JPWO2018211795A1 - Anaerobic digestion method and apparatus for organic sludge - Google Patents

Anaerobic digestion method and apparatus for organic sludge Download PDF

Info

Publication number
JPWO2018211795A1
JPWO2018211795A1 JP2019519080A JP2019519080A JPWO2018211795A1 JP WO2018211795 A1 JPWO2018211795 A1 JP WO2018211795A1 JP 2019519080 A JP2019519080 A JP 2019519080A JP 2019519080 A JP2019519080 A JP 2019519080A JP WO2018211795 A1 JPWO2018211795 A1 JP WO2018211795A1
Authority
JP
Japan
Prior art keywords
digestion tank
digestion
sludge
organic sludge
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519080A
Other languages
Japanese (ja)
Other versions
JP7114579B2 (en
Inventor
啓典 西井
啓典 西井
倫也 板山
倫也 板山
真也 樋口
真也 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Publication of JPWO2018211795A1 publication Critical patent/JPWO2018211795A1/en
Application granted granted Critical
Publication of JP7114579B2 publication Critical patent/JP7114579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

より小容量で建設コストの低い設備で高効率なエネルギー回収を実現することができ、維持管理上のトラブルの少ない嫌気性消化方法および装置を提供する。円筒型で有効深さ8m以上、内径4m以上の消化タンク4内に、有機物濃度4.5〜9.0%の有機性汚泥を有機物容積負荷3.3〜6.6kg−VS/m3・dとなるように投入し、消化日数12日以上で嫌気性消化処理することを含む有機性汚泥の嫌気性消化方法である。Provided is an anaerobic digestion method and apparatus capable of achieving high-efficiency energy recovery with equipment having a smaller capacity and lower construction cost and having less trouble in maintenance and management. Organic sludge having an organic substance concentration of 4.5 to 9.0% is placed in a cylindrical digestion tank 4 having an effective depth of not less than 8 m and an inner diameter of not less than 4 m. The method is an anaerobic digestion method for organic sludge, which comprises charging the sewage so as to satisfy the following conditions and performing anaerobic digestion treatment for 12 days or more.

Description

本発明は、有機性汚泥の嫌気性消化方法及び装置に関し、特に、下水汚泥、し尿汚泥、食品残渣、家畜糞尿等の有機性汚泥を嫌気性消化処理し、エネルギーを回収することが可能な有機性汚泥の嫌気性消化方法及び装置に関する。   The present invention relates to a method and an apparatus for anaerobic digestion of organic sludge, and more particularly to an organic sludge capable of anaerobically digesting organic sludge such as sewage sludge, human waste sludge, food residue, livestock manure, and recovering energy. The present invention relates to a method and an apparatus for anaerobic digestion of anaerobic sludge.

下水汚泥、し尿汚泥、食品残渣、家畜糞尿、その他の有機性汚泥及びこれらを含む廃棄物は、それ自体に熱量を持つため、エネルギーとして回収することが可能である。エネルギー回収手法として、有機性汚泥を脱水、乾燥の後、焼却して発生する熱を利用する方法、微生物の作用により有機物をメタンガスに変換するプロセスを利用する嫌気性消化法などが従来から実施されている。しかしながら、いずれの方法も設備にかかる建設コストが高いことや、設備自体で消費されるエネルギーの割合が高くエネルギー回収効率が低いことなどから、十分に普及していないのが実情である。   Sewage sludge, night soil sludge, food residue, livestock manure, other organic sludge, and waste containing them can be recovered as energy because they have a calorific value in themselves. Conventionally, energy recovery methods include dehydrating and drying organic sludge, using heat generated by incineration, and anaerobic digestion using a process that converts organic matter to methane gas by the action of microorganisms. ing. However, none of these methods has been widely used because of the high construction cost of the equipment and the high energy consumption of the equipment itself, which results in low energy recovery efficiency.

一例として従来の下水汚泥の嫌気性消化設備では、低濃度の下水汚泥を嫌気性消化タンクに導入し、20日以上の消化日数を確保している。そのため、大容量の消化タンクが必要となり建設コストがかかる。更に、その大容量の消化タンク内を加温するためのエネルギーや、タンク内汚泥の沈降防止や均一化のために必要となる撹拌に費やすエネルギーなど、回収したエネルギーの大部分を設備自体で消費するため、投入物の持つエネルギーを有効利用できる割合が低いという問題点がある。   As an example, in a conventional anaerobic digestion facility for sewage sludge, low-concentration sewage sludge is introduced into an anaerobic digestion tank to ensure a digestion period of 20 days or more. Therefore, a large-capacity digestion tank is required, and construction costs are increased. Furthermore, most of the recovered energy is consumed by the equipment itself, such as energy for heating the inside of the large-capacity digestion tank and energy for stirring required to prevent sedimentation and uniformity of sludge in the tank. Therefore, there is a problem that the rate at which the energy of the input material can be effectively used is low.

これらの問題点を改善するため、最近では投入汚泥を5%程度まで濃縮して減量化することで消化タンク容量を小型化、加温熱量を低減する方法が採用されている。しかしながら、撹拌や加温のための汚泥循環にかかる動力はむしろ従来よりも高くなるため、大幅な改善には至っていない。また、反応速度を高めることによる消化タンクの小型化を目指して、タンク内温度を約50〜55℃とする高温消化を採用する例も見られるが、中温消化(約35℃)と比較して、加温に要する熱量が多くなるため、エネルギー回収効率面でのメリットが小さい。   In order to improve these problems, a method has recently been adopted in which the sludge input is concentrated to about 5% to reduce the amount thereof, thereby reducing the capacity of the digestion tank and reducing the heating heat. However, the power required for the sludge circulation for stirring and heating is rather higher than in the past, and thus has not been improved significantly. In addition, in some cases, high-temperature digestion in which the temperature in the tank is about 50 to 55 ° C. is adopted in order to reduce the size of the digestion tank by increasing the reaction rate, but compared with medium-temperature digestion (about 35 ° C.). In addition, since the amount of heat required for heating increases, the merit in energy recovery efficiency is small.

撹拌動力を削減する方法として、特許第3406564号公報(特許文献1)及び特開2007−130510号公報(特許文献2)には、嫌気性消化で発生する消化ガスを貯留できる機構をタンク内に設け、貯まったガスを一度にタンク内汚泥に吹き出させることでタンク内汚泥を撹拌する方法が示されている。   As a method for reducing the stirring power, Japanese Patent No. 3406564 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2007-130510 (Patent Document 2) disclose a mechanism capable of storing digestion gas generated in anaerobic digestion in a tank. A method of stirring the sludge in the tank by blowing the accumulated gas into the sludge in the tank at one time is shown.

特許第3406564号公報Japanese Patent No. 3406564 特開2007−130510号公報JP 2007-130510 A

しかしながら、特許文献1及び2に記載されるような方法はいずれも、タンク内にガスを貯留したり排出したりするための大掛かりな構造物を設置する必要があり、コストがかかる。また、これらの構造物はし渣による閉塞等のトラブルが運用中に発生した場合、その復旧が困難であるか又は非常に大掛かりとなるため、実際の運用には適さない場合が多い。このように、従来の有機性汚泥の嫌気性消化では、大容量の設備を要し、建設コストが高く、設備自体でのエネルギー消費量が多くエネルギー回収効率が低いという問題がある。   However, all of the methods described in Patent Literatures 1 and 2 require a large-scale structure for storing and discharging gas in a tank, which is costly. In addition, if a trouble such as blockage due to residue occurs during operation of these structures, it is difficult or impossible to recover the trouble, and the structure is often not suitable for actual operation. As described above, the conventional anaerobic digestion of organic sludge has a problem that a large-capacity facility is required, construction cost is high, energy consumption by the facility itself is large, and energy recovery efficiency is low.

上記課題を鑑み、本発明は、より小容量で建設コストの低い設備で高効率なエネルギー回収を実現することができ、維持管理上のトラブルの少ない嫌気性消化方法および装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide an anaerobic digestion method and apparatus capable of realizing highly efficient energy recovery with equipment having a smaller capacity and lower construction cost and having less trouble in maintenance. And

上記目的を達成するために、本発明者らが鋭意検討した結果、嫌気性消化に用いられる消化タンクのサイズと消化タンクに投入される有機性汚泥の性状との関係を適切な範囲に制御することで、撹拌動力を必須とせず、高効率なエネルギー回収を実現でき、維持管理上のトラブルの少ない嫌気性消化方法および装置が得られることを見いだした。   In order to achieve the above object, as a result of intensive studies by the present inventors, the relationship between the size of the digestion tank used for anaerobic digestion and the properties of the organic sludge fed into the digestion tank is controlled to an appropriate range. As a result, it has been found that an anaerobic digestion method and apparatus can be obtained which can realize high-efficiency energy recovery without requiring a stirring power and have less trouble in maintenance.

