JPWO2019009410A1 - 熱延鋼板及びその製造方法 - Google Patents

熱延鋼板及びその製造方法 Download PDF

Info

Publication number
JPWO2019009410A1
JPWO2019009410A1 JP2018558449A JP2018558449A JPWO2019009410A1 JP WO2019009410 A1 JPWO2019009410 A1 JP WO2019009410A1 JP 2018558449 A JP2018558449 A JP 2018558449A JP 2018558449 A JP2018558449 A JP 2018558449A JP WO2019009410 A1 JPWO2019009410 A1 JP WO2019009410A1
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
rolled steel
hot rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018558449A
Other languages
English (en)
Other versions
JP6465266B1 (ja
Inventor
吉田 充
充 吉田
啓達 小嶋
啓達 小嶋
佑樹 神澤
佑樹 神澤
公平 神谷
公平 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6465266B1 publication Critical patent/JP6465266B1/ja
Publication of JPWO2019009410A1 publication Critical patent/JPWO2019009410A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明の一態様に係る熱延鋼板は、所定の化学組成を有し、表面から板厚1/4深さ位置において、フェライトの面積率が10〜55%であり、ベイナイト及びマルテンサイトの合計面積率が45〜90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>と{332}<113>の極密度の合計が10.0以下であり、引張強度が950MPa以上である。

