JPWO2019004433A1 - Method for manufacturing zero plane anchoring film and liquid crystal display device - Google Patents

Method for manufacturing zero plane anchoring film and liquid crystal display device Download PDF

Info

Publication number
JPWO2019004433A1
JPWO2019004433A1 JP2019527061A JP2019527061A JPWO2019004433A1 JP WO2019004433 A1 JPWO2019004433 A1 JP WO2019004433A1 JP 2019527061 A JP2019527061 A JP 2019527061A JP 2019527061 A JP2019527061 A JP 2019527061A JP WO2019004433 A1 JPWO2019004433 A1 JP WO2019004433A1
Authority
JP
Japan
Prior art keywords
liquid crystal
group
radical
carbon atoms
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527061A
Other languages
Japanese (ja)
Other versions
JP7234924B2 (en
Inventor
尚宏 野田
尚宏 野田
正人 森内
正人 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019004433A1 publication Critical patent/JPWO2019004433A1/en
Application granted granted Critical
Publication of JP7234924B2 publication Critical patent/JP7234924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Abstract

ゼロ面アンカリング膜の工業的な製造方法、および、それを用いる良好な液晶表示素子及び液晶表示素子の製造方法を提供する。液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング膜の製造方法。および、液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する第一基板とラジカル発生膜を有さない第二基板との間に有するセルを用意するステップ、及び前記セルに、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む機能膜の作成方法とする。Provided are a method for industrially producing a zero-plane anchoring film, a good liquid crystal display device using the same, and a method for producing a liquid crystal display device. A liquid crystal composition containing a liquid crystal and a radically polymerizable compound, in a state of being in contact with the radical generating film, including a step of giving sufficient energy to cause a polymerization reaction of the radically polymerizable compound, a zero plane anchoring film Production method. And a step of preparing a cell having a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between a first substrate having a radical generating film and a second substrate having no radical generating film, and the cell The method for producing a functional film includes the step of applying sufficient energy to cause a polymerization reaction of the radically polymerizable compound.

Description

本発明は、安価かつ複雑な工程を含まない手法にて、ゼロ面アンカリング膜を製造することが可能なポリマー安定化技術を応用した製造方法、及び、当該製造方法を用いる、更なる低電圧駆動を実現するための液晶表示素子およびその製造方法に関するものである。   The present invention is a method of applying a polymer stabilization technology capable of producing a zero-plane anchoring film by a method that is inexpensive and does not include complicated steps, and further low voltage using the method. The present invention relates to a liquid crystal display device for realizing driving and a manufacturing method thereof.

近年、携帯電話 、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVRや超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In−Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。   2. Description of the Related Art In recent years, liquid crystal display devices have been widely used in mobile phones, computers, televisions, and the like. Liquid crystal display devices have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR and ultra-high definition displays in the future. Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Alignment) have been proposed as display methods for liquid crystal displays, but the liquid crystal has a desired alignment state in all modes. A film (liquid crystal alignment film) that induces to (1) is used.

特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。   In particular, for products equipped with a touch panel such as a tablet PC, a smart phone, and a smart TV, an IPS mode in which the display is not disturbed even when touched is preferred, and in recent years, FFS (Frindge) has been improved in terms of improving contrast and viewing angle characteristics. A liquid crystal display element using Field Switching and a technique using a non-contact technique using optical alignment have come to be used.

しかしながら、FFSはIPSに比べ基板の製造コストが大きく、Vcomシフトと呼ばれるFFSモード特有の表示不良が発生する課題がある。また光配向に関しては、ラビング法に比べ、製造できる素子の大きさを大きくできる点や表示特性を大きく向上できるというメリットがあるが、光配向の原理上の課題(分解型であれば分解物由来の表示不良、異性化型であれば配向力不足による焼き付き等)が挙げられる。それらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。   However, FFS has a problem that the manufacturing cost of the substrate is higher than that of IPS, and a display defect peculiar to the FFS mode called Vcom shift occurs. Regarding photo-alignment, there is a merit that the size of the element that can be manufactured can be increased and the display characteristics can be greatly improved as compared with the rubbing method, but there is a problem in the principle of photo-alignment (in the case of a decomposition type, it is derived from decomposed products. (2) display failure, and if it is an isomerization type, image sticking due to insufficient orientation force). At present, manufacturers of liquid crystal display elements and manufacturers of liquid crystal alignment films are making various efforts to solve these problems.

一方で、近年ゼロ面アンカリングというものを利用したIPSモードが提案されており、この手法を用いることで従来のIPSモードに比べてコントラスト向上や大幅な低電圧駆動が可能になるという報告がされている(特許文献1参照)。   On the other hand, in recent years, an IPS mode using zero plane anchoring has been proposed, and it has been reported that this method can improve the contrast and drastically reduce the voltage as compared with the conventional IPS mode. (See Patent Document 1).

具体的には、片側の基板には強いアンカリングエネルギーを有する液晶配向膜を用い、一方の横電界を発生させる方の電極を具備した基板側には一切液晶の配向規制力を有さなくなるような処理を施し、それらを用いてIPSモードの液晶表示素子を作る方法である。   Specifically, a liquid crystal alignment film having a strong anchoring energy is used on one side of the substrate, and one side of the substrate equipped with an electrode for generating a horizontal electric field has no liquid crystal alignment regulating force. It is a method of producing an IPS mode liquid crystal display element by using various treatments.

近年では、濃厚ポリマーブラシ等を用いてゼロ面状態を作り出し、セロ面アンカリングIPSモードの技術提案がなされている(参考文献2)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。   In recent years, a zero-plane state is created using a thick polymer brush or the like, and a technical proposal for a cello-plane anchoring IPS mode has been made (reference 2). With this technology, the contrast ratio is significantly improved and the drive voltage is significantly reduced.

特許第4053530号公報Japanese Patent No. 4053530 特開2013−231757号公報JP, 2013-231757, A

一方でこの技術には原理的に発生する課題があり、第1はポリマーブラシを基板上に安定的に発生させるためには非常に繊細な条件で行う必要があり、量産を考えると現実的ではないことが挙げられる。第2は、配向膜は焼き付き抑制などの重要な働きを担っているが、ポリマーブラシ等を用いる場合は必要となる電気物性などの制御が困難であることが挙げられる。第3は駆動原理上電圧Offにした際の応答速度が非常に遅くなることが挙げられる。配向規制力をゼロにすることで液晶にかかる駆動時の抵抗を無くすことで閾値電圧の大幅な低下と、駆動時の配向不良領域が減少することによる輝度向上が期待されるが、液晶の戻りに関しては、液晶の戻る際の動力は液晶の弾性力に依存するため、配向膜があるときに比べて大きく速度が低下することが考えられる。
このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。
本発明は、上記のような課題を解決するためになされたものであり、ゼロ面アンカリング膜を製造することが可能なポリマー安定化技術を応用した製造方法、及び、常温において、簡便且つ安価な方法で非接触配向と低駆動電圧化とOff時の応答速度も速くすることが同時に実現できる、横電界液晶表示素子およびその製造方法を提供することを目的とする。
On the other hand, there is a problem that occurs in principle in this technology. Firstly, it is necessary to carry out under extremely delicate conditions in order to stably generate the polymer brush on the substrate, and it is not realistic considering mass production. There is no thing. Secondly, the alignment film has an important function of suppressing image sticking, but it is difficult to control the electrical properties required when using a polymer brush or the like. Thirdly, the response speed when the voltage is turned off is very slow due to the driving principle. It is expected that by reducing the alignment control force to zero, the resistance applied to the liquid crystal during driving will be drastically lowered and the brightness will be improved by reducing the alignment failure area during driving. With regard to (2), since the power for returning the liquid crystal depends on the elastic force of the liquid crystal, it is considered that the speed is greatly reduced as compared with the case where the alignment film is provided.
If such a technical problem can be solved, it will be a great cost advantage for a panel maker, and it can be considered to have a merit in suppressing battery consumption and improving image quality.
The present invention has been made to solve the above problems, a manufacturing method applying a polymer stabilization technology capable of manufacturing a zero plane anchoring film, and a simple and inexpensive method at room temperature. It is an object of the present invention to provide a lateral electric field liquid crystal display device and a method for manufacturing the same, which can simultaneously realize non-contact alignment, lower driving voltage, and faster response speed when off.

本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved, and have completed the present invention having the following points.

すなわち、本発明は以下を包含する。
[1] 液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング膜の製造方法。
[2] 前記第一基板の有するラジカル発生膜が一軸配向処理されたラジカル発生膜である[1]に記載の方法。
[3] エネルギーを与えるステップを無電界で行う、[1]又は[2]に記載の方法。
[4] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜であることを特徴とする[1]〜[3]のいずれか一項に記載の方法。
[5] 前記ラジカル発生膜が、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得られることを特徴とする[1]〜[3]のいずれか一項に記載の方法。
[6] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成ることを特徴とする[1]〜[3]のいずれか一項に記載の方法。
[7] 前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体であることを特徴とする[6]記載の方法。
[8] 前記ラジカル重合を誘発する有機基が下記構造[X−1]〜[X−18]、[W]、[Y]、[Z]で表される有機基である[4]、[6]及び[7]のいずれか一項に記載の方法。

Figure 2019004433

(式[X−1]〜[X−18]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す)
Figure 2019004433

(式[W]、[Y]、[Z]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。)
[9] 前記ラジカル重合を誘発する有機基を含有するジアミンが下記一般式(6)又は下記一般式(7)で表される構造を有するジアミンであることを特徴とする[7]記載の方法。
Figure 2019004433

(式(6)中、Rは単結合、−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−を表し、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
は、下記式:
Figure 2019004433

から選択されるラジカル重合反応性基を表す。
(式[X−1]〜[X−18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す))
Figure 2019004433

(式(7)中、T及びTは、それぞれ独立に、単結合、−O−、−S−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−であり、
Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
Jは下記式で表される有機基であり、
Figure 2019004433

(式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。))
[10] 前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物である、[1]〜[9]のいずれか一項に記載の方法。
[11] 前記ラジカル重合性化合物の重合性反応基が以下の構造から選ばれる、[10]に記載の方法。
Figure 2019004433

(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1〜4のアルキル基を示す。)
[12] 前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する液晶組成物を用いることを特徴とする[1]〜[11]のいずれか一項に記載の方法。
[13] ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
第一基板上のラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、
第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、
[1]〜[12]のいずれか一項に記載の方法を用いる液晶セルの製造方法。
[14] 前記第二基板がラジカル発生膜を有さない第二基板である[13]に記載の液晶セルの製造方法。
[15] 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板であることを特徴とする[14]に記載の液晶セルの製造方法。
[16] 前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜であることを特徴とする[15]に記載の液晶セルの製造方法。
[17] 前記ラジカル発生膜を有する第一基板が櫛歯電極を有する基板である[13]〜[16]のいずれか一項に記載の液晶セルの製造方法。
[18] 液晶及びラジカル重合性化合物を含有し、
前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物であり、
重合性反応基が以下の構造から選ばれる、液晶組成物。
Figure 2019004433

(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1〜4のアルキル基を示す。)
[19] [1]〜[17]のいずれか一項に記載の方法を用いて得られたゼロ面アンカリング状態を作り出す膜を用いる液晶表示素子の製造方法。
[20] [19]記載の方法を用いて得られた液晶表示素子。
[21] 第一基板又は第二基板が電極を有する、[20]に記載の液晶表示素子。
[22] 低電圧駆動横電界液晶表示素子である、[20]又は[21]に記載の液晶表示素子。That is, the present invention includes the following.
[1] A zero-plane anchor including a step of applying sufficient energy for causing a polymerization reaction of the radical-polymerizable compound in a state where the liquid-crystal composition containing the liquid crystal and the radical-polymerizable compound is brought into contact with the radical-generating film. Ring film manufacturing method.
[2] The method according to [1], wherein the radical generating film of the first substrate is a uniaxially oriented radical generating film.
[3] The method according to [1] or [2], wherein the step of applying energy is performed without an electric field.
[4] The method according to any one of [1] to [3], wherein the radical generating film is a film formed by fixing an organic group that induces radical polymerization.
[5] The radical-generating film is obtained by applying a composition of a compound having a radical-generating group and a polymer to form a film and fixing the composition in the film. The method according to any one of [1] to [3].
[6] The method according to any one of [1] to [3], wherein the radical generating film is made of a polymer containing an organic group that induces radical polymerization.
[7] The polymer containing an organic group that induces radical polymerization is selected from a polyimide precursor, a polyimide, a polyurea and a polyamide obtained by using a diamine component containing a diamine containing an organic group that induces radical polymerization. The method according to [6], which is at least one polymer.
[8] The organic group that induces radical polymerization is an organic group represented by the following structures [X-1] to [X-18], [W], [Y], and [Z] [4], [ 6] and the method according to any one of [7].
Figure 2019004433

(In the formulas [X-1] to [X-18], * represents a binding site to a part other than the polymerizable reactive group of the compound molecule, and S 1 and S 2 are each independently —O— or —NR. Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and R 1 and R 2 each independently represent a hydrogen atom or halogen. Atom, represents an alkyl group having 1 to 4 carbon atoms)
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a binding site to a portion of the compound molecule other than the polymerizable reactive group, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, wherein R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the ends to form a ring structure, and Q represents the following structure.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
[9] The method according to [7], wherein the diamine containing an organic group that induces radical polymerization is a diamine having a structure represented by the following general formula (6) or the following general formula (7). ..
Figure 2019004433

(In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N. (CH 3) -, - CON (CH 3) -, or -N (CH 3) CO- represents,
R 7 represents a single bond, or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independent. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, i.e., -O-, -COO- , -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other;
R 8 is the following formula:
Figure 2019004433

Represents a radical polymerization reactive group selected from
(In the formulas [X-1] to [X-18], * represents a binding site to a moiety other than the radical-polymerization reactive group of the compound molecule, and S 1 and S 2 are independently -O- and-. NR- and -S- are represented, R is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms, R 1 and R 2 are each independently a hydrogen atom, Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms))
Figure 2019004433

(In Formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —. CH 2 O -, - N ( CH 3) -, - CON (CH 3) -, or -N (CH 3) a CO-,
S represents a single bond or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independently. It may be substituted with a group selected from —CH═CH—, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, namely, —O—, —COO—, -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other,
J is an organic group represented by the following formula,
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a bonding site with T 2, and Ar represents phenylene, naphthylene, and biphenylene which may have an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of, R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q is the structure below. Represents.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))
[10] In any one of [1] to [9], at least one of the radically polymerizable compounds is a compound having compatibility with a liquid crystal and having one polymerizable reactive group in one molecule. The method described.
[11] The method according to [10], wherein the polymerizable reactive group of the radically polymerizable compound is selected from the following structures.
Figure 2019004433

(In the formula, * represents a binding site to a portion other than the polymerizable reactive group of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, —O—, —NR. represents a linking group selected from c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
[12] A liquid crystal composition containing a liquid crystal and a radical polymerizable compound, wherein the polymer obtained by polymerizing the radical polymerizable compound has a Tg of 100 ° C. or less. Is used, The method as described in any one of [1]-[11].
[13] a step of preparing a first substrate having a radical generating film and a second substrate which may have a radical generating film,
Creating a cell so that the radical-generating film on the first substrate faces the second substrate, and
Between the first substrate and the second substrate, including a step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound,
A method for manufacturing a liquid crystal cell, which uses the method according to any one of [1] to [12].
[14] The method for producing a liquid crystal cell according to [13], wherein the second substrate is a second substrate having no radical generating film.
[15] The method for producing a liquid crystal cell according to [14], wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial orientation.
[16] The method for producing a liquid crystal cell according to [15], wherein the liquid crystal alignment film having uniaxial alignment is a liquid crystal alignment film for horizontal alignment.
[17] The method for producing a liquid crystal cell according to any one of [13] to [16], wherein the first substrate having the radical generating film is a substrate having comb-teeth electrodes.
[18] containing a liquid crystal and a radically polymerizable compound,
At least one of the radically polymerizable compounds is a compound having compatibility with liquid crystal, having one polymerizable reactive group in one molecule,
A liquid crystal composition in which the polymerizable reactive group is selected from the following structures.
Figure 2019004433

(In the formula, * represents a binding site to a portion other than the polymerizable reactive group of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, —O—, —NR. represents a linking group selected from c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
[19] A method for manufacturing a liquid crystal display device, which uses a film that produces a zero-plane anchoring state, which is obtained by using the method according to any one of [1] to [17].
[20] A liquid crystal display device obtained by using the method described in [19].
[21] The liquid crystal display element according to [20], wherein the first substrate or the second substrate has an electrode.
[22] The liquid crystal display element according to [20] or [21], which is a low-voltage driven horizontal electric field liquid crystal display element.