以上の知見を基礎として完成した本発明は一側面において、円筒型で有効深さ8m以上、内径4m以上の消化タンク内に、有機物濃度4.5〜9.0%の有機性汚泥を有機物容積負荷3.3〜6.6kg−VS/m3・dとなるように投入し、消化日数12日以上で嫌気性消化処理することを含む有機性汚泥の嫌気性消化方法が提供される。According to one aspect of the present invention, which has been completed based on the above findings, an organic sludge having an organic substance concentration of 4.5 to 9.0% is placed in a cylindrical digestion tank having an effective depth of 8 m or more and an inner diameter of 4 m or more. An anaerobic digestion method for organic sludge is provided, wherein the method is charged at a load of 3.3 to 6.6 kg-VS / m 3 · d and anaerobic digestion treatment is performed in 12 or more digestion days.

本発明に係る有機性汚泥の嫌気性消化方法は一実施態様において、消化タンクの底面が、中心部に形成された凹状の釜場と、釜場を取り囲む周縁底面部とを含み、周縁底面部が水平面であるか、又は水平面に対して30°以下の傾斜を有するテーパー状を有しており、釜場から、嫌気性消化後の有機性汚泥を引き抜くことを含む。   In one embodiment, the method for anaerobic digestion of organic sludge according to the present invention, wherein the bottom surface of the digestion tank includes a concave kettle formed at the center and a peripheral bottom surface surrounding the kiln, Is a horizontal plane, or has a tapered shape having an inclination of 30 ° or less with respect to the horizontal plane, and includes pulling out anaerobic digested organic sludge from a kamaba.

本発明に係る有機性汚泥の嫌気性消化方法は別の一実施態様において、消化タンクが、消化タンクの下部に配置され、消化タンクの中心部に鉛直方向に設けられた軸部を中心軸として消化タンクの周方向に回転可能な第1のレーキ部材を備え、第1のレーキ部材を周速10m/min以下で順回転又は逆回転させることを含む。   In another embodiment of the anaerobic digestion method of organic sludge according to the present invention, a digestion tank is disposed at a lower portion of the digestion tank, and a shaft provided in the vertical direction at the center of the digestion tank is used as a central axis. The method includes providing a first rake member rotatable in the circumferential direction of the digestion tank, and rotating the first rake member forward or backward at a peripheral speed of 10 m / min or less.

本発明に係る有機性汚泥の嫌気性消化方法は更に別の一実施態様において、消化タンクが、第1のレーキ部材に接続されたピケットフェンスを更に備え、第1のレーキ部材とピケットフェンスとを消化タンク内で回転させることを含む。   In still another embodiment of the anaerobic digestion method for organic sludge according to the present invention, the digestion tank further includes a picket fence connected to the first rake member, and the first rake member and the picket fence are provided. Including rotating in the digestion tank.

本発明に係る有機性汚泥の嫌気性消化方法は更に別の一実施態様において、消化タンク内に投入される有機性汚泥の液面近傍に配置され、且つ軸部を中心軸として消化タンクの周方向に回転可能な第2のレーキ部材を更に備え、第2のレーキ部材を回転させることを含む。   In still another embodiment, the anaerobic digestion method for organic sludge according to the present invention is arranged near the liquid surface of the organic sludge to be charged into the digestion tank, and the periphery of the digestion tank is centered on the shaft. A second rake member rotatable in the direction, the method further comprising rotating the second rake member.

本発明に係る有機性汚泥の嫌気性消化方法は更に別の一実施態様において、軸部の周囲に配置された円筒状のドラフトチューブを更に備え、消化タンク内の有機性汚泥をドラフトチューブの上方又は下方へと移送させることを更に含む。   In still another embodiment, the method for anaerobic digestion of organic sludge according to the present invention further comprises a cylindrical draft tube disposed around a shaft, and the organic sludge in the digestion tank is placed above the draft tube. Alternatively, the method further includes the downward transfer.

本発明は別の一側面において、円筒型で有効深さ8m以上、内径4m以上の消化タンクを備え、消化タンク内に有機物濃度4.5〜9.0%の有機性汚泥を有機物容積負荷3.3〜6.6kg−VS/m3・dとなるように投入し、消化日数12日以上で嫌気性消化処理する有機性汚泥の嫌気性消化装置が提供される。According to another aspect of the present invention, a digestion tank having a cylindrical shape, an effective depth of 8 m or more, and an inner diameter of 4 m or more is provided, and organic sludge having an organic substance concentration of 4.5 to 9.0% is loaded in the digestion tank with an organic substance volume load of 3. An anaerobic digester for organic sludge, which is charged so as to be 0.3 to 6.6 kg-VS / m 3 · d and is subjected to anaerobic digestion treatment in 12 or more digestion days, is provided.

本発明に係る有機性汚泥の嫌気性消化装置は一実施態様において、消化タンクの底面が、中心部に形成された凹状の釜場と、釜場を取り囲む周縁底面部とを含み、周縁底面部が水平面であるか、又は水平面に対して30°以下の傾斜を有するテーパー状を有しており、釜場に有機性汚泥を引き抜くための引き抜き管が接続されていることを含む。   In one embodiment, the anaerobic digester for organic sludge according to the present invention includes, in one embodiment, a bottom surface of a digestion tank, which includes a concave kettle formed at a central portion, and a peripheral bottom surface surrounding the kiln. Is a horizontal plane, or has a tapered shape having an inclination of 30 ° or less with respect to the horizontal plane, and includes that a drawing pipe for drawing organic sludge is connected to the kiln.

本発明に係る有機性汚泥の嫌気性消化装置は別の一実施態様において、消化タンクが、消化タンクの下部に配置され、消化タンクの中心部に鉛直方向に設けられた軸部を中心軸として消化タンクの周方向に回転可能な第1のレーキ部材を備えることを含む。   In another embodiment of the anaerobic digester for organic sludge according to the present invention, a digestion tank is disposed at a lower portion of the digestion tank, and a shaft provided in the center of the digestion tank in a vertical direction as a central axis. And providing a first rake member rotatable in a circumferential direction of the digestion tank.

本発明に係る有機性汚泥の嫌気性消化装置は更に別の一実施態様において、消化タンクが、第1のレーキ部材に接続されたピケットフェンスを更に備えることを含む。   In still another embodiment of the anaerobic digester for organic sludge according to the present invention, the digestion tank further comprises a picket fence connected to the first rake member.

本発明に係る有機性汚泥の嫌気性消化装置は更に別の一実施態様において、消化タンク内に投入される有機性汚泥の液面近傍に配置され、且つ軸部を中心軸として消化タンクの周方向に回転可能な第2のレーキ部材を備えることを含む。   In still another embodiment, the anaerobic digester for organic sludge according to the present invention is disposed near the liquid surface of the organic sludge to be charged into the digestion tank, and has a shaft portion as a central axis. And providing a second rake member rotatable in the direction.

本発明に係る有機性汚泥の嫌気性消化装置は更に別の一実施態様において、軸部の周囲に配置され、消化タンク内の有機性汚泥をドラフトチューブの上方又は下方へと移送させる円筒状のドラフトチューブを更に備えることを含む。   In still another embodiment, the anaerobic digester for organic sludge according to the present invention is arranged around a shaft and has a cylindrical shape for transferring organic sludge in a digestion tank to above or below a draft tube. Including further including a draft tube.

本発明によれば、より小容量で建設コストの低い設備で高効率なエネルギー回収を実現することができ、維持管理上のトラブルの少ない嫌気性消化方法および装置が提供できる。   Advantageous Effects of Invention According to the present invention, it is possible to provide an anaerobic digestion method and apparatus capable of achieving high-efficiency energy recovery with equipment having a smaller capacity and lower construction cost and having less trouble in maintenance.

本発明の実施の形態に係る有機性汚泥の嫌気性消化装置の一例を示す概略図である。It is the schematic which shows an example of the anaerobic digestion apparatus of the organic sludge which concerns on embodiment of this invention. 本発明の実施の形態に係る有機性汚泥の嫌気性消化装置が備える消化タンクの第1変形例を示す概略図である。It is the schematic which shows the 1st modification of the digestion tank with which the anaerobic digestion apparatus of the organic sludge which concerns on embodiment of this invention is provided. 本発明の実施の形態に係る消化タンクの第2変形例を示す概略図である。It is the schematic which shows the 2nd modification of the digestion tank which concerns on embodiment of this invention. 本発明の実施の形態に係る消化タンクの第3変形例を示す概略図である。It is the schematic which shows the 3rd modification of the digestion tank which concerns on embodiment of this invention. 本発明の実施の形態に係る消化タンクの第4変形例を示す概略図である。It is the schematic which shows the 4th modification of the digestion tank which concerns on embodiment of this invention. 本発明の実施の形態に係る消化タンクの第5変形例を示す概略図である。It is the schematic which shows the 5th modification of the digestion tank which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The embodiments described below exemplify an apparatus and a method for embodying the technical idea of the present invention. The technical idea of the present invention describes the structure, arrangement, and the like of component parts as follows. It is not something specific.