Description

本発明は、熱延鋼板及びその製造方法に関する。より詳しくは、本発明は、自動車用、家電用、機械構造用、建築用などの用途に用いられる素材として好適な、加工性に優れた熱延鋼板及びその製造方法に関する。
本願は、2017年7月7日に、日本に出願された特願2017−133889号に基づき優先権を主張し、その内容をここに援用する。
自動車をはじめとする輸送用機械や各種産業機械の構造部材等の素材として供される鋼板には、強度、伸びや伸びフランジ性などの加工性、低温靭性、またそれら特性の均一性、など多様な特性が要求される。
特に、自動車の内板部材、構造部材、足廻り部材等の部品に用いられる鋼板は、その用途に応じて、伸びフランジ性、バーリング加工性、延性、疲労耐久性、耐衝撃性及び耐食性等が求められる。これら材料特性と高強度とを高次元でバランス良く発揮させることが、上記のような部材に対して用いられる鋼板に求められる。また、上記のような部材に対して用いられる鋼板は、成形され、部材の部品として自動車に取り付けられた後に、衝突等による衝撃を受けても破壊されにくい特性を有する必要がある。特に、使用温度が低い寒冷地では、部材が脆化しやすくなるため、耐衝撃性確保のためには、鋼板の低温靭性も向上させる必要性がある。低温靭性とは、vTrs(シャルピー破面遷移温度)等で規定される特性である。上記部材の部品に用いられる薄鋼板には、優れた加工性だけでなく、低温靭性が非常に重要な特性として求められる。
優れた延性を得られる鋼板として、軟質なフェライト相と硬質なマルテンサイト相との複合組織で構成されるDual Phase鋼板(以下DP鋼)が知られている。DP鋼は延性に優れる一方で、著しく硬度の異なるフェライト相とマルテンサイト相との界面からボイドが発生して割れが生じるので、穴広げ性に劣る場合があった。
特許文献1では、面積率で、ベイニティックフェライトを90%以上、マルテンサイトを5%以下、ベイナイトを5%以下とすることで、伸びと穴広げ性(伸びフランジ性)とを改善した、引張強度980MPa以上の高強度熱延鋼板が提案されている。しかしながら、特許文献1に記載の発明では、ベイニティックフェライトを主体としているため十分な伸びが得られない場合がある。
特許文献2では、ベイナイトを面積率で90%以上とした上で、残部をマルテンサイト、オーステナイト、フェライトから選ばれた1種または2種以上の母相組織とし、かつ組織中に分散するセメンタイトの含有量と平均粒径とを制御することで穴広げ性(伸びフランジ性)を改善した、引張強度980MPa以上の熱延鋼板が提案されている。しかしながら、特許文献2に記載の発明では、遷移沸騰領域である330〜470℃で巻き取りを行っているため、板面内の温度ばらつきに起因した特性ばらつきが生じる場合がある。
特許文献3では、フェライト分率が50〜95%であり、マルテンサイトと残留オーステナイトとからなる硬質第二相の分率が5〜50%であり、炭化物形成元素の含有量の相互関係や、炭化物形成元素とC含有量との関係を所定の範囲とした上で、析出物の平均粒径、析出物の分率を規定した、疲労特性に優れた熱延鋼板が提案されている。しかしながら、特許文献3に記載の発明では、軟質なフェライトを主体として、微細炭化物の析出強化により強度を確保しているため、十分な低温靭性が得られない場合がある。
特許文献4では、マルテンサイトが20〜60%であり、フェライトが40%以上、前記マルテンサイトと前記フェライトとの合計面積率が90%以上であり、前記マルテンサイトの平均粒径や、前記マルテンサイトの硬度と前記フェライトの硬度との比を所定の範囲内とした、引張強度が980MPa以上である高強度熱延鋼板が提案されている。しかしながら、特許文献4に記載の発明では、仕上げ圧延の末期における所要時間が短いため、集合組織が発達して、十分な伸びおよび伸びフランジ性が得られない場合がある。
日本国特開2008−255484号公報 日本国特開2014−205890号公報 日本国特開2009−84648号公報 国際公開第2017/085841号
本発明は、上述した課題に鑑みてなされたものであり、高強度であり、且つ伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板及びその熱延鋼板を安定して製造できる製造方法を提供することを目的とする。
本発明者らは、熱延鋼板の化学組成及び製造条件の最適化により、熱延鋼板の集合組織とミクロ組織とを制御することで、高強度であり、且つ伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板を製造できることを知見した。
本発明の要旨は、次の通りである。
〔1〕 本発明の一態様に係る熱延鋼板は、
質量%で、
C:0.02〜0.20%、
Si:0.005〜2.00%、
Mn:1.30〜2.40%、
P:0.100%以下、
S:0.0100%以下、
sol.Al:0.001〜1.00%、
Ti:0.030〜0.200%、
N:0.0010〜0.0100%、
Nb:0〜0.100%、
V:0〜0.50%、
Mo:0〜0.50%、
Cu:0〜1.00%、
Ni:0〜1.00%、
Cr:0〜2.00%、
B:0〜0.0100%、
Ca:0〜0.0100%、
Mg:0〜0.0100%及び
REM:0〜0.0100%
を含有し、残部がFe及び不純物からなる化学組成を有し、
表面から板厚の1/4深さ位置において、フェライトの面積率が10〜55%であり、ベイナイト及びマルテンサイトの合計面積率が45〜90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、
板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>及び{332}<113>の極密度の合計が10.0以下であり、
引張強度が950MPa以上であることを特徴とする熱延鋼板。
〔2〕 上記〔1〕に記載の熱延鋼板は、
前記化学組成が、質量%で、
Nb:0.001〜0.100%、
V:0.005〜0.50%、
Mo:0.001〜0.50%、
Cu:0.02〜1.00%、
Ni:0.02〜1.00%、
Cr:0.02〜2.00%及び
B:0.0001〜0.0100%
からなる群から選択される1種または2種以上を含有してもよい。
〔3〕 上記〔1〕または〔2〕に記載の熱延鋼板は、前記化学組成が、質量%で、
Ca:0.0002〜0.0100%、
Mg:0.0002〜0.0100%及び
REM:0.0002〜0.0100%
からなる群から選択される1種または2種以上を含有してもよい。
〔4〕 上記〔1〕〜〔3〕の何れか一項に記載の熱延鋼板は、
r値の面内異方性の絶対値|Δr|が0.35以下であってもよい。
但し、Δr=(r+r90−2×r45)/2
であり、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。なお、r値はランクフォード(Lankford)値を意味する。
〔5〕 上記〔1〕〜〔4〕のいずれか1項に記載の熱延鋼板を製造するに当たり、上記〔1〕〜〔3〕の何れか一項に記載の前記化学組成を有するスラブまたは鋼片に多パス熱間圧延を施して熱延鋼板を製造する、本発明の別の態様に係る熱延鋼板の製造方法であって、
前記多パス熱間圧延における加熱温度を1150〜1350℃とし、
仕上げ温度を単位℃でFTと表したとき、前記FT+50℃超〜前記FT+150℃間の合計圧下率を50%以上、前記FT〜前記FT+50℃間の合計圧下率を40〜80%、前記FT〜前記FT+50℃間の圧延に要する時間を0.5〜10.0秒とし、
前記FT+50℃超〜前記FT+150℃及び前記FT〜前記FT+50℃のそれぞれの温度域において2パス以上の圧延を行い、
前記FTを、式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下として仕上げ圧延を完了した後、3.0秒以内に水冷を開始し、前記FT〜750℃の平均冷却速度を20℃/秒以上とし、
750〜600℃の温度域で5〜20秒間滞在させた後、
600℃から式(3)により求められるMs未満の冷却停止温度まで、平均冷却速度を20℃/秒以上として冷却することを特徴とする熱延鋼板の製造方法。
Ar(℃)=901−325×[C]+33×[Si]−92×[Mn]+287×[P]+40×[Al] (1)
TR(℃)=800+700×[Ti]+1000×[Nb] (2)
Ms(℃)=561−474×[C]−33×[Mn]−17×[Ni]−21×[Mo] (3)
但し、上記式(1)〜(3)中の各元素記号は、各元素の質量%での含有量を示す。
〔6〕 上記〔5〕に記載の熱延鋼板の製造方法では、前記Msから前記Ms未満の前記冷却停止温度までの平均冷却速度を80℃/s以上としてもよい。
〔7〕 上記〔5〕または〔6〕に記載の熱延鋼板の製造方法では、仕上げ圧延完了後、0.3秒以内に水冷を開始し、前記FT〜前記FT−40℃までの平均冷却速度が100℃/s以上である冷却を行ってもよい。
〔8〕 上記〔7〕に記載の熱延鋼板の製造方法では、前記FT〜前記FT−40℃までの平均冷却速度が100℃/s以上である冷却を行う工程を、圧延スタンド間で行ってもよい。
本発明によれば、高強度であり、且つ伸び、伸びフランジ性および低温靭性に優れた熱延鋼板及びその熱延鋼板を安定して製造できる製造方法を提供することができる。本発明に係る熱延鋼板を自動車の内板部材、構造部材、足廻り部材等の部品の素材として使用すれば、部品形状に加工することが容易であり、極寒冷地での使用にも耐えることができるため、産業上の貢献が極めて顕著である。
本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)およびその製造方法について以下に詳しく説明する。以下の説明において、鋼の化学組成に関する%はいずれも質量%である。
<鋼の化学組成>
(C:0.02〜0.20%)
Cは、マルテンサイトやベイナイト等の硬質相やTi炭化物を生成させることで、鋼の強度を高める作用を有する。C含有量が0.02%未満では上記作用を十分に発揮させることが困難である。したがって、C含有量は0.02%以上、好ましくは0.04%以上とする。一方、C含有量が0.20%超では、鋼板の伸びフランジ性や低温靭性が著しく劣化する。また、熱間圧延後のフェライト変態が著しく遅延し、所望の量のフェライトが得難くなる。さらに、溶接性の劣化が顕著となる。したがって、C含有量は0.20%以下とする。C含有量は、好ましくは0.15%以下、より好ましくは0.12%以下、より一層好ましくは0.10%以下である。
(Si:0.005〜2.00%)
Siは、フェライト変態を促進するとともにセメンタイト析出を抑制する作用を有する。また、Siは、固溶強化による鋼の強度を向上させる作用も有する。Si含有量が0.005%未満では、上記作用を発揮させることが困難となる。したがって、Si含有量は0.005%以上とする。Si含有量は、好ましくは0.40%以上、より好ましくは0.80%以上である。一方、Si含有量が2.00%超では、熱間圧延工程における表面酸化により、鋼板の表面性状が著しく劣化する。したがって、Si含有量は2.00%以下とする。Si含有量は、好ましくは1.50%以下、より好ましくは1.30%以下である。
