JP4822263B2 - Methane fermentation equipment for solid organic waste - Google Patents

Methane fermentation equipment for solid organic waste Download PDF

Info

Publication number
JP4822263B2
JP4822263B2 JP2006039147A JP2006039147A JP4822263B2 JP 4822263 B2 JP4822263 B2 JP 4822263B2 JP 2006039147 A JP2006039147 A JP 2006039147A JP 2006039147 A JP2006039147 A JP 2006039147A JP 4822263 B2 JP4822263 B2 JP 4822263B2
Authority
JP
Japan
Prior art keywords
organic waste
fermenter
fermentation
solid organic
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006039147A
Other languages
Japanese (ja)
Other versions
JP2007216135A (en
Inventor
寛 宮野
昌浩 多田羅
雅史 後藤
崇志 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2006039147A priority Critical patent/JP4822263B2/en
Publication of JP2007216135A publication Critical patent/JP2007216135A/en
Application granted granted Critical
Publication of JP4822263B2 publication Critical patent/JP4822263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は固形有機性廃棄物のメタン発酵装置に関し、とくに低含水率の固形有機性廃棄物を無希釈又は低希釈率でメタン発酵処理する装置に関する。本発明は、生ごみ、食品残渣、家畜廃棄物、脱水汚泥等の固形有機性廃棄物をメタン発酵微生物群(以下、嫌気性微生物という)との接触によりメタン発酵させ、発酵により生成するバイオガスをエネルギー源として回収する廃棄物再資源化型のメタン発酵施設等に有効に利用することができる。   The present invention relates to a methane fermentation apparatus for solid organic waste, and more particularly to an apparatus for methane fermentation treatment of solid organic waste having a low water content at an undiluted or low dilution rate. The present invention is a biogas produced by fermentation of solid organic waste such as food waste, food residue, livestock waste, dewatered sludge, etc. by fermentation with methane fermentation microorganisms (hereinafter referred to as anaerobic microorganisms). Can be effectively used in a waste recycling type methane fermentation facility that collects as an energy source.

生ごみ、食品残渣、家畜廃棄物、脱水汚泥等の低含水率(例えば含水率65〜80%程度)の有機性廃棄物は、従来ほとんど埋立て・焼却処分されてきたが、近年は循環型社会を構築するという観点から再資源化処理することが求められている。有機性廃棄物から堆肥・飼料等を回収して再資源化することも可能であるが、再資源化物の活用範囲が限られていることから、より活用範囲の広い再資源化技術として、有機性廃棄物を微生物分解してエネルギー源として利用可能なバイオガス(約70%のメタンガス、約30%の二酸化炭素ガス、少量の硫化水素等を含む)を回収するメタン発酵処理が注目され実用化が進められている。   Organic wastes with low water content (eg, water content of about 65-80%) such as food waste, food residues, livestock waste, and dewatered sludge have been mostly landfilled and incinerated in the past. Recycling processing is required from the viewpoint of building a society. Although it is possible to collect and recycle compost, feed, etc. from organic waste, since the scope of utilization of the recycled material is limited, as a recycling technology with a wider range of utilization, organic Methane fermentation treatment that recovers biogas (including about 70% methane gas, about 30% carbon dioxide gas, a small amount of hydrogen sulfide, etc.) that can be used as an energy source by microbial decomposition of radioactive waste has attracted attention and has been put into practical use Is underway.

従来から有機性廃棄物をメタン発酵処理する方法として、湿式メタン発酵法と乾式メタン発酵法とが知られている。湿式メタン発酵法は、例えば特許文献1及び2が開示するように、有機性廃棄物を混入異物と分別して微粉砕し、TS濃度(有機固形物濃度)5〜15%程度のスラリー状にしたうえでメタン発酵槽(以下、嫌気性発酵槽という)に投入し、発酵槽内で有機物スラリーを嫌気性微生物と接触させてメタン発酵させる方法である。低含水率の固形有機性廃棄物も、微粉砕して水で希釈することにより湿式メタン発酵法で処理することができる。   Conventionally, wet methane fermentation and dry methane fermentation are known as methods for methane fermentation of organic waste. In the wet methane fermentation method, for example, as disclosed in Patent Documents 1 and 2, organic waste is separated from mixed foreign matters and finely pulverized to form a slurry with a TS concentration (organic solid concentration) of about 5 to 15%. This is a method in which a methane fermentation tank (hereinafter referred to as an anaerobic fermentation tank) is charged, and an organic slurry is brought into contact with anaerobic microorganisms in the fermentation tank for methane fermentation. Solid organic waste with a low water content can also be treated by wet methane fermentation by pulverizing and diluting with water.

しかし湿式メタン発酵法は、微粉砕した有機性廃棄物に対して少なくとも1〜2倍程度の希釈水を加えてTS濃度を下げる必要があるため、希釈に応じて発酵槽の容量が大きくなり、処理後に生じる液状残渣(以下、発酵済液ということがある)の量も増える。発酵済液中には未分解の有機物が残留しているので、環境中へ放流する前に残留有機物を更に浄化する二次処理(排水処理等)が必要となる場合があり、発酵済液の量が増えると二次処理施設の大型化や二次処理費用の増大を招く。とくに下水道等が完備されていない農村地域等では、公共用水域に放流するために高度な二次処理が要求されるので、コスト削減等の観点から二次処理の必要な残渣量をできる限り少なくすることが望まれている。   However, in the wet methane fermentation method, it is necessary to add at least 1 to 2 times dilution water to the finely pulverized organic waste to lower the TS concentration, so the capacity of the fermenter increases with dilution, The amount of liquid residue (hereinafter sometimes referred to as a fermented liquid) generated after the treatment also increases. Since undegraded organic matter remains in the fermented liquid, a secondary treatment (such as wastewater treatment) may be required to further purify the residual organic matter before release into the environment. Increasing the volume leads to an increase in the size of secondary processing facilities and an increase in secondary processing costs. Especially in rural areas that are not fully equipped with sewerage, etc., advanced secondary treatment is required to release them into public water areas, so the amount of residue required for secondary treatment is as small as possible from the viewpoint of cost reduction. It is hoped to do.

これに対し乾式メタン発酵法は、例えば特許文献3〜5が開示するように、有機性廃棄物をTS濃度20〜40%程度で嫌気性微生物と接触させてメタン発酵させる方法である。乾式メタン発酵法は、低含水率の固形有機性廃棄物を無希釈又は低希釈率でメタン発酵することができるので、湿式メタン発酵法に比し希釈水分だけ処理対象総量を少なくして発酵槽の小型化を図り、処理後に生じる残渣量も少なくなるため二次処理コストも低く抑えることが期待できる。   In contrast, the dry methane fermentation method is a method in which organic waste is brought into contact with anaerobic microorganisms at a TS concentration of about 20 to 40% for methane fermentation, as disclosed in Patent Documents 3 to 5, for example. In the dry methane fermentation method, solid organic waste with a low water content can be methane-fermented without dilution or at a low dilution rate. Therefore, compared to the wet methane fermentation method, the total amount to be treated is reduced by the amount of diluted water. Therefore, it is expected that the secondary treatment cost can be kept low because the amount of residue generated after the treatment is reduced.

例えば特許文献3の乾式メタン発酵法では、低含水率の有機性廃棄物を粒径2cm未満の粒子状又はスラッジ状に粉砕し、通気性及び流動性を与えるために廃棄物より大粒径の粒状通気性副資材(木質系チップ、小枝・葉、乾燥鶏糞ペレット等)と混合してTS濃度25〜35%程度に調整したうえで嫌気性発酵槽に投入し、発酵槽内で有機物・副資材の混合物をピストンフロー的に押し出すように撹拌しながら嫌気性微生物と接触させてメタン発酵させる。また特許文献4の乾式メタン発酵法では、副資材に代えて、発酵処理後に生じる汚泥状残渣の脱水汚泥の一部を有機性廃棄物と混合し、脱水汚泥との混合により有機性廃棄物のTS濃度を調整したうえで発酵槽に投入してメタン発酵させる。   For example, in the dry methane fermentation method disclosed in Patent Document 3, organic waste having a low water content is pulverized into particles or sludges having a particle size of less than 2 cm, and has a larger particle size than the waste in order to provide air permeability and fluidity. It is mixed with granular air-permeable auxiliary materials (wood chips, twigs / leaves, dried chicken manure pellets, etc.) and adjusted to a TS concentration of about 25 to 35%, and then put into an anaerobic fermenter. The mixture of materials is subjected to methane fermentation by contacting with anaerobic microorganisms while stirring so as to extrude in a piston flow manner. Further, in the dry methane fermentation method of Patent Document 4, instead of the auxiliary material, a part of the dewatered sludge of the sludge residue generated after the fermentation process is mixed with the organic waste, and the organic waste is mixed by mixing with the dehydrated sludge. After adjusting the TS concentration, it is put into a fermenter and subjected to methane fermentation.

特許第2708087号公報Japanese Patent No. 270887 特許第3064272号公報Japanese Patent No. 3064272 特開11−309493号公報JP 11-309493 A 特開2004−017024号公報JP 2004-017024 A 特開2003−053309号公報Japanese Patent Laid-Open No. 2003-053309

しかし、特許文献3及び4の乾式メタン発酵法は、嫌気性微生物による分解速度が比較的速い易分解性の有機固形物(以下、易分解性固形物という)と比較的遅い難分解性の有機固形物(以下、難分解性固形物という)とを混合して同じようにメタン発酵処理するので、難分解性固形物が分解不十分なまま嫌気性発酵槽から流出してしまう問題点がある。一般に嫌気性微生物による分解速度の異なる難分解性有機物と易分解性有機物とを同時にメタン発酵処理することは困難であるが、特許文献3及び4の方法では発酵槽内のTS濃度調整のために難分解性固形物(副資材や脱水汚泥等)を混合する必要があるため、発酵槽から流出する残渣中に未分解の難分解性固形物が多量に残ってしまう。   However, in the dry methane fermentation methods of Patent Documents 3 and 4, an easily degradable organic solid (hereinafter referred to as an easily decomposable solid) having a relatively fast decomposition rate by anaerobic microorganisms and a relatively slow hardly decomposed organic Since methane fermentation treatment is carried out in the same way by mixing solids (hereinafter referred to as hardly decomposable solids), there is a problem that the hardly decomposable solids flow out of the anaerobic fermenter with insufficient decomposition. . In general, it is difficult to perform methane fermentation treatment of a hardly-decomposable organic substance and an easily-degradable organic substance having different degradation rates by anaerobic microorganisms at the same time. However, in the methods of Patent Documents 3 and 4, the TS concentration in the fermenter is adjusted. Since it is necessary to mix hardly decomposable solids (sub-materials, dehydrated sludge, etc.), a large amount of undecomposed hardly decomposable solids remain in the residue flowing out from the fermenter.

