. It is possible to connect with various conductivity. The conductive adhesive composition of the present embodiment can lower the reflow heating temperature in the step of mounting an electronic component on a circuit board having electrodes arranged at a narrow pitch. When the temperature is lowered, the warp of the circuit board can be suppressed. The connection part formed by the conductive adhesive composition of the present embodiment can have a conductive part containing conductive particles and a resin part formed of an insulating adhesive component. Reinforcement with the resin portion can contribute to improving the temperature cycle test resistance of the connection structure.

これら接続構造体において、樹脂部8bによって導電部8aが補強されている。接続構造体が温度サイクル試験による熱履歴を受けると、反りの発生等のために、接続部及びその他の構成部材に大きな歪みが掛かる。導電部8aが樹脂部8bによって補強されていることから、基材の変形が樹脂部bで食い止められ、接続部におけるクラックの発生が抑制される。 In these connection structures, the conductive portion 8a is reinforced by the resin portion 8b. When the connection structure is subjected to heat history due to the temperature cycle test, a large amount of strain is applied to the connection portion and other constituent members due to warpage and the like. Since the conductive portion 8a is reinforced by the resin portion 8b, the deformation of the substrate is stemmed by the resin portion 8 b, generation of cracks can be suppressed in the connecting portion.

Figure 2019013336
Figure 2019013336

Figure 2019013336
Figure 2019013336

実施例1〜9はいずれも良好な接着強度、体積抵抗率、及び耐TCT性を示した。試験基板の反りもほとんど認められなかった。 Examples 1 to 9 all showed good adhesive strength, volume resistivity , and TCT resistance. Almost no warp of the test substrate was observed.

比較例1では導電性粒子が凝集しないために体積抵抗率が大きく、接続性に問題があることが確認された。比較例2は低い体積抵抗率を示すものの、実施例1〜8と比較して耐TCT性が低下することが認できた。 In Comparative Example 1, it was confirmed that since the conductive particles did not aggregate, the volume resistivity was large and there was a problem in connectivity. Although Comparative Example 2 shows a low volume resistivity, resistance TCT resistance was confirmed to be reduced compared to Examples 1-8.

比較例3、4は体積抵抗率が大きく、耐TCT性に関しては、初期導通性が著しく低下し、絶縁していることが確認された。比較例5、6は接着強度、体積抵抗率は良好であったが、耐TCT性サンプル作製後に電極間でショートしていることが確認された。 It was confirmed that Comparative Examples 3 and 4 had a large volume resistivity , and in terms of TCT resistance, the initial conductivity was remarkably lowered and they were insulated. Comparative Examples 5 and 6 were good in adhesive strength and volume resistivity , but it was confirmed that short-circuiting occurred between the electrodes after the TCT resistant sample was prepared.

比較例7は接着強度が低く、耐TCT性も著しく低下した。比較例8に関しては接着強度、体積抵抗率ともに比較的良好であったが、耐TCT性は低下した。
In Comparative Example 7, the adhesive strength was low and the TCT resistance was significantly reduced. In Comparative Example 8, both the adhesive strength and the volume resistivity were relatively good, but the TCT resistance decreased.

Claims (12)