(Mn:1.30〜2.40%)
Mnは、固溶強化および焼入性を高めることによって鋼の強度を高める作用を有する。Mn含有量が1.30%未満では、950MPa以上の鋼板の強度が得難くなる。したがって、Mn含有量は1.30%以上とする。Mn含有量は、好ましくは1.50%以上である。一方、Mn含有量が2.40%超では、熱間圧延後の冷却過程におけるフェライト変態が過度に遅延することで、所望の量のフェライトが得難くなる。また、マルテンサイト及びベイナイトの硬質化により、マルテンサイト及びベイナイトと軟質なフェライトとの境界近傍においてき裂が容易に発生することで、鋼板の伸びフランジ性や靭性が低下する。
本発明者らは、Mnを多量に含有させると、鋼板のr値の面内異方性の増加とともに、伸びフランジ性が低下する場合があることを知見した。この理由は明確ではないが、Mnを多量に含有させることにより、MnSが多量に析出すること、及び、Mn偏析に起因した熱間圧延中の再結晶や、仕上げ圧延後のフェライト変態に局所的なバラつきが生じることが原因であると推測される。以上のことから、所望の量のフェライトを得つつ、伸びフランジ性に優れた熱延鋼板を安定して製造するために、Mn含有量は2.40%以下とする。Mn含有量は、好ましくは2.10%以下、より好ましくは2.00%以下、より一層好ましくは1.90%以下である。
(P:0.100%以下)
Pは、不純物として鋼中に含有される元素であり、熱延鋼板の伸びフランジ性や低温靭性を低下させる作用を有する。そのため、P含有量は0.100%以下とする。P含有量は、好ましくは0.060%以下、より好ましくは0.040%以下、より一層好ましくは0.020%以下である。Pは原料から不純物として混入するが、その下限を特に制限する必要はなく、伸びフランジ性や低温靭性を確保する上では、Pの含有量はより低い方が好ましい。ただし、P含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、P含有量の下限は好ましくは0.001%、より好ましくは0.005%である。
(S:0.0100%以下)
Sは、不純物として含有される元素であり、熱延鋼板の加工性を低下させる作用を有する。そのため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下、より好ましくは0.0060%以下、より一層好ましくは0.0030%以下である。Sは原料から不純物として混入するが、その下限を特に制限する必要はなく、加工性を確保する観点からはSの含有量はより低い方が好ましい。ただし、S含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、S含有量の下限は好ましくは0.0001%、より好ましくは0.0005%、より一層このましくは、0.0010%である。
(sol.Al:0.001〜1.00%)
Alは、製鋼段階で脱酸により鋼を清浄化し、かつフェライト変態を促進する作用を有する。sol.Al含有量が0.001%未満では、上記作用を発揮させることが困難となる。したがって、sol.Al含有量は0.001%以上とする。sol.Al含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。一方、sol.Al含有量を1.00%超としても、上記作用による効果が飽和するとともに、コスト上昇を招く。したがって、sol.Al含有量は1.00%以下とする。sol.Al含有量は、好ましくは0.80%以下、より好ましくは0.60%以下である。なお、sol.Alは酸可溶性Alを意味する。
(Ti:0.030〜0.200%)
Tiは、Ti窒化物を形成して組織を微細化する作用を有する。また、Tiは、炭化物を析出させて、鋼を強化させる作用を有する。Ti含有量が0.030%未満では上記作用が発揮され難くなる。したがって、Ti含有量は0.030%以上とする。Ti含有量は、好ましくは、0.040%以上、より好ましくは0.060%以上である。一方、Tiを過剰に含有させると、粗大な窒化物や炭化物が生成されることにより、鋼板の伸びフランジ性や靭性が低下する。さらに、Tiはオーステナイトの再結晶温度を高める作用も有するため、Tiを過剰に含有させると、再結晶温度が過剰に高くなり、r値の異方性が増加することで、鋼板の伸びフランジ性が低下する。したがって、Ti含有量は0.200%以下とする。Ti含有量は、好ましくは0.160%以下、より好ましくは0.140%以下である。
(N:0.0010〜0.0100%)
Nは、Ti窒化物を形成してスラブ再加熱時及び熱間圧延中のオーステナイトの粗大化を抑制して、ミクロ組織を微細化する作用を有する。N含有量が0.0010%未満では上記作用を発揮させることが困難となる。したがって、N含有量は0.0010%以上とする。N含有量は、好ましくは0.0015%以上、より好ましくは0.0020%以上である。一方、N含有量が0.0100%超では、粗大なTi窒化物を形成して、鋼板の伸びフランジ性を劣化させる。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0060%以下である。
(Nb:0〜0.100%)
Nbは任意元素である。Nbは、熱延鋼板の結晶粒径の粗大化を抑制するとともに、フェライト粒径を微細化し、NbCの析出強化により熱延鋼板の強度を高める効果を有する。これらの効果を得る場合、Nb含有量を0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.005%以上である。一方、Nb含有量が0.100%を超えると、前述の効果が飽和するとともに、熱間仕上げ圧延の圧延荷重の増加を引き起こす場合がある。そのため、Nb含有量は、0.100%以下とすることが好ましい。Nb含有量は、好ましくは、0.060%以下、より好ましくは0.030%以下である。
(V:0〜0.50%)
Vは任意元素である。Vは、鋼中に固溶して熱延鋼板の強度を高めるとともに、炭化物や窒化物、炭窒化物等として鋼中に析出し、析出強化させる効果を有する。これらの効果を得る場合、V含有量を0.005%以上とすることが好ましい。V含有量は、より好ましくは、0.01%以上である。一方、V含有量が0.50%を超えると鋼板の靭性の低下を引き起こす場合がある。そのため、V含有量は、0.50%以下とすることが好ましい。V含有量は、より好ましくは0.30%以下である。
(Mo:0〜0.50%)
Moは任意元素である。Moは、鋼の焼入れ性を高めるとともに、炭化物や炭窒化物を形成して熱延鋼板を高強度化させる効果を有する。これらの効果を得る場合、Mo含有量を0.001%以上とすることが好ましい。Mo含有量は、より好ましくは、0.005%以上である。一方、Mo含有量が0.50%を超えると、スラブの割れ感受性が高まる場合がある。そのため、Moの含有量は、0.50%以下とすることが好ましい。Mo含有量は、より好ましくは、0.30%以下である。
(Cu:0〜1.00%)
Cuは任意元素である。Cuは、鋼の靭性を改善する効果と強度を高める効果とを有する。これらの効果を得る場合、Cu含有量を0.02%以上とすることが好ましい。Cu含有量は、より好ましくは、0.08%以上である。一方、Cuを過剰に含有させると鋼板の溶接性が低下する場合がある。そのため、Cu含有量は、1.00%以下とすることが好ましい。Cu含有量は、より好ましくは、0.50%以下、より一層好ましくは0.30%以下である。
(Ni:0〜1.00%)
Niは任意元素である。Niは、鋼の靭性を改善する効果と強度を高める効果とを有する。これらの効果を得る場合、Ni含有量を0.02%以上とすることが好ましい。Ni含有量は、より好ましくは、0.10%以上である。一方、Niを過剰に含有させると合金コストが嵩み、また、鋼板の溶接熱影響部の靭性が劣化する場合がある。そのため、Ni含有量は1.00%以下とすることが好ましい。Ni含有量は、より好ましくは、0.50%以下、より一層好ましくは0.30%以下である。
(Cr:0〜2.00%)
Crは任意元素である。Crは、鋼の焼入性を高めることによりマルテンサイト等の生成を促進する効果を有する。この効果を得る場合、Cr含有量を0.02%以上とすることが好ましい。Cr含有量は、より好ましくは、0.05%以上である。一方、Crを過剰に含有させると、熱間圧延後の冷却過程におけるフェライト変態が過度に遅延してしまい、所望の量のフェライトが得難くなる場合がある。そのため、Cr含有量は、2.00%以下とすることが好ましい。Cr含有量は、より好ましくは1.50%以下、より一層好ましくは1.00%以下、特に好ましくは0.50%以下である。
(B:0〜0.0100%)
Bは任意元素である。Bは、粒界強度を高めるとともに、鋼の靭性を向上させる効果を有する。また、Bは、窒化物によって鋼を析出強化させる効果を有する。これらの効果を得る場合、B含有量を0.0001%以上とすることが好ましい。B含有量は、より好ましくは、0.0003%以上である。一方、0.0100%を超えてBを含有させても上記効果が飽和するとともに、合金コストが増加する。そのため、B含有量は、0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0050%以下、より一層好ましくは0.0030%以下、特に好ましくは0.0010%以下である。
(Ca:0〜0.0100%)
Caは任意元素である。Caは溶鋼中に微細な酸化物を多数分散させ、鋼板の金属組織を微細化させる効果を有する。また、Caは、溶鋼中のSを球状のCaSとして固定して、MnSなどの延伸介在物の生成を抑制することにより、熱延鋼板の伸びフランジ性を向上させる効果を有する。これらの効果を得る場合、Ca含有量を0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは、0.0005%以上である。一方、Ca含有量が0.0100%を超えると、鋼中のCaOが増加し、鋼板の靭性に悪影響を与える場合がある。そのため、Ca含有量は0.0100%以下とすることが好ましい。Ca含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
(Mg:0〜0.0100%)
Mgは任意元素である。MgはCaと同様に溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、鋼板の組織を微細化する効果を有する。これらの効果を得る場合、Mg含有量を0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは、0.0005%以上である。一方、Mg含有量が0.0100%を超えると、鋼中の酸化物が増加し、鋼板の靭性に悪影響を与える。そのため、Mg含有量は、0.0100%以下とすることが好ましい。Mg含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
(REM:0〜0.0100%)