このため上述した乾式メタン発酵法では、嫌気性発酵槽から流出する残渣中の難分解性固形物を二次的に分離回収して分解処理する工程・施設が必要となり、二次処理コストを削減することが難しい。例えば特許文献3の発酵法では、発酵槽から流出する汚泥状残渣を篩にかけて未分解の副資材を分離回収し、未分解の副資材を発酵槽へ返送して循環利用している。しかし、分離回収コストが嵩むと共に、メタン発酵処理により多少なりとも分解される難分解性固形物を篩だけで全て回収することは困難であるため、回収できない難分解性固形物に対する二次処理が必要となる。また特許文献4の発酵法では、汚泥状残渣を脱水して一部を発酵槽に返送しているが、残りの脱水汚泥中にも多量の難分解性固形物が含まれているので、やはり残りの脱水汚泥に対する二次処理が必要となる。   For this reason, the dry methane fermentation method described above requires processes and facilities for secondary separation and recovery of the hard-to-decompose solids in the residue flowing out of the anaerobic fermenter, reducing the secondary treatment costs. Difficult to do. For example, in the fermentation method of Patent Document 3, the sludge residue flowing out from the fermenter is sieved to separate and recover the undecomposed auxiliary material, and the undecomposed auxiliary material is returned to the fermenter for recycling. However, the separation and recovery costs increase, and it is difficult to recover all the hardly decomposable solids that are decomposed by the methane fermentation process with a sieve alone. Necessary. Moreover, in the fermentation method of patent document 4, although sludge residue is dehydrated and a part is returned to a fermenter, since a lot of hard-to-decompose solids are also contained in the remaining dewatered sludge, Secondary treatment for the remaining dewatered sludge is required.

また、特許文献3及び4の乾式メタン発酵法は、難分解性固形物を嫌気性発酵槽内において十分にメタン発酵しないまま流出させてしまうので、発酵槽のメタン発酵率(バイオガスの回収率)を高めることが難しく、非効率的な処理システムになるおそれもある。更に、従来の乾式メタン発酵法は有機性廃棄物を流動性が低い低含水状態のまま撹拌しており、有機性廃棄物と嫌気性微生物とが均一に接触するように撹拌することが難しいことも、効率的なメタン発酵が得にくい原因となっている。有機性廃棄物を無希釈で又は低希釈でメタン発酵する方法の実用化を図るためには、残渣中に含まれる未分解の有機物量が少なく、従来の湿式メタン発酵法と同程度のメタン発酵率が得られる技術を開発する必要がある。   Moreover, since the dry methane fermentation method of patent documents 3 and 4 will flow out a hard-to-decompose solid matter in an anaerobic fermentation tank, without fully methane-fermenting, the methane fermentation rate (recovery rate of biogas) of a fermenter ) Is difficult to increase and may result in an inefficient processing system. Furthermore, the conventional dry methane fermentation method stirs organic waste in a low water content state with low fluidity, and it is difficult to stir so that the organic waste and anaerobic microorganisms are in uniform contact. However, it is difficult to obtain efficient methane fermentation. In order to put the organic waste to methane fermentation undiluted or at low dilution, the amount of undecomposed organic matter contained in the residue is small, and the methane fermentation is equivalent to the conventional wet methane fermentation method. It is necessary to develop technology that can obtain the rate.

そこで本発明の目的は、固形有機性廃棄物を無希釈で効率的にメタン発酵処理できるメタン発酵装置を提供することにある。   Therefore, an object of the present invention is to provide a methane fermentation apparatus capable of efficiently performing methane fermentation treatment of solid organic waste without dilution.

図1の実施例を参照するに、本発明による固形有機性廃棄物のメタン発酵装置は、発酵液Lを貯える嫌気性発酵槽2、発酵槽2内を上下に仕切る有孔隔壁3、発酵槽2の隔壁3の上方に設けた固形有機性廃棄物Aの取入口5、及び発酵槽2内の発酵液Lを隔壁3の下方の底部から引き抜き発酵槽2の外側を介して隔壁3の上方の頂部に戻して嫌気的に循環させるポンプ11付き還流路10を備え、有機性廃棄物Aを隔壁3の上方で可溶化し且つ隔壁3の下方に移行させてメタン発酵させてなるものである。 Referring to the embodiment of FIG. 1, a solid organic waste methane fermentation apparatus according to the present invention includes an anaerobic fermentation tank 2 for storing a fermentation liquor L, a perforated partition wall 3 for vertically dividing the interior of the fermentation tank 2, and a fermentation tank. The solid organic waste A intake 5 provided above the partition wall 3 and the fermentation liquor L in the fermenter 2 are drawn from the bottom below the partition wall 3 and above the partition wall 3 through the outside of the fermenter 2. Is provided with a reflux passage 10 with a pump 11 for anaerobically circulating back to the top, and solubilizes the organic waste A above the partition wall 3 and moves it below the partition wall 3 for methane fermentation. .

好ましくは、発酵槽2の底部に発酵液Lを槽外の液面対応高さhまで上昇させて溢流させる溢流路15を設ける。また図4に示すように、発酵槽2内の隔壁3の上方又は隔壁3上に撹拌手段30を設けることができる。望ましくは、図5に示すように、還流路10上に、発酵液Lを一端側から流入させ所要時間滞留させたのち他端側から流出させる嫌気性一時滞留槽40を設け、発酵槽2で可溶化した有機性廃棄物Aを一時滞留槽40に移行させてメタン発酵させる。この場合は、同図に示すように、一時滞留槽40と発酵槽2とを同じ高さに設け、発酵槽2の底部に代えて一時滞留槽40の底部に発酵液Lを槽外の液面対応高さhまで上昇させて溢流させる溢流路15を設けることができる。 Preferably, an overflow channel 15 is provided at the bottom of the fermenter 2 to allow the fermented liquor L to rise to a height h corresponding to the liquid level outside the vessel. Moreover, as shown in FIG. 4, the stirring means 30 can be provided above the partition wall 3 in the fermenter 2 or on the partition wall 3. Desirably, as shown in FIG. 5, on the return path 10, the fermentation liquid anaerobic stay temporarily tank 40 to flow out L a from the other end mixture was allowed to flow from one end to the required residence time is provided, in a fermenter 2 by migrating organic waste a solubilized in the temporary retention tank 40 Ru by methane fermentation. In this case, as shown in the figure, the temporary residence tank 40 and the fermentation tank 2 are provided at the same height, and the fermentation liquid L is placed outside the tank at the bottom of the temporary residence tank 40 in place of the bottom of the fermentation tank 2. It is possible to provide an overflow channel 15 that rises to the height h corresponding to the surface and overflows.

更に好ましくは、図1及び図5に示すように、発酵槽2内の隔壁3の下方及び/又は一時滞留槽40内に発酵液Lが透過可能な嫌気性微生物の固定床20を設ける。また、図3及び図5に示すように、発酵槽2及び/又は一時滞留槽40の頂部の気相部4、43には、気相部4、43から発酵による生成バイオガスGを抜き出してアンモニア捕集装置37へ送ると共に捕集装置37の出力ガスを気相部4、43へ戻す循環ガス流路36を設けることが望ましい。更に、発酵槽2及び/又は一時滞留槽40の頂部の気相部4、43には、発酵による生成バイオガスGを回収する回収口18を設けることができる。 More preferably, as shown in FIGS. 1 and 5, a fixed bed 20 of anaerobic microorganisms through which the fermentation liquor L can permeate is provided below the partition wall 3 in the fermentation tank 2 and / or in the temporary residence tank 40. As shown in FIGS. 3 and 5, the biogas G produced by fermentation is extracted from the gas phase portions 4 and 43 into the gas phase portions 4 and 43 at the top of the fermenter 2 and / or the temporary residence tank 40. It is desirable to provide a circulating gas passage 36 that is sent to the ammonia collector 37 and returns the output gas of the collector 37 to the gas phase sections 4 and 43. Furthermore, a recovery port 18 for recovering the biogas G produced by fermentation can be provided in the gas phase portions 4 and 43 at the top of the fermentation tank 2 and / or the temporary residence tank 40.

本発明による固形有機性廃棄物のメタン発酵装置は、発酵液Lを貯えた嫌気性発酵槽2の内側を有孔隔壁3により上下に仕切り、隔壁上方に固形有機性廃棄物Aを取り入れ、ポンプ11付き還流路10により発酵槽2内の発酵液Lを隔壁下方の底部から引き抜き発酵槽2の外側を介して隔壁上方の頂部に戻して嫌気的に循環させることにより固形有機性廃棄物Aを隔壁3の上方で可溶化し且つ隔壁3の下方に移行させてメタン発酵させるので、次の顕著な効果を奏する。 In the solid organic waste methane fermentation apparatus according to the present invention, the inside of the anaerobic fermenter 2 storing the fermentation liquor L is divided up and down by a perforated partition wall 3, and the solid organic waste A is taken up above the partition wall. The solid organic waste A is removed by anaerobically circulating the fermented liquor L in the fermenter 2 from the bottom part below the partition wall through the outside of the partition tank 2 and returning to the top part above the partition wall by the reflux path 10 with 11. Since it is solubilized above the partition wall 3 and moved below the partition wall 3 for methane fermentation, the following remarkable effects are exhibited.