本発明の実施の形態に係る有機性汚泥の嫌気性消化装置は、図1に示すように、投入原料1の有機物濃度を調整する濃度調整設備2と、濃度調整設備2で調整された投入原料1を嫌気性消化処理する消化タンク4とを備える。   As shown in FIG. 1, an anaerobic digester for organic sludge according to an embodiment of the present invention includes a concentration adjusting device 2 for adjusting the organic matter concentration of an input raw material 1, and an input material adjusted by the concentration adjusting device 2. 1 is provided with a digestion tank 4 for anaerobic digestion.

投入原料1としては有機性汚泥が用いられる。有機性汚泥としては、例えば、下水汚泥、し尿・浄化槽汚泥、家畜糞尿、食品製造残渣、農業残渣、バイオマスエネルギー回収残渣などや有機性廃液などが利用でき、これらを単一で又は複数種類混合させることができる。これらの中でも有機性廃棄物の収集・運搬に適した管路網が構築されている点から下水汚泥を本実施形態に係る有機性汚泥として利用することが好ましい。   Organic sludge is used as the input raw material 1. As the organic sludge, for example, sewage sludge, night soil and septic tank sludge, livestock manure, food production residue, agricultural residue, biomass energy recovery residue and the like, and organic waste liquid can be used, and these can be used alone or in combination. be able to. Among these, it is preferable to use sewage sludge as the organic sludge according to the present embodiment because a pipeline network suitable for collection and transportation of organic waste is constructed.

濃度調整設備2では、投入原料1である有機性汚泥が、消化タンク4における処理に適切な汚泥濃度に調整される。濃度調整設備2としては、投入原料1を固液分離等によって所定の有機物濃度(Volatile Solids:VS濃度)に濃縮する濃縮手段が利用可能である。濃縮手段としては、重力沈降を利用した重力濃縮、スクリーンやろ布等を利用した、又は遠心分離による機械濃縮が挙げられるが、濃縮できる方法であればこの限りではない。また、濃縮時には添加率1質量%以下の少量の凝集剤を添加しても良い。   In the concentration adjusting equipment 2, the organic sludge as the input raw material 1 is adjusted to a sludge concentration suitable for the treatment in the digestion tank 4. As the concentration adjusting equipment 2, a concentration means for concentrating the input raw material 1 to a predetermined organic substance concentration (Volatile Solids: VS concentration) by solid-liquid separation or the like can be used. Examples of the concentration means include gravity concentration using gravity sedimentation, mechanical concentration using a screen or a filter cloth, or centrifugal separation, but the method is not limited as long as it can be concentrated. Further, at the time of concentration, a small amount of a coagulant having an addition ratio of 1% by mass or less may be added.

一方、投入原料1が例えば有機性汚泥の脱水ケーキなどであり、有機物濃度が元々高い原料である場合には、図2に示すような設備を用いてもよい。即ち、ホッパ21等で受け入れた投入原料1を濃度調整設備2に移送させ、濃度調整設備2において希釈物11と混合し、投入原料1の有機物濃度を調整して消化タンク4に移送するものである。   On the other hand, if the input raw material 1 is, for example, a dewatered cake of organic sludge and is a raw material having a high organic matter concentration, equipment shown in FIG. 2 may be used. That is, the input raw material 1 received by the hopper 21 or the like is transferred to the concentration adjusting equipment 2, mixed with the diluent 11 in the concentration adjusting equipment 2, the organic matter concentration of the input raw material 1 is adjusted, and transferred to the digestion tank 4. is there.

希釈物11としては希釈水及び希釈汚泥を単一で又は組み合わせて利用することができる。希釈水としては、上水、井戸水、下水処理水等が使用可能である。希釈汚泥としては、濃縮前の下水生汚泥、余剰汚泥、浄化槽汚泥の他、消化後の消化汚泥が利用可能である。ただし、消化汚泥を利用する場合は、濃度が高いため大量の消化汚泥を循環させることが必要となること、消化タンク内での見かけの分解率が低下することなどから、水や他の低濃度汚泥と併用することが望ましい。   As the diluent 11, dilution water and dilution sludge can be used alone or in combination. As dilution water, tap water, well water, sewage treatment water, and the like can be used. As the diluted sludge, sewage sludge before concentration, surplus sludge, septic tank sludge, and digested sludge after digestion can be used. However, when using digested sludge, water or other low-concentration sludge is required because the concentration is high and a large amount of digested sludge must be circulated, and the apparent decomposition rate in the digestion tank decreases. It is desirable to use it together with sludge.

図1及び図2に示す濃度調整設備2においては、投入原料1のVS濃度が4.5〜9.0質量%となるように濃縮される。これにより、後述する消化タンク4での嫌気性消化処理において、消化タンク4内に積極的に攪拌手段等を設けなくとも、汚泥の消化タンク4の底部への沈降を抑制して処理を安定して行うことができ、高効率なエネルギー回収を実現することができる。   In the concentration adjusting equipment 2 shown in FIGS. 1 and 2, the VS concentration of the input raw material 1 is concentrated so as to be 4.5 to 9.0% by mass. Thereby, in the anaerobic digestion treatment in the digestion tank 4 to be described later, the sludge is prevented from settling to the bottom of the digestion tank 4 to stabilize the treatment without providing agitation means or the like in the digestion tank 4 actively. And high-efficiency energy recovery can be realized.

投入原料1のVS濃度が高すぎると、消化タンク4内の汚泥の粘性が高くなりすぎて処理を安定して行うことが難しくなる。一方、VS濃度が低すぎると、消化タンク4内の汚泥の粘性が低くなるため、消化タンク4内で汚泥の沈降が生じやすくなることから、処理を安定的に進めるために撹拌手段を設ける必要が生じ、消化タンク4を撹拌するための動力が必要となる。   If the VS concentration of the input raw material 1 is too high, the viscosity of the sludge in the digestion tank 4 becomes too high, and it is difficult to perform the treatment stably. On the other hand, if the VS concentration is too low, the viscosity of the sludge in the digestion tank 4 becomes low, and the sedimentation of the sludge is likely to occur in the digestion tank 4. Therefore, it is necessary to provide a stirring means for stably proceeding the treatment. Occurs, and power for stirring the digestion tank 4 is required.

本実施形態では、消化タンク4に対する撹拌等に必要な動力を極力減らすために、消化タンク4へ投入する投入原料1のVS濃度を5.0〜8.5質量%に調整することがより好ましく、より更に好ましくは6.0〜8.0質量%である。   In the present embodiment, it is more preferable to adjust the VS concentration of the raw material 1 charged into the digestion tank 4 to 5.0 to 8.5% by mass in order to minimize the power required for stirring the digestion tank 4 and the like. And still more preferably 6.0 to 8.0% by mass.

投入原料1のVS濃度を濃度調整設備2で上記範囲に予め調整しておくことにより、投入原料1に含まれる粒子の沈降速度を遅くすることができるため、消化タンク4の底部への汚泥の堆積が発生することを抑制することができる。   By preliminarily adjusting the VS concentration of the input raw material 1 to the above-mentioned range by the concentration adjusting equipment 2, the sedimentation speed of the particles contained in the input raw material 1 can be reduced. The occurrence of deposition can be suppressed.

濃度調整設備2においては、有機物濃度を高めるだけでなく固液分離等により消化タンク4へ供給される投入原料1からの異物を予め除去するような処理を行っても良い。これにより、消化タンク4内へ投入される異物量を少なくすることができるため、異物の混入による維持管理上のトラブルの少ない嫌気性消化設備が提供できる。   The concentration adjusting equipment 2 may perform a process of not only increasing the organic substance concentration but also removing foreign substances from the input raw material 1 supplied to the digestion tank 4 by solid-liquid separation or the like in advance. This can reduce the amount of foreign substances charged into the digestion tank 4, thereby providing an anaerobic digester with less trouble in maintenance due to the mixing of foreign substances.

図1に示すように、濃度調整設備2によってVS濃度が調整された有機性汚泥は、消化タンク投入管3を介して消化タンク4の上部から投入される。消化タンク4に投入された有機性汚泥(以下「投入汚泥」ともいう)は消化タンク4内に形成された汚泥層(図示せず)に落下し、汚泥層内で発生・浮上する気泡によって汚泥層内に分散される。消化タンク4内に分散した投入汚泥は、汚泥層内の微生物によって分解され、ガス化される。消化タンク4内で発生した消化ガスは消化ガス管7を通して回収され、加温や発電の燃料として利用される。   As shown in FIG. 1, the organic sludge whose VS concentration has been adjusted by the concentration adjusting equipment 2 is introduced from the upper part of the digestion tank 4 through the digestion tank introduction pipe 3. The organic sludge (hereinafter, also referred to as “input sludge”) charged into the digestion tank 4 falls into a sludge layer (not shown) formed in the digestion tank 4 and is generated by air bubbles generated and floating in the sludge layer. Dispersed in layers. The input sludge dispersed in the digestion tank 4 is decomposed and gasified by microorganisms in the sludge layer. The digestion gas generated in the digestion tank 4 is collected through the digestion gas pipe 7 and used as a fuel for heating or power generation.