REMは任意元素である。REMもCaと同様に、溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、鋼板の組織を微細化する効果を有する。これらの効果を得る場合、REM含有量を0.0002%以上とすることが好ましい。REM含有量は、より好ましくは、0.0005%以上である。一方、REM含有量が0.0100%を超えると鋼中の酸化物が増加し、鋼板の靭性に悪影響を与える場合がある。そのため、REM含有量は、0.0100%以下とすることが好ましい。REM含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
ここで、REM(希土類)とは、Sc、Y及びランタノイドからなる合計17元素を指す。なお、本実施形態では、REMの含有量とはこれらの元素の合計含有量を指す。
本実施形態に係る熱延鋼板の化学組成は、以上の元素の他、Fe及び不純物からなる。本実施形態において不純物とは、原材料に含まれる成分、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことを意味する。
<集合組織以外の鋼組織>
本実施形態に係る熱延鋼板は、鋼板の表面から板厚の1/4の深さ位置において、フェライトの面積率、「ベイナイト及びマルテンサイト」の合計面積率、「フェライト、ベイナイト及びマルテンサイト」の合計面積率、平均結晶粒径の範囲を規定する。ここで、フェライト、ベイナイト及びマルテンサイトの面積率や結晶粒径について、鋼板の表面から板厚の1/4の深さ位置の鋼組織を規定するのは、この深さ位置が、鋼板の表面と板厚中心位置との中間点であり、集合組織以外については、当該位置における鋼組織が、熱延鋼板の鋼組織を代表する(熱延鋼板全体の平均的な鋼組織を示す)からである。
本実施形態において、フェライトとは、ポリゴナルフェライトの他に、アシキュラーフェライト及び擬ポリゴナルフェライトを含み、パーライト組織を構成するフェライトやベイナイト組織を構成するベイニティックフェライトは含まない。本実施形態においてベイニティックフェライトは、ベイナイトとして取り扱う。
以下に、各々の範囲を規定した理由について述べる。
(フェライトの面積率:10〜55%)
軟質なフェライト相は、鋼板の良好な延性を得るために必要な組織である。フェライトの面積率が10%未満では、鋼板の伸びが低下する。したがって、フェライトの面積率は10%以上とする。フェライトの面積率は、好ましくは15%以上である。一方、フェライトが過剰に析出すると、本実施形態に係る鋼板の化学組成では、950MPa以上の引張強度を得ることが困難になる。したがって、フェライトの面積率は55%以下とする。フェライトの面積率は、好ましくは40%未満、より好ましくは38%以下、特に好ましくは36%以下である。
(ベイナイト及びマルテンサイトの合計面積率:45〜90%)
硬質なベイナイトやマルテンサイトは高強度を得るために必要な組織である。ベイナイト及びマルテンサイトの合計面積率が45%未満では、本実施形態に係る鋼板の化学組成で950MPa以上の引張強度を得ることは困難である。したがって、ベイナイト及びマルテンサイトの合計面積率は45%以上とする。ベイナイト及びマルテンサイトの合計面積率は、好ましくは60%超であり、より好ましくは62%以上、さらに好ましくは64%以上である。なお、本実施形態において、マルテンサイトには、オートテンパーされた焼き戻しマルテンサイトも含まれ、ベイナイトには、ベイニティックフェライトが含まれる。一方、ベイナイト及びマルテンサイトの合計面積率が90%を超えると、フェライトの面積率が不足し、鋼板の加工性が得られず伸びが低下する。そのため、ベイナイト及びマルテンサイトの合計面積率は90%以下とする。ベイナイト及びマルテンサイトの合計面積率は、好ましくは85%以下である。
(フェライト、ベイナイト及びマルテンサイトの合計面積率:90%以上(その他の組織:10%以下))
フェライト、ベイナイト及びマルテンサイト以外の、任意の組織であるその他組織として、残留オーステナイト、パーライト及び粒界セメンタイトなどがある。その他の組織の面積率が10%を越えると、これらの組織がき裂起点となり、鋼板の伸びフランジ性や低温靭性が低下する。したがって、その他の組織の面積率は10%以下とする。その他の組織の面積率は、好ましくは8%以下、より好ましくは5%以下である。その他の組織の面積率は0%でも構わない。換言すると、フェライト、マルテンサイト及びベイナイトの合計面積率は90%以上とし、好ましくは92%以上であり、より好ましくは95%以上であり、100%であっても構わない。
その他の組織の中の残留オーステナイトは、打ち抜きなどの予加工により非常に硬質なマルテンサイトに変態することで鋼板の伸びフランジ性を著しく劣化させる。そのため、その他の組織の中でも特に、残留オーステナイトの面積率を3%以下とすることが好ましい。残留オーステナイトの面積率は、より好ましくは2%以下、より一層好ましくは1%以下であり、特に好ましくは0%である。
(平均結晶粒径:12.0μm以下)
フェライト粒径およびマルテンサイトやベイナイトのブロック径の平均結晶粒径が粗大であると、破断時の破面単位が大きくなり、鋼板の低温靭性が低下する。したがって、平均結晶粒径は12.0μm以下とする。平均結晶粒径は、好ましくは10.0μm以下であり、より好ましくは7.0μm以下である。平均結晶粒径は小さいほど好ましいので下限は特に限定されない。しかしながら、通常の熱間圧延では平均結晶粒径が1.0μmを下回るような細粒化は技術的に困難であるため、一般には1.0μm以上である。
なお、本実施形態において平均結晶粒径とは、結晶構造がbccのもの、すなわちフェライト、ベイナイト、マルテンサイトおよびパーライトにおいて結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義した結晶粒径の平均を意味し、残留オーステナイト、粒界セメンタイトの結晶粒径は平均結晶粒径に含めない。
本実施形態において、平均結晶粒径および各組織の面積率は、圧延方向及び板厚方向に平行な鋼板断面の、鋼板の表面から板厚の1/4深さ位置における組織について、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、走査電子顕微鏡(SEM)観察とEBSD(Electron Back Scattering Diffraction:電子線後方散乱回折法)解析とにより求める。
SEM観察では、残留オーステナイトは、ベイナイト及びマルテンサイトのラスやブロックおよびパケット間に存在し、ベイナイト及びマルテンサイトと残留オーステナイトとを区別することが困難なため、ベイナイト及びマルテンサイトに含めて測定し、フェライト、「ベイナイト、マルテンサイト(及び残留オーステナイト)」、並びに残部組織(パーライト及び粒界セメンタイト)の面積率を測定する。
EBSD解析では、板厚の1/4深さ位置を中心とする圧延方向に200μm、板厚方向に100μmの領域を0.2μm間隔でfccとbccとを区別して結晶方位情報を測定し、EBSD解析装置の付属ソフトウェア(AMETEK社製「OIM Analysis(登録商標)」)を用いて、結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義して、fcc(残留オーステナイト)の面積率を求め、また下記[数1]を用いた方法によりbccの平均結晶粒径を求める。
SEM観察により求めた「ベイナイト、マルテンサイト(及び残留オーステナイト)」の面積率から、EBSD解析により求めたfcc(残留オーステナイト)の面積率を差し引くことで、ベイナイトおよびマルテンサイトの面積率を得る。
bccの平均結晶粒径については、下記[数1]に示す式により算出される値を求める。式中、Dは平均結晶粒径、Nは平均結晶粒径の評価領域に含まれる結晶粒の数、Aiはi番目(i=1、2、・・、N)の結晶粒の面積、diはi番目の結晶粒の円相当直径を示す。
Figure 2019009410
15°以上の結晶方位差を有する境界は主に、フェライト粒界、マルテンサイト及びベイナイトのブロック境界である。JIS G 0552:2013に準じたフェライト粒径の測定方法では、結晶方位差が15°未満のフェライト粒についても粒径が算定されてしまう場合があり、さらに、マルテンサイトやベイナイトのブロックは算定されない。したがって、本実施形態における平均結晶粒径は、EBSD解析により求めた値を採用する。
<集合組織>
本実施形態に係る熱延鋼板は、鋼板の板厚中心部において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度、並びに{211}<011>及び{332}<113>の極密度の合計を規定する。本実施形態において板厚中心部とは、板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚の1/10程度の範囲を意味する。例えば、鋼板の板厚が2mmであれば、板厚中心部とは、板厚中心位置を境に表方向及び裏方向にそれぞれ100μm程度の範囲を意味する。
板厚中心部における集合組織を規定する理由は、板厚中心部の集合組織と機械特性とが良く相関しているためである。この理由は定かではないが、本発明者らは以下のように推測する。熱延鋼板は、圧延時にロールと鋼板との摩擦によって、鋼板の表裏で逆方向のせん断変形が生じ、板厚中心部では平面ひずみ変形が生じる。熱延鋼板の集合組織は、この変形に伴って板厚方向に変化し、鋼板の表裏でせん断変形の方向が逆であるため、集合組織も表裏で対称の方位が発達する。そのため、機械特性に及ぼす集合組織の影響を表裏で相殺し合う結果、板厚中心部の集合組織と機械特性とが良く対応する。
(板厚中心部における{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群(主方位群)の最大極密度:8.0以下)
熱延鋼板の板厚中心部の集合組織で発達する主方位として{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>がある。これら方位群のいずれか1つのみが発達しても、熱延鋼板の引張強度、降伏強度、伸び、r値など様々な機械特性の面内異方性が高くなり、全周方向に渡って変形する伸びフランジ性が特に著しく低下する。したがって、本実施形態では、これら全ての方位群の発達を抑制して、集合組織がよりランダムになることが重要である。本実施形態では、板厚中心部における{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群のそれぞれの極密度を算出して、その最大値を求める。最大極密度が低いということは、ランダム方位の組織の割合が高いことを意味するため、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の集合組織が発達していないことを意味する。そのため、上記方位群の最大極密度を8.0以下とする。上記方位群の最大極密度は、好ましくは7.0以下、より好ましくは6.0以下である。なお、上記方位群の最大極密度は、集合組織を持たない場合が1.0であるため、1.0に近いことがより望ましい。
極密度はEBSD解析による結晶方位情報により得ることができるが、X線ランダム強度比と同義である。