本発明によれば、ゼロ面アンカリング膜を工業的に、歩留まりよく作り出すことができる。本発明の方法を用いて、安価な原料や既存の製造法で特許文献1、2記載のゼロ面アンカリングIPSモード液晶表示素子に類似した液晶表示素子を簡便に製造することができる。また、本発明の製造方法で得られた液晶表示素子は、従来技術よりもOff時の液晶の応答速度が速く、且つ低駆動電圧、輝点なし、Vcomシフトが発生しにくいといった優れた特性を有する液晶表示素子を提供することができる。   According to the present invention, a zero plane anchoring film can be industrially produced with a high yield. By using the method of the present invention, a liquid crystal display element similar to the zero-plane anchoring IPS mode liquid crystal display element described in Patent Documents 1 and 2 can be easily manufactured with inexpensive raw materials and existing manufacturing methods. In addition, the liquid crystal display device obtained by the manufacturing method of the present invention has excellent characteristics that the response speed of the liquid crystal at the time of Off is faster than that of the prior art, and that the driving voltage is low, there is no bright spot, and Vcom shift does not easily occur. It is possible to provide a liquid crystal display device having the same.

本発明は、ラジカル発生膜に特定の重合性化合物を含有する液晶を接触させた状態でUVまたは熱により重合性化合物を重合させることを特徴とするゼロ面アンカリング膜の製造方法である。より具体的には、液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する第一基板とラジカル発生膜を有していてもよい第二基板との間に有するセルを用意するステップ、及び前記セルに、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング膜の製造方法である。好ましくは、ラジカル発生膜を有する第一基板と、ラジカル発生膜を有さない第二基板とを用意するステップ、ラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含む液晶セルの製造方法である。例えば、第二基板がラジカル発生膜を有さないとともに、一軸配向処理された液晶配向膜を有する基盤であり、第一基板が櫛歯電極を有する基板である、低電圧駆動IPS液晶表示素子の作成方法である。   The present invention is a method for producing a zero-plane anchoring film, which comprises polymerizing a polymerizable compound by UV or heat in a state where a liquid crystal containing a specific polymerizable compound is brought into contact with the radical generating film. More specifically, a cell having a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between a first substrate having a radical generating film and a second substrate that may have a radical generating film is prepared. And a step of applying sufficient energy to the cell to cause a polymerization reaction of the radically polymerizable compound, and a method for producing a zero-plane anchoring film. Preferably, a step of preparing a first substrate having a radical generating film and a second substrate having no radical generating film, a step of forming a cell so that the radical generating film faces the second substrate, and A method for producing a liquid crystal cell, comprising a step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between a first substrate and a second substrate. For example, a low-voltage driven IPS liquid crystal display device in which the second substrate is a substrate having a radical-generating film and a uniaxially aligned liquid crystal alignment film, and the first substrate is a substrate having comb-teeth electrodes. It is a creation method.

本発明において「ゼロ面アンカリング膜」とは、面内方向における液晶分子の配向規制力が全く無いか、あったとしても液晶同士の分子間力よりも弱く、この膜のみでは液晶分子をいずれの方向にも一軸配向させない膜をいう。また、このゼロ面アンカリング膜は、固体膜に限定されず固体表面を覆う液体膜も含まれる。通常、液晶表示素子には液晶分子の配向を規制する膜、すなわち液晶配向膜を対で用いて液晶を配向させるが、このゼロ面アンカリング膜と液晶配向膜を対で用いた場合も液晶を配向させることが出来る。これは、液晶配向膜の配向規制力が液晶分子同士の分子間力によって液晶層の厚み方向にも伝達し、結果としてゼロ面アンカリング膜に近接する液晶分子も配向するからである。よって液晶配向膜に水平配向用の液晶配向膜を用いた場合においては液晶セル内全体で水平配向状態を作り出すことが出来る。水平配向とは液晶分子の長軸が液晶配向膜面に対してほぼ平行に配列している状態をいい、数度程度の傾斜配向も水平配向の範疇に含まれる。   In the present invention, the "zero plane anchoring film" means that there is no alignment regulating force of liquid crystal molecules in the in-plane direction, or if any, it is weaker than the intermolecular force between liquid crystals. A film that is not uniaxially oriented in the direction of. Further, the zero-plane anchoring film is not limited to the solid film, and includes a liquid film covering the solid surface. Normally, in a liquid crystal display element, a film that controls the alignment of liquid crystal molecules, that is, a liquid crystal alignment film is used as a pair to orient the liquid crystal, but even when this zero-plane anchoring film and the liquid crystal alignment film are used as a pair, the liquid crystal is aligned. It can be oriented. This is because the alignment control force of the liquid crystal alignment film is also transmitted in the thickness direction of the liquid crystal layer by the intermolecular force between the liquid crystal molecules, and as a result, the liquid crystal molecules adjacent to the zero plane anchoring film are also aligned. Therefore, when a liquid crystal alignment film for horizontal alignment is used as the liquid crystal alignment film, a horizontal alignment state can be created in the entire liquid crystal cell. The horizontal alignment refers to a state in which the long axes of liquid crystal molecules are aligned substantially parallel to the surface of the liquid crystal alignment film, and a tilted alignment of about several degrees is also included in the category of horizontal alignment.

[ラジカル発生膜形成組成物]
本発明に用いるラジカル発生膜を形成するためのラジカル発生膜形成組成物は、成分として、重合体を含有し、ラジカルを発生しうる基を含有する。その際、当該組成物は、ラジカルを発生しうる基が結合した重合体を含有するものであってもよいし、ラジカルを発生しうる基を有する化合物と、ベース樹脂となる重合体との組成物であってもよい。このような組成物を塗布、硬化して膜を形成することにより、ラジカルを発生しうる基が膜中に固定化されたラジカル発生膜を得ることができる。ラジカルを発生しうる基は、ラジカル重合を誘発する有機基であることが好ましい。
[Radical generating film forming composition]
The radical-generating film-forming composition for forming the radical-generating film used in the present invention contains, as a component, a polymer and a group capable of generating a radical. At that time, the composition may contain a polymer having a radical-generating group bonded thereto, or a composition of a compound having a radical-generating group and a polymer serving as a base resin. It may be a thing. By coating and curing such a composition to form a film, a radical-generating film in which radical-generating groups are immobilized in the film can be obtained. The group capable of generating a radical is preferably an organic group that induces radical polymerization.

そのような、ラジカル重合を誘発する有機基としては下記構造で表される[X−1]〜[X−18]、[W]、[Y]、[Z]で表される有機基が挙げられる。

Figure 2019004433

(式[X−1]〜[X−18]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す)
Figure 2019004433

(式[W]、[Y]、[Z]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。)Examples of such an organic group that induces radical polymerization include organic groups represented by the following structures [X-1] to [X-18], [W], [Y], and [Z]. Be done.
Figure 2019004433

(In the formulas [X-1] to [X-18], * represents a binding site to a part other than the polymerizable reactive group of the compound molecule, and S 1 and S 2 are each independently —O— or —NR. Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and R 1 and R 2 each independently represent a hydrogen atom or halogen. Atom, represents an alkyl group having 1 to 4 carbon atoms)
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a binding site to a portion of the compound molecule other than the polymerizable reactive group, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, wherein R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the ends to form a ring structure, and Q represents the following structure.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )

重合体としては、例えばポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレートなどからなる群から選ばれる少なくとも1種の重合体が好ましい。   As the polymer, for example, a polyimide precursor and at least one polymer selected from the group consisting of polyimide, polyurea, polyamide, polyacrylate, polymethacrylate and the like are preferable.

本発明に用いるラジカル発生膜を得るために、前記ラジカル重合を誘発する有機基を有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマー用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題点が考えられ、不安定化合物となってしまうため、合成のしやすさの点ではラジカル発生部位を有するジアミンから誘導される重合体が好ましく、より好ましくはポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどが好ましい。   In order to obtain a radical-generating film used in the present invention, when a polymer having an organic group that induces radical polymerization is used, in order to obtain a polymer having a group capable of generating a radical, a methacryl group as a monomer component, A monomer having a photoreactive side chain containing at least one selected from an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group, and a cinnamoyl group, and a side chain at a site that generates a radical by decomposing by ultraviolet irradiation It is preferable that the monomer is used. On the other hand, a monomer that generates a radical may have a problem that it spontaneously polymerizes, and becomes an unstable compound. Therefore, it has a radical generation site in terms of ease of synthesis. Polymers derived from diamines are preferable, and more preferable are polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, polyurea, and polyamide.

そのようなラジカル発生部位含有ジアミンは、具体的には、例えば、ラジカルを発生し重合可能な側鎖を有するジアミンであり、下記の一般式(6)で表されるジアミンを挙げることができるが、これに限定されるものではない。

Figure 2019004433

(式(6)中、Rは単結合、−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−を表し、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
は、下記式:
Figure 2019004433

から選択されるラジカル重合反応性基を表す。
(式[X−1]〜[X−18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す)Such a radical-generating site-containing diamine is specifically, for example, a diamine having a side chain capable of generating radicals and polymerizing, and examples thereof include a diamine represented by the following general formula (6). , But is not limited to this.
Figure 2019004433

(In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N. (CH 3) -, - CON (CH 3) -, or -N (CH 3) CO- represents,
R 7 represents a single bond, or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independent. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, i.e., -O-, -COO- , -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other;
R 8 is the following formula:
Figure 2019004433

Represents a radical polymerization reactive group selected from
(In the formulas [X-1] to [X-18], * represents a binding site to a moiety other than the radical-polymerization reactive group of the compound molecule, and S 1 and S 2 are independently -O- and-. NR- and -S- are represented, R is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms, R 1 and R 2 are each independently a hydrogen atom, Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms)

式(6)における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding positions of the two amino groups (—NH 2 ) in formula (6) are not limited. Specifically, with respect to the bonding group of the side chain, 2,3 position, 2,4 position, 2,5 position, 2,6 position, 3,4 position, 3,4 position on the benzene ring. 5 positions. Above all, from the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease of synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.

メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。

Figure 2019004433

(式中、Jは単結合、−O−、−COO−、−NHCO−、又は−NH−より選ばれる結合基であり、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。)Specific examples of the diamine having a photoreactive group containing at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group are as follows. Compounds include, but are not limited to.
Figure 2019004433

(In the formula, J 1 is a single bond, a bonding group selected from —O—, —COO—, —NHCO—, or —NH—, and J 2 is a single bond or unsubstituted or substituted with a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.)

紫外線照射により分解し、ラジカルが発生する部位を側鎖として有するジアミンは、下記の一般式(7)で表されるジアミンを挙げることができるが、これに限定されるものではない。

Figure 2019004433

(式(7)中、T及びTは、それぞれ独立に、単結合、−O−、−S−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−であり、
Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
Jは下記式で表される有機基であり、
Figure 2019004433

(式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。))Examples of the diamine having a side chain having a site where a radical is generated by being decomposed by irradiation with ultraviolet rays include, but are not limited to, the diamine represented by the following general formula (7).
Figure 2019004433

(In Formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —. CH 2 O -, - N ( CH 3) -, - CON (CH 3) -, or -N (CH 3) a CO-,
S represents a single bond or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independently. It may be substituted with a group selected from —CH═CH—, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, namely, —O—, —COO—, -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other,
J is an organic group represented by the following formula,
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a bonding site with T 2, and Ar represents phenylene, naphthylene, and biphenylene which may have an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of, R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q is the structure below. Represents.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))

上記式(7)における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding positions of the two amino groups (—NH 2 ) in the above formula (7) are not limited. Specifically, with respect to the bonding group of the side chain, 2,3 position, 2,4 position, 2,5 position, 2,6 position, 3,4 position, 3,4 position on the benzene ring. 5 positions. Above all, from the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease of synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.

特に合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されない。

Figure 2019004433

(式中、nは2〜8の整数である。)In particular, the structure represented by the following formula is most preferable in view of ease of synthesis, high versatility, characteristics, etc., but is not limited thereto.
Figure 2019004433

(In the formula, n is an integer of 2 to 8.)

上記のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。   The above diamines may be used alone or in combination of two or more, depending on the liquid crystal orientation when used as a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, accumulated charge and the like.

このようなラジカル重合が発生する部位を有するジアミンは、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の5〜50モル%となる量を用いることが好ましく、より好ましくは10〜40モル%であり、特に好ましくは15〜30モル%である。   The diamine having a site where such radical polymerization occurs is preferably used in an amount of 5 to 50 mol% of the total diamine component used in the synthesis of the polymer contained in the radical-generating film forming composition, and more preferably It is 10 to 40 mol%, and particularly preferably 15 to 30 mol%.