(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤、及び(D)硬化触媒を含有し、
前記導電性粒子が、融点200℃以下の金属を含み、
前記導電性粒子の平均粒径が0.01〜10μmであり、
前記フラックス活性剤が、水酸基及びカルボキシル基を有する化合物を含み、
回路基板と該回路基板に搭載される電子部品とを電気的に接続するために用いられる、導電性接着剤組成物。
Contains (A) conductive particles, (B) thermosetting resin, (C) flux activator, and (D) curing catalyst,
The conductive particles include a metal having a melting point of 200° C. or less,
The average particle diameter of the conductive particles is 0.01 to 10 μm,
The flux activator contains a compound having a hydroxyl group and a carboxyl group,
A conductive adhesive composition used for electrically connecting a circuit board and an electronic component mounted on the circuit board.
前記フラックス活性剤の含有量が、前記導電性粒子の質量に対して4.0〜8.5質量%である、請求項1に記載の導電性接着剤組成物。 The conductive adhesive composition according to claim 1, wherein the content of the flux activator is 4.0 to 8.5 mass% with respect to the mass of the conductive particles. 前記導電性粒子に含まれる融点200℃以下の前記金属が、ビスマス、インジウム、スズ及び亜鉛から選ばれる少なくとも1種を含む、請求項1又は2に記載の導電性接着剤組成物。 The conductive adhesive composition according to claim 1, wherein the metal having a melting point of 200° C. or lower contained in the conductive particles contains at least one selected from bismuth, indium, tin and zinc. 前記導電性粒子の比表面積が0.060〜90m/gである、請求項1〜3のいずれか一項に記載の導電性接着剤組成物。The conductive adhesive composition according to claim 1, wherein the specific surface area of the conductive particles is 0.060 to 90 m 2 /g. 前記熱硬化性樹脂がエポキシ樹脂を含む、請求項1〜4のいずれか一項に記載の導電性接着剤組成物。 The conductive adhesive composition according to claim 1, wherein the thermosetting resin contains an epoxy resin. 当該導電性接着剤組成物が、25℃でペースト状である、請求項1〜5のいずれか一項に記載の導電性接着剤組成物。 The conductive adhesive composition according to any one of claims 1 to 5, wherein the conductive adhesive composition is in a paste form at 25°C. 前記回路基板が基材及び該基材の主面上に配置された2以上の接続端子を有し、該2以上の接続端子と前記電子部品の接続端子とを電気的に接続するために用いられる、請求項1〜6のいずれか一項に記載の導電性接着剤組成物。 The circuit board has a base material and two or more connection terminals arranged on the main surface of the base material, and is used for electrically connecting the two or more connection terminals and the connection terminals of the electronic component. The conductive adhesive composition according to any one of claims 1 to 6. 前記回路基板の前記2以上の接続端子が、互いに200μm以下の間隔を空けて前記基材の主面上に配置されている、請求項7に記載の導電性接着剤組成物。 The conductive adhesive composition according to claim 7, wherein the two or more connection terminals of the circuit board are arranged on the main surface of the base material at intervals of 200 μm or less from each other. 基材及び該基材の主面上に設けられた2以上の接続端子を有する回路基板と、
前記回路基板の2以上の前記接続端子と対向する2以上の接続端子を有する電子部品と、
前記回路基板と前記電子部品との間に配置され、これらを接合している接続部と、
を備え、
前記接続部が、前記回路基板の前記接続端子と前記電子部品の前記接続端子との間に配置され、それらを電気的に接続している導電部を含み、
前記導電部が、請求項1〜6のいずれか一項に記載の導電性接着剤組成物に含まれていた導電性粒子を含む、接続構造体。
A circuit board having a base material and two or more connection terminals provided on the main surface of the base material;
An electronic component having two or more connection terminals facing the two or more connection terminals of the circuit board;
A connection portion arranged between the circuit board and the electronic component, and joining them,
Equipped with
The connection portion is arranged between the connection terminal of the circuit board and the connection terminal of the electronic component, and includes a conductive portion electrically connecting them.
A connection structure, wherein the conductive portion contains the conductive particles contained in the conductive adhesive composition according to any one of claims 1 to 6.
前記接続部が、前記導電部の周囲に形成された樹脂部を更に含む、請求項9に記載の接続構造体。 The connection structure according to claim 9, wherein the connection portion further includes a resin portion formed around the conductive portion. 前記電子部品が、ドライバーIC、センサ素子を内蔵したモジュール部品、ショットキーバリアダイオード、及び熱電変換素子からなる群より選ばれる少なくとも1種を含む、請求項9又は10に記載の接続構造体。 The connection structure according to claim 9, wherein the electronic component includes at least one selected from the group consisting of a driver IC, a module component containing a sensor element, a Schottky barrier diode, and a thermoelectric conversion element. 前記基材がフレキシブル基材である、請求項9〜11のいずれか一項に記載の接続構造体。 The connection structure according to claim 9, wherein the base material is a flexible base material.
JP2019529809A 2017-07-14 2018-07-13 CONDUCTIVE ADHESIVE COMPOSITION AND CONNECTED STRUCTURE USING THE SAME Active JP7331693B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017138150 2017-07-14
JP2017138150 2017-07-14
PCT/JP2018/026548 WO2019013336A1 (en) 2017-07-14 2018-07-13 Electroconductive adhesive composition and connection structure using same

Publications (2)

Publication Number Publication Date
JPWO2019013336A1 true JPWO2019013336A1 (en) 2020-07-27
JP7331693B2 JP7331693B2 (en) 2023-08-23

Family

ID=65001402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529809A Active JP7331693B2 (en) 2017-07-14 2018-07-13 CONDUCTIVE ADHESIVE COMPOSITION AND CONNECTED STRUCTURE USING THE SAME

Country Status (4)