(イ)有孔隔壁3の上方に取り入れた固形有機性廃棄物Aを徐々に可溶化させて有孔隔壁3の下方に抽出し、可溶化した有機物を発酵液Lと共に循環させながら嫌気性微生物と均一に接触させるので、流動性の低い状態で撹拌する従来の乾式メタン発酵法に比してメタン発酵率を向上させることができる。
(ロ)また、固形有機性廃棄物Aのうち易分解性固形物は比較的早期に可溶化するのに対し、難分解性固形物は有孔隔壁3の上方で時間をかけて可溶化するので、難分解性有機物と易分解性有機物とが混合している場合でも、それぞれを効率的にメタン発酵することができる。
(ハ)還流路10上に一時滞留槽40を設けることにより、可溶化した有機物を発酵槽2の内部だけでなく還流路10上においても効率的にメタン発酵させることができ、装置の全体的なメタン発酵率を高めることができる。
(ニ)発酵槽2内の隔壁3の下方や一時滞留槽40内に嫌気性微生物の固定床20を設けることにより、メタン発酵率を更に向上させることができ、従来の湿式メタン発酵法と同程度にまでメタン発酵率を高めることが可能である。
(B) The solid organic waste A introduced above the perforated partition wall 3 is gradually solubilized and extracted below the perforated partition wall 3, and the solubilized organic matter is circulated with the fermentation liquor L while anaerobic microorganisms are circulated. Therefore, the methane fermentation rate can be improved as compared with the conventional dry methane fermentation method in which stirring is performed in a low fluidity state.
(B) In the solid organic waste A, easily decomposable solids are solubilized relatively early, whereas hardly decomposable solids are solubilized over the perforated partition walls 3 over time. Therefore, even when the hardly decomposable organic substance and the easily decomposable organic substance are mixed, each can be efficiently methane-fermented.
(C) By providing the temporary residence tank 40 on the reflux path 10, the solubilized organic matter can be efficiently methane-fermented not only in the fermenter 2 but also on the reflux path 10, and the entire apparatus Methane fermentation rate can be increased.
(D) By providing a fixed bed 20 of anaerobic microorganisms below the partition wall 3 in the fermenter 2 and in the temporary residence tank 40, the methane fermentation rate can be further improved, which is the same as the conventional wet methane fermentation method. It is possible to increase the methane fermentation rate to an extent.

(ホ)発酵槽2の底部に連通する発酵済液の溢流路を設けることにより、難分解性固形物等が分解不十分のまま発酵槽から流出するのを抑制し、発酵済液中に含まれる未分解有機物の量を削減できる。
(ヘ)発酵槽2内に隔壁上方まで発酵液Lを貯えることにより、隔壁上方に取り入れた固形有機性廃棄物Aを撹拌することも可能となり、固形有機性廃棄物Aの可溶化の促進と共に隔壁3の目詰まりの防止も期待できる。
(ト)低含水率の固形有機性廃棄物Aを無希釈でメタン発酵できるので、処理後に生じる発酵済液量を大幅に削減することができ、二次処理コストの低減による経済的なメタン発酵処理が可能である。
(チ)また、固形有機性廃棄物A中に固形異物が混入していても、可溶化しない異物は隔壁上方に残り隔壁下方のメタン発酵を阻害しないので、発酵槽2へ取り入れる前段階で有機性廃棄物Aから異物を除去する必要性がなくなり、前処理コストの低減による経済性も期待できる。
(E) By providing an overflow channel for the fermented liquid communicating with the bottom of the fermenter 2, it is possible to prevent the hardly-decomposable solids from flowing out of the fermenter with insufficient decomposition, and in the fermented liquid The amount of undecomposed organic matter contained can be reduced.
(F) By storing the fermentation liquor L in the fermenter 2 up to the upper side of the partition wall, it becomes possible to agitate the solid organic waste A taken in the upper side of the partition wall, and promotes the solubilization of the solid organic waste A. Prevention of clogging of the partition walls 3 can also be expected.
(G) Since solid organic waste A having a low water content can be methane-fermented without dilution, the amount of fermented liquid produced after treatment can be greatly reduced, and economical methane fermentation by reducing secondary treatment costs Processing is possible.
(H) Even if solid foreign matter is mixed in the solid organic waste A, the foreign matter that is not solubilized remains above the partition wall and does not inhibit the methane fermentation below the partition wall. There is no need to remove foreign substances from the radioactive waste A, and economics due to a reduction in pretreatment costs can be expected.

図1は本発明のメタン発酵装置1の実施例を示す。図示例のメタン発酵装置1は、発酵液Lを気密に貯留させる嫌気性発酵槽2、発酵槽2の内側を上下に仕切る有孔隔壁3、発酵槽2内の有孔隔壁3の上方空間P1と下方空間P2とを発酵槽2の外側を介して接続するポンプ11付き還流路10、及び発酵槽2の底部に接続され発酵槽2の外側の液面対応高さhに溢流口16を設けた溢流路15を有する。ただし、溢流路15は必ずしも発酵槽2に接続する必要はなく、後述するように溢流路15を還流路10上に設けてもよい(図5参照)。発酵液Lの一例は嫌気性微生物を含有させた水であるが、必要に応じて中和剤や微量栄養剤等の分解処理添加剤を加えてもよい。   FIG. 1 shows an embodiment of a methane fermentation apparatus 1 of the present invention. The illustrated example of the methane fermentation apparatus 1 includes an anaerobic fermentation tank 2 that stores the fermentation liquor L in an airtight manner, a perforated partition 3 that partitions the inside of the fermentation tank 2 up and down, and an upper space P1 of the perforated partition 3 in the fermentation tank 2 And the lower space P2 through the outside of the fermenter 2 and the reflux path 10 with the pump 11, and the overflow port 16 connected to the bottom of the fermenter 2 and at the liquid level corresponding height h outside the fermenter 2. An overflow channel 15 is provided. However, the overflow channel 15 is not necessarily connected to the fermenter 2, and the overflow channel 15 may be provided on the reflux channel 10 as described later (see FIG. 5). An example of the fermented liquor L is water containing anaerobic microorganisms, but a decomposition treatment additive such as a neutralizing agent or a micronutrient may be added as necessary.

図2は発酵槽2内に設置する有孔隔壁3の一例を示す。例えば、発酵槽2の内周断面形状と同じ外縁形状であって全面又は一部に小孔3aが穿たれた多孔板を有孔隔壁3とし、発酵槽2の内周面の所定部位に多孔板の外縁を密着させて嵌め込むことにより発酵槽2の内側を上方空間P1と下方空間P2とに仕切る。有孔隔壁3で仕切られた発酵槽2の上方空間P1には固形有機性廃棄物Aの取入口5を設け、固形有機性廃棄物Aを取入口5から発酵槽2の上方空間P1に投入する。固形有機性廃棄物Aは、適当な大きさに粗粉砕して投入することが望ましい。上方空間P1に投入された固形有機性廃棄物Aは有孔隔壁3により固液分離され、比較的粒径の大きい固形有機物は有孔隔壁3の上方空間P1に溜まり、小孔3aより粒径の小さい有機物は有孔隔壁3の下方空間P2に移行する。   FIG. 2 shows an example of a perforated partition wall 3 installed in the fermenter 2. For example, a porous plate having the same outer edge shape as the inner peripheral cross-sectional shape of the fermenter 2 and having small holes 3a formed on the entire surface or a part thereof is used as the perforated partition wall 3 and porous at a predetermined portion on the inner peripheral surface of the fermenter 2. The inner edge of the fermenter 2 is partitioned into an upper space P1 and a lower space P2 by fitting the outer edges of the plates in close contact. The upper space P1 of the fermenter 2 partitioned by the perforated partition wall 3 is provided with an inlet 5 for the solid organic waste A, and the solid organic waste A is introduced into the upper space P1 of the fermenter 2 from the inlet 5 To do. It is desirable that the solid organic waste A is roughly pulverized into an appropriate size before being charged. The solid organic waste A put into the upper space P1 is solid-liquid separated by the perforated partition wall 3, and the solid organic matter having a relatively large particle size is accumulated in the upper space P1 of the perforated partition wall 3, and the particle size is smaller than the small hole 3a. Small organic matter moves to the lower space P2 of the perforated partition wall 3.

ポンプ11付き還流路10により、発酵槽2内の発酵液Lを有孔隔壁3の下方空間P2の底部から引き抜き上方空間P1の頂部に戻して循環させることにより、発酵槽2内の液層に緩やかな下降流を形成する。図示例の発酵装置1は、溢流路15の溢流口16の高さhによって発酵槽2内の発酵液Lの液面位を定める構造となっており、溢流口16を上方空間P1の固形有機性廃棄物Aが冠水する高さhに設けている。発酵液L中に冠水した上方空間P1の固形有機性廃棄物Aは、発酵液L中の嫌気性微生物との接触により徐々に分解されて可溶化し、粒径の小さい有機物となって発酵液Lの下降流により有孔隔壁3の下方空間P2に移行する。有孔隔壁3の下方空間P2に移行した有機物は、発酵液Lの下降流によって均一に撹拌されながら、更に嫌気性微生物との接触によりバイオガスGに分解(メタン発酵)される。   The fermentation liquor L in the fermenter 2 is drawn from the bottom of the lower space P2 of the perforated partition wall 3 and returned to the top of the upper space P1 by the reflux path 10 with the pump 11 to circulate the liquid in the fermenter 2 A gentle downward flow is formed. The fermenter 1 in the illustrated example has a structure in which the level of the fermentation liquid L in the fermenter 2 is determined by the height h of the overflow port 16 of the overflow channel 15, and the overflow port 16 is located in the upper space P1. Are provided at a height h at which the solid organic waste A is submerged. The solid organic waste A in the upper space P1 submerged in the fermentation broth L is gradually decomposed and solubilized by contact with the anaerobic microorganisms in the fermentation broth L, and becomes an organic substance having a small particle diameter. The downward flow of L shifts to the lower space P2 of the perforated partition wall 3. The organic matter transferred to the lower space P2 of the perforated partition wall 3 is further decomposed into biogas G (methane fermentation) by contact with anaerobic microorganisms while being uniformly stirred by the downward flow of the fermentation liquor L.