消化タンク4内の汚泥は約35℃の中温に加温されており、投入汚泥に含まれる有機物が消化タンク4内の汚泥に含まれる微生物の作用によって嫌気的に分解され、水、アンモニア性窒素、二酸化炭素、メタンガスへと変換される。消化タンク4内の温度は高すぎると消化タンク4の加温に要する熱量が多くなる面でエネルギー回収効率面でのメリットは小さいが、本実施形態において高温領域(約50〜55℃)に調整することも勿論可能である。   The sludge in the digestion tank 4 is heated to a medium temperature of about 35 ° C., and the organic matter contained in the input sludge is anaerobically decomposed by the action of microorganisms contained in the sludge in the digestion tank 4, and water, ammonia nitrogen Is converted to carbon dioxide and methane gas. If the temperature in the digestion tank 4 is too high, the amount of heat required for heating the digestion tank 4 increases, and the merit in energy recovery efficiency is small. However, in the present embodiment, the temperature is adjusted to a high temperature region (about 50 to 55 ° C.). It is of course possible to do so.

消化タンク4へ投入される有機性汚泥は、その有機物容積負荷が高すぎると、分解しきれない有機物が蓄積してゆき、結果として系を維持することが困難になる場合があり、一方、有機物容積負荷が低すぎると、発生ガス量が少なくなり、消化タンク4内の汚泥の撹拌・均一化が不十分となり、有機物の分解効率が低下する場合がある。よって、消化タンク4へ投入される有機性汚泥の有機物容積負荷は、3.3〜6.6kg−VS/m3・dとなるように消化タンク4へ投入されることが好ましく、より好ましくは4.0〜6.0kg−VS/m3・dであり、更に好ましくは4.5〜5.5kg−VS/m3・dである。When the organic matter volume load of the organic sludge fed into the digestion tank 4 is too high, organic matter that cannot be completely decomposed accumulates, and as a result, it may be difficult to maintain the system. If the volume load is too low, the amount of generated gas will be small, and the agitation and uniformity of the sludge in the digestion tank 4 will be insufficient, and the efficiency of decomposing organic substances may decrease. Therefore, it is preferable that the organic sludge charged into the digestion tank 4 is charged into the digestion tank 4 so that the organic substance volume load is 3.3 to 6.6 kg-VS / m 3 · d, more preferably. a 4.0~6.0kg-VS / m 3 · d , more preferably from 4.5~5.5kg-VS / m 3 · d .

本実施形態において、有機性汚泥として例えば、下水消化汚泥を用いた場合を例にあげると、有機物の分解・ガス化の反応は模式的に以下の式(1)で表される。   In the present embodiment, for example, when sewage digestion sludge is used as the organic sludge, the reaction of decomposition and gasification of organic substances is schematically represented by the following equation (1).

Figure 2018211795
Figure 2018211795

この反応により、投入汚泥中の有機物の約50%が分解・ガス化されるため、消化タンク4内の汚泥(消化汚泥)のVS濃度は2.25〜4.5%程度となる。投入汚泥のVS濃度がこれより低い場合、消化タンク4内の汚泥の粘度が低くなることにより汚泥中の固形物が沈降・分離しやすくなり、それを防ぐための撹拌手段が別途必要となる。一方、投入汚泥のVS濃度が高すぎる場合には、逆に消化タンク4内の汚泥の粘度が高くなり、汚泥の均一化や気泡の浮上が阻害されること、及び原料の性状によっては下水消化汚泥中のアンモニア性窒素濃度が高くなることによる消化阻害が発生する可能性がある。   By this reaction, about 50% of the organic matter in the input sludge is decomposed and gasified, so that the VS concentration of the sludge (digested sludge) in the digestion tank 4 is about 2.25 to 4.5%. When the VS concentration of the input sludge is lower than this, the viscosity of the sludge in the digestion tank 4 decreases, so that the solids in the sludge tend to settle and separate, and a stirring means for preventing the sediment is required. On the other hand, if the VS concentration of the input sludge is too high, on the other hand, the viscosity of the sludge in the digestion tank 4 will increase, and the uniformity of the sludge and the floating of air bubbles will be hindered. Digestion inhibition may occur due to the high concentration of ammonia nitrogen in the sludge.

嫌気性消化反応による消化タンク4からの消化タンク容量あたりのガス発生量E(Nm3/m3・d)は、投入汚泥中の有機物あたりの消化ガス発生量E0が0.5Nm3/kg−VS程度であることが過去の実績および発明者らの実験結果から明らかとなっている。そのため、ガス発生量Eは式(2)のように表される。The gas generation amount E (Nm 3 / m 3 · d) per digestion tank volume from the digestion tank 4 due to the anaerobic digestion reaction is such that the digestion gas generation amount E 0 per organic matter in the input sludge is 0.5 Nm 3 / kg. It is clear from the past results and the experimental results of the inventors that it is about −VS. Therefore, the gas generation amount E is expressed as in equation (2).

Figure 2018211795
ここで、
Q:1日あたりの消化タンクへの汚泥投入量(m3/d)
0:消化タンク投入汚泥VS濃度(kg/m3
V:消化タンク有効容量(m3
Figure 2018211795
here,
Q: Sludge input amount into digestion tank per day (m 3 / d)
C 0 : VS concentration of sludge put in digestion tank (kg / m 3 )
V: Effective capacity of digestion tank (m 3 )

一方、消化タンク容量V(m3)は、消化日数をT(d)とすると、
V=Q×T ・・・(3)
であるから、式(2)は
On the other hand, the digestion tank capacity V (m 3 ) is calculated as follows:
V = Q × T (3)
Thus, equation (2) is

Figure 2018211795
と表される。
次に消化タンク投入有機物容積負荷(kg−VS/m3・d)をLVSとすると、
Figure 2018211795
It is expressed as
Next, assuming that the organic matter volume load (kg-VS / m 3 · d) input to the digestion tank is L VS ,

Figure 2018211795
であるから、式(4)は
E=0.5×LVS ・・・(6)
となる。
Figure 2018211795
Therefore, equation (4) is given by E = 0.5 × L VS (6)
Becomes

消化タンク4への有機物容積負荷が3.3〜6.6kg−VS/m3・dとなるように投入量、消化タンク容量を設定すると、式(6)より消化タンク4容積あたりのガス発生量Eは1.65〜3.3Nm3/m3・dとなる。有機物容積負荷は、この範囲以下では投入汚泥を分散・混合させるのに十分なガス発生量が得られず、この範囲以上では実験の結果、過負荷のため系を維持することが困難な場合がある。なお、従来の下水汚泥の嫌気性消化法においては、投入有機物容積負荷は1〜3kg−VS/m3・d程度が一般的であり、消化タンク容積あたりのガス発生量は最大でも1.5Nm3/m3・d程度である。Input amount as organic volume loading is 3.3~6.6kg-VS / m 3 · d to digestion tank 4, setting the digesting tank capacity, equation (6) from the digesting tank 4 per volume gas generator The quantity E amounts to 1.65 to 3.3 Nm 3 / m 3 · d. If the organic substance volume load is below this range, it is not possible to obtain a sufficient amount of gas generation to disperse and mix the input sludge. is there. In addition, in the conventional anaerobic digestion method of sewage sludge, the input organic substance volume load is generally about 1 to 3 kg-VS / m 3 · d, and the amount of gas generated per digestion tank volume is at most 1.5 Nm. 3 / m 3 · d.

消化日数は短いほど有機物容積負荷は高められるが、12日未満では反応に必要な菌体量をタンク内に保持できない場合がある。そのため、12日以上、より具体的には12〜25日、更に好適には13〜18日程度の消化日数を確保できるタンク容量が必要である。   The shorter the digestion period is, the higher the organic substance volume load is. However, if the digestion period is shorter than 12 days, the amount of cells required for the reaction may not be maintained in the tank. Therefore, it is necessary to have a tank capacity that can secure digestion days of 12 days or more, more specifically, 12 to 25 days, and more preferably about 13 to 18 days.

反応の過程で発生する消化ガス(二酸化炭素とメタンの混合ガス)は気泡となり消化タンク4内の汚泥層内を浮上して、消化タンク4上部の気相部に移行する。投入汚泥と消化タンク4内の汚泥の混合は基本的にこの浮上する発生ガスに伴う上昇流によって行われる。気泡の発生は消化タンク4内の汚泥層全体で概ね均一に起こり、発生した気泡は汚泥層内を浮上するため、上部ほど気泡の容量は多くなる。   The digestion gas (mixed gas of carbon dioxide and methane) generated in the course of the reaction becomes bubbles and floats in the sludge layer in the digestion tank 4 and moves to the gas phase above the digestion tank 4. The mixing of the input sludge and the sludge in the digestion tank 4 is basically performed by an ascending flow accompanying the generated gas that floats. The generation of air bubbles occurs substantially uniformly throughout the sludge layer in the digestion tank 4, and the generated air bubbles float in the sludge layer.