なお、本発明のラジカル発生膜に用いる重合体をジアミンから得る場合、本発明の効果を損わない限りにおいて、上記ラジカルが発生する部位を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p−フェニレンジアミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジメチル−m−フェニレンジアミン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、2,5−ジアミノフェノール、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,3’−ジカルボキシ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ビフェニル、3,3’−トリフルオロメチル−4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、2,2’−ジアミノビフェニル、2,3’−ジアミノビフェニル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2’−ジアミノジフェニルメタン、2,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、2,3’−ジアミノジフェニルエーテル、4,4’−スルホニルジアニリン、3,3’−スルホニルジアニリン、ビス(4−アミノフェニル)シラン、ビス(3−アミノフェニル)シラン、ジメチル−ビス(4−アミノフェニル)シラン、ジメチル−ビス(3−アミノフェニル)シラン、4,4’−チオジアニリン、3,3’−チオジアニリン、4,4’−ジアミノジフェニルアミン、3,3’−ジアミノジフェニルアミン、3,4’−ジアミノジフェニルアミン、2,2’−ジアミノジフェニルアミン、2,3’−ジアミノジフェニルアミン、N−メチル(4,4’−ジアミノジフェニル)アミン、N−メチル(3,3’−ジアミノジフェニル)アミン、N−メチル(3,4’−ジアミノジフェニル)アミン、N−メチル(2,2’−ジアミノジフェニル)アミン、N−メチル(2,3’−ジアミノジフェニル)アミン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、1,4−ジアミノナフタレン、2,2’−ジアミノベンゾフェノン、2,3’−ジアミノベンゾフェノン、1,5−ジアミノナフタレン、1,6−ジアミノナフタレン、1,7−ジアミノナフタレン、1,8−ジアミノナフタレン、2,5−ジアミノナフタレン、2,6−ジアミノナフタレン、2,7−ジアミノナフタレン、2,8−ジアミノナフタレン、1,2−ビス(4−アミノフェニル)エタン、1,2−ビス(3−アミノフェニル)エタン、1,3−ビス(4−アミノフェニル)プロパン、1,3−ビス(3−アミノフェニル)プロパン、1,4−ビス(4アミノフェニル)ブタン、1,4−ビス(3−アミノフェニル)ブタン、ビス(3,5−ジエチル−4−アミノフェニル)メタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(4−アミノベンジル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、4,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,3−フェニレンビス(メチレン)]ジアニリン、1,4−フェニレンビス[(4−アミノフェニル)メタノン]、1,4−フェニレンビス[(3−アミノフェニル)メタノン]、1,3−フェニレンビス[(4−アミノフェニル)メタノン]、1,3−フェニレンビス[(3−アミノフェニル)メタノン]、1,4−フェニレンビス(4−アミノベンゾエート)、1,4−フェニレンビス(3−アミノベンゾエート)、1,3−フェニレンビス(4−アミノベンゾエート)、1,3−フェニレンビス(3−アミノベンゾエート)、ビス(4−アミノフェニル)テレフタレート、ビス(3−アミノフェニル)テレフタレート、ビス(4−アミノフェニル)イソフタレート、ビス(3−アミノフェニル)イソフタレート、N,N’−(1,4−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,4−フェニレン)ビス(3−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(3−アミノベンズアミド)、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−ビス(3−アミノフェニル)テレフタルアミド、N,N’−ビス(4−アミノフェニル)イソフタルアミド、N,N’−ビス(3−アミノフェニル)イソフタルアミド、9,10−ビス(4−アミノフェニル)アントラセン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(3−アミノフェニル)プロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)プロパン、トランス−1,4−ビス(4−アミノフェニル)シクロヘキサン、3,5−ジアミノ安息香酸、2,5−ジアミノ安息香酸、ビス(4−アミノフェノキシ)メタン、1,2−ビス(4−アミノフェノキシ)エタン、1,3−ビス(4−アミノフェノキシ)プロパン、1,3−ビス(3−アミノフェノキシ)プロパン、1,4−ビス(4−アミノフェノキシ)ブタン、1,4−ビス(3−アミノフェノキシ)ブタン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,5−ビス(3−アミノフェノキシ)ペンタン、1,6−ビス(4−アミノフェノキシ)へキサン、1,6−ビス(3−アミノフェノキシ)へキサン、1,7−ビス(4−アミノフェノキシ)ヘプタン、1,7−ビス(3−アミノフェノキシ)ヘプタン、1,8−ビス(4−アミノフェノキシ)オクタン、1,8−ビス(3−アミノフェノキシ)オクタン、1,9−ビス(4−アミノフェノキシ)ノナン、1,9−ビス(3−アミノフェノキシ)ノナン、1,10−ビス(4−アミノフェノキシ)デカン、1,10−ビス(3−アミノフェノキシ)デカン、1,11−ビス(4−アミノフェノキシ)ウンデカン、1,11−ビス(3−アミノフェノキシ)ウンデカン、1,12−ビス(4−アミノフェノキシ)ドデカン、1,12−ビス(3−アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン;1,3−ビス[2−(p−アミノフェニル)エチル]ウレア、1,3−ビス[2−(p−アミノフェニル)エチル]−1−ターシャリーブチルオキシカルボニルウレア等のウレア構造を有するジアミン;N−p−アミノフェニル−4−p−アミノフェニル(ターシャリーブチルオキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N−ターシャリーブトキシカルボニル−N−(2−(4−アミノフェニル)エチル)−N−(4−アミノベンジル)アミン等のN−Boc基を有するジアミン等が挙げられる。   When the polymer used for the radical-generating film of the present invention is obtained from diamine, other diamines other than the diamine having a site where the radical is generated are used together as a diamine component unless the effects of the present invention are impaired. be able to. Specifically, for example, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2, 4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl , 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3 ' -Trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'- Diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether , 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) Silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4 '-Diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine , N-methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3 '-Diaminodiphenyl) amine, 4,4'-diamino Benzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1, 6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2 -Bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1 , 4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-amino) Benzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene) ] Dianiline, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylene Bis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3 -Aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate ), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, Bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide) ), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1, 3-phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N'-bis (3-aminophenyl) terephthalamide, N, N'-bis (4 -Aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylsulfone, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-amino Phenyl) hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2'-bis (4 -Aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino-4-methylphenyl) propane, trans-1,4-bis (4-aminophenyl) ) Cyclohexane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, bis (4-aminophenoxy) methane, 1,2-bis (4-aminophenoxy) ethane, 1,3-bis (4-amino) Phenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4 -Aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7 -Bis (4-aminophenoxy) heptane, 1,7-bis (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1 , 9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane 1,11-bis (4-aminophenoxy) undecane, 1,11-bis (3-amino Aromatic diamines such as phenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane and 1,12-bis (3-aminophenoxy) dodecane; bis (4-aminocyclohexyl) methane, bis (4-amino-) Alicyclic diamines such as 3-methylcyclohexyl) methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1 , 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and the like; 1,3-bis [2- (p-amino) Diamine having urea structure such as phenyl) ethyl] urea and 1,3-bis [2- (p-aminophenyl) ethyl] -1-tert-butyloxycarbonylurea; Np-aminophenyl-4-p- A diamine having a nitrogen-containing unsaturated heterocyclic structure such as aminophenyl (tertiarybutyloxycarbonyl) aminomethylpiperidine; N-tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4 Examples include diamines having an N-Boc group such as -aminobenzyl) amine.

上記その他のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。   The above-mentioned other diamines may be used alone or in combination of two or more, depending on liquid crystal orientation when used as a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, accumulated charge and the like. ..

重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エーテル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5−ピリジンテトラカルボン酸、2,6−ビス(3,4−ジカルボキシフェニル)ピリジン、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸、1,3−ジフェニル−1,2,3,4−シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロヘプタンテトラカルボン酸、2,3,4,5−テトラヒドロフランテトラカルボン酸、3,4−ジカルボキシ−1−シクロへキシルコハク酸、2,3,5−トリカルボキシシクロペンチル酢酸、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸、ビシクロ[4,3,0]ノナン−2,4,7,9−テトラカルボン酸、ビシクロ[4,4,0]デカン−2,4,7,9−テトラカルボン酸、ビシクロ[4,4,0]デカン−2,4,8,10−テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン−3,5,9,11−テトラカルボン酸、1,2,3,4−ブタンテトラカルボン酸、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドリナフタレン−1,2−ジカルボン酸、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロへキサン−1,2−ジカルボン酸、テトラシクロ[6,2,1,1,0<2,7>]ドデカ−4,5,9,10−テトラカルボン酸、3,5,6−トリカルボキシノルボルナン−2:3,5:6ジカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。   In the synthesis when the polymer is a polyamic acid, the tetracarboxylic dianhydride to be reacted with the above diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ′, 4,4′-biphenyl tetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-di) Carboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) Propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4) -Dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic acid, 3,4,9,10-perylene tetracarboxylic acid, 1,3-diphenyl-1,2,3,4- Cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid Acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,3-dimethyl -1,2,3,4-Cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofuran tetracarboxylic acid, 3,4-dicarboxy-1- Cyclohexyl succinic acid, 2,3,5-tricarboxycyclopentyl acetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [3,3,0] octane-2 , 4,6,8-Tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,7,9 -Tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2,6>] Undecane-3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydrinaphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3-Methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0 <2,7>] dodeca-4,5,9,10-tetracarboxylic acid, 3 5,5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid and other tetracarboxylic acid dianhydrides.

勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。   Of course, the tetracarboxylic dianhydride may be used alone or in combination of two or more depending on the liquid crystal orientation when used as a radical generating film, the sensitivity in the polymerization reaction, the voltage holding characteristic, the accumulated charge and the like. ..

重合体がポリアミド酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5−テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4−ジカルボキシ−1−シクロヘキシルコハク酸ジアルキルエステル、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸ジアルキルエステル、1,2,3,4−ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸ジアルキルエステル、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5−トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−ジアルキルエステル、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボンジアルキルエステルなどが挙げられる。
In the synthesis when the polymer is a polyamic acid ester, the structure of the tetracarboxylic acid dialkyl ester to be reacted with the diamine component is not particularly limited, but specific examples thereof are given below.
Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutane tetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic acid dialkyl ester, and 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofuran tetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butane tetracarboxylic acid dialkyl ester, bicyclo [3 , 3,0] Octane-2,4,6,8-tetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentyl acetic acid dialkyl ester , Cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 <2,5>] nonane-3, 4,7,8-Tetracarboxylic acid-3,4: 7,8-dialkyl ester, hexacyclo [6.6.0.1 <2,7>. 0 <3,6>. 1 <9,14>. 0 <10,13>] hexadecane-4,5,11,12-tetracarboxylic acid-4,5,11,12-dialkyl ester, 4- (2,5-dioxotetrahydrofuran-3-yl) -1, 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester and the like can be mentioned.

芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’−ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4−ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’−ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4−ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4−ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6−ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7−ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。   Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid dialkyl ester, Bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7 -Naphthalene tetracarboxylic acid dialkyl ester and the like.

重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。

Figure 2019004433

式中R22、R23は炭素数1〜10の脂肪族炭化水素を表す。In the synthesis in the case where the polymer is polyurea, the diisocyanate to be reacted with the diamine component is not particularly limited and can be used depending on availability and the like. The specific structure of diisocyanate is shown below.
Figure 2019004433

In the formula, R 22 and R 23 represent an aliphatic hydrocarbon having 1 to 10 carbon atoms.

K−1〜K−5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K−6〜K−7の示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面において特に好ましくはK−1、K−7、K−8、K−9、K−10が好ましく、電気特性の加点ではK−12、液晶配向性の観点ではK−13が特に好ましい。ジイソシアネートは1種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。
The aliphatic diisocyanates represented by K-1 to K-5 are inferior in reactivity, but have an advantage of improving solvent solubility, and the aromatic diisocyanates represented by K-6 to K-7 are highly reactive and have heat resistance. However, there is a drawback that the solvent solubility is lowered. From the viewpoint of versatility and characteristics, K-1, K-7, K-8, K-9, and K-10 are particularly preferable, K-12 is added from the viewpoint of electric characteristics, and K-13 is added from the viewpoint of liquid crystal alignment. Particularly preferred. One or more diisocyanates may be used in combination, and various applications are preferable depending on the desired properties.
Further, it is also possible to replace some of the diisocyanate with the tetracarboxylic acid dianhydride described above, may be used in the form of a copolymer of polyamic acid and polyurea, of the polyimide and polyurea by chemical imidization. You may use it in the form of a copolymer.

重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。   In the synthesis when the polymer is a polyamide, the structure of the dicarboxylic acid to be reacted is not particularly limited, but the following are specific examples of them. Specific examples of the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2- Dicarboxylic acids such as dimethyl glutaric acid, 3,3-diethyl succinic acid, azelaic acid, sebacic acid and suberic acid can be mentioned.

脂環式系のジカルボン酸としては、1,1−シクロプロパンジカルボン酸、1,2−シクロプロパンジカルボン酸、1,1−シクロブタンジカルボン酸、1,2−シクロブタンジカルボン酸、1,3−シクロブタンジカルボン酸、3,4−ジフェニル−1,2−シクロブタンジカルボン酸、2,4−ジフェニル−1,3−シクロブタンジカルボン酸、1−シクロブテン−1,2−ジカルボン酸、1−シクロブテン−3,4−ジカルボン酸、1,1−シクロペンタンジカルボン酸、1,2−シクロペンタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,1−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,4−(2−ノルボルネン)ジカルボン酸、ノルボルネン−2,3−ジカルボン酸、ビシクロ[2.2.2]オクタン−1,4−ジカルボン酸、ビシクロ[2.2.2]オクタン−2,3−ジカルボン酸、2,5−ジオキソ−1,4−ビシクロ[2.2.2]オクタンジカルボン酸、1,3−アダマンタンジカルボン酸、4,8−ジオキソ−1,3−アダマンタンジカルボン酸、2,6−スピロ[3.3]ヘプタンジカルボン酸、1,3−アダマンタン二酢酸、カンファー酸等を挙げることができる。   Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid and 1,3-cyclobutanedicarboxylic acid. Acid, 3,4-diphenyl-1,2-cyclobutanedicarboxylic acid, 2,4-diphenyl-1,3-cyclobutanedicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4- (2-norbornene) dicarboxylic acid, norbornene-2,3-dicarboxylic acid, bicyclo [2.2.2] octane-1,4-dicarboxylic acid, bicyclo [2.2.2] Octane-2,3-dicarboxylic acid, 2,5-dioxo-1,4-bicyclo [2.2.2] octanedicarboxylic acid, 1,3-adamantanedicarboxylic acid, 4,8- Examples thereof include dioxo-1,3-adamantanedicarboxylic acid, 2,6-spiro [3.3] heptanedicarboxylic acid, 1,3-adamantanediacetic acid and camphoric acid.

芳香族ジカルボン酸としては、o−フタル酸、イソフタル酸、テレフタル酸、5−メチルイソフタル酸、5−tert−ブチルイソフタル酸、5−アミノイソフタル酸、5−ヒドロキシイソフタル酸、2,5−ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4−ナフタレンジカルボン酸、2,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−アントラセンジカルボン酸、1,4−アントラキノンジカルボン酸、2,5−ビフェニルジカルボン酸、4,4’−ビフェニルジカルボン酸、1,5−ビフェニレンジカルボン酸、4,4”−ターフェニルジカルボン酸、4,4’−ジフェニルメタンジカルボン酸、4,4’−ジフェニルエタンジカルボン酸、4,4’−ジフェニルプロパンジカルボン酸、4,4’−ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ビベンジルジカルボン酸、4,4’−スチルベンジカルボン酸、4,4’−トランジカルボン酸、4,4’−カルボニル二安息香酸、4,4’−スルホニル二安息香酸、4,4’−ジチオ二安息香酸、p−フェニレン二酢酸、3,3’−p−フェニレンジプロピオン酸、4−カルボキシ桂皮酸、p−フェニレンジアクリル酸、3,3’−[4,4’−(メチレンジ−p−フェニレン)]ジプロピオン酸、4,4’−[4,4’−(オキシジ−p−フェニレン)]ジプロピオン酸、4,4’−[4,4’−(オキシジ−p−フェニレン)]二酪酸、(イソプロピリデンジ−p−フェニレンジオキシ)二酪酸、ビス(p−カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。   Aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid. Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 -Anthraquinone dicarboxylic acid, 2,5-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,5-biphenylenedicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4 , 4'-diphenylethanedicarboxylic acid, 4,4'-diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-bibenzyldicarboxylic acid, 4,4'-stilbenedicarboxylic acid, 4,4'-transdicarboxylic acid, 4,4'-carbonyldibenzoic acid, 4,4'-sulfonyldibenzoic acid, 4,4'-dithiodibenzoic acid, p- Phenylenediacetic acid, 3,3'-p-phenylenedipropionic acid, 4-carboxycinnamic acid, p-phenylenediacrylic acid, 3,3 '-[4,4'-(methylenedi-p-phenylene)] dipropion Acid, 4,4 ′-[4,4 ′-(oxydi-p-phenylene)] dipropionic acid, 4,4 ′-[4,4 ′-(oxydi-p-phenylene)] dibutyric acid, (isopropylidene) Examples thereof include dicarboxylic acids such as dendi-p-phenylenedioxy) dibutyric acid and bis (p-carboxyphenyl) dimethylsilane.