(板厚中心部における{211}<011>及び{332}<113>の極密度の合計:10.0以下)
上述した方位群のうち、特に{211}<011>及び{332}<113>の発達により、鋼板の伸びフランジ性が著しく低下する。そのため、{211}<011>及び{332}<113>の極密度の合計を10.0以下とする。{211}<011>及び{332}<113>の極密度の合計は、より好ましくは8.0以下である。前記極密度の合計は、小さければ小さいほど好ましいが、集合組織を持たない場合はそれぞれの極密度が1.0であるため、2.0に近い値がより好ましい。
なお、{hkl}は圧延面に平行な結晶面、<uvw>は圧延方向に平行な結晶方向を表す。すなわち、{hkl}<uvw>とは板面法線方向に{hkl}、圧延方向に<uvw>が向いている結晶を示す。
また、本実施形態において、板厚中心部における各結晶方位の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて、EBSD解析により、板厚中心部(板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚1/10程度の範囲)において、fccとbccとを区別して、1000個以上のbccの結晶粒方位情報を測定し、級数展開法(harmonic series expansion)を用いたODF解析により求める。
<機械特性>
(引張強度:950MPa以上)
本実施形態に係る熱延鋼板は、鋼組織および集合組織の制御により、高強度であり、且つ優れた低温靭性、伸びおよび伸びフランジ性を有する。しかし、熱延鋼板の引張強度が小さいと、車体軽量化や剛性向上などの効果が小さい。そのため、本実施形態に係る熱延鋼板の引張強度(TS)は950MPa以上とする。引張強度は、好ましくは980MPa以上である。
熱延鋼板の伸びは、JIS Z 2241:2011に規定された破断全伸び(El)により評価し、強度と伸びとのバランスの指標となるTS×Elが1400MPa・%以上であることが好ましく、15000MPa・%以上であることがより好ましい。
熱延鋼板の伸びフランジ性は、後述する|Δr|に加え、JIS Z 2256:2010に規定された穴広げ率(λ)により評価し、強度と伸びフランジ性とのバランスの指標となるTS×λが50000MPa・%以上であることが好ましく、55000MPa・%以上であることがより好ましい。
熱延鋼板の低温靭性は、JIS Z 2242:2005に規定のシャルピー衝撃試験における破面遷移温度(vTrs)が−40℃以下であることが好ましい。
本実施形態に係る熱延鋼板では、十分な伸びフランジ性を得る観点から、r値の面内異方性の指標である、|Δr|(Δrの絶対値)が小さい方が好ましい。r値の面内異方性|Δr|は、好ましくは0.40以下であり、より好ましくは0.35以下であり、より一層好ましくは0.30以下、特に好ましくは0.25以下である。r値の面内異方性は小さければ小さいほど好ましく、0が最も好ましい。
Δrは、(r+r90−2×r45)/2で表され、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。また、r値は、ランクフォード(Lankford)値を意味する。
<製造方法>
続いて、本実施形態に係る熱延鋼板の製造条件の限定理由を説明する。
本発明者らは、本実施形態に係る熱延鋼板が、以下のような熱間圧延及び冷却を含む製造方法によって得られることを確認している。
まず、上述した化学組成を有するスラブに多パス熱間圧延を施して熱延鋼板を製造する。熱間圧延に供するスラブは、連続鋳造や鋳造・分塊圧延により得たものでよいが、それらに熱間加工または冷間加工を加えたものであってもよい。多パス熱間圧延はレバースミルまたはタンデムミルを用いて行うことができるが、工業的生産性の観点からは、少なくとも最終の数段はタンデムミルを用いることが好ましい。
(熱間圧延における加熱温度:1150〜1350℃)
熱間圧延に供するスラブまたは鋼片の温度が1150℃未満では、Ti炭化物の溶体化が不十分となり、鋼板の強度や加工性が低下する。一方、熱間圧延に供するスラブまたは鋼片の温度が1350℃超では、厚いスケールが生成して歩留まりの低下を引き起こしたり、スラブまたは鋼片を加熱炉で加熱する際に、加熱炉に著しい損傷を与えたりする場合がある。したがって、熱間圧延に供するスラブまたは鋼片の温度は1150〜1350℃とする。
なお、熱間圧延に供するスラブまたは鋼片の温度は、上記温度域にあればよく、1150℃未満となった鋼塊または鋼片を加熱炉に装入して上記温度域まで加熱してから熱間圧延に供する場合のほか、連続鋳造により得られるスラブまたは分塊圧延により得られる鋼片を1150℃以上の高温状態を保ったまま加熱処理を施すことなく熱間圧延に供してもよい。
(FT+50℃超〜FT+150℃間の合計圧下率:50%以上)
本実施形態では、仕上げ温度を単位℃でFTとして、FT+50℃超〜FT+150℃間の熱間圧延の合計圧下率を高めることによって、鋼板中の再結晶オーステナイト粒の微細化を図ることができる。鋼板中の再結晶オーステナイト粒を微細化させるためには、FT+50℃超〜FT+150℃間の合計圧下率は50%以上とする。上記温度域における合計圧下率が50%未満では、オーステナイトが十分に微細化しないため、変態後の組織が粗大になるとともに、続くFT〜FT+50℃間の圧延時の圧延パス間での再結晶が遅延することにより、変態後の集合組織が発達してしまう。FT+50℃超〜FT+150℃間での合計圧下率は高いほど好ましいが、工業的には90%程度が限界であるため、90%以下としてもよい。
(FT〜FT+50℃間の合計圧下率:40〜80%)
(FT〜FT+50℃間の圧延に要する時間:0.5〜10秒)
本実施形態では、FT〜FT+50℃間の合計圧下率及び圧延に要する時間を適正に制御することによって、後述する熱間圧延後の冷却条件と相俟って、加工性と靭性とに優れた熱延鋼板を得ることができる。
FT〜FT+50℃間の合計圧下率が40%未満では、変態後の組織が粗大になり、圧延パス間及び圧延仕上げ後の再結晶が遅延するとともに、鋼板内部の変形量が不均一となり、変態後に特定の方位が発達してしまうことで、鋼板の伸びフランジ性が低下する。したがって、FT〜FT+50℃間の合計圧下率は40%以上とする。一方、上記温度域における合計圧下率が80%を超えると、再結晶しても集合組織が著しく発達するため、鋼板の伸びフランジ性が低下する。したがって、FT〜FT+50℃間の合計圧下率は80%以下とする。
本実施形態では、さらに、上記温度域の圧延に要する時間も適正に制御することが重要である。上記温度域の圧延に要する時間が短すぎる場合はパス間で再結晶が進まずに圧延ひずみが過度に蓄積してしまい、特定の方位が発達することによって所望の集合組織が得難くなる。そのため、上記温度域の圧延に要する時間は0.5秒以上とする。好ましくは1.0秒以上であり、より好ましくは2.0秒以上である。一方、上記温度域の圧延に要する時間が長すぎる場合は、圧延パス間で再結晶粒が粒成長してしまい、変態後の組織が粗大になる。そのため、上記温度域の圧延に要する時間は10.0秒以下とする。好ましくは8.0秒以下、より好ましくは6.0秒以下である。
FT+50℃超〜FT+150℃間の圧延、FT〜FT+50℃間の圧延のいずれの圧延においても、加工と再結晶とを繰り返させることが重要であるため、それぞれの温度域において2パスないしは3パス以上の圧延を施す。鋼板の集合組織の発達抑制の観点から、FT+50℃超〜FT+150℃間の1パス当たりの圧下率の最大は、好ましくは60%以下、より好ましくは55%以下である。FT〜FT+50℃間の1パス当たり圧下率の最大は、好ましくは50%以下、より好ましくは45%以下、より一層好ましくは40%以下、最も好ましくは35%以下である。
なお、合計圧下率とは、所定の温度域における最初のパス前の入口板厚を基準とした、この温度域での合計圧下量(この温度域の圧延における最初のパス前の入口板厚とこの温度域の圧延における最終パス後の出口板厚との差)の百分率である。
(仕上げ温度FT:式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下)
Ar(℃)=901−325×[C]+33×[Si]−92×[Mn]+287×[P]+40×[Al] (1)
TR(℃)=800+700×[Ti]+1000×[Nb] (2)
但し、上記式(1)及び(2)中の元素記号は、各元素の質量%での含有量を示す。
本実施形態では、仕上げ圧延中のオーステナイト相の加工と再結晶とを繰り返すことにより、組織を微細化すると共に集合組織の発達の抑制を図る。そのため、仕上げ温度FTは、式(1)により求められるAr以上、かつ式(2)により求められるTR以上とする。ここで、仕上げ温度FTとは、最終圧延後の鋼板の表面温度を指す。
FTがAr未満では、仕上げ圧延中におけるフェライト変態が進行し、加工フェライトが生成することで、鋼板の伸びや伸びフランジ性が低下する。また、FTがTR未満では、熱間圧延後冷却前におけるオーステナイトが著しく扁平となり、最終製品の熱延鋼板において、圧延方向に伸長した組織となって、塑性異方性が大きくなることで、伸び及び伸びフランジ性が低下する。FTをTR以上とすることにより、圧延パス間における加工オーステナイトの再結晶を適度に促して、再結晶オーステナイト粒の微細化が図ることができ、熱間圧延後においては、後述する熱間圧延後の冷却条件と相俟って、低温靭性および伸びフランジ性に好適な鋼組織および集合組織を有する熱延鋼板が得ることができる。FTは、好ましくはTR+20℃以上、より好ましくはTR+40℃以上である。
一方、FTが1100℃を超えると、組織が粗大化してしまい、鋼板の低温靭性が低下する。したがって、FTは1100℃以下とする。好ましくは1080℃以下、より好ましくは1060℃以下である。なお、仕上げ圧延中の温度は、鋼材の表面温度を指し、放射温度計等により測定することができる。
本実施形態では、FTを所定の範囲内とし、且つ上述したFT〜FT+50℃間の圧延に要する時間を所定の範囲内とすることで、所定の温度域での圧延パス間および仕上げ圧延後のオーステナイトの再結晶が促進され、加工オーステナイトによるフェライト変態促進効果が弱まり、フェライトの面積率を55%以下に制御できる。さらに、オーステナイト粒径を微細化することができるので、微細な結晶粒径が得られるとともに、オーステナイトの再結晶が進むことで、極密度の減少を促進することができる。
(仕上げ圧延を完了した後、水冷を開始するまでの時間:3.0秒以内)
仕上げ圧延完了後は、圧延によって蓄積したひずみを活用して組織の微細化を図るため、3.0秒以内に水冷を開始する。この水冷は、複数の段階に分けて行われてもよい。仕上げ圧延完了後、水冷開始までの時間が3.0秒超ではオーステナイト中のひずみが回復してしまい、所望の組織を得難くなる。仕上げ圧延完了後、水冷を開始するまでの時間は、好ましくは2.0秒以内、より好ましくは1.0秒以内、さらに好ましくは0.5秒以内である。仕上げ圧延完了後、水冷を開始するまでの時間は、仕上げ圧延完了後のオーステナイトを再結晶させるために0.05秒以上が好ましい。
(FT〜750℃の平均冷却速度:20℃/秒以上)