消化タンク4の有効深さをh1(m)(図1参照)とすると、消化タンク内汚泥層で発生・浮上して汚泥液面を通過する面積あたりの消化ガス量は、E×h1(Nm3/m2・d)であり、この値は消化タンク有効深さh1によって決まる。Assuming that the effective depth of the digestion tank 4 is h1 (m) (see FIG. 1), the digested gas amount per area that is generated and floated in the sludge layer in the digestion tank and passes through the sludge liquid surface is E × h1 (Nm 3 / m 2 · d), which value is determined by the digestion tank effective depth h1.

上記観点から種々検討した結果、発明者らは、この値が13Nm3/m2・d以上となる高さを備えていれば、消化タンク4内に攪拌手段を積極的に配置しなくとも、消化タンク4内で発生するガスにより充分に汚泥の撹拌が認められることを確認した。即ち、円筒型で有効深さh1が8m以上の消化タンク4を用いることによって、消化タンク4の上部から投入される投入汚泥が発生ガスにより十分に分散することを確認した。As a result of various studies from the above viewpoint, the inventors have found that if this value has a height of 13 Nm 3 / m 2 · d or more, the stirring means need not be positively arranged in the digestion tank 4. It was confirmed that the sludge was sufficiently stirred by the gas generated in the digestion tank 4. That is, it was confirmed that the sludge introduced from the upper part of the digestion tank 4 was sufficiently dispersed by the generated gas by using the digestion tank 4 having a cylindrical shape and an effective depth h1 of 8 m or more.

一方、消化タンク4の内径D1が小さい場合は汚泥層断面に対して壁面の割合が高くなるため気泡の円滑な浮上が阻害され、投入汚泥とタンク内汚泥との混合が不十分となることが解った。発明者らの検証によれば、タンク内面周長l(m)に対する断面積A(m2)の比A/lが1以上となる径、即ち、消化タンク4の内径D1(図1参照)を4m以上とすることにより、消化タンク4の壁面による気泡浮上の阻害の影響が解消されることを確認した。On the other hand, when the inner diameter D1 of the digestion tank 4 is small, the ratio of the wall surface to the sludge layer cross section is high, so that the smooth floating of bubbles is hindered, and the mixing of the input sludge and the sludge in the tank becomes insufficient. I understand. According to the verification by the inventors, the diameter at which the ratio A / l of the cross-sectional area A (m 2 ) to the inner circumferential length l (m) of the tank becomes 1 or more, that is, the inner diameter D1 of the digestion tank 4 (see FIG. 1) It was confirmed that the influence of the inhibition of air bubble floating due to the wall surface of the digestion tank 4 was eliminated by setting the distance to 4 m or more.

したがって、使用する消化タンク4のサイズとしては、円筒型で有効深さh1が8m以上、内径D1が4m以上の容器を用いることが好ましい。消化タンク4の有効深さh1は10m以上がより好ましく、内径D1は5m以上がより好ましい。   Therefore, as the size of the digestion tank 4 to be used, it is preferable to use a cylindrical container having an effective depth h1 of 8 m or more and an inner diameter D1 of 4 m or more. The effective depth h1 of the digestion tank 4 is more preferably 10 m or more, and the inner diameter D1 is more preferably 5 m or more.

一方で、消化タンク4は大きすぎると維持管理の労力及びコストが上がるとともに建設コストが高くなるなどの問題が発生することから、有効深さh1は50m以下とすることができ、より具体的には30m以下とすることが好ましい。同様に、消化タンク4の内径D1は30m以下とすることができ、より具体的には20m以下とすることができる。   On the other hand, if the digestion tank 4 is too large, problems such as an increase in labor and cost of maintenance and an increase in construction cost occur. Therefore, the effective depth h1 can be set to 50 m or less. Is preferably 30 m or less. Similarly, the inner diameter D1 of the digestion tank 4 can be set to 30 m or less, and more specifically, 20 m or less.

投入汚泥によっては粒径が大きく密度の高い異物が含まれる場合がある。そのため、消化タンク4の底面が、中心部に形成された凹状(又は消化タンク4の下部に向けて突出する凸状)の釜場5と、釜場5を取り囲む周縁底面部51とを含み、周縁底面部51が水平面であるか、又は周縁底面部51が水平面に対して角度α=30°以下の傾斜(図1参照)を有するテーパー状を有していることが好ましい。これにより、消化タンク4内の異物や底面に堆積する有機性汚泥を釜場5へ集めやすくすることができる。更に、釜場5には異物や有機性汚泥を消化タンク4の外部へ引き抜くための引抜管(消化汚泥引抜管)6が接続されることが好ましい。これにより、消化タンク4に含まれる異物を消化汚泥とともに引き抜くことができ、設備のメンテナンスの少ない嫌気性消化装置が提供できる。   Depending on the input sludge, foreign matter having a large particle size and a high density may be included. Therefore, the bottom surface of the digestion tank 4 includes a concave (or convex) protruding toward the lower part of the digestion tank 4 at the center and a peripheral bottom surface portion 51 surrounding the digester tank 5, It is preferable that the peripheral bottom surface portion 51 is a horizontal plane, or that the peripheral bottom surface portion 51 has a tapered shape having an angle α of 30 ° or less (see FIG. 1) with respect to the horizontal plane. Thereby, foreign substances in the digestion tank 4 and organic sludge deposited on the bottom surface can be easily collected in the kiln 5. Furthermore, it is preferable that a draw-out pipe (digestion sludge pull-out pipe) 6 for pulling out foreign matter and organic sludge to the outside of the digestion tank 4 is connected to the kiln place 5. Thereby, the foreign substances contained in the digestion tank 4 can be pulled out together with the digested sludge, and an anaerobic digester with less equipment maintenance can be provided.

消化タンク4内で発生する消化ガスによる消化タンク4内の有機性汚泥の混合を充分に進めるとともに、異物や有機性汚泥を釜場5へ効率良くかき集めるためには、釜場の内径D2を、消化タンク4の内径D1の1/10〜1/5倍程度とすることが好ましく、釜場の有効深さh2を、1〜2mとすることが好ましい。これにより、より小容量で建設コストの低い設備で高効率なエネルギー回収を実現することができ、維持管理上のトラブルの少ない嫌気性消化方法および装置が提供できる。   In order to sufficiently promote the mixing of the organic sludge in the digestion tank 4 with the digestion gas generated in the digestion tank 4 and to efficiently collect foreign substances and organic sludge in the kamaba 5, the inner diameter D2 of the kamaba is determined by: It is preferable that the inner diameter D1 of the digestion tank 4 is about 1/10 to 1/5, and the effective depth h2 of the kamaba is 1 to 2 m. As a result, highly efficient energy recovery can be realized with smaller capacity and lower construction cost equipment, and an anaerobic digestion method and apparatus with less trouble in maintenance can be provided.

また、図3に示すように、消化タンク4が、消化タンク4の中心部に鉛直方向に設けられた軸部8を中心軸として消化タンク4の周方向に回転可能な第1のレーキ部材9Aを備えることが好ましい。第1のレーキ部材9Aは、消化タンク4の下部、より具体的には消化タンク4の底面に近接して設けられている。軸部8の下端は釜場5に収容されている。軸部8の上端には軸部8に回転動力を付与するためのモータ81が接続されている。   As shown in FIG. 3, the digestion tank 4 is a first rake member 9 </ b> A rotatable in the circumferential direction of the digestion tank 4 around a shaft 8 provided in the center of the digestion tank 4 in a vertical direction as a central axis. It is preferable to provide The first rake member 9 </ b> A is provided below the digestion tank 4, more specifically, near the bottom surface of the digestion tank 4. The lower end of the shaft 8 is accommodated in the kiln place 5. A motor 81 for applying rotational power to the shaft 8 is connected to the upper end of the shaft 8.

第1のレーキ部材9Aは、消化タンク4の中心に配置された軸部8に接続され、消化タンク4の径方向に延伸し、軸部8を中心軸として回転可能なレーキアーム9aと、レーキアーム9aに接続された1又は複数のレーキ板9bを備える。レーキ板9bは、消化タンク4の底部の異物又は有機性汚泥を順回転で中心側に掻き寄せる角度、例えば、レーキアーム9aに対して10〜45°傾斜させて取り付けられており、底部とのクリアランスが20mm以下となるように配置されている。第1のレーキ部材9Aを備えることにより、有機性汚泥として密度が高い粒子やサイズの大きいし渣等が混合する投入原料1が投入されて消化タンク4の底部に異物が堆積する場合に、異物を掻き寄せて有機性汚泥とともに消化タンク4の外部へ排出させやすくすることができる。   The first rake member 9A is connected to a shaft 8 disposed at the center of the digestion tank 4, extends in the radial direction of the digestion tank 4, and is rotatable about the shaft 8 as a center axis. And one or more rake plates 9b connected to the rake plate 9b. The rake plate 9b is attached to the bottom of the digestion tank 4 at an angle at which foreign matter or organic sludge is swept toward the center by forward rotation, for example, at an angle of 10 to 45 ° with respect to the rake arm 9a, and clearance with the bottom is provided. Is set to be 20 mm or less. By providing the first rake member 9A, when the input raw material 1 in which high-density particles and large-sized residue are mixed as organic sludge is charged and foreign matter is deposited on the bottom of the digestion tank 4, foreign matter is removed. To be easily discharged to the outside of the digestion tank 4 together with the organic sludge.