ただし、発酵槽2内の発酵液Lの液面位は必ずしも固形有機性廃棄物Aが冠水する高さhとしなくてもよく、発酵槽2に投入する固形有機性廃棄物Aの種類・粒径等の条件によって適宜選択することができる。例えば有機性廃棄物Aが易分解性である場合は、図3に示すように、溢流路15の溢流口16を有孔隔壁3とほぼ同じ高さhとして有孔隔壁3の下方空間P2にだけ発酵液Lを充填し、還流路10の戻り口10bから上方空間P1の頂部に戻す発酵液Lを固形有機性廃棄物A上に散布することにより、発酵液Lに冠水していない固形有機性廃棄物Aを徐々に分解して可溶化することができる。この場合は、還流路10の戻り口10bにスプレー等の分散吐出器12等を取り付け、分散吐出器12の複数の吐出口13から発酵液Lを固形有機性廃棄物Aの全体に均等に供給し、上方空間P1内の微生物反応が不均一になるのを防ぐことが望ましい。なお、分散吐出器12は図1の還流路10の戻り口10bに取り付けることもできる。 However, the level of the fermented liquid L in the fermenter 2 does not necessarily have to be the height h at which the solid organic waste A is submerged, and the type / grains of the solid organic waste A to be introduced into the fermenter 2 It can be appropriately selected depending on conditions such as diameter. For example, when the organic waste A is easily decomposable, as shown in FIG. 3, the overflow port 16 of the overflow channel 15 is set to the same height h as the perforated partition wall 3 and the space below the perforated partition wall 3. The fermented liquor L is filled with the fermented liquor L, and the fermented liquor L returned from the return port 10b of the reflux path 10 to the top of the upper space P1 is sprayed on the solid organic waste A so that the fermented liquor L is not flooded. The solid organic waste A can be gradually decomposed and solubilized. In this case, a dispersion discharge device 12 such as a spray is attached to the return port 10b of the reflux path 10, and the fermentation liquid L is evenly supplied to the entire solid organic waste A from the plurality of discharge ports 13 of the dispersion discharge device 12. However, it is desirable to prevent the microbial reaction in the upper space P1 from becoming uneven. In addition, the dispersion | distribution discharger 12 can also be attached to the return port 10b of the reflux path 10 of FIG.

有孔隔壁3の小孔3aの孔径、孔間ピッチ、形状、配列等も、発酵槽2に投入する固形有機性廃棄物Aの種類・粒径等の条件に応じて適宜選択することができる。例えば小孔3aの孔径を0.1mm〜50mmの範囲から選択し、形状を丸孔・角孔等から選択し、配列を並列配列・千鳥配列等から選択し、例えば千鳥配列を選択した場合は図2(A)に示すように千鳥抜きの角度θ等を更に選択することができる。また、有孔隔壁3の開孔率も固形有機性廃棄物Aの種類・粒径等の条件に応じて例えば10〜60%の範囲から選択することができ、図2(B)に示すように有孔隔壁3上に無孔部3cを適宜設けることもできる。例えば、有機性廃棄物Aが易分解性である場合は有孔隔壁3の開口率や小孔3aの孔径を比較的大きくし、難分解性固形物を含む場合は有孔隔壁3の上方空間P1で時間をかけて可溶化させるために開口率や小孔3aの孔径を比較的小さくすることができる。必要に応じて、表1に示すように複数の有孔隔壁3を用意し、固形有機性廃棄物Aの条件に応じて発酵槽2内の有孔隔壁3を交換してもよい。   The hole diameter, inter-hole pitch, shape, arrangement, etc. of the small holes 3a of the perforated partition wall 3 can also be appropriately selected according to the conditions such as the type and particle diameter of the solid organic waste A to be introduced into the fermentation tank 2. . For example, if the hole diameter of the small holes 3a is selected from the range of 0.1 mm to 50 mm, the shape is selected from round holes, square holes, etc., the arrangement is selected from parallel arrangement, staggered arrangement, etc. As shown in FIG. 2A, a staggered angle θ or the like can be further selected. Moreover, the aperture ratio of the perforated partition wall 3 can be selected from a range of 10 to 60%, for example, depending on conditions such as the type and particle size of the solid organic waste A, as shown in FIG. A non-porous portion 3c can be appropriately provided on the perforated partition wall 3. For example, when the organic waste A is easily decomposable, the aperture ratio of the perforated partition wall 3 and the hole diameter of the small holes 3a are relatively large, and when the organic waste A contains hardly decomposable solids, the space above the perforated partition wall 3 In order to solubilize with P1 over time, the aperture ratio and the hole diameter of the small holes 3a can be made relatively small. If necessary, a plurality of perforated partition walls 3 may be prepared as shown in Table 1, and the perforated partition walls 3 in the fermenter 2 may be replaced according to the conditions of the solid organic waste A.

Figure 0004822263
Figure 0004822263

図示例の溢流路15は、取出口15aから下方空間P2の底部の発酵液Lを進入させ、液面対応高さhまで上昇させて溢流口16から発酵槽2の外に溢流させるものである。有孔隔壁3の上方空間P1から下方空間P2に移行した有機物は、下方空間P2において嫌気性微生物との接触によりメタン発酵が進んで粒径が小さくなるが、発酵の進んでいない比較的粒径の大きな有機物は発酵液Lの下降流に乗って移動しやすく、還流路10の引抜口10aに引き抜かれて更に循環する。このため、図示例のように下方空間P2の底部に還流路10の引抜口10aと溢流路15の取出口15aとを設けることにより、発酵の進んだ比較的粒径の小さい有機物だけを取出口15aから溢流路15に進入させ、発酵の進んでいない有機物が発酵槽2から流出するのを抑制し、溢流口16から溢流させる発酵済液C中に含まれる未分解の有機物量を抑制することができる。なお、図示例の符合15bは通気口である。 The overflow channel 15 in the illustrated example allows the fermentation liquor L at the bottom of the lower space P2 to enter from the outlet 15a and raises it to the level h corresponding to the liquid level to overflow from the overflow port 16 to the outside of the fermenter 2. Is. The organic matter that has migrated from the upper space P1 to the lower space P2 of the perforated partition wall 3 is reduced in particle size by contact with anaerobic microorganisms in the lower space P2, but the particle size becomes smaller, but the fermentation has not progressed relatively. Large organic matter easily moves on the descending flow of the fermentation liquor L, and is extracted to the extraction port 10a of the reflux path 10 and further circulates. For this reason, as shown in the figure, by providing the outlet 10a of the reflux channel 10 and the outlet 15a of the overflow channel 15 at the bottom of the lower space P2, only the organic matter having a relatively small particle size that has undergone fermentation is collected. The amount of undecomposed organic matter contained in the fermented liquid C that enters the overflow channel 15 from the outlet 15a, suppresses the unfermented organic matter from flowing out of the fermenter 2, and overflows from the overflow port 16. Can be suppressed. In the illustrated example, reference numeral 15b is a vent hole.

好ましくは、発酵槽2内の下方空間P2に発酵液Lが透過可能な嫌気性微生物の固定床20を設け、下方空間P2における有機物のメタン発酵を促進する。例えば図6に示すような中空筒状の微生物担体21を、各担体21の中心軸線が発酵液Lの下降流方向と一致するように下方空間P2に規則的に並べて固定床20を形成する。図示例の中空筒状の微生物担体21は、炭素繊維又はガラス繊維製の多孔質周壁22を例えばエポキシ樹脂製の枠体23に保持して中空筒状に成形したものである。炭素繊維又はガラス繊維の織布又は不織布で形成した多孔質周壁22は、内部に数μm〜数百μm径の無数の小空隙を有し、その空隙に微生物が付着して高濃度に増殖するので嫌気性微生物を効率よく担持できる。ただし、固定床20の種類及び形状は図示例に限定されるものではなく、嫌気性微生物が高濃度に付着可能な適当な微生物担体を用いることができる。   Preferably, a fixed bed 20 of anaerobic microorganisms through which the fermentation liquor L can permeate is provided in the lower space P2 in the fermenter 2 to promote organic methane fermentation in the lower space P2. For example, hollow cylindrical microbial carriers 21 as shown in FIG. 6 are regularly arranged in the lower space P2 so that the center axis of each carrier 21 coincides with the downward flow direction of the fermentation liquor L to form the fixed bed 20. The hollow cylindrical microbial carrier 21 in the illustrated example is formed into a hollow cylindrical shape by holding a porous peripheral wall 22 made of carbon fiber or glass fiber on a frame body 23 made of, for example, epoxy resin. The porous peripheral wall 22 formed of carbon fiber or glass fiber woven or non-woven fabric has innumerable small voids with a diameter of several μm to several hundred μm inside, and microorganisms adhere to the voids and grow at a high concentration. Therefore, anaerobic microorganisms can be carried efficiently. However, the kind and shape of the fixed bed 20 are not limited to the illustrated examples, and an appropriate microbial carrier to which anaerobic microorganisms can adhere at a high concentration can be used.