仕上げ圧延完了後の熱延鋼板を、仕上げ圧延を完了した温度(仕上げ温度:FT(℃))から750℃まで冷却する際の平均冷却速度は、所望の組織を得るために重要な工程条件である。なお、前記平均冷却速度の算定に当たっては、時間としては仕上げ圧延完了後、水冷開始までの時間が含まれる。上記温度域における平均冷却速度が20℃/秒未満であると、微細組織の形成が難しくなり、冷却の過程でフェライトやパーライトが析出して、鋼板の伸びフランジ性や低温靭性が低下する。そのため、上記温度域における平均冷却速度は20℃/秒以上とする。好ましくは30℃/秒以上、より好ましくは40℃/秒以上である。上限は特に限定する必要はないが、熱ひずみによる板反り抑制の観点からは300℃/秒以下であることが好ましい。
さらに、FT〜750℃の温度域において、仕上げ圧延終了後の高温域を急速冷却することにより、組織をより微細化することができ、鋼板の低温靭性がより向上する。そのためには、仕上げ圧延を完了した後、水冷を3.0秒以内に開始し、FT〜750℃の平均冷却速度を20℃/秒以上とすることに加え、FT〜FT−40℃までの平均冷却速度を100℃/秒以上とすることが好ましい。この場合、前記水冷が、FT〜FT−40℃の温度範囲の急冷を目的としたステップとその後の冷却を行う複数の冷却ステップで行われることを妨げない。FT〜FT−40℃の平均冷却速度が100℃/秒未満では上記効果が得難くなる。FT〜FT−40℃の平均冷却速度は、好ましくは120℃/秒以上、より好ましくは150℃/秒以上である。上限は特に限定する必要はないが、鋼板内の温度ばらつき抑制の観点からは1000℃/秒以下であることが好ましい。
上述の仕上げ圧延終了後の高温域の急冷(FT〜FT−40℃の冷却)は、仕上げ圧延の最終スタンドの後に限らず、圧延スタンドの間で行ってもよい。すなわち、急速冷却を行った後のスタンドでは圧延しないか、もしくは、形状矯正や冷却制御などを目的として、圧下率が8%以下の圧延を加えてもよい。この場合、急冷後の圧延は仕上げ圧延工程には含まれない。
(750〜600℃の滞在時間:5〜20秒)
仕上げ圧延後の熱延鋼板が、750〜600℃の温度域に達すると、オーステナイトからフェライトへの変態が活発となる。そのため、熱延鋼板を上記温度域で5秒間以上滞在させて、オーステナイトからフェライトへの変態を促進することで、所望のフェライト面積率を得る。上記温度域における滞在時間が5秒未満であると、オーステナイトからフェライトへの変態が十分に進行せず、所望のフェライト面積率を得ることが難しくなる。そのため、上記温度域における滞在時間は5秒以上とする。好ましくは7秒以上である。一方、上記温度域における滞在時間が20秒を超えると、フェライトが過剰に析出したり、パーライトやセメンタイトが析出したりする。そのため、上記温度域における滞在時間は20秒以下とする。好ましくは17秒以下、より好ましくは14秒以下である。
なお、本実施形態において、750〜600℃の滞在時間とは、仕上げ圧延後の熱延鋼板の温度が750℃に達してから、温度が低下して600℃に達するまでの時間を示し、この時間範囲において鋼板が必ずしも常に冷却される必要はない。
(600℃からMs未満の冷却停止温度までの平均冷却速度:20℃/秒以上)
Ms(℃)=561−474×[C]−33×[Mn]−17×[Ni]−21×[Mo] (3)
750〜600℃の温度域に5〜20秒間滞在させた後の熱延鋼板に残留している未変態オーステナイトを、マルテンサイトやベイナイトに変態させて950MPa以上の引張強度を得るために、600℃から上記式(3)式で表されるマルテンサイト変態開始温度Ms未満の冷却停止温度までの平均冷却速度を20℃/秒以上とする。上記温度域における平均冷却速度が20℃/秒未満では、冷却中にパーライトが過剰に形成する等により所望の組織が得難くなり、結果として950MPa以上の引張強度が得難くなる。上記温度域における平均冷却速度は、好ましくは40℃/秒以上、より好ましくは50℃/秒以上である。上記温度域における平均冷却速度の上限は特に限定しないが、熱ひずみによる板反り抑制の観点から、300℃/秒以下が好ましい。
(MsからMs未満の冷却停止温度までの平均冷却速度:80℃/s以上)
鋼板の引張強度をより高めるためには、MsからMs未満の冷却停止温度までの平均冷却速度を80℃/秒以上とすることが好ましい。より好ましくは100℃/秒以上、より一層好ましくは120℃/秒以上である。上限は特に限定する必要はないが、板厚方向の組織の均一性の観点からは500℃/秒以下であることが好ましい。より好ましくは400℃/秒以下である。また、Ms未満の冷却停止温度は、好ましくはMs−20℃以下、より好ましくはMs−50℃以下である。
Ms未満の冷却停止温度まで冷却した後は、一般的には巻取りを行う。
本実施形態に係る熱延鋼板を製造する際には、例えば形状矯正を目的として公知の調質圧延を適宜施してもよい。また、めっきを施してめっき鋼板としてもよい。めっきは電気めっきおよび溶融めっきのいずれでもよく、めっき種も特に制限はないが、一般的には亜鉛めっきと亜鉛合金めっきとを含む亜鉛系めっきである。めっき鋼板の例としては、電気亜鉛めっき鋼板、電気亜鉛−ニッケル合金めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融亜鉛−アルミニウム合金めっき鋼板などが例示される。めっき付着量は一般的な量でよい。
本実施形態に係る熱延鋼板の板厚について、特に限定するものではないが、板厚が厚すぎる場合は、鋼板表層と内部とで生成される組織が著しく異なるため、6.0mm以下が好ましい。一方、板厚が薄すぎると熱延時の通板が困難となるため、一般的には1.0mm以上が好ましい。より好ましくは、1.2mm以上、さらに好ましくは1.5mm以上である。
表1に示す化学組成(質量%)を有する鋼を溶製して鋳造した後、熱間鍛造によって30mm厚さの鋼片とした。得られた鋼片を加熱し、試験用小型タンデムミルにて、FT+50℃超〜FT+150℃間の圧延及びFT〜FT+50℃間の圧延のいずれにおいても2〜4パスの複数回の圧延を行い、表2−1及び表2−2に示す条件で熱間圧延を施して、2.5〜3.5mmの板厚に仕上げた。表2−1及び表2−2に製造条件を示す。なお、下線付き太字は本発明の範囲外であることを示す。
Figure 2019009410
Figure 2019009410
Figure 2019009410
得られた熱延鋼板について、走査型電子顕微鏡観察およびEBSD解析により、圧延方向及び板厚方向に平行な鋼板断面を観察し、鋼板表面から板厚の1/4深さ位置における組織の面積率と平均結晶粒径、および、板厚中心部の各結晶方位の極密度を求めた。
EBSD解析に用いる試料については、鏡面研磨後、電解研磨により観察面の表層の加工ひずみを除去した。EBSD解析は、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、鋼板の表面から板厚の1/4深さ位置を中心とする圧延方向に200μm、板厚方向に100μmの領域において、0.2μmの間隔でfccとbccとを区別して結晶方位情報を測定し、EBSD解析装置の付属ソフトウェア(AMETEK社製「OIM Analysis(登録商標)」)を用いて、結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義して、bccの平均結晶粒径およびfcc(残留オーステナイト)の面積率を求めた。なお、bccの平均結晶粒径については、下記[数1]に示す式で算出される値を求めた。式中、Nは平均結晶粒径の評価領域に含まれる結晶粒の数、Aiはi番目(i=1、2、・・、N)の結晶粒の面積、diはi番目の結晶粒の円相当直径を示す。
Figure 2019009410
フェライト、「ベイナイト、マルテンサイト(及び残留オーステナイト)」、並びに残部組織(パーライト及び粒界セメンタイト)の面積率は、SEM観察により求めた。ここで、残留オーステナイトは、ベイナイト及びマルテンサイトのラスやブロック間に存在し、ベイナイト及びマルテンサイトと残留オーステナイトとを区別することが困難であったため、「ベイナイト、マルテンサイト(及び残留オーステナイト)」に含めた。SEM観察により求めた「ベイナイト、マルテンサイト(及び残留オーステナイト)」の面積率から、EBSD解析により求めたfcc(残留オーステナイト)の面積率を差し引くことで、ベイナイト及びマルテンサイトの面積率を得た。
同様の装置を用いて、板厚中心部において、EBSD解析により、板厚中心部(板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚1/10程度の範囲)において、fccとbccとを区別して4500〜5500個のbccの結晶粒方位情報を測定し、級数展開法を用いたODF解析により各結晶方位の極密度を求めた。
熱延鋼板の機械特性を評価するため、引張強度TS(MPa)、破断全伸びEl(%)は、JIS Z 2241:2011に準拠し、r値は、|Δr|として、JIS Z 2254:2008に準拠し、伸びフランジ性は、JIS Z 2256:2010に準拠して測定される穴広げ率λ(%)により評価した。低温靭性は、破面遷移温度vTrs(℃)で評価し、JIS Z 2242:2005に準拠して、鋼板を2.5mmサブサイズ試験片に加工したVノッチ試験片を用いてシャルピー衝撃試験を行って評価した。
表3−1及び表3−2に鋼組織、集合組織および機械特性の調査結果を示す。なお、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度は、表3−1及び表3−2中に「主方位群の最大極密度」と示す。
引張強度は、950MPa以上の場合を高強度であるとして合格とし、|Δr|は、0.40以下の場合を伸びフランジ性に優れるとして合格とし、vTrs(℃)は、−40℃以下を低温靭性に優れるとして合格とした。加工性は、破断全伸びEl、|Δr|の指標の他に、強度−破断全伸びバランス(TS×El)及び強度−伸びフランジ性バランス(TS×λ)によっても評価した。TS×El(MPa・%)は、14000MPa・%以上の場合を高強度であり伸びに優れるとして合格とし、TS×λ(MPa・%)は、50000MPa・%以上である場合を高強度であり伸びフランジ性に優れるとして合格とした。
Figure 2019009410
Figure 2019009410
表3−1及び表3−2に示すように、本発明に従った発明例では、950MPa以上の引張強度、0.40以下の|Δr|、−40℃以下のvTrsを有していることから、強度、伸びフランジ性、低温靭性に優れていることが分かる。さらに、14000MPa・%以上のTS×El、50000MPa・%以上のTS×λを有していることから、高い強度と伸びおよび伸びフランジ性とを兼備していることが分かる。本発明によれば、強度、伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板が得ることができている。
これに対し、化学組成、集合組織以外の鋼組織、又は集合組織が本発明の範囲外である比較例は、強度、伸び、伸びフランジ性及び低温靭性のいずれかが劣っている。