第1のレーキ部材9Aの回転速度は、周速10m/min以下とすることが好ましく、より好ましくは5m/min以下、更に好ましくは3m/min以下である。従来法では、汚泥粒子自体の沈降防止も含めて、消化タンク4内を強く撹拌することで、消化タンク4底部への異物の堆積を抑制してきていた。本発明では、汚泥粒子が沈降することがないため撹拌手段を消化タンク4内に配置する必要は基本的にはない。しかしながら、汚泥の性状によって消化タンク4底部への堆積物が発生しやすい原料である場合には、第1のレーキ部材9Aを順方向に回転させることによって、異物を釜場5へ掻き寄せ、有機性汚泥とともに消化タンク4の外部へ排出させやすくすることができる。これにより、し渣等による閉塞等のトラブルが運用中に発生することを抑制でき、維持管理上のトラブルの少ない嫌気性消化方法および装置が提供できる。本発明の実施の形態によれば、第1のレーキ部材9Aを周速10m/min以下の低速で回転させることにより、従来の撹拌手段にくらべて小さい動力で消化タンク4内に液流を生じさせることができる。   The rotation speed of the first rake member 9A is preferably 10 m / min or less, more preferably 5 m / min or less, and still more preferably 3 m / min or less. In the conventional method, the inside of the digestion tank 4 is strongly agitated, including the prevention of the sedimentation of the sludge particles themselves, so that the accumulation of foreign substances on the bottom of the digestion tank 4 has been suppressed. In the present invention, there is basically no need to dispose the stirring means in the digestion tank 4 since the sludge particles do not settle. However, when the raw material is likely to generate sediment on the bottom of the digestion tank 4 due to the properties of the sludge, the first rake member 9A is rotated in the forward direction to scrape foreign substances into the kamaba 5 and reduce the organic matter. It can be easily discharged to the outside of the digestion tank 4 together with the activated sludge. As a result, it is possible to suppress the occurrence of troubles such as clogging due to residue and the like during operation, and it is possible to provide an anaerobic digestion method and apparatus with less trouble in maintenance. According to the embodiment of the present invention, by rotating first rake member 9A at a low peripheral speed of 10 m / min or less, a liquid flow is generated in digestion tank 4 with less power than conventional stirring means. Can be done.

異物の排出の必要がなく、消化タンク4内の汚泥のVS濃度が何らかの原因で低くなり過ぎた場合等は、逆回転で運転することで、消化タンク4内の汚泥の低濃度化防止を図ることが可能である。   If there is no need to discharge foreign matter and the VS concentration of the sludge in the digestion tank 4 becomes too low for some reason, the operation is performed in reverse rotation to prevent the sludge in the digestion tank 4 from being reduced in concentration. It is possible.

第1のレーキ部材9Aの回転方向は、図示しない制御装置或いは手動で制御することが可能である。順回転、逆回転の切り替えのタイミングとしては、例えば、消化タンク4の上部から投入汚泥を投入する際には第1のレーキ部材9Aを逆回転で回転させ、消化タンク4内の汚泥に液流を生じさせるようにする。投入汚泥の投入後、消化タンク4内の処理状態が安定した後に、第1のレーキ部材9Aを順回転で回転させるように切り替える。これにより、処理を安定的に進めることができるとともに、消化タンク4内の異物の消化タンク4底部への堆積を効果的に抑制することができる。   The rotation direction of the first rake member 9A can be controlled by a control device (not shown) or manually. As for the timing of switching between forward rotation and reverse rotation, for example, when throwing sludge from the upper part of the digestion tank 4, the first rake member 9A is rotated in the reverse rotation, Is caused. After the input sludge is input, after the processing state in the digestion tank 4 is stabilized, the first rake member 9A is switched to rotate in the forward rotation. Accordingly, the processing can be stably performed, and the accumulation of foreign substances in the digestion tank 4 on the bottom of the digestion tank 4 can be effectively suppressed.

図3に示すように、消化タンク4は、第1のレーキ部材9Aの上方に接続されたピケットフェンス10を更に備えることができ、第1のレーキ部材9Aとピケットフェンス10とを消化タンク内で同時に回転させるようにすることが好ましい。   As shown in FIG. 3, the digestion tank 4 can further include a picket fence 10 connected above the first rake member 9A, and the first rake member 9A and the picket fence 10 are connected in the digestion tank. It is preferable to rotate simultaneously.

ピケットフェンス10は、消化タンク4内での嫌気性消化により発生する消化ガスをタンク内で分散させるために用いられる装置であり、図示されるような格子形状の他に、鉛直方向に延伸する複数の棒がレーキアーム9aの長手方向に沿ってそれぞれ間隔を有して配置されるような、くし形状を有していても良い。レーキアーム9aに消化タンク4内の全高または一部の汚泥にあたるピケットフェンス10を取付けることによって、汚泥層内の気泡の浮上をスムーズにし、汚泥層内の混合状態を促進することが可能である。   The picket fence 10 is a device used for dispersing the digestion gas generated by anaerobic digestion in the digestion tank 4 in the digestion tank 4. In addition to the lattice shape shown in FIG. May be comb-shaped such that the rods are arranged at intervals along the longitudinal direction of the rake arm 9a. By attaching the picket fence 10 corresponding to the entire height or a part of the sludge in the digestion tank 4 to the rake arm 9a, it is possible to make the floating of the air bubbles in the sludge layer smooth and promote the mixing state in the sludge layer.

投入汚泥の性状や濃度によっては液面に浮上した気泡が破裂しにくく、液面に徐々に蓄積し、乾燥・固化するケースがある。このような場合は、図4に示すように、消化タンク4内に投入される有機性汚泥の液面近傍に配置され、且つ軸部8を中心軸として消化タンク4の周方向に回転可能な第2のレーキ部材9Bを更に備え、第2のレーキ部材9Bを順方向又は逆方向に回転させることが好ましい。   Depending on the properties and concentration of the input sludge, air bubbles floating on the liquid surface may not easily burst, and may gradually accumulate on the liquid surface and dry and solidify. In such a case, as shown in FIG. 4, it is arranged near the liquid surface of the organic sludge to be charged into the digestion tank 4 and is rotatable in the circumferential direction of the digestion tank 4 around the shaft 8 as a central axis. It is preferable to further include a second rake member 9B, and to rotate the second rake member 9B in the forward or reverse direction.

液面付近に第2のレーキ部材9Bを設置し、液面の気泡の付着した汚泥を掻き寄せることで、液面の固化、堆積を防ぐことができる。また、液面付近に配置された第2のレーキ部材9Bのレーキ板9bによる汚泥の掻き寄せ方向を、第1のレーキ部材9Aのレーキ板9bの汚泥の掻き寄せ方向と逆にすることにより、消化タンク4内全体の汚泥を緩慢に循環させることができ、より良好な混合状態を維持することが可能となる。   By installing the second rake member 9B near the liquid surface and scraping the sludge with air bubbles attached to the liquid surface, solidification and accumulation of the liquid surface can be prevented. In addition, the direction in which the sludge is scraped by the rake plate 9b of the second rake member 9B disposed near the liquid surface is opposite to the direction in which the sludge is scraped by the rake plate 9b of the first rake member 9A. Sludge in the entire digestion tank 4 can be slowly circulated, and a more favorable mixed state can be maintained.

図5に示すように、軸部8の周囲に配置された円筒状のドラフトチューブ12を更に備え、消化タンク4内の有機性汚泥をドラフトチューブの上方又は下方へと移送させることにより、タンク内汚泥の循環を促進することも可能である。ドラフトチューブ12の中心軸は、第1及び第2のレーキ部材9A、9Bと同一であり、ドラフトチューブ12の径はタンク内径D1の1/10〜1/5程度とすることができる。ドラフトチューブ12の内部には撹拌羽根13が配置されている。ドラフトチューブ12内に汚泥を巻き込んで、鉛直方向に汚泥を移送させることが可能である。   As shown in FIG. 5, a cylindrical draft tube 12 further disposed around the shaft portion 8 is further provided, and the organic sludge in the digestion tank 4 is transferred above or below the draft tube so that the inside of the tank is reduced. It is also possible to promote sludge circulation. The central axis of the draft tube 12 is the same as that of the first and second rake members 9A and 9B, and the diameter of the draft tube 12 can be about 1/10 to 1/5 of the tank inner diameter D1. A stirring blade 13 is arranged inside the draft tube 12. Sludge can be transported in the vertical direction by winding the sludge into the draft tube 12.