また、発酵槽2内の上方の固形有機性廃棄物Aを発酵液L中に冠水させた場合は、図4に示すように、上方空間P1に撹拌手段30を設けて固形有機物を流動させながら可溶化を促進することができる。同図(A)では、発酵槽2の上方空間P1に配置した撹拌翼31を撹拌手段30とし、発酵槽2の上部に設けた撹拌モータ32で撹拌翼31を回転させることにより上方空間P1の固形有機性廃棄物Aを撹拌している。固形有機性廃棄物Aを発酵液L中に冠水させながら撹拌することにより、従来の乾式メタン発酵法に比し流動性の高い状態で有機性廃棄物Aを容易に撹拌することができる。また、同図(B)に示すように撹拌手段30を、有孔隔壁3の中央部3b(図2(A)参照)に形成した無孔部と、還流路10の戻り口10bに有孔隔壁3の中央無孔部3bに向けて取り付けた案内管34とにより構成することもできる。案内管34により発酵液Lの戻り流を有孔隔壁3の中央無孔部3bに案内して下向きに噴き付けることにより、上方空間P1に発酵液Lの液循環を生じさせて固形有機性廃棄物Aを撹拌する。 Further, when the upper solid organic waste A in the fermenter 2 is submerged in the fermentation liquor L, as shown in FIG. 4, the stirring means 30 is provided in the upper space P1 while flowing the solid organic matter. Solubilization can be promoted. In FIG. 2A, the stirring blade 31 disposed in the upper space P1 of the fermenter 2 is used as the stirring means 30, and the stirring blade 31 is rotated by the stirring motor 32 provided in the upper portion of the fermenter 2, so that the upper space P1 Solid organic waste A is being stirred. By stirring the solid organic waste A while submerging it in the fermentation liquor L, the organic waste A can be easily stirred in a state of higher fluidity than the conventional dry methane fermentation method. Further, as shown in FIG. 2B, the stirring means 30 is perforated in the non-hole portion formed in the central portion 3b of the perforated partition wall 3 (see FIG. 2A) and in the return port 10b of the reflux passage 10. A guide tube 34 attached toward the central non-hole portion 3b of the partition wall 3 can also be used. The return flow of the fermentation liquor L is guided by the guide tube 34 to the central non-porous portion 3b of the perforated partition wall 3 and sprayed downward to cause liquid circulation of the fermentation liquor L in the upper space P1, thereby causing solid organic disposal. Stir thing A.

図示例の発酵槽2は、固形有機性廃棄物Aの取入口5の他に、頂部の気相部4に設けたバイオガスGの回収口18と、有孔隔壁3の上側面に隣接する排出口9とを有する。発酵槽2内の下方空間P2のメタン発酵で生成したバイオガスGは、有孔隔壁3を通過して頂部の気相部4に移行するので、回収口18からガス回収路17を介してエネルギー変換装置(図示せず)等に回収できる。下方空間P2で発生したバイオガスGが有孔隔壁3を通過する際に、そのガス圧によって有孔隔壁3の小孔3aの目詰まりを防止する効果も期待できる。また、上方空間P1に設けた固形有機性廃棄物Aの撹拌手段30は、有孔隔壁3上への有機性廃棄物Aの蓄積・沈着を防止する作用があり、有孔隔壁3の小孔3aの目詰まり防止にも有効である。   The fermenter 2 in the illustrated example is adjacent to the recovery port 18 of the biogas G provided in the gas phase section 4 at the top, and the upper side surface of the perforated partition wall 3 in addition to the intake 5 of the solid organic waste A. And a discharge port 9. Since the biogas G generated by methane fermentation in the lower space P2 in the fermenter 2 passes through the perforated partition wall 3 and moves to the gas phase section 4 at the top, energy from the recovery port 18 through the gas recovery path 17 It can be collected in a conversion device (not shown). When the biogas G generated in the lower space P2 passes through the perforated partition wall 3, the gas pressure can also be expected to prevent clogging of the small holes 3a of the perforated partition wall 3. Further, the stirring means 30 of the solid organic waste A provided in the upper space P1 has an action of preventing the accumulation and deposition of the organic waste A on the perforated partition wall 3, and the small holes of the perforated partition wall 3 are provided. It is also effective in preventing clogging of 3a.

発酵槽2に設けた排出口9は、固形有機性廃棄物A中に混入することのある固形異物Bを排出するためのものである。可溶化しない固形異物Bは下方空間P2に移行せず有孔隔壁3上に滞留するため、有孔隔壁3上に溜まった固形異物Bを排出口9から適宜取り出して回収する。図示例の発酵槽2に取り入れる有機性廃棄物Aは、前処理段階で粗粉砕すれば十分であり、しかも固形異物Bが混入していても有孔隔壁3上に滞留して下方空間P2のメタン発酵を阻害しないので、必ずしも前処理段階で固形異物Bを分別する必要もない。従って、従来のメタン発酵法に比し、本発明の発酵装置1は固形有機性廃棄物Aの前処理を極めて簡単化できる利点を有している。   The discharge port 9 provided in the fermenter 2 is for discharging the solid foreign matter B that may be mixed in the solid organic waste A. Since the solid foreign matter B which is not solubilized does not move to the lower space P2 but stays on the perforated partition wall 3, the solid foreign matter B accumulated on the perforated partition wall 3 is appropriately taken out from the discharge port 9 and collected. It is sufficient that the organic waste A taken into the fermenter 2 in the illustrated example is roughly pulverized in the pretreatment stage, and even if solid foreign matter B is mixed in, the organic waste A stays on the perforated partition wall 3 and remains in the lower space P2. Since methane fermentation is not inhibited, it is not always necessary to separate the solid foreign matter B in the pretreatment stage. Therefore, compared with the conventional methane fermentation method, the fermentation apparatus 1 of the present invention has an advantage that the pretreatment of the solid organic waste A can be extremely simplified.

メタン発酵装置1には、発酵槽2内の発酵液Lを嫌気性微生物が活性を示す温度(例えば、37℃又は55℃)に保温する保温装置26を含めることが望ましい。図示例では、例えば熱交換器である保温装置26を還流路10上に設け、保温装置26に高温水又は蒸気等の温熱媒体Hを送り込むことにより発酵槽2内の発酵液Lを嫌気性微生物の活性温度に保持している。図示例の保温装置26に代えて、発酵槽2の周壁にジャケット型の熱交換器又はヒータ等を取り付けて保温装置26としてもよい。発酵槽2の下方空間P2において上方空間P1から移行した有機物を活性温度において嫌気性微生物と接触させてメタン発酵させることにより、本発明のメタン発酵装置1のメタン発酵効率を、従来の湿式メタン発酵法と同程度にまで高めることが可能である。   It is desirable that the methane fermentation apparatus 1 includes a heat retaining device 26 that retains the fermentation liquid L in the fermenter 2 at a temperature (for example, 37 ° C. or 55 ° C.) at which the anaerobic microorganisms are active. In the illustrated example, for example, a heat-retaining device 26 that is a heat exchanger is provided on the reflux path 10, and by sending a heat medium H such as high-temperature water or steam into the heat-retaining device 26, the fermentation liquid L in the fermenter 2 is anaerobic microorganisms. The active temperature is maintained. Instead of the heat retaining device 26 in the illustrated example, a jacket type heat exchanger or a heater or the like may be attached to the peripheral wall of the fermenter 2 to form the heat retaining device 26. The organic matter transferred from the upper space P1 in the lower space P2 of the fermenter 2 is brought into contact with anaerobic microorganisms at the active temperature and subjected to methane fermentation. It can be raised to the same level as the law.

発酵槽2内の発酵液Lは溢流路15からの溢流により減少するが、廃棄物A中の水分によって発酵液Lが補われるので、基本的には発酵液Lを補給する必要はない。必要が生じた場合にのみ取入口5から水等を追加すれば足りる。従って、取入口5から低含水率の固形有機性廃棄物Aを無希釈のまま投入してメタン発酵することが可能であり、従来の湿式メタン発酵法に比し溢流路15から流出する発酵済液Cの量を大幅に削減することができる。また、上方空間P1に投入した固形有機性廃棄物Aのうち易分解性固形物は比較的早期に可溶化するのに対し、難分解性固形物は上方空間P1において時間をかけて可溶化されるため、難分解性有機物と易分解性有機物とが混合している場合でも、それぞれを効率的にメタン発酵することができる。   Although the fermented liquor L in the fermenter 2 decreases due to the overflow from the overflow channel 15, the fermented liquor L is supplemented by the water in the waste A, so that it is basically not necessary to replenish the fermented liquor L. . It is sufficient to add water or the like from the intake 5 only when necessary. Therefore, the solid organic waste A having a low water content can be introduced undiluted from the intake port 5 for methane fermentation, and the fermentation liquid flowing out from the overflow channel 15 as compared with the conventional wet methane fermentation method. The amount of the spent solution C can be greatly reduced. In addition, among the solid organic waste A put into the upper space P1, the readily decomposable solids are solubilized relatively early, whereas the hardly decomposable solids are solubilized in the upper space P1 over time. Therefore, even when the hardly decomposable organic substance and the easily decomposable organic substance are mixed, each can be efficiently methane-fermented.

[実験例1]
本発明のメタン発酵装置1によるメタン発酵効率を確認するため、図7に示す有効容積10リットルの嫌気性発酵槽2を用いて試作し、固形有機性廃棄物Aの投入量に対するバイオガスGの発生量を計測する実験を行った。本実験では、固形有機性廃棄物Aとして食堂残渣を粉砕処理した含水率70%の生ごみを用いた。この生ごみの全化学的酸素要求量(T-CODcr)は400,000mg/kgであった。
[Experimental Example 1]
In order to confirm the efficiency of methane fermentation by the methane fermentation apparatus 1 of the present invention, a prototype was made using an anaerobic fermentation tank 2 having an effective volume of 10 liters shown in FIG. An experiment was conducted to measure the amount generated. In this experiment, garbage with a moisture content of 70% obtained by crushing a canteen residue was used as the solid organic waste A. The total chemical oxygen demand (T-CODcr) of this garbage was 400,000 mg / kg.