Claims (8)

  1. 質量%で、
    C:0.02〜0.20%、
    Si:0.005〜2.00%、
    Mn:1.30〜2.40%、
    P:0.100%以下、
    S:0.0100%以下、
    sol.Al:0.001〜1.00%、
    Ti:0.030〜0.200%、
    N:0.0010〜0.0100%、
    Nb:0〜0.100%、
    V:0〜0.50%、
    Mo:0〜0.50%、
    Cu:0〜1.00%、
    Ni:0〜1.00%、
    Cr:0〜2.00%、
    B:0〜0.0100%、
    Ca:0〜0.0100%、
    Mg:0〜0.0100%及び
    REM:0〜0.0100%
    を含有し、残部がFe及び不純物からなる化学組成を有し、
    表面から板厚の1/4深さ位置において、フェライトの面積率が10〜55%であり、ベイナイト及びマルテンサイトの合計面積率が45〜90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、
    板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>及び{332}<113>の極密度の合計が10.0以下であり、
    引張強度が950MPa以上であることを特徴とする熱延鋼板。
  2. 前記化学組成が、質量%で、
    Nb:0.001〜0.100%、
    V:0.005〜0.50%、
    Mo:0.001〜0.50%、
    Cu:0.02〜1.00%、
    Ni:0.02〜1.00%、
    Cr:0.02〜2.00%及び
    B:0.0001〜0.0100%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載の熱延鋼板。
  3. 前記化学組成が、質量%で、
    Ca:0.0002〜0.0100%、
    Mg:0.0002〜0.0100%及び
    REM:0.0002〜0.0100%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の熱延鋼板。
  4. r値の面内異方性の絶対値|Δr|が0.35以下であることを特徴とする請求項1〜3のいずれか1項に記載の熱延鋼板。
    但し、Δr=(r+r90−2×r45)/2
    であり、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。
  5. 請求項1〜4のいずれか1項に記載の熱延鋼板を製造するに当たり、請求項1〜3の何れか一項に記載の前記化学組成を有するスラブまたは鋼片に多パス熱間圧延を施して熱延鋼板を製造する熱延鋼板の製造方法であって、
    前記多パス熱間圧延における加熱温度を1150〜1350℃とし、
    仕上げ温度を単位℃でFTと表したとき、前記FT+50℃超〜前記FT+150℃間の合計圧下率を50%以上、前記FT〜前記FT+50℃間の合計圧下率を40〜80%、前記FT〜前記FT+50℃間の圧延に要する時間を0.5〜10.0秒とし、
    前記FT+50℃超〜前記FT+150℃及び前記FT〜前記FT+50℃のそれぞれの温度域において2パス以上の圧延を行い、
    前記FTを、式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下として仕上げ圧延を完了した後、3.0秒以内に水冷を開始し、前記FT〜750℃の平均冷却速度を20℃/秒以上とし、
    750〜600℃の温度域で5〜20秒間滞在させた後、
    600℃から式(3)により求められるMs未満の冷却停止温度まで、平均冷却速度を20℃/秒以上として冷却することを特徴とする熱延鋼板の製造方法。
    Ar(℃)=901−325×[C]+33×[Si]−92×[Mn]+287×[P]+40×[Al] (1)
    TR(℃)=800+700×[Ti]+1000×[Nb] (2)
    Ms(℃)=561−474×[C]−33×[Mn]−17×[Ni]−21×[Mo] (3)
    但し、上記式(1)〜(3)中の各元素記号は、各元素の質量%での含有量を示す。
  6. 前記Msから前記Ms未満の前記冷却停止温度までの平均冷却速度を80℃/s以上とすることを特徴とする請求項5に記載の熱延鋼板の製造方法。
  7. 仕上げ圧延完了後、0.3秒以内に水冷を開始し、前記FT〜前記FT−40℃までの平均冷却速度が100℃/s以上である冷却を行うことを特徴とする請求項5または6に記載の熱延鋼板の製造方法。
  8. 前記FT〜前記FT−40℃までの平均冷却速度が100℃/s以上である冷却を行う工程を、圧延スタンド間で行うことを特徴とする請求項7に記載の熱延鋼板の製造方法。
JP2018558449A 2017-07-07 2018-07-06 熱延鋼板及びその製造方法 Active JP6465266B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017133889 2017-07-07
JP2017133889 2017-07-07
PCT/JP2018/025687 WO2019009410A1 (ja) 2017-07-07 2018-07-06 熱延鋼板及びその製造方法