また、図6に示すように、消化タンク4を加温する際は、消化タンク4の下部(消化タンク4の高さ1/5〜1/2程度)の周囲を加温装置16で覆い、加温装置16内に配管14を介して温水などを供給して配管15から排出させるような構成を採用してもよい。   As shown in FIG. 6, when heating the digestion tank 4, the lower part of the digestion tank 4 (about 1 / to 1 / of the height of the digestion tank 4) is covered with a heating device 16. A configuration in which hot water or the like is supplied into the heating device 16 via the pipe 14 and discharged from the pipe 15 may be adopted.

本発明の実施の形態に係る有機性汚泥の嫌気性消化方法及び嫌気性消化装置によれば、従来と比較して大幅な消化タンクの小型化が実現され、同時に低コスト化が図れる。また、設備でのエネルギー消費量も、従来に比べて低減でき、エネルギー回収効率の画期的な改善が実現可能である。また、原料となる有機性汚泥はカーボンニュートラルな原料であり、現在のところエネルギーとしての利用率が低いため、本発明が広く採用されることによりエネルギー需給の逼迫や温室効果ガスの排出削減等の問題解決に大きく貢献できるものと考えられる。   ADVANTAGE OF THE INVENTION According to the anaerobic digestion method and the anaerobic digestion apparatus of the organic sludge which concern on embodiment of this invention, the downsizing of a digestion tank drastically is implement | achieved compared with the past, and at the same time cost reduction can be achieved. In addition, the energy consumption of the equipment can be reduced as compared with the conventional case, and the epoch-making improvement of the energy recovery efficiency can be realized. Organic sludge, which is a raw material, is a carbon-neutral raw material and has a low utilization rate as energy at present. Therefore, the widespread adoption of the present invention will result in tight energy supply and demand and reduction of greenhouse gas emissions. It is thought that it can greatly contribute to problem solving.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。なお、本発明の説明において「%」は、特に説明のない限り、質量%を意味するものとする。   Hereinafter, Examples of the present invention are shown together with Comparative Examples, but these Examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention. In the description of the present invention, “%” means “% by mass” unless otherwise specified.

図4に示す消化タンク4を利用して、嫌気性消化処理を行った。使用した消化タンクの仕様を表1に示す。有機性汚泥として下水処理場の混合生汚泥(重力濃縮汚泥)を使用した。性状を表2に示す。   Anaerobic digestion treatment was performed using the digestion tank 4 shown in FIG. Table 1 shows the specifications of the digestion tank used. Mixed raw sludge (gravity concentrated sludge) from a sewage treatment plant was used as organic sludge. The properties are shown in Table 2.

Figure 2018211795
Figure 2018211795

Figure 2018211795
Figure 2018211795

原料汚泥に高分子凝集剤を添加して濃縮スクリーンで濃縮した汚泥を消化タンク投入汚泥とした。凝集剤注入率は0.5%(対TS)とし、濃縮汚泥(消化タンク投入汚泥)はTS濃度が約8%となるように設定した。消化タンクの運転条件を表3に示す。   The sludge concentrated by the concentration screen after adding a polymer flocculant to the raw material sludge was used as sludge fed into the digestion tank. The coagulant injection rate was set to 0.5% (relative to TS), and the concentrated sludge (the sludge fed into the digestion tank) was set so that the TS concentration was about 8%. Table 3 shows the operation conditions of the digestion tank.

Figure 2018211795
Figure 2018211795

この条件で1年以上の連続消化運転を行った。運転結果を表4に示す。表4に示すように、期間を通して消化汚泥中の有機酸の蓄積によるpH低下やアンモニア阻害による消化不良は見られず、良好な汚泥の分解(VS分解率:53%)、消化ガスの発生(ガス発生率:520Nm3/t−VS)が継続して行えたことを確認した。Under these conditions, a continuous digestion operation for one year or more was performed. Table 4 shows the operation results. As shown in Table 4, no pH decrease due to accumulation of organic acids in digested sludge and poor digestion due to ammonia inhibition were not observed throughout the period, and good sludge decomposition (VS decomposition rate: 53%) and generation of digestive gas ( Gas generation rate: 520 Nm 3 / t-VS).

消化タンク容積あたりのガス発生率は従来法では最大で1.5Nm3/m3・d程度であったが、本法では2.3Nm3/m3・dと大幅に増大できることが確認された。また、レーキ部材の動力密度は1W/m3以下であり、従来の消化タンク攪拌機と比較して同等以下であった。これらの結果から、本発明によって消化タンクの小容量化による建設コストの低減が可能であること、消化設備での消費エネルギーの低減による有効利用可能エネルギーの増大が可能であることが示された。なお、期間を通して極端な発泡による消化ガス管の閉塞やスカムの堆積も見られなかった。Although gas generation rate per digesting tank volume was 1.5Nm 3 / m 3 · about d at maximum in the conventional method, it was confirmed that the significantly increased and 2.3Nm 3 / m 3 · d in this method . The power density of the rake member was 1 W / m 3 or less, which was equal to or less than that of a conventional digestion tank stirrer. From these results, it was shown that the present invention can reduce the construction cost by reducing the capacity of the digestion tank, and increase the effective available energy by reducing the energy consumption in the digestion facility. In addition, there was no obstruction of the digestive gas tube or accumulation of scum due to extreme foaming throughout the period.

Figure 2018211795
Figure 2018211795

運転完了後に消化タンク内汚泥を全量引き抜き、内部を確認した結果、底部への汚泥や異物の堆積は見られず、デッドスペースが形成されることなく消化タンク内全体が有効に機能を発揮していたことが確認された。   After the operation was completed, the entire amount of sludge in the digestion tank was pulled out and the inside was confirmed.As a result, no accumulation of sludge or foreign matter on the bottom was observed, and the entire inside of the digestion tank was effectively functioning without forming a dead space. It was confirmed that.

1…投入原料(有機性汚泥)
2…濃度調整設備
3…消化タンク投入管
4…消化タンク
5…釜場
6…消化汚泥引抜管
7…消化ガス管
8…軸部
9A…第1のレーキ部材
9B…第2のレーキ部材
9a…レーキアーム
9b…レーキ板
10…ピケットフェンス
11…希釈物
12…ドラフトチューブ
13…撹拌羽根
21…ホッパ
51…周縁底面部
1. Input material (organic sludge)
2 ... Concentration adjustment equipment 3 ... Digestion tank input pipe 4 ... Digestion tank 5 ... Kamaba 6 ... Digestion sludge extraction pipe 7 ... Digestion gas pipe 8 ... Shaft 9A ... First rake member 9B ... Second rake member 9a ... Rake arm 9b Rake plate 10 Picket fence 11 Diluent 12 Draft tube 13 Stirrer blade 21 Hopper 51 Peripheral bottom surface

Claims (10)