複素環を含むジカルボン酸としては、1,5−(9−オキソフルオレン)ジカルボン酸、3,4−フランジカルボン酸、4,5−チアゾールジカルボン酸、2−フェニル−4,5−チアゾールジカルボン酸、1,2,5−チアジアゾール−3,4−ジカルボン酸、1,2,5−オキサジアゾール−3,4−ジカルボン酸、2,3−ピリジンジカルボン酸、2,4−ピリジンジカルボン酸、2,5−ピリジンジカルボン酸、2,6−ピリジンジカルボン酸、3,4−ピリジンジカルボン酸、3,5−ピリジンジカルボン酸等を挙げることができる。   Examples of the dicarboxylic acid containing a heterocycle include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid and 3,5-pyridinedicarboxylic acid.

上記の各種ジカルボン酸は酸ジハライドあるいは無水の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4−シクロヘキサンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ジフェニルメタンジカルボン酸、4,4’−ジフェニルエタンジカルボン酸、4,4’−ジフェニルプロパンジカルボン酸、4,4’−ジフェニルヘキサフルオロプロパンジカルボン酸、2,2−ビス(フェニル)プロパンジカルボン酸、4、4−ターフェニルジカルボン酸、2,6−ナフタレンジカルボン酸、2,5−ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。   The above various dicarboxylic acids may have an acid dihalide or anhydrous structure. These dicarboxylic acids are particularly preferably dicarboxylic acids capable of giving a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules. Among these, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 5-Pyridinedicarboxylic acid or these acid dihalides are preferably used. Some of these compounds have isomers, but they may be a mixture containing them. Moreover, you may use together 2 or more types of compounds. The dicarboxylic acids used in the present invention are not limited to the above exemplified compounds.

原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。   It is selected from the raw material diamine (also referred to as "diamine component") and the raw material tetracarboxylic dianhydride (also referred to as "tetracarboxylic dianhydride component"), tetracarboxylic acid diester, diisocyanate and dicarboxylic acid. A known synthetic method can be used to obtain a polyamic acid, a polyamic acid ester, a polyurea, or a polyamide by the reaction with the components. Generally, it is a method in which a diamine component and one or more components selected from tetracarboxylic dianhydride component, tetracarboxylic acid diester, diisocyanate and dicarboxylic acid are reacted in an organic solvent.

ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。   The reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and that by-products are not generated.

上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。   The organic solvent used in the above reaction is not particularly limited as long as it can dissolve the produced polymer. Furthermore, even an organic solvent in which the polymer is not dissolved may be used as a mixture with the above-mentioned solvent as long as the produced polymer is not deposited. Since water in the organic solvent hinders the polymerization reaction and causes hydrolysis of the produced polymer, it is preferable to use dehydrated and dried organic solvent.

有機溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N−メチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、2−エチル−1−ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。   Examples of the organic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ- Butyrolactone, isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol tert-butyl ether. , Dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, Ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether Tellurium, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3 -Methyl ethyl ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl- 2-Pentanone, 2-ethyl-1-hexanol and the like can be mentioned. These organic solvents may be used alone or in combination.

ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。   When the diamine component and the tetracarboxylic acid dianhydride component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component is used as it is, or organically. Method of dispersing or dissolving in a solvent and adding, conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic acid dianhydride component and a diamine component Examples thereof include a method of alternately adding, and any of these methods may be used. Further, when the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually and sequentially reacted, and may be further individually reacted to have a low molecular weight. The body may be mixed and reacted to form a high molecular weight body.

ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、−20〜100℃、好ましくは−5〜80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1〜50質量%、好ましくは5〜30質量%である。   The temperature for reacting the diamine component and the tetracarboxylic dianhydride component can be selected at any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C. The reaction can be carried out at any concentration, and for example, the total amount of the diamine component and the tetracarboxylic dianhydride component with respect to the reaction solution is 1 to 50% by mass, preferably 5 to 30% by mass. ..

上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8〜1.2である。   In the above polymerization reaction, the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component can be selected to any value depending on the molecular weight of the polyamic acid to be obtained. Similar to the ordinary polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferable range is 0.8 to 1.2.

本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。   The method for synthesizing the polymer used in the present invention is not limited to the above method, and when synthesizing a polyamic acid, similar to a general polyamic acid synthesis method, the above tetracarboxylic dianhydride is used. Alternatively, the corresponding polyamic acid can also be obtained by using a tetracarboxylic acid derivative having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide and reacting by a known method. When synthesizing polyurea, diamine and diisocyanate may be reacted. When producing a polyamic acid ester or polyamide, a diamine, a component selected from tetracarboxylic acid diester and dicarboxylic acid, in the presence of a known condensing agent, or, after induction into an acid halide by a known method , It may be reacted with a diamine.

上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、30〜99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、40〜80%がより好ましい。   Examples of the method for imidizing the above polyamic acid to form a polyimide include thermal imidization in which the solution of polyamic acid is heated as it is and catalytic imidization in which a catalyst is added to the solution of polyamic acid. The imidation ratio of polyamic acid to polyimide is preferably 30% or more, and more preferably 30 to 99%, because the voltage holding ratio can be increased. On the other hand, 70% or less is preferable from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing precipitation of the polymer in the varnish. Taking both characteristics into consideration, 40 to 80% is more preferable.

ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100〜400℃、好ましくは120〜250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。   The temperature at which the polyamic acid is subjected to thermal imidization in a solution is usually 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove water generated by the imidization reaction outside the system.

ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の通常0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量は、アミド酸基の通常1〜50モル倍、好ましくは3〜30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。   Catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring the mixture at usually -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is usually 1 to 50 mol times of the amic acid group, preferably It is 3 to 30 mol times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because purification after the reaction is easy. The imidization ratio by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.

重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。   When the produced polymer is recovered from the reaction solution of the polymer, the reaction solution may be poured into a poor solvent to cause precipitation. Examples of the poor solvent used for forming the precipitate include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated by pouring it into a poor solvent can be collected by filtration and then dried at room temperature or under normal pressure or reduced pressure by heating. Further, by repeating the operation of re-dissolving the precipitated and recovered polymer in an organic solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these, because the purification efficiency is further improved.

また、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いるラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5〜95質量%が好ましく、より好ましくは30〜70質量%である。   When the radical-generating film is composed of a polymer containing an organic group that induces radical polymerization, the radical-generating film-forming composition used in the present invention contains a polymer other than a polymer containing an organic group that induces radical polymerization. It may contain other polymers. At that time, the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.

ラジカル発生膜形成組成物が有する重合体の分子量は、ラジカル発生膜を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000〜1,000,000が好ましく、より好ましくは、10,000〜150,000である。   The molecular weight of the polymer contained in the composition for forming a radical-generating film is determined by GPC (GPC (GPC) considering the strength of the radical-generating film obtained by coating the radical-generating film, workability during coating film formation, uniformity of the coating film, The weight average molecular weight measured by the Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.

本発明に用いるラジカル発生膜を、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得る場合の重合体としては、上記の製造方法に準じて製造されるポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレートなどからなる群から選ばれる重合体であって、ラジカル重合が発生する部位を有するジアミンが、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の0モル%であるジアミン成分を用いて得られる少なくとも1種の重合体を用いてもよい。その際に添加するラジカルを発生する基を有する化合物としては、以下のものが挙げられる。   The radical-generating film used in the present invention is a polymer in the case of being obtained by applying a composition of a compound having a radical-generating group and a polymer, and curing the composition to form a film to be immobilized in the film. , A polyimide precursor produced according to the above production method, and a polymer selected from the group consisting of polyimide, polyurea, polyamide, polyacrylate, polymethacrylate, etc., wherein the diamine having a site where radical polymerization occurs It is also possible to use at least one polymer obtained by using a diamine component that is 0 mol% of the entire diamine component used for the synthesis of the polymer contained in the radical-generating film forming composition. Examples of the compound having a radical-generating group added at that time include the following.

熱でラジカルを発生する化合物としては、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert−ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類 (ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸−tert−ブチルエステル、パーオキシピバリン酸−tert−ブチルエステル、パーオキシ2−エチルシクロヘキサン酸−tert−アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2’−ジ(2−ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。   The compound that generates a radical by heat is a compound that generates a radical when heated to a temperature equal to or higher than the decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxides). Hydrogen, tert-butyl hydroxide peroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane) Etc.), alkyl peresters (peroxy neodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, Sodium persulfate, ammonium persulfate, etc.) and azo compounds (azobisisobutyronitrile, 2,2′-di (2-hydroxyethyl) azobisisobutyronitrile, etc.) can be mentioned. Such radical thermal polymerization initiators may be used alone or in combination of two or more.

光でラジカルを発生する化合物としては、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4−ジエチルチオキサントン、2−エチルアントラキノン、アセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、2−ヒドロキシ−2−メチル−4’−イソプロピルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、4,4’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’−トリ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、2−(4’−メトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(3’,4’−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(2’,4’−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(2’−メトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4’−ペンチルオキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、4−[p−N,N−ジ(エトキシカルボニルメチル)]−2,6−ジ(トリクロロメチル)−s−トリアジン、1,3−ビス(トリクロロメチル)−5−(2’−クロロフェニル)−s−トリアジン、1,3−ビス(トリクロロメチル)−5−(4’−メトキシフェニル)−s−トリアジン、2−(p−ジメチルアミノスチリル)ベンズオキサゾール、2−(p−ジメチルアミノスチリル)ベンズチアゾール、2−メルカプトベンゾチアゾール、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、2−(o−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)−1,2’−ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’ビス(2,4−ジブロモフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、3−(2−メチル−2−ジメチルアミノプロピオニル)カルバゾール、3,6−ビス(2−メチル−2−モルホリノプロピオニル)−9−n−ドデシルカルバゾール、1−ヒドロキシシクロヘキシルフェニルケトン、ビス(5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(t−ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’−ジ(メトキシカルボニル)−4,4’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,4’−ジ(メトキシカルボニル)−4,3’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、4,4’−ジ(メトキシカルボニル)−3,3’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2−(3−メチル−3H−ベンゾチアゾール−2−イリデン)−1−ナフタレン−2−イル−エタノン、又は2−(3−メチル−1,3−ベンゾチアゾール−2(3H)−イリデン)−1−(2−ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。   The compound that generates a radical by light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such a radical photopolymerization initiator include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, and 2-hydroxy. -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- ( 4-morpholinophenyl) -butanone-1,4-dimethylaminobenzoate ethyl, 4-dimethylaminobenzoate isoamyl, 4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4,4'-tri ( t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3 ' , 4'-Dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2 -(2'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [P-N, N-di (ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s- Triazine, 1,3-bis (trichloromethyl) -5- (4′-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3′-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2 , 2'-bi Sus (2-chlorophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4, 4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2 ' -Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2) -Dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexylphenyl ketone, bis (5-2,4-cyclopentadiene-1- Yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3 ', 4,4'-Tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di ( Methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2- (3- Methyl-3H-benzothiazol-2-ylidene) -1-naphthalen-2-yl-ethanone, or 2- (3-methyl-1,3-benzothiazole-2 (3H) -ylidene) -1- (2- Examples thereof include benzoyl) ethanone. These compounds may be used alone or in a mixture of two or more.

なお、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合であっても、エネルギーを与えた際にラジカル重合を促進する目的で、上記のラジカルを発生する基を有する化合物を含有させてもよい。   Even when the radical-generating film is made of a polymer containing an organic group that induces radical polymerization, the radical-generating group described above is used for the purpose of promoting radical polymerization when energy is applied. You may include the compound which has.

ラジカル発生膜形成組成物は、重合体成分、必要に応じてラジカル発生剤その他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N−メチル−2−ピロリドン、γ−ブチロラクトン、N−エチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N−メチル−2−ピロリドン又はN−エチル−2−ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。   The radical-generating film-forming composition may contain an organic solvent that dissolves or disperses a polymer component and, if necessary, a radical generator and other contained components. The organic solvent is not particularly limited, and examples thereof include the organic solvents exemplified in the above-mentioned synthesis of polyamic acid. Among them, N-methyl-2-pyrrolidone, γ-butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. From the viewpoint of. Especially, N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.

また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。   Further, it is preferable to use a solvent which improves the uniformity and smoothness of the coating film, by mixing it with an organic solvent having a high solubility of the components contained in the radical-generating film forming composition.

塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル、2−エチル−1−ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5〜80質量%であることが好ましく、より好ましくは20〜60質量%である。   As a solvent for improving the uniformity and smoothness of the coating film, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol. Tol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol tert-butyl ether. , Dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, Ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate , Methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3 -Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1 − Phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2- Ethoxypropoxy) propanol, lactic acid methyl ester, lactic acid ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester, 2-ethyl-1-hexanol and the like can be mentioned. Plural kinds of these solvents may be mixed. When using these solvents, the amount is preferably 5 to 80% by mass, and more preferably 20 to 60% by mass, based on the whole solvent contained in the liquid crystal aligning agent.

ラジカル発生膜形成組成物には、上記以外の成分を含有させてもよい。その例としては、ラジカル発生膜形成組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、ラジカル発生膜形成組成物と基板との密着性を向上させる化合物、ラジカル発生膜形成組成物の膜強度をさらに向上させる化合物などが挙げられる。   The radical-generating film forming composition may contain components other than the above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when the radical generating film forming composition is applied, compounds that improve the adhesion between the radical generating film forming composition and the substrate, and radical generating film forming. Examples thereof include compounds that further improve the film strength of the composition.

膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R−30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して、好ましくは0.01〜2質量部、より好ましくは0.01〜1質量部である。   Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink and Chemicals), Florard FC430, FC431 (manufactured by Sumitomo 3M Limited). ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and the like. When these surfactants are used, the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0, based on 100 parts by mass of the total amount of the polymer contained in the radical-generating film forming composition. 0.01 to 1 part by mass.

ラジカル発生膜形成組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4、4’−ジアミノジフェニルメタン、3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシラン、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。   Specific examples of the compound that improves the adhesiveness between the radical-generating film forming composition and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. , N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl- 1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxysilane Silane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neo Pentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol , N, N, N ', N'-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4 4'-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane and the like can be mentioned.

また、ラジカル発生膜の膜強度をさらに上げるためには、2,2’−ビス(4−ヒドロキシ−3,5−ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1〜30質量部であることが好ましく、より好ましくは1〜20質量部である。   Further, in order to further increase the film strength of the radical generating film, a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. Good. When these compounds are used, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical-generating film forming composition. Is.

さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。   Further, in addition to the above, the radical-generating film-forming composition contains a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the radical-generating film, as long as the effects of the present invention are not impaired. Substances may be added.

[ラジカル発生膜]
本発明のラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子にUVを照射することも可能である。
[Radical generation film]
The radical generating film of the present invention is obtained by using the above radical generating film forming composition. For example, a cured film obtained by applying the composition for forming a radical-generating film used in the present invention to a substrate and then performing drying and baking can be used as it is as a radical-generating film. In addition, rubbing the cured film, irradiating polarized light or light having a specific wavelength, treating with an ion beam, or irradiating the liquid crystal display element after filling the liquid crystal with UV as an alignment film for PSA with UV. Is also possible.

ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。
具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。
The substrate on which the radical generating film forming composition is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferable.
Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyether sulfone, polyarylate, polyurethane, polysulfone, polyether, polyether ketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, tri A substrate having a transparent electrode formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, or acetate butyrate cellulose can be used.

IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
For a substrate that can be used for an IPS type liquid crystal display device, an electrode pattern such as a standard IPS comb-teeth electrode or a PSA fishbone electrode or a protrusion pattern such as MVA can be used.
Further, in a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
When a transmissive liquid crystal display element is intended, it is common to use the substrate as described above, but when a reflective liquid crystal display element is intended, if only one substrate is used, silicon is used. An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.

ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。   Examples of the method for applying the radical-generating film forming composition include a spin coating method, a printing method, an inkjet method, a spray method, and a roll coating method, but from the viewpoint of productivity, the transfer printing method is widely used industrially. Therefore, it is also preferably used in the present invention.

ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃〜150℃、好ましくは60℃〜100℃のホットプレート上で、0.5〜30分、好ましくは1〜5分乾燥させる方法が挙げられる。   The step of drying after applying the radical generating film forming composition is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, drying is performed. It is preferable to include a step. This drying may be carried out as long as the solvent is removed to such an extent that the shape of the coating film is not deformed due to transportation of the substrate, and the drying means is not particularly limited. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.

上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100℃〜350℃の任意の温度で行うことができるが、好ましくは140℃〜300℃であり、より好ましくは150℃〜230℃、更に好ましくは160℃〜220℃である。焼成時間は通常5分〜240分の任意の時間で焼成を行うことができる。好ましくは10〜90分であり、より好ましくは20〜90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IRオーブン、ベルト炉などを用いることができる。   The coating film formed by applying the radical-generating film forming composition by the above method can be baked to form a cured film. At that time, the firing temperature may be any temperature generally from 100 ° C to 350 ° C, preferably from 140 ° C to 300 ° C, more preferably from 150 ° C to 230 ° C, further preferably from 160 ° C to 220 ° C. ℃. The firing time can be normally 5 minutes to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes. For heating, a generally known method, for example, a hot plate, a hot air circulation oven, an IR oven, a belt furnace or the like can be used.

この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。   The thickness of this cured film can be selected as necessary, but it is preferably 5 nm or more, and more preferably 10 nm or more, since the reliability of the liquid crystal display element is easily obtained. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.

以上のようにしてラジカル発生膜を有する第一基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。   Although the first substrate having the radical generating film can be obtained as described above, the radical generating film can be subjected to the uniaxial alignment treatment. Examples of the method for performing the uniaxial alignment treatment include a photoalignment method, an oblique vapor deposition method, rubbing, and a uniaxial alignment treatment with a magnetic field.

一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。櫛歯電極が形成されている本発明の第一基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合においてはラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。   In the case of performing the alignment treatment by performing the rubbing treatment in one direction, for example, the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound. In the case of the first substrate of the present invention in which the comb-teeth electrode is formed, the direction is selected according to the electrical properties of the liquid crystal, but when the liquid crystal having positive dielectric anisotropy is used, the rubbing direction is the comb-teeth electrode. It is preferable that the direction is substantially the same as the extending direction.

本発明の第二基板は、ラジカル発生膜を有さないほかは、上記第一基板と同様である。従来から知られている液晶配向膜を有する基板とすることが好ましい。   The second substrate of the present invention is the same as the above-mentioned first substrate except that it has no radical-generating film. It is preferable to use a substrate having a conventionally known liquid crystal alignment film.

<液晶セル>
本発明の液晶セルは、上記の方法により、基板にラジカル発生膜を形成した後、当該ラジカル発生膜を有する基板(第一基板)と、公知の液晶配向膜を有する基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1〜30μmであるが、好ましくは2〜10μmである。また、第一基板のラビング方向と、第二基板のラビング方向とを平行にすることにより、IPSモードやFFSモードに使用することができ、ラビング方向が直交するように配置すれば、ツイストネマチックモードに使用することができる。
液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
<Liquid crystal cell>
The liquid crystal cell of the present invention comprises a substrate (first substrate) having the radical generating film and a substrate (second substrate) having a known liquid crystal alignment film after the radical generating film is formed on the substrate by the above method. Is obtained by arranging so that the radical generation film and the liquid crystal alignment film face each other, sandwiching a spacer, fixing with a sealant, and injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound. Be done. At that time, the size of the spacer used is usually 1 to 30 μm, preferably 2 to 10 μm. Further, by making the rubbing direction of the first substrate and the rubbing direction of the second substrate parallel to each other, it can be used in the IPS mode and the FFS mode. If the rubbing directions are orthogonal to each other, the twisted nematic mode can be used. Can be used for
The method of injecting a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing a liquid crystal and a polymerizable compound after reducing the pressure inside the prepared liquid crystal cell, a liquid crystal and a polymerization A dropping method in which sealing is performed after dropping a mixture containing a functional compound can be used.

<液晶及びラジカル重合性化合物を含有する液晶組成物>
本発明の液晶表示素子の作成において、液晶とともに用いる重合性化合物は、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性反応基を有する化合物である。好ましくは一分子中に一個の重合性反応基を有する化合物である(以下、「一官能の重合性基を有する化合物」、「単官能の重合性基を有する化合物」等と称する場合がある)。重合性反応基は、好ましくはラジカル重合性反応基であり、例えばビニル結合である。
<Liquid Crystal Composition Containing Liquid Crystal and Radical Polymerizable Compound>
In the production of the liquid crystal display device of the present invention, the polymerizable compound used with the liquid crystal is not particularly limited as long as it is a radically polymerizable compound, for example, a compound having one or two or more polymerizable reactive groups in one molecule. is there. Preferably, it is a compound having one polymerizable reactive group in one molecule (hereinafter, it may be referred to as “compound having a monofunctional polymerizable group”, “compound having a monofunctional polymerizable group”, etc.) .. The polymerizable reactive group is preferably a radical polymerizable reactive group, for example, a vinyl bond.

前記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。   At least one of the radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.

そして、前記ラジカル重合性化合物の重合性基としては以下の構造から選ばれる重合性基が好ましい。

Figure 2019004433

(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1〜4のアルキル基を示す。)The polymerizable group of the radically polymerizable compound is preferably a polymerizable group selected from the structures below.
Figure 2019004433

(In the formula, * represents a binding site to a portion other than the polymerizable reactive group of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, —O—, —NR. represents a linking group selected from c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)

また、前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。   In addition, in the liquid crystal composition containing the liquid crystal and the radically polymerizable compound, it is preferable that the polymer obtained by polymerizing the radically polymerizable compound contains a radically polymerizable compound having a Tg of 100 ° C. or less.

単官能のラジカル重合性基を有する化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な反応基を有するものであり、例えば、t−ブチルメタクリレート、ヘキシルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n−オクチルメタクリレートなどのメタクリレート系モノマー;t−ブチルアクリレート、ヘキシルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、ラウリルアクリレート、n−オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o−、m−、p−メトキシスチレン、o−、m−、p−t−ブトキシスチレン、o−、m−、p−クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N−ビニル化合物(例えば、N−ビニルピロリドン、N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプレン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。   The compound having a monofunctional radically polymerizable group has a reactive group capable of performing radical polymerization in the presence of an organic radical, and examples thereof include t-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate and nonyl. Methacrylate, lauryl methacrylate, n-octyl methacrylate and other methacrylate monomers; t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate, n-octyl acrylate and other acrylate monomers; styrene, styrene Derivatives (for example, o-, m-, p-methoxystyrene, o-, m-, p-t-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.), vinyl esters (for example, vinyl acetate) , Vinyl propionate, vinyl benzoate, vinyl acetate, etc., vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.), N-vinyl compounds (eg, N-vinyl pyrrolidone, N-vinyl pyrrole) , N-vinylcarbazole, N-vinylindole, etc.), (meth) acrylic acid derivatives (eg, acrylonitrile, methacrylonitrile, acrylamide, isopropylacrylamide, methacrylamide, etc.), vinyl halides (eg, vinyl chloride, vinylidene chloride, Vinyl monomers such as, but not limited to, tetrachloroethylene, hexachloroprene, vinyl fluoride, etc.). These various radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.

また、前記ラジカル重合性化合物としては、下記式(1)で表される化合物も好ましい。

Figure 2019004433

式(1)中、RおよびRはそれぞれ独立に炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合、アミド結合から選ばれる結合基を表す。文中Rは水素原子、炭素数1〜4のアルキル基を示す。Further, as the radically polymerizable compound, a compound represented by the following formula (1) is also preferable.
Figure 2019004433

In formula (1), R a and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms, and E is a single bond, —O—, —NR c —, —S—, ester bond, or amide. Represents a linking group selected from a bond. In the text, R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

前記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。   At least one of the radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.

そして、前記式(1)で表されるラジカル重合性化合物としては式中Eがエステル結合(−C(=O)−O−または−O−C(=O)−であらわされる結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造を有する化合物が好ましいが、特に限定はしない。   The radically polymerizable compound represented by the formula (1) is a compound in which E is an ester bond (a bond represented by -C (= O) -O- or -OC (= O)-). Is preferable from the viewpoints of easiness of synthesis, compatibility with liquid crystal, and polymerization reactivity. Specifically, compounds having the following structures are preferable, but not particularly limited.

Figure 2019004433
Figure 2019004433

式(1−1)及び(1−2)中、RおよびRはそれぞれ独立に炭素数2〜8の直鎖アルキル基を表す。In formulas (1-1) and (1-2), R a and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms.

液晶組成物中のラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下である。   The content of the radically polymerizable compound in the liquid crystal composition is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass, based on the total mass of the liquid crystal and the radically polymerizable compound. Or less, more preferably 20 mass% or less.

前記ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましい。   The Tg of the polymer obtained by polymerizing the radically polymerizable compound is preferably 100 ° C. or lower.

なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4−ペンチル−4’−シアノビフェニルである。   The liquid crystal generally refers to a substance in the state of exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal usable in the present invention is not particularly limited. An example is 4-pentyl-4'-cyanobiphenyl.

次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でもUVの使用は配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。なお、ツイストネマチックモードに使用する際は、上記液晶組成物に加えて、必要に応じてカイラルドーパントを液晶セルに導入すればよい。   Next, sufficient energy is applied to the liquid crystal cell into which the mixture (liquid crystal composition) containing the liquid crystal and the radically polymerizable compound is introduced so that the radically polymerizable compound is polymerized. This can be carried out, for example, by applying heat or irradiating with UV, and the radically polymerizable compound concerned is polymerized in situ, whereby desired properties are exhibited. Among them, UV irradiation is preferable because UV allows the orientational patterning and enables the polymerization reaction in a shorter time. When used in the twisted nematic mode, a chiral dopant may be introduced into the liquid crystal cell, if necessary, in addition to the above liquid crystal composition.

またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。   Moreover, you may heat at the time of UV irradiation. The heating temperature for UV irradiation is preferably within a temperature range in which the introduced liquid crystal exhibits liquid crystallinity, and is usually 40 ° C. or higher, and heating below the temperature at which the liquid crystal changes to an isotropic phase is preferable.

ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.01〜30Jであるが、好ましくは、10J以下であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。   Here, in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the reactive polymerizable compound as the UV irradiation wavelength, and the UV irradiation amount is usually 0.01 to 30 J, It is preferably 10 J or less, and the smaller the UV irradiation amount, the more it is possible to suppress the decrease in reliability due to the destruction of the members constituting the liquid crystal display, and the shorter the UV irradiation time is, which improves the tact time in manufacturing, which is preferable. Is.

また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、例えば、100℃以上150℃以下である。   Further, when the polymerization is carried out only by heating, not by UV irradiation, heating is preferably carried out at a temperature at which the polymerizable compound reacts and is below the decomposition temperature of the liquid crystal. Specifically, for example, the temperature is 100 ° C. or higher and 150 ° C. or lower.

ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。   When applying sufficient energy to polymerize the radically polymerizable compound, it is preferable to apply no voltage and be in an electric field-free state.

<液晶表示素子>
このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。
例えば、この液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。
また、この液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
<Liquid crystal display element>
A liquid crystal display device can be manufactured using the liquid crystal cell thus obtained.
For example, a reflection type liquid crystal display element can be obtained by providing a reflection electrode, a transparent electrode, a λ / 4 plate, a polarizing film, a color filter layer and the like in this liquid crystal cell according to a conventional method.
Further, if necessary, a backlight, a polarizing plate, a λ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like are provided in this liquid crystal cell according to a conventional method to obtain a transmissive liquid crystal display device.

本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。ポリマーの重合および膜形成組成物の調製で使用した化合物の略号、及び特性評価の方法は以下のとおりである。   The present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The abbreviations of the compounds used in the polymerization of the polymer and the preparation of the film-forming composition, and the characterization methods are as follows.

Figure 2019004433
Figure 2019004433

NMP:N−メチル−2−ピロリドン、
GBL:γ―ブチルラクトン、
BCS:ブチルセロソルブ
NMP: N-methyl-2-pyrrolidone,
GBL: γ-butyl lactone,
BCS: Butyl cellosolve

<粘度測定>
ポリアミド酸溶液について、E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)にて25℃の粘度を測定した。
<Viscosity measurement>
For the polyamic acid solution, an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) was used to measure the viscosity at 25 ° C. with a sample amount of 1.1 mL and a cone rotor TE-1 (1 ° 34 ′, R24). ..

<イミド化率の測定>
ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO−d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW−ECA500)にて測定した。
イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5〜10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1−α・x/y)×100
式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Science Co., Ltd.), and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) was added. Then, ultrasonic waves were applied to completely dissolve it. The 500-MHz proton NMR of this solution was measured with the measuring device (JNW-ECA500 by JEOL Datum).
The imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak integrated derived from NH of the amide group appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the values and.
Imidization rate (%) = (1-α · x / y) × 100
In the formula, x is an integrated value of proton peaks derived from NH of the amide group, y is an integrated value of peaks of the reference protons, α is a reference proton for one NH proton of the amide group in the case of polyamic acid (imidization ratio is 0%) Is the number ratio of

<ポリマーの重合およびラジカル発生膜形成組成物の調製>
合成例1
TC−1、TC−2(50)/DA−1(50)、DA−2(50) ポリイミドの重合
窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA−1を1.62g(15.00mmol)、DA−2を3.96g(15.00mmol)測り取り、NMP48.2gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC−2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC−1を2.71g(13.80mmol)を加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC−1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え、7質量%の溶液を調整し、撹拌しながら無水酢酸を9.10g(88.52mmol)、ピリジンを3.76g(47.53mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量は11300、重量平均分子量は32900、イミド化率が53%のポリイミド(PI−1)を得た。
<Polymer polymerization and preparation of radical-generating film-forming composition>
Synthesis example 1
Polymerization of TC-1, TC-2 (50) / DA-1 (50), DA-2 (50) Polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen introduction tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 3.96 g (15.00 mmol) of DA-2 were measured, 48.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere and completely dissolved. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. After returning to room temperature again, 2.71 g (13.80 mmol) of TC-1 was added, and the mixture was reacted at 40 ° C. for 12 hours under a nitrogen atmosphere. The polymerization viscosity was confirmed, and TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization liquid having a polyamic acid concentration of 20% by mass.
In a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, 60 g of the polyamic acid solution obtained above was weighed out, 111.4 g of NMP was added, a 7 mass% solution was adjusted, and 9.10 g of acetic anhydride while stirring ( 88.52 mmol) and 3.76 g (47.53 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then stirred at 55 ° C. for 3 hours to cause a reaction. After completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol with stirring to precipitate a solid. Individuals are collected by filtration, and the solids are further put into 300 ml of methanol and stirred and washed for 30 minutes twice in total. The solids are collected by filtration, air-dried, and then dried in a vacuum oven 60 ° C. Thus, a polyimide (PI-1) having a number average molecular weight of 11,300, a weight average molecular weight of 32,900 and an imidation ratio of 53% was obtained.