Publications (2)

Publication Number Publication Date
JP6465266B1 JP6465266B1 (ja) 2019-02-06
JPWO2019009410A1 true JPWO2019009410A1 (ja) 2019-07-04

Family

ID=64951086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558449A Active JP6465266B1 (ja) 2017-07-07 2018-07-06 熱延鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US11313009B2 (ja)
EP (1) EP3650569B1 (ja)
JP (1) JP6465266B1 (ja)
KR (1) KR102269845B1 (ja)
CN (1) CN110832098B (ja)
BR (1) BR112019027154A2 (ja)
TW (1) TWI679285B (ja)
WO (1) WO2019009410A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151273A1 (ja) 2017-02-16 2018-08-23 新日鐵住金株式会社 熱間圧延鋼板及びその製造方法
KR102098482B1 (ko) 2018-07-25 2020-04-07 주식회사 포스코 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
KR102599382B1 (ko) * 2019-03-26 2023-11-08 닛폰세이테츠 가부시키가이샤 강판, 강판의 제조 방법 및 도금 강판
US20220389554A1 (en) * 2019-10-01 2022-12-08 Nippon Steel Corporation Hot-rolled steel sheet
JP7280537B2 (ja) * 2019-12-23 2023-05-24 日本製鉄株式会社 熱延鋼板
KR20220111724A (ko) * 2020-01-27 2022-08-09 닛폰세이테츠 가부시키가이샤 열연 강판
CN114929918B (zh) * 2020-01-30 2023-12-26 日本制铁株式会社 热轧钢板及其制造方法
CN115087756B (zh) * 2020-02-20 2023-12-22 日本制铁株式会社 热轧钢板
CN115244203B (zh) * 2020-03-11 2023-11-21 日本制铁株式会社 热轧钢板
WO2021182618A1 (ja) * 2020-03-13 2021-09-16 日本製鉄株式会社 風力発電施設用鋼板およびその製造方法
CN111647801A (zh) * 2020-05-11 2020-09-11 首钢集团有限公司 一种690MPa级铁素体马氏体双相钢、其制备方法及其应用
CN111519096A (zh) * 2020-05-12 2020-08-11 包头钢铁(集团)有限责任公司 一种含稀土的q890cf高强钢板及其制造方法
CN115135790B (zh) * 2020-05-13 2023-09-22 日本制铁株式会社 热冲压用钢板及热冲压成形体
MX2022010321A (es) * 2020-05-13 2022-09-19 Nippon Steel Corp Cuerpo conformado por estampacion en caliente.
KR20230041055A (ko) * 2020-08-27 2023-03-23 닛폰세이테츠 가부시키가이샤 열연 강판
CN116113508A (zh) * 2020-08-27 2023-05-12 日本制铁株式会社 热轧钢板
WO2022059321A1 (ja) * 2020-09-17 2022-03-24 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
MX2023002383A (es) * 2020-09-30 2023-03-21 Nippon Steel Corp Lamina de acero y metodo de fabricacion de lamina de acero.
KR20230038545A (ko) * 2020-09-30 2023-03-20 닛폰세이테츠 가부시키가이샤 고강도 강판
JPWO2022269742A1 (ja) * 2021-06-22 2022-12-29
KR20240038998A (ko) * 2021-09-08 2024-03-26 닛폰세이테츠 가부시키가이샤 열연 강판

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1444374B9 (en) * 2001-10-04 2015-02-18 Nippon Steel Corporation High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
CN100526493C (zh) * 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
CN101265553B (zh) 2007-03-15 2011-01-19 株式会社神户制钢所 挤压加工性优异的高强度热轧钢板及其制造方法
JP4955499B2 (ja) 2007-09-28 2012-06-20 株式会社神戸製鋼所 疲労強度及び伸びフランジ性に優れた高強度熱延鋼板
JP5163835B2 (ja) 2010-07-28 2013-03-13 新日鐵住金株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
US9517914B2 (en) * 2011-03-11 2016-12-13 Signode Industrial Group Llc Tape cartridge
EP2692895B1 (en) * 2011-03-28 2018-02-28 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and production method thereof
US9587287B2 (en) * 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
ES2632439T3 (es) 2011-04-13 2017-09-13 Nippon Steel & Sumitomo Metal Corporation Chapa de acero laminada en caliente y método de fabricación de la misma
MX2013011750A (es) 2011-04-13 2013-11-04 Nippon Steel & Sumitomo Metal Corp Laminas de acero laminadas en frio, de alta resistencia, que tienen deformabilidad local excelente y metodo de fabricacion de las mismas.
PL2700728T3 (pl) 2011-04-21 2018-03-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na zimno o wysokiej wytrzymałości, wysoce jednorodnej rozciągliwości i doskonałej podatności na powiększanie otworu oraz sposób jej wytwarzania
KR101632778B1 (ko) 2011-05-25 2016-06-22 신닛테츠스미킨 카부시키카이샤 냉연 강판 및 그 제조 방법
CN102810039A (zh) * 2011-05-31 2012-12-05 中兴通讯股份有限公司 左右手自适应的虚拟键盘显示方法及终端
CA2850091C (en) 2011-09-30 2016-06-28 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 mpa or more and manufacturing method therefor
KR101617115B1 (ko) 2012-01-05 2016-04-29 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
PL2818568T3 (pl) * 2012-02-22 2019-04-30 Nippon Steel & Sumitomo Metal Corp Blacha stalowa cienka walcowana na zimno i sposób jej wytwarzania
JP5870955B2 (ja) 2013-04-15 2016-03-01 Jfeスチール株式会社 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
ES2688729T3 (es) 2014-04-23 2018-11-06 Nippon Steel & Sumitomo Metal Corporation Chapa de acero laminada en caliente para piezas en bruto laminadas a medida, piezas en bruto laminadas a medida y método para la producción de estas
JP6379716B2 (ja) * 2014-06-23 2018-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
BR112018008873A8 (pt) 2015-11-19 2019-02-26 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a quente de alta resistência e método de fabricação da mesma
JP6581516B2 (ja) 2016-01-26 2019-09-25 株式会社東芝 磁気センサおよび磁気センサ装置

Also Published As

Publication number Publication date
KR20200011475A (ko) 2020-02-03
JP6465266B1 (ja) 2019-02-06
CN110832098B (zh) 2021-11-23
EP3650569B1 (en) 2024-02-21
US20210140005A1 (en) 2021-05-13
WO2019009410A1 (ja) 2019-01-10
EP3650569A1 (en) 2020-05-13
TWI679285B (zh) 2019-12-11
EP3650569A4 (en) 2021-03-24
TW201907014A (zh) 2019-02-16
BR112019027154A2 (pt) 2020-06-30
KR102269845B1 (ko) 2021-06-28
US11313009B2 (en) 2022-04-26
CN110832098A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
JP6465266B1 (ja) 熱延鋼板及びその製造方法
US11111553B2 (en) High-strength steel sheet and method for producing the same
US10253389B2 (en) High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor
JP6048580B2 (ja) 熱延鋼板及びその製造方法
JP6852736B2 (ja) 溶融亜鉛めっき冷延鋼板
TWI412605B (zh) 高強度鋼板及其製造方法
US10590504B2 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5339005B1 (ja) 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
JP6354268B2 (ja) 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP6264082B2 (ja) 熱延鋼板の製造方法
JP7284428B2 (ja) 鋼板、鋼板の製造方法およびめっき鋼板
JP6519016B2 (ja) 熱延鋼板及びその製造方法
JP2021502484A (ja) 冷間圧延熱処理鋼板及びその製造方法
JP6610389B2 (ja) 熱延鋼板及びその製造方法
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
CN113692456B (zh) 剪切加工性优异的超高强度钢板及其制造方法
JP7020594B2 (ja) 鋼板、部材及びそれらの製造方法
JP6724320B2 (ja) 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
US20230295761A1 (en) Steel sheet and steel sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R151 Written notification of patent or utility model registration

Ref document number: 6465266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350