Country Link
JP (1) JP7331693B2 (en)
KR (1) KR20200030500A (en)
TW (1) TW201908445A (en)
WO (1) WO2019013336A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125907B2 (en) * 2019-03-19 2022-08-25 タツタ電線株式会社 conductive composition
US20230087229A1 (en) * 2020-02-12 2023-03-23 Showa Denko Materials Co., Ltd. Conductive adhesive composition, and method for producing connection structure
KR102568849B1 (en) * 2020-09-25 2023-08-21 ㈜ 엘프스 self-assembled conductive bonding compound for LED chip bonding having excellent printability, LED chip-circuit board bonding module comprising the same and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182562A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device
JP2008150597A (en) * 2006-11-22 2008-07-03 Hitachi Chem Co Ltd Electroconductive adhesive composition, substrate having electronic part mounted thereon and semiconductor device
JP2015053342A (en) * 2013-09-05 2015-03-19 デクセリアルズ株式会社 Conductive adhesive, solar cell module and method for manufacturing solar cell module
JP2016014115A (en) * 2014-07-03 2016-01-28 積水化学工業株式会社 Conductive material and connection structure
JP2017112312A (en) * 2015-12-18 2017-06-22 日立化成株式会社 Conductive adhesive composition, connection structure, and semiconductor light emitting element mounting flexible wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070049168A (en) * 2004-08-25 2007-05-10 마츠시타 덴끼 산교 가부시키가이샤 Solder composition, connecting process with soldering, and connection structure with soldering
KR20070049169A (en) * 2004-08-25 2007-05-10 마츠시타 덴끼 산교 가부시키가이샤 Solder composition, connecting process with soldering, and connection structure with soldering
JP2006199937A (en) 2004-12-15 2006-08-03 Tamura Kaken Co Ltd Conductive adhesive and conductive part and electronic part module using the same
JP2014017248A (en) 2012-06-14 2014-01-30 Sekisui Chem Co Ltd Conductive material, production method of conductive material, and connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182562A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device
JP2008150597A (en) * 2006-11-22 2008-07-03 Hitachi Chem Co Ltd Electroconductive adhesive composition, substrate having electronic part mounted thereon and semiconductor device
JP2015053342A (en) * 2013-09-05 2015-03-19 デクセリアルズ株式会社 Conductive adhesive, solar cell module and method for manufacturing solar cell module
JP2016014115A (en) * 2014-07-03 2016-01-28 積水化学工業株式会社 Conductive material and connection structure
JP2017112312A (en) * 2015-12-18 2017-06-22 日立化成株式会社 Conductive adhesive composition, connection structure, and semiconductor light emitting element mounting flexible wiring board

Also Published As

Publication number Publication date
WO2019013336A1 (en) 2019-01-17
KR20200030500A (en) 2020-03-20
JP7331693B2 (en) 2023-08-23
TW201908445A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6508292B2 (en) Conductive adhesive composition
JP5468199B2 (en) Conductive adhesive composition, electronic component mounting substrate, and semiconductor device
KR101397891B1 (en) Adhesive composition, electronic component-mounted substrate using the adhesive composition, and semiconductor device
JP6782413B2 (en) Flexible wiring board with conductive adhesive composition, connection structure and semiconductor light emitting element
JP5900350B2 (en) Conductive adhesive composition, connector and solar cell module
JP6144048B2 (en) Conductive adhesive composition and coating method thereof, connection body, solar cell module and manufacturing method thereof
JP7331693B2 (en) CONDUCTIVE ADHESIVE COMPOSITION AND CONNECTED STRUCTURE USING THE SAME
JP2014084395A (en) Electroconductive adhesive composition, electroconductive adhesive-fitted metal conductor wire, connection body, solar cell module, and method for manufacturing the same
JP7212831B2 (en) CONDUCTIVE ADHESIVE COMPOSITION AND CONNECTED STRUCTURE USING THE SAME
WO2021161963A1 (en) Conductive adhesive composition, and method for producing connection structure
JP7321979B2 (en) CONDUCTIVE ADHESIVE COMPOSITION, CONNECTION STRUCTURE, AND FLEXIBLE WIRING BOARD WITH SEMICONDUCTOR LIGHT EMITTING DEVICE
JP7405196B2 (en) Conductive adhesive composition, connection structure, and flexible wiring board with semiconductor light emitting device mounted
JP2022135663A (en) Conductive adhesive composition, organic electronics device, and method for manufacturing organic electronics device
WO2021161964A1 (en) Conductive adhesive composition, and method for producing imaging module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350