円筒型で有効深さ8m以上、内径4m以上の消化タンク内に、有機物濃度4.5〜9.0%の有機性汚泥を有機物容積負荷3.3〜6.6kg−VS/m3・dとなるように投入し、消化日数12日以上で嫌気性消化処理することを含む有機性汚泥の嫌気性消化方法。Effective depth 8m or more cylindrical, in more digesting tank inner diameter 4m, organic volume organics concentration from 4.5 to 9.0% of organic sludge load 3.3~6.6kg-VS / m 3 · d An anaerobic digestion method for organic sludge, which comprises charging the mixture in such a manner as to achieve an anaerobic digestion treatment in 12 days or more. 前記消化タンクの底面が、中心部に形成された凹状の釜場と、前記釜場を取り囲む周縁底面部とを含み、前記周縁底面部が水平面であるか、又は水平面に対して30°以下の傾斜を有するテーパー状を有しており、前記釜場から、嫌気性消化後の前記有機性汚泥を引き抜くことを含む請求項1に記載の有機性汚泥の嫌気性消化方法。   The bottom surface of the digestion tank includes a concave kettle formed at the center and a peripheral bottom surface surrounding the kiln, and the peripheral bottom surface is a horizontal plane, or 30 ° or less with respect to a horizontal plane. The method for anaerobic digestion of organic sludge according to claim 1, which has a tapered shape having an inclination, and comprises extracting the organic sludge after anaerobic digestion from the kiln. 前記消化タンクが、
前記消化タンクの下部に配置され、前記消化タンクの中心部に鉛直方向に設けられた軸部を中心軸として前記消化タンクの周方向に回転可能な第1のレーキ部材
を備え、
前記第1のレーキ部材を周速10m/min以下で順回転又は逆回転させることを含む請求項1又は2に記載の有機性汚泥の嫌気性消化方法。
The digestion tank is
A first rake member disposed at a lower portion of the digestion tank and rotatable in a circumferential direction of the digestion tank around a shaft provided in a vertical direction at a central portion of the digestion tank;
The method for anaerobic digestion of organic sludge according to claim 1 or 2, comprising rotating the first rake member forward or backward at a peripheral speed of 10 m / min or less.
前記消化タンクが、
前記第1のレーキ部材に接続されたピケットフェンス
を更に備え、
前記第1のレーキ部材と前記ピケットフェンスとを前記消化タンク内で回転させることを含む請求項3に記載の有機性汚泥の嫌気性消化方法。
The digestion tank is
A picket fence connected to the first rake member,
4. The method of anaerobic digestion of organic sludge according to claim 3, comprising rotating the first rake member and the picket fence in the digestion tank.
前記消化タンク内に投入される前記有機性汚泥の液面近傍に配置され、且つ前記軸部を中心軸として前記消化タンクの周方向に回転可能な第2のレーキ部材
を更に備え、
前記第2のレーキ部材を回転させることを含む請求項3又は4に記載の有機性汚泥の嫌気性消化方法。
A second rake member disposed near the liquid level of the organic sludge to be charged into the digestion tank and rotatable in the circumferential direction of the digestion tank around the shaft as a central axis,
The method for anaerobic digestion of organic sludge according to claim 3 or 4, comprising rotating the second rake member.
円筒型で有効深さ8m以上、内径4m以上の消化タンクを備え、前記消化タンク内に有機物濃度4.5〜9.0%の有機性汚泥を有機物容積負荷3.3〜6.6kg−VS/m3・dとなるように投入し、消化日数12日以上で嫌気性消化処理することを特徴とする有機性汚泥の嫌気性消化装置。A digestion tank having a cylindrical shape and an effective depth of at least 8 m and an inner diameter of at least 4 m is provided, and organic sludge having an organic substance concentration of 4.5 to 9.0% is loaded in the digestion tank with an organic substance volume load of 3.3 to 6.6 kg-VS. / M 3 · d, and an anaerobic digester for organic sludge, characterized in that it is subjected to anaerobic digestion in 12 days or more. 前記消化タンクの底面が、中心部に形成された凹状の釜場と、前記釜場を取り囲む周縁底面部とを含み、前記周縁底面部が水平面であるか、又は水平面に対して30°以下の傾斜を有するテーパー状を有しており、前記釜場に前記有機性汚泥を引き抜くための引抜管が接続されていることを含む請求項6に記載の有機性汚泥の嫌気性消化装置。   The bottom surface of the digestion tank includes a concave kettle formed at the center and a peripheral bottom surface surrounding the kiln, and the peripheral bottom surface is a horizontal plane, or 30 ° or less with respect to a horizontal plane. The anaerobic digester for organic sludge according to claim 6, which has a tapered shape with an inclination, and includes a drawing pipe for drawing out the organic sludge to the kiln. 前記消化タンクが、
前記消化タンクの下部に配置され、前記消化タンクの中心部に鉛直方向に設けられた軸部を中心軸として前記消化タンクの周方向に回転可能な第1のレーキ部材を備えることを含む請求項6又は7に記載の有機性汚泥の嫌気性消化装置。
The digestion tank is
A first rake member disposed at a lower portion of the digestion tank and rotatable in a circumferential direction of the digestion tank around a shaft provided vertically in a central portion of the digestion tank. The anaerobic digester for organic sludge according to 6 or 7.
前記消化タンクが、
前記第1のレーキ部材に接続されたピケットフェンスを更に備えることを含む請求項8に記載の有機性汚泥の嫌気性消化装置。
The digestion tank is
The organic sludge anaerobic digester according to claim 8, further comprising a picket fence connected to the first rake member.
前記消化タンク内に投入される前記有機性汚泥の液面近傍に配置され、且つ前記軸部を中心軸として前記消化タンクの周方向に回転可能な第2のレーキ部材を備えることを含む請求項8又は9に記載の有機性汚泥の嫌気性消化装置。   A second rake member disposed near a liquid surface of the organic sludge to be charged into the digestion tank and rotatable in a circumferential direction of the digestion tank around the shaft as a central axis. The anaerobic digester for organic sludge according to 8 or 9.
JP2019519080A 2017-05-18 2018-03-08 Anaerobic digestion method and apparatus for organic sludge Active JP7114579B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017099174 2017-05-18
JP2017099174 2017-05-18
PCT/JP2018/009017 WO2018211795A1 (en) 2017-05-18 2018-03-08 Method and apparatus for anaerobic digestion of organic sludge

Publications (2)

Publication Number Publication Date
JPWO2018211795A1 true JPWO2018211795A1 (en) 2020-03-19
JP7114579B2 JP7114579B2 (en) 2022-08-08

Family

ID=64274291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519080A Active JP7114579B2 (en) 2017-05-18 2018-03-08 Anaerobic digestion method and apparatus for organic sludge

Country Status (2)

Country Link
JP (1) JP7114579B2 (en)
WO (1) WO2018211795A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132118B2 (en) * 2018-12-28 2022-09-06 株式会社クボタ Fermentation processing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262806U (en) * 1985-10-04 1987-04-18
JP2004249233A (en) * 2003-02-21 2004-09-09 Mitsubishi Kakoki Kaisha Ltd Method for treating organic waste
JP2005319388A (en) * 2004-05-07 2005-11-17 Sumitomo Heavy Ind Ltd Method for setting operation condition of methane fermentation system
WO2008026221A1 (en) * 2006-08-29 2008-03-06 Council Of Scientific & Industrial Research A self mixing anaerobic digester useful for treatment of solid organic waste
JP3146266U (en) * 2008-08-29 2008-11-06 株式会社品川鐵工場 Scraping rake arm device in a circular sludge tank
JP2012086157A (en) * 2010-10-20 2012-05-10 Kajima Corp Fermentation liquid circulating methane fermentation method and apparatus
JP2014159005A (en) * 2013-02-20 2014-09-04 Kobelco Eco-Solutions Co Ltd Method for estimating deposition state of sediment in methane fermentation tank, method for removing sediment in methane fermentation tank, and methane fermentation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262806U (en) * 1985-10-04 1987-04-18
JP2004249233A (en) * 2003-02-21 2004-09-09 Mitsubishi Kakoki Kaisha Ltd Method for treating organic waste
JP2005319388A (en) * 2004-05-07 2005-11-17 Sumitomo Heavy Ind Ltd Method for setting operation condition of methane fermentation system
WO2008026221A1 (en) * 2006-08-29 2008-03-06 Council Of Scientific & Industrial Research A self mixing anaerobic digester useful for treatment of solid organic waste
JP3146266U (en) * 2008-08-29 2008-11-06 株式会社品川鐵工場 Scraping rake arm device in a circular sludge tank
JP2012086157A (en) * 2010-10-20 2012-05-10 Kajima Corp Fermentation liquid circulating methane fermentation method and apparatus
JP2014159005A (en) * 2013-02-20 2014-09-04 Kobelco Eco-Solutions Co Ltd Method for estimating deposition state of sediment in methane fermentation tank, method for removing sediment in methane fermentation tank, and methane fermentation apparatus

Also Published As

Publication number Publication date
JP7114579B2 (en) 2022-08-08
WO2018211795A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
KR101032608B1 (en) System for treating organic waste
US7854841B2 (en) Combined anaerobic process apparatus for treating organic wastes
CN101189190B (en) Organic waste disposal facility and method of disposal
US9771292B2 (en) Treatment of waste products with anaerobic digestion
US20050230308A1 (en) Induced sludge bed anaerobic reactor
CN105174601B (en) A kind of biological treatment of cassava alcohol waste water
JP5574398B2 (en) Method and system for methane fermentation of organic solid waste
JP4822263B2 (en) Methane fermentation equipment for solid organic waste
CN106434296B (en) Integrated dry-wet anaerobic digestion device
KR100981187B1 (en) Multi-stage type dry anaerobic digestion reactor
US11952300B2 (en) Anaerobic waste digestion system
JP2012135705A (en) Method and apparatus for anaerobic digestion treatment
JP7228653B2 (en) Anaerobic digestion tank start-up method and anaerobic digestion system
JP7114579B2 (en) Anaerobic digestion method and apparatus for organic sludge
JP2009154104A (en) Storage method and fuelization method for organic waste slurry, and storage device for biomass fuel and organic waste slurry
WO2008025098A1 (en) A treatment process and apparatus
JP2007269945A (en) Biomass gasification apparatus using supercritical water and system including the same
KR100921538B1 (en) Apparatus of biogas production using vertical type drying anaerobic digestion vessel
KR101819203B1 (en) System for Anaerobic Digestion of High Concentration Organic Wastes
JP2005081238A (en) Anaerobic treatment method and apparatus for organic substance-containing liquid
US20200039858A1 (en) Horizontal anaerobic digestor with sediment separator for the organic fraction of municipal solid waste and related process
EP2718247A1 (en) Waste digestion
CN106497984B (en) Integrated dry-wet anaerobic digestion method
JP2006255545A (en) Methane fermentation process
CN109133528A (en) A kind of fuel ethanol wastewater processing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R150 Certificate of patent or registration of utility model

Ref document number: 7114579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150