合成例2
TC−1、TC−2(50)/DA−1(50)、DA−3(50)ポリイミドの重合
窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA−1を1.62g(15.00mmol)、DA−3を4.96g(15.00mmol)測り取り、NMP51.90gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC−2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC−1を2.64g(13.5mmol)加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC−1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え加え、7質量%の溶液を調整し、撹拌しながら無水酢酸を8.38g(81.4mmol)、ピリジンを3.62g(45.8mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量Mnは13100、重量平均分子量Mwは34000、イミド化率が55%のポリイミド(PI−2)を得た。
Synthesis example 2
Polymerization of TC-1, TC-2 (50) / DA-1 (50), DA-3 (50) Polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen introduction tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 4.96 g (15.00 mmol) of DA-3 were measured, 51.90 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere to completely dissolve it. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. After returning to room temperature again, 2.64 g (13.5 mmol) of TC-1 was added, and the mixture was reacted at 40 ° C. for 12 hours under a nitrogen atmosphere. The polymerization viscosity was confirmed, and TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization liquid having a polyamic acid concentration of 20% by mass.
To a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, weigh 60 g of the polyamic acid solution obtained above, add 111.4 g of NMP, add 71.4% by weight of the solution, and stir 8.38 g of acetic anhydride while stirring. (81.4 mmol) and 3.62 g (45.8 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then stirred at 55 ° C. for 3 hours to cause a reaction. After completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol with stirring to precipitate a solid. Individuals are collected by filtration, and the solids are further put into 300 ml of methanol and stirred and washed for 30 minutes twice in total. The solids are collected by filtration, air-dried, and then dried in a vacuum oven 60 ° C. Thus, a polyimide (PI-2) having a number average molecular weight Mn of 13,100, a weight average molecular weight Mw of 34,000 and an imidization ratio of 55% was obtained.

合成例3
TC−1、TC−2(50)/DA−1(50)、DA−4(50)ポリイミドの重合
窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA−1を1.62g(15.00mmol)、DA−4を5.65g(15.00mmol)測り取り、NMP55.4gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC−2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC−1を2.82g(14.40mmol)加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC−1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え、7質量%の溶液を調整し、撹拌しながら無水酢酸を8.36g(81.2mmol)、ピリジンを3.65g(46.1mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量Mnは12900、重量平均分子量Mwは31000、イミド化率が51%のポリイミド(PI−3)を得た。
Synthesis example 3
Polymerization of TC-1, TC-2 (50) / DA-1 (50), DA-4 (50) Polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen introduction tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 5.65 g (15.00 mmol) of DA-4 were measured, 55.4 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere to completely dissolve it. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. It returned to room temperature again, 2.82 g (14.40 mmol) of TC-1 was added, and it was made to react at 40 degreeC under nitrogen atmosphere for 12 hours. The polymerization viscosity was confirmed, and TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization liquid having a polyamic acid concentration of 20% by mass.
In a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, 60 g of the polyamic acid solution obtained above was weighed, 111.4 g of NMP was added, a 7 mass% solution was prepared, and 8.36 g of acetic anhydride was stirred ( 81.2 mmol) and 3.65 g (46.1 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then stirred at 55 ° C. for 3 hours to cause a reaction. After completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol with stirring to precipitate a solid. Individuals are collected by filtration, and the solids are further put into 300 ml of methanol and stirred and washed for 30 minutes twice in total. The solids are collected by filtration, air-dried, and then dried in a vacuum oven 60 ° C. Thus, a polyimide (PI-3) having a number average molecular weight Mn of 12,900, a weight average molecular weight Mw of 31,000 and an imidization ratio of 51% was obtained.

ラジカル発生膜形成組成物:AL1の調製
マグネティックスターラーを備えた50ml三角フラスコに、合成例1で得られたポリイミド粉末(PI−1)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL1(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Radical generating film forming composition: Preparation of AL1 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-1) obtained in Synthesis Example 1 was measured, 18.0 g of NMP was added, and the temperature was 50 ° C. Stir at to dissolve completely. Furthermore, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition: AL1 (solid content: 6.0% by mass, NMP: 66% by mass, BCS : 30 mass%) was obtained.

ラジカル発生膜形成組成物:AL2の調製
マグネティックスターラーを備えた50ml三角フラスコに、合成例2で得られたポリイミド粉末(PI−2)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL2(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Radical generating film forming composition: Preparation of AL2 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-2) obtained in Synthesis Example 2 was measured, 18.0 g of NMP was added, and the temperature was 50 ° C. Stir at to dissolve completely. Furthermore, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition of the present invention: AL2 (solid content: 6.0% by mass, NMP: 66% by mass, BCS : 30 mass%) was obtained.

非ラジカル発生膜形成組成物:AL3の調製
マグネティックスターラーを備えた50ml三角フラスコに、合成例3で得られたポリイミド粉末(PI−3)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで比較対象とする非ラジカル発生膜形成組成物:AL3(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Preparation of non-radical generating film forming composition: AL3 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-3) obtained in Synthesis Example 3 was weighed, 18.0 g of NMP was added, and 50 Stir at 0 ° C. to completely dissolve. Further, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to form a non-radical generating film forming composition: AL3 (solid content: 6.0% by mass, NMP: 66% by mass, BCS: 30% by mass) was obtained.

Figure 2019004433
Figure 2019004433

Figure 2019004433
Figure 2019004433

<液晶表示素子の作製>
上記で得たAL1〜AL3及び水平配向用の液晶配向剤であるSE−6414(日産化学工業株式会社製)を用い、表3に示す構成で液晶表示素子を作製した。
<Production of liquid crystal display element>
Using AL1 to AL3 and the liquid crystal aligning agent SE-6414 (manufactured by Nissan Chemical Industries, Ltd.) for horizontal alignment obtained as described above, a liquid crystal display device having a configuration shown in Table 3 was produced.

Figure 2019004433
Figure 2019004433

(第一基板)
第一基板(以後IPS基板ともいう)は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板である。基板上には電極幅が10μm、電極と電極の間隔が10μmの櫛歯型パターンを備えたITO(Indium−Tin−Oxide)電極が形成され、画素を形成している。各画素のサイズは、縦10mmで横約5mmである。
AL1〜AL3又はSE−6414は、1.0μmのフィルターで濾過した後、上記IPS基板の電極形成面にスピンコート法にて塗布し、80℃のホットプレート上で1分間乾燥させた。次いで、AL1〜AL3は150℃で20分間、SE−6414は220℃で20分焼成し、焼成して、それぞれ膜厚100nmの塗膜とした。
ラビング処理「有り」では、ラビング方向が櫛歯電極と平行になるようにラビングした。ラビングは吉川化工製のレーヨン布:YA−20Rを用い、ロール径120mm、回転数300rpm、移動速度50mm/sec、押し込み量0.4mmの条件にて行った。ただし、SE−6414を塗布した膜のみ上記の回転数を1000rpmにした。ラビング処理後は、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
(First substrate)
The first substrate (hereinafter also referred to as IPS substrate) is a non-alkali glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. An ITO (Indium-Tin-Oxide) electrode having a comb-teeth pattern with an electrode width of 10 μm and an electrode-to-electrode spacing of 10 μm is formed on a substrate to form a pixel. The size of each pixel is 10 mm in length and about 5 mm in width.
After filtering AL1 to AL3 or SE-6414 with a 1.0 μm filter, they were applied to the electrode formation surface of the IPS substrate by spin coating and dried on a hot plate at 80 ° C. for 1 minute. Next, AL1 to AL3 were fired at 150 ° C. for 20 minutes, and SE-6414 was fired at 220 ° C. for 20 minutes, and fired to form coating films each having a film thickness of 100 nm.
In the “with” rubbing treatment, rubbing was performed so that the rubbing direction was parallel to the comb-teeth electrode. Rubbing was performed using a rayon cloth: YA-20R manufactured by Yoshikawa Kako, under the conditions of a roll diameter of 120 mm, a rotation speed of 300 rpm, a moving speed of 50 mm / sec, and a pushing amount of 0.4 mm. However, the rotation speed was set to 1000 rpm only for the film coated with SE-6414. After the rubbing treatment, ultrasonic irradiation was performed in pure water for 1 minute, and drying was performed at 80 ° C. for 10 minutes.

(第二基板)
第二基板(裏面ITO基板ともいう)は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板であり、裏面(セルの外側を向く面)にITO膜が成膜されている。また、表面(セルの内側を向く面)には高さ4μmの柱状のスペーサーが形成されている。
AL1、AL2又はSE−6414は、1.0μmのフィルターで濾過した後、上記IPS基板の電極形成面にスピンコート法にて塗布し、80℃のホットプレート上で1分間乾燥させた。次いで、AL1、AL2は150℃で20分間、SE−6414は220℃で20分焼成し、焼成して、それぞれ膜厚100nmの塗膜とした後、ラビング処理を行った。ラビング処理は、吉川化工製のレーヨン布:YA−20Rを用い、ロール径120mm、回転数1000rpm、移動速度50mm/sec、押し込み量0.4mmの条件にてラビングを行った。ただし、AL1またはAL2を塗布した膜は上記の回転数を300rpmにした。ラビング処理後は、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
(Second substrate)
The second substrate (also called back ITO substrate) is a non-alkali glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm, and an ITO film is formed on the back surface (the surface facing the outside of the cell). ing. Further, a columnar spacer having a height of 4 μm is formed on the surface (the surface facing the inside of the cell).
After filtering AL1, AL2 or SE-6414 with a 1.0 μm filter, it was applied on the electrode formation surface of the IPS substrate by spin coating and dried on a hot plate at 80 ° C. for 1 minute. Then, AL1 and AL2 were fired at 150 ° C. for 20 minutes, and SE-6414 was fired at 220 ° C. for 20 minutes to form coating films having a film thickness of 100 nm, respectively, and then subjected to rubbing treatment. The rubbing treatment was performed using a rayon cloth: YA-20R manufactured by Yoshikawa Kako, under the conditions of a roll diameter of 120 mm, a rotation speed of 1000 rpm, a moving speed of 50 mm / sec, and an indentation amount of 0.4 mm. However, the rotation speed of the film coated with AL1 or AL2 was 300 rpm. After the rubbing treatment, ultrasonic irradiation was performed in pure water for 1 minute, and drying was performed at 80 ° C. for 10 minutes.

(液晶セルの作製)
上記液晶配向膜付きの2種類の基板(第一基板及び第二基板)を用い、液晶注入口を残して周囲をシールし、セルギャップが約4μmの空セルを作製した。この際、第一基板がラビング処理していない場合は、第一基板の櫛歯電極の向きと第二基板のラビング方向が平行になるように組み合わせ、第一基板をラビング処理した場合は、第一基板と第二基板のラビング方向が逆平行になるように組み合わせた。
この空セルに、液晶(メルク社製MLC−3019にHMAを10wt%添加したもの)を常温で真空注入した後、注入口を封止して液晶セルとした。得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で20分加熱処理を行った。
UV処理ありでは、高圧水銀ランプを用い波長313nmのバンドパスフィルター介して露光量が1000mJとなるよう液晶セルに紫外線を照射した。
(Production of liquid crystal cell)
Using two types of substrates (first substrate and second substrate) with the above liquid crystal alignment film, the periphery was sealed leaving a liquid crystal injection port, and an empty cell with a cell gap of about 4 μm was produced. At this time, when the first substrate is not rubbed, the comb-shaped electrodes of the first substrate and the rubbing direction of the second substrate are combined in parallel, and when the first substrate is rubbed, the first substrate is rubbed. The first substrate and the second substrate were assembled so that the rubbing directions were antiparallel.
A liquid crystal (MLC-3019 manufactured by Merck & Co., containing 10 wt% of HMA) was vacuum-injected into the empty cell at room temperature, and then the injection port was sealed to obtain a liquid crystal cell. The obtained liquid crystal cell constitutes an IPS mode liquid crystal display element. Then, the obtained liquid crystal cell was heat-treated at 120 ° C. for 20 minutes.
With the UV treatment, a high-pressure mercury lamp was used to irradiate the liquid crystal cell with ultraviolet rays through a bandpass filter having a wavelength of 313 nm so that the exposure amount was 1000 mJ.

<液晶配向性の評価>
クロスニコルにセットした偏光板を用いて液晶セルの配向性を確認した。欠陥無く配向しているものは○、軽微な配向欠陥のあるものは△、配向していないものは×とした。
<Evaluation of liquid crystal alignment>
The orientation of the liquid crystal cell was confirmed using a polarizing plate set in crossed Nicols. Those with no defects were marked with ◯, those with slight alignment defects were marked with Δ, and those without alignment were marked with x.

<V−Tカーブの測定と駆動閾値電圧、輝度最大電圧評価>
光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV−Tカーブの測定を行った。得られたV−Tカーブから駆動閾値電圧と輝度が最大になる電圧の値を見積もった。
<Measurement of VT curve and evaluation of driving threshold voltage and maximum luminance voltage>
A white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) with a polarizing plate attached so that the luminance is minimized is set between them, and a voltage of 1V is applied up to 8V. The VT curve was measured by applying the voltage and measuring the luminance at the voltage. The driving threshold voltage and the value of the voltage at which the brightness was maximized were estimated from the obtained VT curve.

<液晶表示の応答速度の評価>
上記V−Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)および電圧を0にした際の応答速度(Toff)を測定した。
<Evaluation of response speed of liquid crystal display>
Using the device used in the measurement of the VT curve, a luminance meter was connected to an oscilloscope, and a response speed (Ton) when a voltage that maximizes the brightness was applied and a response speed (Toff) when the voltage was set to 0 Was measured.

Figure 2019004433
Figure 2019004433

裏面ITO基板(第二基板)側にラビング処理した水平配向膜を使用したCell−1〜Cell−20の比較において、IPS基板(第一基板)側にラジカル発生膜を使用し且つUV処理したCell−11、Cell−12、Cell−16及びCell−17は、液晶の配向性が良好であり且つ駆動閾値電圧や輝度最大電圧が低下していることが確認された。また、ラジカル発生膜をラビング処理していないCell−11及びCell−12ではToffの値が増大しているのに対して、ラジカル発生膜をラビング処理したCell−16及びCell−17ではこのToff値の増大が大きく改善していることが確認された。   In comparison of Cell-1 to Cell-20 using a horizontal alignment film that is rubbed on the back ITO substrate (second substrate) side, a cell that uses a radical generating film on the IPS substrate (first substrate) side and is UV-treated It was confirmed that -11, Cell-12, Cell-16, and Cell-17 had good liquid crystal orientation and reduced drive threshold voltage and maximum luminance voltage. In addition, while the Toff value is increased in Cell-11 and Cell-12 where the radical generation film is not rubbed, the Toff value is increased in Cell-16 and Cell-17 where the radical generation film is rubbed. It has been confirmed that the increase of the is significantly improved.