発酵槽2の内部を孔径1mmの小孔3aが穿たれた有孔隔壁3で上下に仕切り、取入口5又は溢流口16から発酵槽2内に上方空間P1の固形有機性廃棄物Aが冠水する高さhまで発酵液Lを充填し、更に発酵槽2内に充填した発酵液Lをポンプ11付き還流路10により下方空間P2から上方空間P1へ循環させて発酵槽2内に緩やかな下降流を形成した。発酵槽2の下方空間P2には図6の中空筒状の微生物担体21を規則的に並べて固定床20を形成し、発酵槽2の上部空間P1には撹拌翼31を配置し、還流路10上の保温装置26により発酵槽2内の発酵液Lを嫌気性微生物(高温菌)の活性温度である55℃に保持した。   The inside of the fermenter 2 is divided up and down by a perforated partition wall 3 having a small hole 3a having a hole diameter of 1 mm, and the solid organic waste A in the upper space P1 enters the fermenter 2 from the intake 5 or the overflow port 16. The fermented liquor L is filled up to the height h to be submerged, and the fermented liquor L filled in the fermenter 2 is circulated from the lower space P2 to the upper space P1 through the reflux path 10 with the pump 11, and then gently put into the fermenter 2. A downward flow was formed. In the lower space P2 of the fermenter 2, the hollow cylindrical microbial carriers 21 of FIG. 6 are regularly arranged to form a fixed bed 20, and in the upper space P1 of the fermenter 2, an agitating blade 31 is disposed. The fermented liquid L in the fermenter 2 was kept at 55 ° C., which is the active temperature of anaerobic microorganisms (thermophilic bacteria), by the above heat retaining device 26.

図7の発酵槽2に固形有機性廃棄物Aを250g/日の割合で連続的に投入し、撹拌翼31で撹拌しながらバイオガスGの発生量の経日変化を計測した。本実験結果を図8のグラフに示す。同グラフから分かるように、60日間にわたりバイオガスGの発生量は安定しており、従来の乾式メタン発酵のように有機性廃棄物と嫌気性微生物との不均一な接触による微生物反応の効率低下が見られないことから、本発明の発酵装置1により固形有機性廃棄物Aを均一にメタン発酵できることを確認できた。また、固形有機性廃棄物Aの供給量に対するバイオガスGの発生量から有機物分解率を算出したところ、本発明の発酵装置1では従来の湿式メタン発酵法とほぼ同程度の高効率で固形有機性廃棄物Aがメタン発酵されていることを確認できた。なお、図示例の符合19は排液槽である。 Solid organic waste A was continuously added at a rate of 250 g / day to the fermenter 2 in FIG. 7 , and the change over time in the amount of biogas G generated was measured while stirring with the stirring blade 31. The results of this experiment are shown in the graph of FIG. As can be seen from the graph, the amount of biogas G generated is stable for 60 days, and the efficiency of microbial reaction is reduced by non-uniform contact between organic waste and anaerobic microorganisms as in conventional dry methane fermentation. Therefore, it was confirmed that the solid organic waste A can be uniformly methane-fermented by the fermentation apparatus 1 of the present invention. In addition, when the organic matter decomposition rate was calculated from the amount of biogas G generated with respect to the supply amount of the solid organic waste A, the fermentation apparatus 1 of the present invention has a solid organic material with high efficiency almost equal to that of the conventional wet methane fermentation method. It was confirmed that the organic waste A was methane-fermented. Note that reference numeral 19 in the illustrated example is a drainage tank.

[実験例2]
また、本発明のメタン発酵装置1により難分解性有機物と易分解性有機物とが混合している場合も効率的にメタン発酵できることを確認するため、実験例1と同様に図7の嫌気性発酵槽2を用いて実験を行った。本実験では、原料として実験例1の生ごみと紙ごみ(オフィス排出シュレッダー排紙)とを混合した固形有機性廃棄物Aを用いた。紙ごみは難分解性物質、生ごみは易分解性物質であり、生ごみと紙ごみとの混合比が重量比で19:1になるように固形有機性廃棄物Aを調整した。生ごみのT-CODcrは400,000mg/kg、紙ごみのT-CODcrは1,086,000mg/kgであった。
[Experiment 2]
Moreover, in order to confirm that methane fermentation can be efficiently performed even when the hardly decomposable organic substance and the easily decomposable organic substance are mixed by the methane fermentation apparatus 1 of the present invention, the anaerobic fermentation of FIG. Experiments were performed using tank 2. In this experiment, solid organic waste A in which the raw garbage of Experiment Example 1 and paper waste (office discharge shredder discharge) were mixed was used as a raw material. The solid organic waste A was adjusted so that the mixing ratio of garbage to paper waste was 19: 1 by weight ratio. The T-CODcr for garbage was 400,000 mg / kg, and the T-CODcr for paper waste was 1,086,000 mg / kg.

図7の発酵槽2に上述した固形有機性廃棄物Aを200g/日(生ごみ190g+紙ごみ10g)の割合で連続的に投入し、撹拌翼31で撹拌しながらバイオガスGの発生量の経日変化を計測した。本実験結果を図9のグラフに示す。同グラフから、紙ごみが約10日で分解され、紙ごみの分解と共にバイオガスGの発生量が徐々に増加していることが分かる。10日以降の定常状態において固形有機性廃棄物Aの供給量に対するバイオガスGの発生量から有機物分解率を算出したところ約80%であり、難分解性有機物と易分解性有機物とが混合した固形有機性廃棄物Aをも本発明の発酵装置1により効率よくメタン発酵できることを確認できた。また、溢流路15の溢流口16から溢流する発酵済液C中の有機物量を計測したところ、残留有機物量は従来の湿式メタン発酵法とほぼ同程度であり、難分解性有機物と易分解性有機物とをそれぞれ効率的にメタン発酵できていることを裏付けることができた。 The above-mentioned solid organic waste A is continuously added to the fermenter 2 in FIG. 7 at a rate of 200 g / day (190 g of raw garbage + 10 g of paper waste), and the amount of biogas G generated while stirring with the stirring blade 31. Daily changes were measured. The result of this experiment is shown in the graph of FIG. From the graph, it can be seen that the paper waste was decomposed in about 10 days, and the amount of biogas G generated gradually increased with the decomposition of the paper waste. The organic matter decomposition rate calculated from the amount of biogas G generated with respect to the supply amount of solid organic waste A in the steady state after 10th is about 80%, and the hard-to-decompose organic matter and the easily-decomposable organic matter are mixed. It was confirmed that the solid organic waste A can also be efficiently methane-fermented by the fermentation apparatus 1 of the present invention. Further, when the amount of organic matter in the fermented liquid C overflowing from the overflow port 16 of the overflow channel 15 was measured, the amount of residual organic matter was almost the same as that of the conventional wet methane fermentation method, It was proved that methane fermentation of each easily decomposable organic substance was possible efficiently.

こうして本発明の目的である「固形有機性廃棄物を無希釈で効率的にメタン発酵処理できるメタン発酵装置」の提供を達成することができる。   Thus, the provision of “a methane fermentation apparatus capable of efficiently subjecting a solid organic waste to a methane fermentation treatment without dilution”, which is an object of the present invention, can be achieved.

図5は、発酵槽2の発酵液Lを循環させる還流路10上に、発酵液Lを一端側から流入させ所要時間滞留させたのち他端側から流出させる一時滞留槽40を設けた本発明のメタン発酵装置1の実施例を示す。還流路10上に一時滞留槽40を設けることにより、発酵槽2の高さを低くすることができると共に、可溶化した有機物を発酵槽2の内部だけでなく還流路10上においてもメタン発酵させることができるので、装置全体のメタン発酵率を更に高めることができる。 FIG. 5 shows the present invention in which a temporary residence tank 40 is provided on the reflux path 10 for circulating the fermentation liquor L in the fermentation tank 2, allowing the fermentation liquor L to flow from one end side, stay for a required time, and then flow out from the other end side. The Example of the methane fermentation apparatus 1 of this is shown. By providing the temporary residence tank 40 on the reflux path 10, the height of the fermenter 2 can be reduced, and the solubilized organic matter is methane-fermented not only inside the fermentation tank 2 but also on the reflux path 10. Therefore, the methane fermentation rate of the entire apparatus can be further increased.

図示例の発酵槽2は、比較的底部に有孔隔壁3を設けて固形有機性廃棄物Aを投入すると共に投入した固形有機性廃棄物Aの上方に有孔蓋27を設け、発酵槽2の外側から有孔隔壁3と有孔蓋27との間に連通する取入管7及び取入弁6を設けている。有孔隔壁3と有孔蓋27との間に投入された固形有機性廃棄物Aは、発酵液Lの下降流により徐々に分解されて可溶化し、還流路10の引抜口10aから引き抜かれて一時貯留槽20の流入口41へ送られる。一時貯留槽20の内側には孔空き受け台(グレーチング等)24が固定され、その受け台24上に適当な微生物担体を敷き詰めて固定床20が形成され、固定床10の上部に浮き上がり防止用の孔あき蓋(グレーチング)25が設けられている。流入口41から一時貯留槽20に流入した発酵液Lは、固定床20の間を上昇する間に嫌気性微生物により有機成分が分解され、固定床20上の流出口42aから流出路42を介して発酵槽2の頂部に戻されて循環する。   The fermenter 2 in the illustrated example is provided with a perforated partition wall 3 at a relatively bottom portion and charged with the solid organic waste A, and is provided with a perforated lid 27 above the charged solid organic waste A. The intake pipe 7 and the intake valve 6 communicated between the perforated partition wall 3 and the perforated lid 27 from the outside. The solid organic waste A introduced between the perforated partition wall 3 and the perforated lid 27 is gradually decomposed and solubilized by the downward flow of the fermentation liquor L, and is extracted from the extraction port 10a of the reflux path 10. To the inlet 41 of the temporary storage tank 20. A perforated cradle (grating, etc.) 24 is fixed inside the temporary storage tank 20, and an appropriate microbial carrier is spread on the cradle 24 to form a fixed floor 20, which is used to prevent floating above the fixed floor 10. A perforated lid (grating) 25 is provided. The fermented liquor L that has flowed into the temporary storage tank 20 from the inlet 41 is decomposed by anaerobic microorganisms while ascending between the fixed beds 20, and then flows from the outlet 42 a on the fixed bed 20 through the outlet 42. And returned to the top of the fermenter 2 for circulation.