上記に加え補足的な実験として、AL1を裏面ITO基板(第二基板)とIPS基板(第一基板)両方に用い且つ第一基板、第二基板ともにラビング処理していない液晶セルを作成した。この液晶セルは、UV照射前において液晶の注入時の流動方向に沿った配向欠陥および輝点(流動配向)が観察されたが、UV照射後には流動配向が完全に消失し、液晶由来のドメイン(シュリーレン)が確認された。このことからラジカル発生膜と重合性化合物が入った液晶を併用した場合、UVを照射することで該ラジカル発生膜は液晶配向規制力を失い、該ラジカル発生膜上にゼロ面アンカリング膜が形成されることが示唆された。   As a supplementary experiment in addition to the above, a liquid crystal cell was prepared in which AL1 was used for both the back ITO substrate (second substrate) and the IPS substrate (first substrate), and neither the first substrate nor the second substrate was rubbed. In this liquid crystal cell, alignment defects and bright spots (fluid alignment) along the flow direction at the time of liquid crystal injection were observed before UV irradiation, but after UV irradiation, the flow alignment completely disappeared, and domains derived from the liquid crystal were observed. (Schlieren) was confirmed. From this fact, when the radical generating film and the liquid crystal containing the polymerizable compound are used together, the radical generating film loses the liquid crystal alignment regulating force by UV irradiation, and a zero plane anchoring film is formed on the radical generating film. It was suggested to be done.

また、液晶セルCell−21〜Cell−24の比較においては、UV照射していないCell−21及びCell−23はラビング方向への一軸配向性を示したが、UV照射を行ったCell−22及びCell−24は無配向状態に変わり液晶のドメイン(シュリーレン)が発生した。このことからラジカル発生膜をラビングした場合であっても、UVを照射することで該ラジカル発生膜上にゼロ面アンカリング膜が形成されることが示唆された。   Further, in the comparison of the liquid crystal cells Cell-21 to Cell-24, Cell-21 and Cell-23 which were not UV-irradiated showed uniaxial orientation in the rubbing direction, but Cell-22 and UV-irradiated Cell-22 were shown. Cell-24 changed to a non-aligned state and liquid crystal domains (Schlieren) were generated. From this, it was suggested that even when the radical generating film was rubbed, the zero plane anchoring film was formed on the radical generating film by UV irradiation.

ただし、Cell−22及びCell−24をクロスニコル下で回転させながら観察すると、僅かながらも明暗の変化が生じたことから、このゼロ面アンカリング膜は配向規制力が全くない状態ではないが、その規制力は液晶同士の分子間力よりも弱く、この規制力のみでは液晶分子をいずれの方向にも一軸配向させていないことが示唆される。このことから、Cell−16及びCell−17においてToffの値が大きく改善したのは、上記の弱い規制力が作用したことが要因と考えられる。   However, when the Cell-22 and Cell-24 were observed while rotating under crossed Nicols, a slight change in light and dark occurred, so this zero-plane anchoring film is not in a state where there is no alignment regulating force, The regulating force is weaker than the intermolecular force between liquid crystals, and it is suggested that the regulating force alone does not cause the liquid crystal molecules to be uniaxially aligned in any direction. From this, it is considered that the reason why the Toff value was greatly improved in Cell-16 and Cell-17 was that the weak regulation force acted.

重合性化合物合成例1
2−(ヘプタノイルオキシメチル)アクリル酸 エチルエステルの合成

Figure 2019004433

第1工程:2−ヒドロキシメチルアクリル酸エチルエステルの合成
窒素導入管を取り付けた500mlの四口フラスコに、4−メトキシフェノール10mg、DABCO(1,4−ジアザビシクロ[2.2.2]オクタン)21.88g(195.1mmol)を計り取り、純水を50ml加え、窒素雰囲気下で10℃以下で攪拌しながらパラホルムアルデヒド11.52g(390.1mmol)を加え、1時間攪拌した。スラリー状態から溶液状態に変化したのを確認し、アセトニトリルを300ml加え、アクリル酸エチル19.53g(195.1mmol)を滴下しながら加え、50℃で5時間反応させた。反応終了後、分液ロートに反応溶液を移し、n−ヘキサン50mlを加えた。3層に分かれたのを確認し、下の2層を回収し、この操作を3回行った。更にpHが4〜5になるように塩酸を加え、酢酸エチルを用いて抽出を行った。抽出した溶液に無水硫酸マグネシウムを加え攪拌し乾燥させた後、濾過・濃縮を行い、無色透明のオイル状液体22.9g(175.6mmol、収率90%)を得た。構造は核磁気共鳴スペクトル(H−NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.81(1H)、5.80(1H)、4.31(2H)、4.17(1H)、1.98(1H)、0.93(3H)Polymerizable compound synthesis example 1
Synthesis of 2- (heptanoyloxymethyl) acrylic acid ethyl ester
Figure 2019004433

First step: Synthesis of 2-hydroxymethylacrylic acid ethyl ester In a 500 ml four-necked flask equipped with a nitrogen introducing tube, 4-methoxyphenol 10 mg, DABCO (1,4-diazabicyclo [2.2.2] octane) 21. 0.88 g (195.1 mmol) was weighed out, 50 ml of pure water was added, and 11.52 g (390.1 mmol) of paraformaldehyde was added with stirring at 10 ° C or lower under a nitrogen atmosphere, and the mixture was stirred for 1 hour. After confirming the change from the slurry state to the solution state, 300 ml of acetonitrile was added, 19.53 g (195.1 mmol) of ethyl acrylate was added dropwise, and the mixture was reacted at 50 ° C. for 5 hours. After completion of the reaction, the reaction solution was transferred to a separating funnel and 50 ml of n-hexane was added. After confirming that the layer was divided into three layers, the lower two layers were collected and this operation was repeated three times. Further, hydrochloric acid was added so that the pH became 4 to 5, and extraction was performed with ethyl acetate. Anhydrous magnesium sulfate was added to the extracted solution, and the mixture was stirred, dried, filtered, and concentrated to obtain 22.9 g (175.6 mmol, yield 90%) of a colorless transparent oily liquid. The structure was confirmed to be the desired product by nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.81 (1H), 5.80 (1H), 4.31 (2H), 4.17 (1H), 1.98 (1H), 0.93. (3H)

第2工程:2−(ヘプタノイルオキシメチル)アクリル酸エチルエステルの合成
窒素導入管を取り付けた500mlの4口フラスコに、上記方法にて得られた2−ヒドロキシメチルアクリル酸を19.9g(152.9mmol)計り取り、THF300ml、トリエチルアミン23.2g(229.3mmol)を加え、窒素雰囲気下10℃以下に保ちながらヘプタノイルクロリド25.0g(168.2mmol)を滴下しながら加え、6時間反応させた。反応終了後、析出したトリエチルアミン塩酸塩を濾過にて除去し、反応溶液を濃縮させ、酢酸エチル300mlにて再溶解させ、10%炭酸カリウム水溶液100mlにて3回洗浄し、純水50mlにて3回洗浄し、無水硫酸マグネシウムにて乾燥させた後、濾過・濃縮を行い薄黄色の粘体を得た。更にフラッシュカラムクロマトグラフィー(展開溶媒:酢酸エチル:n−ヘキサン=20:80)にて精製し、溶媒除去・真空乾燥を行うことで無色透明のオイル状液体32.2g(133.0mmol:収率87%)を得た。構造は核磁気共鳴スペクトル(H−NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.37(1H)、5.80(1H)、3.80(2H)、4.23−4.21(2H)、2.39−2.37(2H)、1.64−1.58(2H)、1.30−1.27(9H)、0.86(3H)
Second step: Synthesis of 2- (heptanoyloxymethyl) acrylic acid ethyl ester In a 500 ml four-necked flask equipped with a nitrogen inlet tube, 19.9 g (152 g) of 2-hydroxymethylacrylic acid obtained by the above method was added. 9.9 mmol), THF (300 ml) and triethylamine (23.2 g, 229.3 mmol) were added, and 25.0 g (168.2 mmol) of heptanoyl chloride was added dropwise while keeping the temperature at 10 ° C. or lower under a nitrogen atmosphere, followed by reaction for 6 hours. It was After completion of the reaction, the precipitated triethylamine hydrochloride was removed by filtration, the reaction solution was concentrated, redissolved in 300 ml of ethyl acetate, washed 3 times with 100 ml of 10% aqueous potassium carbonate solution, and washed with 50 ml of pure water. It was washed twice, dried over anhydrous magnesium sulfate, filtered and concentrated to give a pale yellow viscous body. Purification by flash column chromatography (developing solvent: ethyl acetate: n-hexane = 20:80), and removal of the solvent / vacuum drying gave a colorless and transparent oily liquid 32.2 g (133.0 mmol: yield). 87%). The structure was confirmed to be the desired product by nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.37 (1H), 5.80 (1H), 3.80 (2H), 4.23-4.21 (2H), 2.39-2. 37 (2H), 1.64-1.58 (2H), 1.30-1.27 (9H), 0.86 (3H)

重合性化合物合成例2
2−(ヘプタノイルオキシメチル)アクリル酸 ブチルエステルの合成

Figure 2019004433

第1工程:2−ヒドロキシメチルアクリル酸ブチルエステルの合成
前記第1工程と同様の操作にて、エチルアクリレートをブチルアクリレートに変更し合成を行い、無色透明のオイル24.3gを得た(26.2g:収率85%)。構造は核磁気共鳴スペクトル(H−NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.81(1H)、5.80(1H)、4.31(2H)、4.17(1H)、1.98(1H)、1.67−1.64(2H)、1.42−1.38(2H)、0.93(3H) Polymerizable compound synthesis example 2
Synthesis of 2- (heptanoyloxymethyl) acrylic acid butyl ester
Figure 2019004433

First Step: Synthesis of 2-Hydroxymethylacrylic Acid Butyl Ester By the same operation as in the first step, ethyl acrylate was changed to butyl acrylate for synthesis, and 24.3 g of a colorless transparent oil was obtained (26. 2 g: yield 85%). The structure was confirmed to be the desired product by nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.81 (1H), 5.80 (1H), 4.31 (2H), 4.17 (1H), 1.98 (1H), 1.67. -1.64 (2H), 1.42-1.38 (2H), 0.93 (3H)

第2工程:2−(ヘプタノイルオキシメチル)アクリル酸 ブチルエステルの合成
前記第2工程の2−ヒドロキシメチルアクリル酸を上記方法にて得られた2−((ヘプタノイロキシ)メチル)アクリル酸 ブチルエステルに変えて、同様の操作にて合成を行い、無色透明のオイル状液体34.2g(126.7:収率82.8%)を得た。構造は核磁気共鳴スペクトル(H−NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.36(1H)、5.81(1H)、4.80(2H)、4.19−4.16(2H)、2.35−2.31(2H)、1.64−1.58(4H)、1.40−1.25(8H)、0.96−0.83(6H)
Second step: Synthesis of 2- (heptanoyloxymethyl) acrylic acid butyl ester 2-((heptanoyloxy) methyl) acrylic acid butyl ester obtained by the above method from 2-hydroxymethylacrylic acid of the second step Instead, the synthesis was performed in the same manner to obtain 34.2 g (126.7: yield 82.8%) of a colorless transparent oily liquid. The structure was confirmed to be the desired product by nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.36 (1H), 5.81 (1H), 4.80 (2H), 4.19-4.16 (2H), 2.35-2. 31 (2H), 1.64-1.58 (4H), 1.40-1.25 (8H), 0.96-0.83 (6H)

重合性化合物合成例3
イタコン酸ジヘキシルの合成

Figure 2019004433

ディーンスターク管を取り付けた4口フラスコに、イタコン酸23.8g(182.9mmol)、1−ヘキサノール35.5g(347.5mmol)を計り取り、シクロヘキサン500ml、濃硫酸0.9g(9.1mmol)、ジブチルヒドロキシトルエン(BHT)0.04g(1.82mmol)を加え、窒素雰囲気にし、110℃にて24時間脱水縮合反応させた。反応終了後、反応溶液にn−ヘキサンを100ml加え、10%炭酸ナトリウム水溶液100gで3回、純水100mlにて3回洗浄し、無水硫酸マグネシウムで乾燥させた。濾過・濃縮後真空乾燥させることで無色透明のオイル状液体48.6g(162.8mmol:収率89%)を得た。構造は核磁気共鳴スペクトル(H−NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.30(1H)、5.65(1H)、4.20―4.00(4H)、3.32(2H)、1.64−1.58(4H)、1.40−1.25(12H)、0.96−0.83(6H)Polymerizable compound synthesis example 3
Synthesis of dihexyl itaconate
Figure 2019004433

In a four-necked flask equipped with a Dean-Stark tube, 23.8 g (182.9 mmol) of itaconic acid and 35.5 g (347.5 mmol) of 1-hexanol were weighed out, 500 ml of cyclohexane and 0.9 g (9.1 mmol) of concentrated sulfuric acid. , Dibutylhydroxytoluene (BHT) (0.04 g, 1.82 mmol) were added, and the mixture was placed in a nitrogen atmosphere and subjected to dehydration condensation reaction at 110 ° C. for 24 hours. After completion of the reaction, 100 ml of n-hexane was added to the reaction solution, washed with 100 g of 10% sodium carbonate aqueous solution three times and with 100 ml of pure water three times, and dried with anhydrous magnesium sulfate. After filtration, concentration, and vacuum drying, 48.6 g (162.8 mmol: yield 89%) of a colorless transparent oily liquid was obtained. The structure was confirmed to be the desired product by nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.30 (1H), 5.65 (1H), 4.20-4.00 (4H), 3.32 (2H), 1.64-1. 58 (4H), 1.40-1.25 (12H), 0.96-0.83 (6H)

(液晶セルの作製)
前記(液晶セルの作成)に準じて空セルを作成した後、この空セルに、液晶組成物LC−1〜LC−4(メルク社製MLC−3019に上記重合性化合物をそれぞれの最適量にて添加したもの)を、室温下で約300Paほどの真空度にて真空注入を行ったものと、1Paほどの真空度で1時間脱気を行った後真空注入したものを作成し、注入口を封止して液晶セルとした。得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行った。あとは、前記と同様に試験を行った。
(Production of liquid crystal cell)
After preparing an empty cell according to the above (Preparation of liquid crystal cell), the liquid crystal composition LC-1 to LC-4 (MLC-3019 manufactured by Merck & Co., Inc.) was added to each of the empty cells in the optimum amount. (Injected at room temperature) and vacuum-injected at room temperature at a vacuum degree of about 300 Pa, and vacuum-injected after deaeration at a vacuum degree of about 1 Pa for 1 hour. Was sealed to form a liquid crystal cell. The obtained liquid crystal cell constitutes an IPS mode liquid crystal display element. Then, the obtained liquid crystal cell was heat-treated at 120 ° C. for 10 minutes. After that, the test was conducted in the same manner as described above.

なお、液晶組成物LC−1〜LC−4は、MLC−3019に、下記の表に記載の重合性化合物を、下記の導入量で添加したものである。

Figure 2019004433
The liquid crystal compositions LC-1 to LC-4 are prepared by adding the polymerizable compounds described in the following table to MLC-3019 in the following introduction amounts.
Figure 2019004433

<配向性の評価結果>

Figure 2019004433
<Evaluation result of orientation>
Figure 2019004433

IDBuとIDHexを導入した液晶(LC−1、LC−2)およびC2C6とC4C6を導入した液晶は比較的高い真空度で行った場合においても非常に良好な配向性を示した。   The liquid crystals in which IDBu and IDHex were introduced (LC-1, LC-2) and the liquid crystals in which C2C6 and C4C6 were introduced showed very good orientation even when performed at a relatively high degree of vacuum.

<電気−光学特性の評価結果>
次に、前記でゼロアンカリング配向した液晶を用いたセルのうち、ラジカル発生膜をラビングしていないものとしたものの駆動閾値電圧、最大輝度時の電圧、応答速度をまとめたものを以下に示す。

Figure 2019004433
<Evaluation result of electro-optical characteristics>
Next, the following is a summary of the driving threshold voltage, the voltage at the maximum luminance, and the response speed of the cell using the liquid crystal having the zero anchoring orientation described above, in which the radical generating film is not rubbed. ..
Figure 2019004433

重合性化合物を用いた場合ラビング処理の有無に関わらず駆動電圧の低下が確認され、ラビング処理を行うことで応答速度も向上する傾向が見られた。
よって、重合性化合物は高真空下でのゼロアンカリング化とラビングによる応答速度向上の効果が同時に得られることが分かった。
When a polymerizable compound was used, a decrease in driving voltage was confirmed regardless of the presence or absence of rubbing treatment, and it was observed that the response speed tended to be improved by performing rubbing treatment.
Therefore, it was found that the polymerizable compound can simultaneously achieve the effect of zero anchoring under high vacuum and the response speed improvement by rubbing.

本発明によれば、ゼロ面アンカリング膜を安価な原料から、工業的に、歩留まりよく作り出すことができる。また、本発明の方法で得られる液晶表示素子は、PSA型液晶ディスプレイやSC−PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子として有用である。   According to the present invention, a zero-plane anchoring film can be industrially produced with a high yield from an inexpensive raw material. The liquid crystal display device obtained by the method of the present invention is useful as a vertical alignment type liquid crystal display device such as a PSA type liquid crystal display and an SC-PVA type liquid crystal display.

Claims (22)

液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング膜の製造方法。   A liquid crystal composition containing a liquid crystal and a radically polymerizable compound, in the state of being in contact with the radical generating film, including a step of giving sufficient energy to cause a polymerization reaction of the radically polymerizable compound, a zero plane anchoring film of Production method. 前記第一基板の有するラジカル発生膜が一軸配向処理されたラジカル発生膜である請求項1に記載の方法。   The method according to claim 1, wherein the radical generating film of the first substrate is a uniaxially oriented radical generating film. エネルギーを与えるステップを無電界で行う、請求項1又は2に記載の方法。   The method according to claim 1, wherein the step of applying energy is performed without electric field. 前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜であることを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the radical-generating film is a film formed by immobilizing an organic group that induces radical polymerization. 前記ラジカル発生膜が、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得られることを特徴とする請求項1〜3のいずれか一項に記載の方法。   2. The radical-generating film is obtained by applying a composition of a compound having a radical-generating group and a polymer and curing the composition to form a film, thereby immobilizing the composition in the film. 4. The method according to any one of 3 to 3. 前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成ることを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the radical generating film is made of a polymer containing an organic group that induces radical polymerization. 前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体であることを特徴とする請求項6記載の方法。   Polymer containing an organic group that induces the radical polymerization, a polyimide precursor obtained by using a diamine component containing a diamine containing an organic group that induces radical polymerization, polyimide, at least one selected from polyurea and polyamide. The method according to claim 6, which is a polymer. 前記ラジカル重合を誘発する有機基が下記構造[X−1]〜[X−18]、[W]、[Y]、[Z]で表される有機基である請求項4、6及び7のいずれか一項に記載の方法。
Figure 2019004433

(式[X−1]〜[X−18]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す)
Figure 2019004433

(式[W]、[Y]、[Z]中、*は化合物分子の重合性反応基以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。)
The organic group which induces the radical polymerization is an organic group represented by the following structures [X-1] to [X-18], [W], [Y], and [Z]. The method according to any one of items.
Figure 2019004433

(In the formulas [X-1] to [X-18], * represents a binding site to a part other than the polymerizable reactive group of the compound molecule, and S 1 and S 2 are each independently —O— or —NR. Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and R 1 and R 2 each independently represent a hydrogen atom or halogen. Atom, represents an alkyl group having 1 to 4 carbon atoms)
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a binding site to a portion of the compound molecule other than the polymerizable reactive group, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, wherein R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the ends to form a ring structure, and Q represents the following structure.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
前記ラジカル重合を誘発する有機基を含有するジアミンが下記一般式(6)又は下記一般式(7)で表される構造を有するジアミンであることを特徴とする請求項7記載の方法。
Figure 2019004433

(式(6)中、Rは単結合、−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−を表し、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
は、下記式:
Figure 2019004433

から選択されるラジカル重合反応性基を表す。
(式[X−1]〜[X−18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して−O−、−NR−、−S−を表し、Rは水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜4のアルキル基を表す))
Figure 2019004433

(式(7)中、T及びTは、それぞれ独立に、単結合、−O−、−S−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、又は−N(CH)CO−であり、
Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、当該アルキレン基の任意の−CH−又は−CF−の1以上は、それぞれ独立に−CH=CH−、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は−NH−が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
Jは下記式で表される有機基であり、
Figure 2019004433

(式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表し、Qは下記の構造を表す。
Figure 2019004433

(式中、R11は−CH−、−NR−、−O−、又は−S−を表し、Rは水素原子又は炭素原子数1〜4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を表す。))
The method according to claim 7, wherein the diamine containing an organic group that induces radical polymerization is a diamine having a structure represented by the following general formula (6) or the following general formula (7).
Figure 2019004433

(In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N. (CH 3) -, - CON (CH 3) -, or -N (CH 3) CO- represents,
R 7 represents a single bond, or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independent. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, i.e., -O-, -COO- , -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other;
R 8 is the following formula:
Figure 2019004433

Represents a radical polymerization reactive group selected from
(In the formulas [X-1] to [X-18], * represents a binding site to a moiety other than the radical-polymerization reactive group of the compound molecule, and S 1 and S 2 are independently -O- and-. NR- and -S- are represented, R is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms, R 1 and R 2 are each independently a hydrogen atom, Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms))
Figure 2019004433

(In Formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —. CH 2 O -, - N ( CH 3) -, - CON (CH 3) -, or -N (CH 3) a CO-,
S represents a single bond or an alkylene group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a fluorine atom, and any one or more of —CH 2 — or —CF 2 — of the alkylene group is independently. It may be substituted with a group selected from —CH═CH—, a divalent carbocycle, and a divalent heterocycle, and further, any of the following groups, namely, —O—, —COO—, -OCO-, -NHCO-, -CONH-, or -NH- may be substituted with these groups provided that they are not adjacent to each other,
J is an organic group represented by the following formula,
Figure 2019004433

(In the formulas [W], [Y], and [Z], * represents a bonding site with T 2, and Ar represents phenylene, naphthylene, and biphenylene which may have an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of, R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q is the structure below. Represents.
Figure 2019004433

(In the formula, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))
前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物である、請求項1〜9のいずれか一項に記載の方法。   The method according to any one of claims 1 to 9, wherein at least one of the radically polymerizable compounds is a compound having compatibility with a liquid crystal and having one polymerizable reactive group in one molecule. 前記ラジカル重合性化合物の重合性反応基が以下の構造から選ばれる、請求項10に記載の方法。
Figure 2019004433

(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1〜4のアルキル基を示す。)
The method according to claim 10, wherein the polymerizable reactive group of the radically polymerizable compound is selected from the following structures.
Figure 2019004433

(In the formula, * represents a binding site to a portion other than the polymerizable reactive group of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, —O—, —NR. represents a linking group selected from c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する液晶組成物を用いることを特徴とする請求項1〜11のいずれか一項に記載の方法。   In the liquid crystal composition containing the liquid crystal and the radical polymerizable compound, the liquid crystal composition containing the radical polymerizable compound having a Tg of 100 ° C. or less of the polymer obtained by polymerizing the radical polymerizable compound is used. The method according to any one of claims 1 to 11, characterized in that ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
第一基板上のラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、
第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、
請求項1〜12のいずれか一項に記載の方法を用いる液晶セルの製造方法。
A step of preparing a first substrate having a radical generating film, and a second substrate which may have a radical generating film,
Creating a cell so that the radical-generating film on the first substrate faces the second substrate, and
Between the first substrate and the second substrate, including a step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound,
A method for manufacturing a liquid crystal cell, which uses the method according to claim 1.
前記第二基板がラジカル発生膜を有さない第二基板である請求項13に記載の液晶セルの製造方法。   The method for manufacturing a liquid crystal cell according to claim 13, wherein the second substrate is a second substrate having no radical generation film. 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板であることを特徴とする請求項14に記載の液晶セルの製造方法。   The method of manufacturing a liquid crystal cell according to claim 14, wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial alignment. 前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜であることを特徴とする請求項15に記載の液晶セルの製造方法。   The method for manufacturing a liquid crystal cell according to claim 15, wherein the liquid crystal alignment film having the uniaxial alignment is a liquid crystal alignment film for horizontal alignment. 前記ラジカル発生膜を有する第一基板が櫛歯電極を有する基板である請求項13〜16のいずれか一項に記載の液晶セルの製造方法。   The method for producing a liquid crystal cell according to claim 13, wherein the first substrate having the radical generating film is a substrate having comb-teeth electrodes. 液晶及びラジカル重合性化合物を含有し、
前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物であり、
重合性反応基が以下の構造から選ばれる、液晶組成物。
Figure 2019004433

(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2〜8の直鎖アルキル基を表し、Eは単結合、−O−、−NR−、−S−、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1〜4のアルキル基を示す。)
Contains a liquid crystal and a radically polymerizable compound,
At least one of the radically polymerizable compounds is a compound having compatibility with liquid crystal, having one polymerizable reactive group in one molecule,
A liquid crystal composition in which the polymerizable reactive group is selected from the following structures.
Figure 2019004433

(In the formula, * represents a binding site to a portion other than the polymerizable reactive group of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, —O—, —NR. represents a linking group selected from c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
請求項1〜17のいずれか一項に記載の方法を用いて得られたゼロ面アンカリング状態を作り出す膜を用いる液晶表示素子の製造方法。   A method for manufacturing a liquid crystal display device, which uses a film for producing a zero-plane anchoring state, which is obtained by using the method according to claim 1. 請求項19記載の方法を用いて得られた液晶表示素子。   A liquid crystal display device obtained by using the method according to claim 19. 第一基板又は第二基板が電極を有する、請求項20に記載の液晶表示素子。   The liquid crystal display element according to claim 20, wherein the first substrate or the second substrate has an electrode. 低電圧駆動横電界液晶表示素子である、請求項20又は21に記載の液晶表示素子。   The liquid crystal display element according to claim 20 or 21, which is a low voltage driving lateral electric field liquid crystal display element.
JP2019527061A 2017-06-30 2018-06-29 Manufacturing method of zero plane anchoring film and liquid crystal display element Active JP7234924B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017129218 2017-06-30
JP2017129218 2017-06-30
JP2018115594 2018-06-18
JP2018115594 2018-06-18
PCT/JP2018/024824 WO2019004433A1 (en) 2017-06-30 2018-06-29 Method for producing zero-azimuthal anchoring film, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2019004433A1 true JPWO2019004433A1 (en) 2020-05-21
JP7234924B2 JP7234924B2 (en) 2023-03-08

Family

ID=64742835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527061A Active JP7234924B2 (en) 2017-06-30 2018-06-29 Manufacturing method of zero plane anchoring film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7234924B2 (en)
KR (1) KR20200023307A (en)
CN (1) CN110785698B (en)
TW (1) TWI782997B (en)
WO (1) WO2019004433A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512221B (en) * 2017-12-27 2024-04-09 日产化学株式会社 Method for manufacturing zero-face anchor film and liquid crystal display element
CN111752048B (en) * 2019-03-29 2023-07-04 夏普株式会社 Liquid crystal display device having a light shielding layer
KR20220039756A (en) * 2019-07-29 2022-03-29 닛산 가가쿠 가부시키가이샤 Transverse electric field liquid crystal display element, and manufacturing method of transverse electric field liquid crystal cell
JPWO2021125327A1 (en) * 2019-12-18 2021-06-24
CN116348501A (en) * 2020-08-06 2023-06-27 日产化学株式会社 Liquid crystal composition, method for manufacturing liquid crystal display element, and liquid crystal display element
CN116507643A (en) * 2020-10-27 2023-07-28 日产化学株式会社 Radical generating film forming composition, radical generating film, method for manufacturing liquid crystal display element, and liquid crystal display element
CN117460990A (en) 2021-06-09 2024-01-26 日产化学株式会社 Weak anchoring liquid crystal aligning agent, liquid crystal display element and copolymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031371A1 (en) * 2011-08-31 2013-03-07 Jsr株式会社 Liquid-crystal-display-element manufacturing method, liquid-crystal alignment agent, and liquid-crystal display element
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2016140288A1 (en) * 2015-03-04 2016-09-09 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840694B1 (en) * 2002-06-06 2004-08-27 Nemoptic PROCESS FOR PRODUCING NEMATIC LIQUID CRYSTAL DEVICES
JP2004347686A (en) * 2003-05-20 2004-12-09 Alps Electric Co Ltd Bistable nematic liquid crystal display device
JP4053530B2 (en) 2004-09-14 2008-02-27 独立行政法人科学技術振興機構 Zero-plane anchoring liquid crystal alignment method and liquid crystal device
JP5143475B2 (en) * 2007-05-17 2013-02-13 Dic株式会社 Nematic liquid crystal composition and bistable nematic liquid crystal display device
CN100545713C (en) * 2008-04-29 2009-09-30 河北工业大学 Polymer dispersed LCD bistable film and manufacture method thereof
CN101329462B (en) * 2008-07-18 2012-04-18 河北工业大学 Polymer dispersed liquid crystal electronic paper and manufacturing method thereof
TWI525085B (en) * 2010-06-30 2016-03-11 Nissan Chemical Ind Ltd Liquid crystal alignment device, liquid crystal alignment film, liquid crystal display device, and liquid crystal display device manufacturing method
CN103562785B (en) * 2011-03-31 2016-02-10 日产化学工业株式会社 The manufacture method of aligning agent for liquid crystal, liquid crystal orientation film, liquid crystal display cells and liquid crystal display cells and polymerizable compound
JP2013231757A (en) 2012-04-27 2013-11-14 Lg Display Co Ltd Method of aligning liquid crystal having no anchoring in plane and non-contact liquid crystal aligning method using the same, and liquid crystal display device
CN105283802B (en) * 2013-03-26 2019-08-09 日产化学工业株式会社 Liquid crystal indicates element, liquid crystal orientation film and aligning agent for liquid crystal
US20170184923A1 (en) * 2014-06-17 2017-06-29 Nissan Chemical Industries, Ltd. Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6858486B2 (en) * 2015-03-12 2021-04-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display element and manufacturing method of liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031371A1 (en) * 2011-08-31 2013-03-07 Jsr株式会社 Liquid-crystal-display-element manufacturing method, liquid-crystal alignment agent, and liquid-crystal display element
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2016140288A1 (en) * 2015-03-04 2016-09-09 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
KR20200023307A (en) 2020-03-04
TWI782997B (en) 2022-11-11
JP7234924B2 (en) 2023-03-08
TW201905178A (en) 2019-02-01
CN110785698A (en) 2020-02-11
WO2019004433A1 (en) 2019-01-03
CN110785698B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
WO2022260048A1 (en) Weak anchoring liquid crystal aligning agent, liquid cyrstal display element and copolymer
WO2021020399A1 (en) Lateral-electric-field liquid crystal display element, and method for manufacturing lateral-electric-field liquid crystal cell
WO2022030602A1 (en) Liquid-crystal composition, method for producing liquid-crystal display element, and liquid-crystal display element
JP7276149B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
JP7367674B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
JP7367673B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
TWI834677B (en) Method of producing zero plane anchoring film, and liquid crystal display element
WO2021125327A1 (en) Method for manufacturing patterned liquid crystal display element
WO2022071286A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2021125319A1 (en) Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
WO2023140322A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
JPWO2019244821A5 (en)
JPWO2019244820A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R151 Written notification of patent or utility model registration

Ref document number: 7234924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151