なお図示例の発酵槽2では、有孔隔壁3と有孔蓋27との間に固形有機性廃棄物Aを投入しているので、ポンプ11付き還流路10により発酵液Lを逆向き(同図の矢印と逆向き)に循環させることも可能である。発酵液Lの逆向き循環によって発酵槽2内の発酵液Lの下降流を適宜に上昇流へ切り替えることで、有孔隔壁3及び有孔蓋27の小孔3aの目詰まりを効果的に防止できる。   In the fermenter 2 in the illustrated example, since the solid organic waste A is introduced between the perforated partition wall 3 and the perforated lid 27, the fermented liquor L is reversed by the reflux path 10 with the pump 11 (same as above). It is also possible to circulate in the direction opposite to the arrow in the figure. By switching the descending flow of the fermentation liquor L in the fermenter 2 to the ascending flow appropriately by reverse circulation of the fermented liquor L, the clogging of the perforated partition walls 3 and the small holes 3a of the perforated lid 27 is effectively prevented. it can.

また図示例では、一時滞留槽40を発酵槽2と同じ水平高さに設け、発酵槽2の底部に代えて、一時滞留槽40の底部に発酵液Lを槽外の液面対応高さhまで上昇させて溢流させる溢流路15を設けている。一時滞留槽40内には発酵液Lの上昇流が形成されるので、発酵液L中の比較的粒径の大きな有機物は上昇流に乗って固定床20へ運ばれ、発酵の進んだ小粒径の有機物だけを溢流路15から溢流させることができ、発酵不十分な有機物の流出を一層効果的に抑制することができる。なお図示例では、発酵槽2の気相部4と一時滞留槽40の気相部43とを気相部連通路44で接続し、バイオガスGの回収口18を一時滞留槽40の気相部に設けている。   Further, in the illustrated example, the temporary residence tank 40 is provided at the same horizontal height as the fermentation tank 2, and instead of the bottom of the fermentation tank 2, the fermentation liquid L is placed at the bottom of the temporary residence tank 40 and the height h corresponding to the liquid level outside the tank. An overflow channel 15 is provided to rise to overflow. Since an upward flow of the fermentation liquor L is formed in the temporary residence tank 40, organic matter having a relatively large particle size in the fermentation liquor L is carried on the upward flow to the fixed bed 20 and the fermented small particles Only the organic substance having a diameter can be overflowed from the overflow channel 15, and the outflow of the organic substance with insufficient fermentation can be more effectively suppressed. In the illustrated example, the gas phase part 4 of the fermenter 2 and the gas phase part 43 of the temporary residence tank 40 are connected by a gas phase part communication path 44, and the recovery port 18 of the biogas G is connected to the gas phase of the temporary residence tank 40. Provided in the department.

また図5及び図3の実施例では、発酵槽2の頂部の気相部4に、気相部4からバイオガスGを抜き出してアンモニア捕集装置37へ送ると共に捕集装置37の出力ガスを気相部4へ戻す循環ガス流路36を設けている。低含水率の有機性廃棄物Aを無希釈でメタン発酵する場合、メタン発酵に阻害を与えるアンモニア態窒素が発酵槽2内に蓄積するおそれがある。例えば循環ガス流路36上に設けたブロワ38により気相部4の分解生成バイオガスGを吸気端36aからガス流路36へ抜き出し、アンモニア捕集装置37によりバイオガスG中のアンモニアを除去し、アンモニア除去後のバイオガスGをガス流路36経由で排気端36bから気相部4へ吹き込むことにより気相部4のアンモニア分圧を下げ、発酵槽2の発酵液L中に溶解又は懸濁したアンモニアを気相部4へ移行させて発酵液L中のアンモニアを除去することができる。アンモニア捕集装置37の一例は、水や酸溶液(例えば希硫酸溶液)等の洗浄液を利用してバイオガスG中のアンモニアを捕集するスクラバ(洗浄集塵器)である。なお、このようなアンモニア阻害低減型のメタン発酵法は、本発明者による特願2005-117813号に詳述されている。 5 and 3, the biogas G is extracted from the gas phase portion 4 to the gas phase portion 4 at the top of the fermenter 2 and sent to the ammonia collecting device 37, and the output gas of the collecting device 37 is supplied. A circulating gas flow path 36 that returns to the gas phase section 4 is provided. When organic waste A having a low water content is subjected to methane fermentation without dilution, ammonia nitrogen that inhibits methane fermentation may accumulate in the fermenter 2. For example, the decomposed biogas G in the gas phase section 4 is extracted from the intake end 36a to the gas flow path 36 by the blower 38 provided on the circulation gas flow path 36, and the ammonia in the biogas G is removed by the ammonia collector 37. The ammonia partial pressure of the gas phase part 4 is lowered by blowing the biogas G after the ammonia removal from the exhaust end 36b into the gas phase part 4 via the gas flow path 36, and dissolved or suspended in the fermentation liquid L of the fermenter 2 The turbid ammonia can be transferred to the gas phase part 4 to remove the ammonia in the fermentation liquor L. An example of the ammonia collection device 37 is a scrubber (cleaning dust collector) that collects ammonia in the biogas G using a cleaning liquid such as water or an acid solution (for example, dilute sulfuric acid solution). Such an ammonia inhibition-reducing methane fermentation method is described in detail in Japanese Patent Application No. 2005-117813 by the present inventor.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明で用いる有孔隔壁の一例の説明図である。It is explanatory drawing of an example of the perforated partition used by this invention. 本発明の他の実施例の説明図である。It is explanatory drawing of the other Example of this invention. 撹拌手段を設けた本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention which provided the stirring means. 一時滞留槽を設けた本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention which provided the temporary residence tank. 本発明の固定床に用いる微生物担体の一例の説明図である。It is explanatory drawing of an example of the microorganisms carrier used for the fixed bed of this invention. 本発明の効果を確認する実験装置の説明図である。It is explanatory drawing of the experimental apparatus which confirms the effect of this invention. 本発明の効果確認実験の結果を示すグラフの一例である。It is an example of the graph which shows the result of the effect confirmation experiment of this invention. 本発明の効果確認実験の結果を示すグラフの他の一例である。It is another example of the graph which shows the result of the effect confirmation experiment of this invention.

符号の説明Explanation of symbols

1…メタン発酵装置 2…嫌気性発酵槽
3…有孔隔壁 3a…小孔
3b…中央部(凹部) 3c…無孔部
4…気相部 5…取入口
6…取入 7…取入
9…排出口 10…還流路
10a…引抜口 10b…戻り口
11…ポンプ 12…分散吐出器
13…吐出口 15…溢流路
15a…取出口 15b…通気口
16…溢流口 17…ガス回収路
18…回収口 19…排液槽
20…固定床 21…微生物担体
22…多孔質周壁 23…枠体
24…孔空き受け台 25…孔あき(グレーチング)
26…保温装置 27…有孔蓋
30…撹拌手段 31…撹拌翼
32…撹拌モータ 34…案内管
36…循環ガス流路 36a…吸気端
36b…排気端 37…アンモニア捕集装置
38…ブロア 40…一時滞留槽
41…流入口 42…流出路
42a…流出口 43…気相部
44…気相部連通路
A…固形有機性廃棄物(低含水廃棄物)
B…固形異物 C…発酵済液
L…発酵液 P1…上方空間
P2…下方空間 G…バイオガス
H…温熱媒体
DESCRIPTION OF SYMBOLS 1 ... Methane fermentation apparatus 2 ... Anaerobic fermenter 3 ... Perforated partition 3a ... Small hole
3b ... central (recess) 3c ... imperforate portion 4 ... gas phase 5 ... inlet 6 ... intake valve 7 ... intake pipe 9 ... outlet 10 ... return path
10a ... Pullout port 10b ... Return port
11 ... Pump 12 ... Distributed dispenser
13 ... Discharge port 15 ... Overflow channel
15a ... take-out port 15b ... vent
16 ... Overflow port 17 ... Gas recovery path
18 ... Recovery port 19 ... Drainage tank
20 ... fixed bed 21 ... microbial carrier
22… Porous peripheral wall 23… Frame
24 ... perforated cradle 25 ... perforated lid (grating)
26… Heat insulation device 27… Perforated lid
30 ... Agitating means 31 ... Agitating blade
32 ... Agitator motor 34 ... Guiding tube
36… Circulating gas flow path 36a… Intake end
36b… Exhaust end 37… Ammonia collector
38 ... Blower 40 ... Temporary residence tank
41 ... Inlet 42 ... Outlet
42a ... Outlet 43 ... Gas phase
44… Gas phase part communication passage A… Solid organic waste (low water content waste)
B ... Solid foreign matter C ... Fermented liquid L ... Fermented liquid P1 ... Upper space
P2 ... Lower space G ... Biogas H ... Heat medium

Claims (9)

発酵液を貯える嫌気性発酵槽、前記発酵槽内を上下に仕切る有孔隔壁、前記発酵槽の隔壁上方に設けた固形有機性廃棄物の取入口、及び前記発酵槽内の発酵液を隔壁下方の底部から引き抜き発酵槽の外側を介して隔壁上方の頂部に戻して嫌気的に循環させるポンプ付き還流路を備え、前記有機性廃棄物を隔壁上方で可溶化し且つ隔壁下方に移行させてメタン発酵させてなる固形有機性廃棄物のメタン発酵装置。 An anaerobic fermenter for storing the fermented liquid, a perforated partition for partitioning the fermenter vertically, an intake of solid organic waste provided above the partition of the fermenter, and the fermented liquid in the fermenter below the partition A reflux passage with a pump for drawing out from the bottom of the tank and returning to the top of the partition via the outside of the fermenter and circulating anaerobically, solubilizing the organic waste above the partition and moving it down to the methane methane fermentation apparatus solid organic waste product obtained by fermentation. 請求項1の発酵装置において、前記発酵液を嫌気性微生物含有水としてなる固形有機性廃棄物のメタン発酵装置。 The fermentation apparatus of Claim 1 WHEREIN: The methane fermentation apparatus of the solid organic waste which uses the said fermentation liquid as anaerobic microorganisms containing water. 請求項1又は2の発酵装置において、前記発酵槽の底部に発酵液を槽外の液面対応高さまで上昇させて溢流させる溢流路を設けてなる固形有機性廃棄物のメタン発酵装置。 3. The methane fermentation apparatus for solid organic waste according to claim 1, wherein an overflow channel is provided at the bottom of the fermenter to raise the fermented liquid to a height corresponding to the liquid level outside the tank and to overflow. 請求項1から3の何れかの発酵装置において、前記還流路上に、前記発酵液を一端側から流入させ所要時間滞留させたのち他端側から流出させる嫌気性一時滞留槽を設け、前記発酵槽で可溶化した有機性廃棄物を一時滞留槽に移行させてメタン発酵させてなる固形有機性廃棄物のメタン発酵装置。 In any of the fermenter of claims 1 to 3, wherein the reflux path, provided anaerobic stay temporarily tank to flow out from the other end after was required residence time allowed to flow into the fermentation fluid from the one end, the fermenter A solid organic waste methane fermentation apparatus, in which organic waste solubilized in 1 is transferred to a temporary retention tank and subjected to methane fermentation. 請求項1から4の何れかの発酵装置において、前記発酵槽内の隔壁上方又は隔壁上に撹拌手段を設けてなる固形有機性廃棄物のメタン発酵装置。 The fermentation apparatus according to any one of claims 1 to 4 , wherein the solid organic waste methane fermentation apparatus is provided with stirring means above or on the partition walls in the fermenter. 請求項1から5の何れかの発酵装置において、前記発酵槽内の隔壁下方に発酵液が透過可能な嫌気性微生物の固定床を設けてなる固形有機性廃棄物のメタン発酵装置。 The methane fermentation apparatus for solid organic waste according to any one of claims 1 to 5 , wherein a fixed bed of anaerobic microorganisms through which the fermentation liquid can permeate is provided below the partition walls in the fermentation tank. 請求項4又は5の発酵装置において、前記一時滞留槽に発酵液が透過可能な嫌気性微生物の固定床を設けてなる固形有機性廃棄物のメタン発酵装置。 6. The methane fermentation apparatus for solid organic waste according to claim 4 , wherein a fixed bed of anaerobic microorganisms through which the fermentation liquid can permeate is provided in the temporary retention tank. 請求項1から5の何れかの発酵装置において、前記発酵槽の頂部の気相部に、当該気相部から発酵による生成バイオガスを抜き出してアンモニア捕集装置へ送ると共に捕集装置の出力ガスを当該気相部へ戻す循環ガス流路を設けてなる固形有機性廃棄物のメタン発酵装置。 The fermentation apparatus according to any one of claims 1 to 5 , wherein a biogas produced by fermentation is extracted from the vapor phase portion to the vapor phase portion at the top of the fermenter and sent to an ammonia collection device, and the output gas of the collection device. A solid organic waste methane fermentation apparatus provided with a circulating gas flow path for returning the gas to the gas phase part. 請求項4又は5の発酵装置において、前記一時滞留槽の頂部の気相部に、当該気相部から発酵による生成バイオガスを抜き出してアンモニア捕集装置へ送ると共に捕集装置の出力ガスを当該気相部へ戻す循環ガス流路を設けてなる固形有機性廃棄物のメタン発酵装置。 The fermentation apparatus according to claim 4 or 5 , wherein a biogas produced by fermentation is extracted from the gas phase portion to the gas phase portion at the top of the temporary residence tank and sent to an ammonia collector, and the output gas of the collector is A solid organic waste methane fermentation apparatus provided with a circulating gas flow path to return to the gas phase.
JP2006039147A 2006-02-16 2006-02-16 Methane fermentation equipment for solid organic waste Expired - Fee Related JP4822263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039147A JP4822263B2 (en) 2006-02-16 2006-02-16 Methane fermentation equipment for solid organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039147A JP4822263B2 (en) 2006-02-16 2006-02-16 Methane fermentation equipment for solid organic waste

Publications (2)

Publication Number Publication Date
JP2007216135A JP2007216135A (en) 2007-08-30
JP4822263B2 true JP4822263B2 (en) 2011-11-24

Family

ID=38493951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039147A Expired - Fee Related JP4822263B2 (en) 2006-02-16 2006-02-16 Methane fermentation equipment for solid organic waste

Country Status (1)

Country Link
JP (1) JP4822263B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602546B (en) * 2009-07-13 2011-05-18 安徽丰原生物化学股份有限公司 Anaerobic reactor and wastewater treatment method with same
JP5560123B2 (en) * 2010-07-07 2014-07-23 メタウォーター株式会社 Grass-based biomass digestion promotion method, grass-based biomass digestion tank and digestion system
JP5560122B2 (en) * 2010-07-07 2014-07-23 メタウォーター株式会社 Digestion system, grass biomass digester and grass biomass digestion method
CN102441557B (en) * 2011-10-21 2013-11-06 中国科学院过程工程研究所 Aerobic-anaerobic combined solid state fermentation device and fermentation method thereof
CN102965278B (en) * 2012-11-28 2014-05-07 华南理工大学 Efficient two-phase anaerobic fermentation device
JP2016019966A (en) * 2014-06-17 2016-02-04 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system
WO2017203684A1 (en) * 2016-05-27 2017-11-30 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
JP6386116B1 (en) * 2017-03-01 2018-09-05 鹿島建設株式会社 Methane fermentation bioreactor and cleaning method thereof
CN107142200B (en) * 2017-07-01 2023-08-15 青岛中科华通能源工程有限公司 Dry-wet combined integrated anaerobic fermentation device and anaerobic fermentation process
JP7531433B2 (en) 2021-03-22 2024-08-09 三菱重工業株式会社 Concentration measurement system, waste treatment system, concentration measurement method, and waste treatment method
CN115745682B (en) * 2022-11-17 2024-06-11 四川农业大学 Anaerobic fermentation composting integrated experimental device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427691A (en) * 1987-07-22 1989-01-30 Matsushita Electric Ind Co Ltd Method for disposal of garbage
DE4026320A1 (en) * 1989-08-18 1991-03-14 Terdekon Gmbh Erddekontaminier METHOD FOR CLEANING AND PREPARING POLLUTED GOODS
JPH05253595A (en) * 1991-12-06 1993-10-05 Daiwa Resin Kogyo Kk Apparatus for treating organic waste
JPH11188348A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Garbage treatment system
JP2000176423A (en) * 1998-12-15 2000-06-27 Tlv Co Ltd Device for fermenting organic waste
JP4367876B2 (en) * 2000-03-31 2009-11-18 アタカ大機株式会社 Waste treatment method and apparatus
JP2002307041A (en) * 2001-04-13 2002-10-22 Yasuo Fujino Device for decomposition treatment of garbage
JP2003205300A (en) * 2002-01-15 2003-07-22 Kubota Corp Method and device for controlling operation of membrane type methane fermenter
JP2005296905A (en) * 2004-04-16 2005-10-27 Nisso Engineering Co Ltd Dry methane fermentation method and apparatus

Also Published As

Publication number Publication date
JP2007216135A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4822263B2 (en) Methane fermentation equipment for solid organic waste
US7854841B2 (en) Combined anaerobic process apparatus for treating organic wastes
KR101410722B1 (en) Anaerobic fermentation system and method for heating energy use aerobic fermentation heat
US6555359B2 (en) Process for the anaerobic treatment of flowable and nonflowable organic waste
CN107010788A (en) A kind of Large-scale pig farm culturing wastewater processing system and method
CN101665304B (en) Solar Anaerobic Granular Sludge Circulating Reactor
JP5574398B2 (en) Method and system for methane fermentation of organic solid waste
JP4671434B2 (en) Ammonia inhibition suppression type methane fermentation equipment
KR100976144B1 (en) Livestock excretions processing unit and livestock excretions processing
Rajabi et al. Investigating the treatability of a compost leachate in a hybrid anaerobic reactor: An experimental study
JP4641854B2 (en) Method and apparatus for methane fermentation treatment with reduced ammonia inhibition
KR101576652B1 (en) High speed fementation and resource conversion method of organic waste
JP4368171B2 (en) Method and apparatus for anaerobic treatment of liquid containing organic matter
KR102046833B1 (en) Multipurpose Middle Water Purification Unit
KR101994789B1 (en) Mobile Water Purification System
KR101819203B1 (en) System for Anaerobic Digestion of High Concentration Organic Wastes
CN201501814U (en) Solar anaerobic granular sludge circulating reactor
KR101757210B1 (en) Advanced treatment equipment of sewage-wastewater using modified carbon source and advanced treatment bio swing reactor
KR100498882B1 (en) An apparatus for livestock manure preliminary treatment
KR20190091827A (en) Anaerobic treatment facilities for high concentration organic wastewater treatment and organic wastewater treatment methods using the same
CN106745708A (en) A kind of compound type sludge bed reactor and its application
JP2006255545A (en) Methane fermentation process
JP2005125312A (en) Methane fermentation processing method and apparatus
JP2006205030A (en) Method and apparatus for methane fermentation
JP6122232B1 (en) Methane fermentation treatment system and methane fermentation treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

R150 Certificate of patent or registration of utility model

Ref document number: 4822263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees