JPWO2018199266A1 - Flow path switching mechanism, material supply unit, material container, flow path switching mechanism holder, and flow path switching device - Google Patents

Flow path switching mechanism, material supply unit, material container, flow path switching mechanism holder, and flow path switching device Download PDF

Info

Publication number
JPWO2018199266A1
JPWO2018199266A1 JP2019514640A JP2019514640A JPWO2018199266A1 JP WO2018199266 A1 JPWO2018199266 A1 JP WO2018199266A1 JP 2019514640 A JP2019514640 A JP 2019514640A JP 2019514640 A JP2019514640 A JP 2019514640A JP WO2018199266 A1 JPWO2018199266 A1 JP WO2018199266A1
Authority
JP
Japan
Prior art keywords
flow path
path switching
switching mechanism
partial flow
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019514640A
Other languages
Japanese (ja)
Inventor
圭市 平野
圭市 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Medi Physics Co Ltd
NMP Business Support Co Ltd
Original Assignee
Nihon Medi Physics Co Ltd
NMP Business Support Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi Physics Co Ltd, NMP Business Support Co Ltd filed Critical Nihon Medi Physics Co Ltd
Priority claimed from PCT/JP2018/017086 external-priority patent/WO2018199266A1/en
Publication of JPWO2018199266A1 publication Critical patent/JPWO2018199266A1/en
Pending legal-status Critical Current

Links

Images

Abstract

一または複数の第一部分流路(12a、12b、12d)が形成された第一部材(10)、移動可能な状態で第一部材(10)と組み合わされ、複数または一の第二部分流路(22a、22b、22c)を有する第二部材(20)によって流路切換機構を構成する。このとき、第二部材(20)をx軸の両方向に移動させる駆動力を受け付ける駆動力受容凸部(27)、第一部材(10)と第二部材(20)とが組み合わされることにより第一部分流路(12a、12b、12d)のいずれかと第二部分流路(22a、22b、22c)のいずれかとが連通して流路を形成し、第一部材(10)と第二部材(20)との組み合わせを維持しながら第二部材(20)がx軸の両方向に移動することにより連通する第一部分流路(12a、12b、12d)のいずれかと第二部分流路(22a、22b、22c)のいずれかとの組み合わせが変更されて流路が他の流路に切り換えられる。A first member (10) having one or a plurality of first partial flow paths (12a, 12b, 12d) formed therein, and a plurality of or one second partial flow path combined with the first member (10) in a movable state. The second member (20) having (22a, 22b, 22c) constitutes a flow path switching mechanism. At this time, the driving force receiving convex portion (27) for receiving the driving force for moving the second member (20) in both directions of the x-axis, the first member (10) and the second member (20) are combined to form a first member. One of the partial flow paths (12a, 12b, 12d) and any of the second partial flow paths (22a, 22b, 22c) communicate with each other to form a flow path, and the first member (10) and the second member (20) ), the second member (20) moves in both directions of the x-axis to communicate with any one of the first partial flow paths (12a, 12b, 12d) and the second partial flow path (22a, 22b, 22c) is changed so that the flow path is switched to another flow path.

Description

本発明は、化学処理に使用される流体の材料の流路を切り換える流路の切換機構、材料の供給ユニット、流路切換機構のホルダ及び流路切換装置に関する。 The present invention relates to a flow path switching mechanism for switching a flow path of a material of a fluid used for chemical processing, a material supply unit, a holder of the flow path switching mechanism, and a flow path switching device.

化学処理によって薬剤を合成する装置にあっては、薬剤の合成に使用される材料等の流路を切り換えて、一の材料を複数の合成の工程で使用する場合がある。
公知の流路を切り換える流体制御機構としては、例えば、特許文献1及び特許文献2に記載されているものがある。
特許文献1には、薬剤製造システムが記載されている。特許文献1に記載の薬剤製造システムは、モータの働きにより、三方活栓を装着したまま三方活栓ホルダを回転させることで三方活栓の流路を切り換えるものである。また、特許文献2に記載の有機化合物の製造装置は、三方活性ホルダを段違いに搭載する構成を有している。
In an apparatus for synthesizing a drug by a chemical treatment, there are cases where one material is used in a plurality of synthesizing steps by switching the flow path of a material or the like used for synthesizing the drug.
Known fluid control mechanisms for switching flow paths include those described in Patent Documents 1 and 2, for example.
Patent Literature 1 describes a drug manufacturing system. The chemical|medical agent manufacturing system of patent document 1 switches the flow path of a three-way stopcock by rotating a three-way stopcock holder with a three-way stopcock attached by the action of a motor. Further, the apparatus for producing an organic compound described in Patent Document 2 has a configuration in which three-way active holders are mounted in different steps.

特開2010−270068号公報JP, 2010-270068, A 特開2014−201571号公報JP, 2014-201571, A

上記した特許文献1、特許文献2に記載の三方活栓は、常時三つの流路が確保されていて、これを開閉することは一の流路の使用中にも他の流路を確保するためのスペースが必要になることになる。しかしながら、薬剤の合成には、例えば放射性薬剤の合成のように、ごく少量の材料を使用して合成が行われる分野がある。放射性薬剤の合成には、使用量が100μlといったごく少量の液体材料が使用される。このような液体材料が流れる流路を公知の三法活栓を使って切り換えた場合、空いたスペースに残留する液体材料の量が増えて残存量の使用量に対する比が大きくなる。
本発明は、上記の点に鑑みてなされたものであり、材料の残存量が少ない切換機構、この切換機構を使用した材料供給ユニット、材料容器、流路切換機構のホルダ、流路切換装置及び材料容器を提供する。
The three-way stopcocks described in Patent Document 1 and Patent Document 2 described above always have three flow paths secured, and opening and closing this ensures the other flow paths while using one flow path. Space will be required. However, there are some areas of drug synthesis, such as the synthesis of radiopharmaceuticals, where the synthesis is carried out using very small amounts of material. For the synthesis of radiopharmaceuticals, very small amounts of liquid material, such as 100 μl, are used. When the flow path through which such a liquid material flows is switched by using a known three-way stopcock, the amount of the liquid material remaining in the empty space increases and the ratio of the remaining amount to the used amount increases.
The present invention has been made in view of the above points, and a switching mechanism with a small amount of remaining material, a material supply unit using this switching mechanism, a material container, a holder of a flow path switching mechanism, a flow path switching device, and Provide a material container.

本発明の流路切換機構の一態様は、化学処理に使用される材料を流通させる流路を切り換える流路切換機構であって、一または複数の第一部分流路が形成された第一部材と、移動可能な状態で前記第一部材と組み合わされ、複数または一の第二部分流路を有する第二部材と、前記第二部材を一の軸の両方向に移動させる駆動力を受け付ける駆動力受容部と、を有し、前記第一部材と前記第二部材とが組み合わされることにより、前記第一部分流路と前記第二部分流路とが連通して流路を形成し、前記第一部材と前記第二部材との組み合わせを維持しながら前記第二部材が前記一の軸の両方向に移動することにより、連通する前記第一部分流路と前記第二部分流路との組み合わせが変更されて前記流路が他の流路に切り換えられる。 One aspect of a flow channel switching mechanism of the present invention is a flow channel switching mechanism that switches a flow channel through which a material used for chemical treatment is circulated, and a first member in which one or more first partial flow channels are formed. , A second member which is movably combined with the first member and has a plurality of or one second partial flow paths, and a driving force reception which receives a driving force for moving the second member in both directions of one axis. The first member and the second member are combined to form a flow path in which the first partial flow path and the second partial flow path communicate with each other, and the first member By moving the second member in both directions of the one axis while maintaining the combination of the second member and the second member, the combination of the first partial flow channel and the second partial flow channel communicating with each other is changed. The flow path is switched to another flow path.

本発明の材料供給ユニットの一態様は、上記流路切換機構の前記流路凸部によって破断される底面を有する材料容器を含む。
また、本発明の材料容器は、化学処理に使用される材料を収容する有底の材料容器であって、前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記底面は、破断可能な脆弱部を少なくとも一部に含む。
One aspect of the material supply unit of the present invention includes a material container having a bottom surface that is broken by the flow path protrusion of the flow path switching mechanism.
In addition, the material container of the present invention is a bottomed material container that contains a material used for chemical processing, and a container body that contains the material, and a bottom surface that seals the inside of the container body. , And the bottom surface includes a fragile fragile portion at least in part.

本発明の流路切換機構のホルダの一態様は、上記の流路切換機構を保持し、前記列方向と交差する少なくとも一の方向から前記流路切換機構が挿入される挿入溝と、当該挿入溝に挿入された前記流路切換機構が前記列方向に移動することにより係止する係止凸部と、を交互に有する。
本発明の流路切換装置の一態様は、上記の流路切換機構が有する第二部材を一の軸の両方向に移動させる駆動力を前記駆動力受容部に与える駆動部と、前記流路切換機構の第一部材を保持する流路切換機構保持受部と、を備え、前記流路切換機構保持受部は、前記第二部材の静止中及び前記駆動部による移動中に前記第一部材が移動しないように保持する。
One aspect of the holder of the flow path switching mechanism of the present invention is an insertion groove that holds the flow path switching mechanism, and in which the flow path switching mechanism is inserted from at least one direction intersecting the row direction, and the insertion groove. The flow path switching mechanism inserted into the groove alternately has locking projections that are locked by moving in the row direction.
One aspect of a flow path switching device of the present invention is a drive section that gives a drive force to the drive force receiving section for moving a second member of the flow path switching mechanism in both directions of an axis, and the flow path switching apparatus. A flow path switching mechanism holding receiver for holding the first member of the mechanism, wherein the flow path switching mechanism holding receiver is configured such that the first member is in motion while the second member is stationary and while the second member is moving. Hold it so it doesn't move.

本発明は、材料の流路における残存量が少ない切換機構、この切換機構を使用した材料供給ユニット、材料容器、流路切換機構のホルダ及び流路切換装置を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a switching mechanism with a small amount of remaining material in a flow path, a material supply unit using this switching mechanism, a material container, a holder of the flow path switching mechanism, and a flow path switching device.

第一実施形態の流路切換機構を説明するための図である。It is a figure for demonstrating the flow-path switching mechanism of 1st embodiment. 図1(b)に示した第一部材の上面図、正面図及び側面図である。It is a top view, a front view, and a side view of the first member shown in FIG. 図1(c)に示した第二部材の上面図、正面図及び側面図である。It is a top view, a front view, and a side view of the second member shown in FIG. 本発明の第一実施形態の流路の切換えを説明するための図である。It is a figure for demonstrating switching of the flow path of 1st embodiment of this invention. 第一実施形態の駆動力受容凸部を押し引きする側の駆動力を伝達する部材を例示するための図である。It is a figure for illustrating the member which transmits the driving force of the side which pushes and pulls the driving force receiving convex part of a first embodiment. 本発明の第二実施形態の流路切換機構の斜視図である。It is a perspective view of a flow path switching mechanism of a second embodiment of the present invention. 図6に示した流路切換機構の分解斜視図である。FIG. 7 is an exploded perspective view of the flow path switching mechanism shown in FIG. 6. 図6に示した流路切換機構の第一部材の斜視図である。FIG. 7 is a perspective view of a first member of the flow path switching mechanism shown in FIG. 6. 図6に示した流路切換機構の上面図、正面図及び断面図である。FIG. 7 is a top view, a front view, and a sectional view of the flow path switching mechanism shown in FIG. 6. 本発明の第二実施形態の材料供給ユニットの斜視図である。It is a perspective view of the material supply unit of 2nd embodiment of this invention. 図10に示した材料容器の斜視図である。It is a perspective view of the material container shown in FIG. 図11に示した容器本体の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of container main body shown in FIG. 図11、12に示した底面の拡大図である。FIG. 13 is an enlarged view of the bottom surface shown in FIGS. 11 and 12. 図11、12に示した底面が破断する過程を説明するための図である。It is a figure for demonstrating the process in which the bottom face shown in FIGS. 本発明の第二実施形態のホルダを説明するための図である。It is a figure for demonstrating the holder of 2nd embodiment of this invention. 本発明の第三実施形態の材料供給ユニットを説明するための斜視図である。It is a perspective view for explaining the material supply unit of a third embodiment of the present invention. 図16に示した材料容器であって、蓋部が開口部を閉じた状態を示す斜視図である。It is the material container shown in FIG. 16, Comprising: It is a perspective view which shows the state which the lid part closed the opening part. 図16に示した材料容器であって、蓋部が開口部を開けた状態を示す斜視図である。It is the material container shown in FIG. 16, Comprising: It is a perspective view which shows the state which the lid part opened the opening part. 図18中に示した材料容器を矢線IVの方向から見た上面図である。It is the top view which looked at the material container shown in FIG. 18 from the direction of arrow IV. 図18中に示した材料容器を矢線Vの方向から見た底面図である。It is the bottom view which looked at the material container shown in FIG. 18 from the arrow V direction. 図18中に示した材料容器の矢線VIに沿う断面図である。It is sectional drawing which follows the arrow line VI of the material container shown in FIG. 図21に示した容器本体の破線VIIで囲う範囲の拡大図である。FIG. 22 is an enlarged view of a range surrounded by a broken line VII of the container body shown in FIG. 21. 図22に示した底面を図18中の矢線Vの方向から見た拡大図である。It is the enlarged view which looked at the bottom face shown in FIG. 22 from the direction of the arrow V in FIG. 本発明の三実施形態の蓋固定機構を説明するための図である。It is a figure for demonstrating the lid fixing mechanism of 3rd Embodiment of this invention. 本発明の第四実施形態の流路切換機構の斜視図である。It is a perspective view of a channel switching mechanism of a fourth embodiment of the present invention. 図25に示した流路切換機構の分解斜視図である。FIG. 26 is an exploded perspective view of the flow path switching mechanism shown in FIG. 25. 本発明の第四実施形態の流路切換機構を用いた微量サンプリングシステムを示す図である。It is a figure which shows the trace amount sampling system which used the flow-path switching mechanism of 4th embodiment of this invention. 図27に示した微量サンプリングシステムにおいて流路切換機構を流れる流体を説明するための図である。FIG. 28 is a diagram for explaining a fluid flowing through a flow path switching mechanism in the trace amount sampling system shown in FIG. 27. (a)は、第五実施形態の第一部材の斜視図であって、(b)は第二部材の斜視図である。(A) is a perspective view of the 1st member of 5th embodiment, (b) is a perspective view of a 2nd member. 本発明の第六実施形態の流路切換装置を含む流路切換システムを示した図である。It is the figure which showed the flow-path switching system containing the flow-path switching apparatus of 6th embodiment of this invention. 図30に示した流路切換機構保持ユニットの内部を説明するための図である。It is a figure for demonstrating the inside of the flow-path switching mechanism holding unit shown in FIG. 図30に示した流路切換機構保持ユニットに取付けられる流路切換機構を説明するための分解斜視図である。FIG. 31 is an exploded perspective view for explaining a flow channel switching mechanism attached to the flow channel switching mechanism holding unit shown in FIG. 30. 図32の第一部材の流路を説明するための図である。It is a figure for demonstrating the flow path of the 1st member of FIG. 図31に示した個別駆動部を説明するための模式図である。FIG. 32 is a schematic diagram for explaining the individual drive unit shown in FIG. 31. (a)、(b)、(c)は、いずれも図34に示した流路切換機構保持受部及び流路切換機構の斜視図である。(A), (b), (c) is a perspective view of the flow path switching mechanism holding part and flow path switching mechanism shown in FIG. 34.

以下、本発明の第一実施形態乃至第五実施形態を図面に基づいて説明する。なお、すべての図面において、同様の構成要素には同様の符号を付し、重複する説明は適宜省略する。また、以下に説明する実施形態において、流路切換機構、材料供給ユニット、ホルダ及び流路切換装置では、流路切換え機構がホルダ係合部15(図1)を備える側を下、この反対の側を上とする。このような上下の方向は、重力方向とは無関係に定められる。
また、以下に説明する実施形態中に示す図1から図26は、流路切換機構、この流路切換機構を利用した材料供給ユニット、流路切換機構のホルダ及び流路切換装置の構成やその配置関係を説明することを目的としたものであり、各部材の長さ、厚さ及び幅等を必ずしも正確に示すものではない。
Hereinafter, first to fifth embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same constituents will be referred to with the same signs, while omitting their overlapping descriptions. Further, in the embodiments described below, in the flow path switching mechanism, the material supply unit, the holder, and the flow path switching device, the side where the flow path switching mechanism is provided with the holder engaging portion 15 (FIG. 1) is down, and vice versa. Side up. Such a vertical direction is determined independently of the gravity direction.
Further, FIGS. 1 to 26 shown in the embodiments described below show configurations of a flow path switching mechanism, a material supply unit using this flow path switching mechanism, a holder of the flow path switching mechanism, and a flow path switching device. This is for the purpose of explaining the positional relationship, and does not necessarily indicate the length, thickness, width, etc. of each member accurately.

[第一実施形態]
(流路切換機構)
以下、本発明の第一実施形態の流路切換機構について説明する。第一実施形態の流路切換機構は、化学処理に使用される材料を流通させる流路を切り換える機構である。第一実施形態において、「化学処理」は、公知の有機化学反応を用いる合成処理の他、この処理のために行われる個々の物質の反応、変換、イオン化、分離(精製)、加水分解、回収及び抽出等の処理を指す。
図1(a)、図1(b)及び図1(c)は、第一実施形態の流路切換機構を説明するための図である。図1(a)は、第一実施形態の流路切換機構を説明するための斜視図であり、組み合わせられて構成されている。図1(b)は第一部材10を示し、図1(c)は第二部材20を示している。
[First embodiment]
(Flow path switching mechanism)
Hereinafter, the flow path switching mechanism of the first embodiment of the present invention will be described. The flow path switching mechanism of the first embodiment is a mechanism that switches the flow path through which the material used for the chemical treatment flows. In the first embodiment, the “chemical treatment” includes, in addition to synthetic treatment using a known organic chemical reaction, reaction, conversion, ionization, separation (purification), hydrolysis, recovery of individual substances performed for this treatment. And processing such as extraction.
FIG. 1A, FIG. 1B and FIG. 1C are views for explaining the flow path switching mechanism of the first embodiment. FIG. 1A is a perspective view for explaining the flow path switching mechanism of the first embodiment, which is configured in combination. 1B shows the first member 10, and FIG. 1C shows the second member 20.

図1(b)に示すように、第一部材10は、本体14を備えている。本体14は所定の厚さを有する枠体であり、図1(a)から図1(c)においては、図中に示したx,y,z座標のz方向に向かう枠体の面を上面11a、−z方向に向かう面を下面11cとする。なお、本明細書では、x,y,z座標の各軸のうち、+x方向、+y方向、+z方向についてのみ図示しているが、各軸の矢線が指す方向と反対の方向がそれぞれ−x方向、−y方向、−z方向を指している。
第一部材10の本体14にはホルダ係合部15が設けられている。また、第一実施形態では、y方向、−y方向に向かう面をそれぞれ側面とする。さらに、第一実施形態では、x方向に向かう面を背面11f、−x方向に向かう面を前面11eとし、背面11f及び前面11e間には中空部16が形成されている。このため、背面11f及び前面11eはそれぞれ枠形状を有している。上面11a、下面11c、側面11b、11d及び背面11fは、いずれも外表面であって、各面において外表面の裏面にあたる面を「内表面」と記す。
As shown in FIG. 1B, the first member 10 includes a main body 14. The main body 14 is a frame body having a predetermined thickness, and in FIGS. 1A to 1C, the surface of the frame body facing the z direction of the x, y, z coordinates shown in the drawing is an upper surface. A surface facing 11a and the −z direction is a lower surface 11c. In addition, in this specification, of the axes of x, y, and z coordinates, only the +x direction, the +y direction, and the +z direction are illustrated, but the directions opposite to the directions indicated by the arrows of the respective axes are −. It indicates the x direction, the -y direction, and the -z direction.
The body 14 of the first member 10 is provided with a holder engaging portion 15. Further, in the first embodiment, the surfaces facing the y direction and the −y direction are side surfaces. Further, in the first embodiment, the surface facing the x direction is the back surface 11f, the surface facing the −x direction is the front surface 11e, and the hollow portion 16 is formed between the back surface 11f and the front surface 11e. Therefore, the back surface 11f and the front surface 11e each have a frame shape. Each of the upper surface 11a, the lower surface 11c, the side surfaces 11b and 11d, and the back surface 11f is an outer surface, and a surface corresponding to the back surface of the outer surface in each surface is referred to as an “inner surface”.

上記した第一部材10は、第一部分流路12a、12b、12dの外部に向かう側の端部周囲に凸形状を有する流路凸部を有している。第一実施形態では、本体14の上面11a、側面11b、11dに各々流路凸部13a、13b、13dが設けられている。
流路凸部13a、13b、13dは、材料を含む液体を収容する容器を流路切換機構1に接続する機能を有している。また、流路凸部13a、13b、13dは、図示しないチューブを流路切換機構1に接続する機能を有している。このような構成によれば、チューブから材料等を含む液体や材料の移動方向を規定する気体の流体を流路切換機構1に導入させ、流路切換機構1から流出させることができる。
なお、ここで、「材料」は、薬剤の合成に使用される物質、薬品(試薬)、触媒及び水等を含んでいる。材料等は、このような材料の他、材料の流動を促すための不活性ガス等の気体を含む文言である。流路切換機構1を放射性化合物または放射性薬剤(放射性核種で標識された高分子や抗体等を含む、以下、総称して「放射性薬剤等」ともいう。)の合成に使用する場合、材料には、これら放射性薬剤等の合成の材料が収容される。放射性薬剤等の合成の材料としては、例えば、放射性薬剤等の合成に使用される物質(標識前駆体等)や薬品(試薬)、触媒及び水等がある。
The above-mentioned first member 10 has a flow passage convex portion having a convex shape around the end portion of the first partial flow passages 12a, 12b, 12d on the side toward the outside. In the first embodiment, the flow passage projections 13a, 13b, 13d are provided on the upper surface 11a and the side surfaces 11b, 11d of the main body 14, respectively.
The flow path protrusions 13 a, 13 b, 13 d have a function of connecting a container containing a liquid containing a material to the flow path switching mechanism 1. In addition, the flow path protrusions 13 a, 13 b, and 13 d have a function of connecting a tube (not shown) to the flow path switching mechanism 1. With such a configuration, it is possible to introduce the liquid containing the material or the like from the tube or the fluid of the gas that regulates the moving direction of the material into the flow path switching mechanism 1 and to flow out from the flow path switching mechanism 1.
Here, the “material” includes a substance, a drug (reagent), a catalyst, water and the like used for synthesizing a drug. The material and the like are words including such a material and a gas such as an inert gas for promoting the flow of the material. When the flow path switching mechanism 1 is used for synthesizing a radioactive compound or a radiopharmaceutical (including macromolecules or antibodies labeled with radionuclides, hereinafter also collectively referred to as “radioactive agents, etc.”), the material is , Synthetic materials such as these radiopharmaceuticals are housed. Examples of materials for synthesizing radiopharmaceuticals include substances (label precursors) used for synthesizing radiopharmaceuticals, drugs (reagents), catalysts, water and the like.

第一部材10には、一または複数の第一部分流路が形成されている。第一実施形態では、第一部材10に3つの第一部分流路12a、12b、12dが形成されている。第一部分流路12aは、上面11aの内表面に開口部12ab、流路凸部13aの先端に開口部12aaを有する流路である。第一部分流路12bは、側面11bの内表面に開口部12bb、流路凸部13bの先端に開口部12baを有する流路である。第一部分流路12dは、側面11dの内表面に開口部12da、流路凸部13dの先端に開口部12dbを有する流路である。 One or more first partial flow paths are formed in the first member 10. In the first embodiment, the first member 10 is formed with three first partial flow paths 12a, 12b, 12d. The first partial flow path 12a is a flow path having an opening 12ab on the inner surface of the upper surface 11a and an opening 12aa at the tip of the flow path protrusion 13a. The first partial flow path 12b is a flow path having an opening 12bb on the inner surface of the side surface 11b and an opening 12ba at the tip of the flow path protrusion 13b. The first partial flow path 12d is a flow path having an opening 12da on the inner surface of the side surface 11d and an opening 12db at the tip of the flow path protrusion 13d.

第二部材20は、第一部材10に対してx軸の両方向(x方向及び−x方向)に移動可能な状態で第一部材10と組み合わされ、複数または一の第二部分流路を有している。すなわち、第二部材20は、z方向に向かう上面21a、−z方向に向かう下面21c、−y方向に向かう側面21b、y方向に向かう側面21d、x方向に向かう背面21f及び−x方向に向かう前面21eを有している。このような第二部材20は、外観が直方体形状の本体24を有するものである。そして、第二部材20は、本体24の内部に外部と連通する小径の第二部分流路を有している。 The second member 20 is combined with the first member 10 in a state of being movable in both directions of the x axis (x direction and −x direction) with respect to the first member 10, and has a plurality of or one second partial flow paths. doing. That is, the second member 20 faces the upper surface 21a facing the z direction, the lower surface 21c facing the -z direction, the side surface 21b facing the -y direction, the side surface 21d facing the y direction, the back surface 21f facing the x direction, and the -x direction. It has a front surface 21e. Such a second member 20 has a main body 24 having a rectangular parallelepiped appearance. The second member 20 has a small-diameter second partial flow path communicating with the outside inside the main body 24.

第一実施形態では、第二部材20が、三つの第二部分流路22a、22b、22cを有している。第二部分流路22aは、上面21aに開口部22aaを、側面21dに開口部22abを有する流路である。このような第二部分流路22aは、正面視において「L」字を左右反転した形状を有している。第二部分流路22bは、側面21bに開口部21baを、側面21dに開口部22cbを有する流路である。このような第二部分流路22bは、正面視においてy軸に沿う直線形状を有している。第二部分流路22cは、上面21aに開口部22caを、側面21bに開口部22cbを有する流路である。このような第二部分流路22cは、正面視において「L」字形状を有している。 In the first embodiment, the second member 20 has three second partial flow paths 22a, 22b, 22c. The second partial flow path 22a is a flow path having an opening 22aa on the upper surface 21a and an opening 22ab on the side surface 21d. Such a second partial flow path 22a has a shape in which the "L" shape is horizontally inverted when viewed from the front. The second partial flow path 22b is a flow path having an opening 21ba on the side surface 21b and an opening 22cb on the side surface 21d. Such a second partial flow path 22b has a linear shape along the y axis when viewed from the front. The second partial flow path 22c is a flow path having an opening 22ca on the upper surface 21a and an opening 22cb on the side surface 21b. Such a second partial flow path 22c has an "L" shape in a front view.

また、第一実施形態の第二部材20は、第二部材20をx軸の両方向に移動させる駆動力を受け付ける駆動力受容部を備えている。第一実施形態の駆動力受容部は、前面21eに設けられ、凸形状を有する駆動力受容凸部27である。第一実施形態では一の軸が図中のx軸であり、駆動力受容凸部27は、第二部材20をx方向及び−x方向に移動させる部材である。駆動力受容凸部27の構成については、後に詳細に説明する。 In addition, the second member 20 of the first embodiment includes a driving force receiving portion that receives a driving force that moves the second member 20 in both directions of the x axis. The driving force receiving portion of the first embodiment is the driving force receiving convex portion 27 provided on the front surface 21e and having a convex shape. In the first embodiment, one axis is the x axis in the drawing, and the driving force receiving convex portion 27 is a member that moves the second member 20 in the x direction and the −x direction. The configuration of the driving force receiving convex portion 27 will be described in detail later.

第一部材10と第二部材20とは、組み合わされることによって第一部分流路と第二部分流路とが連通して流路を形成する。ここで、流路とは、一の流路切換機構1に入った流体がこの流路切換機構1から出るまでに流れる経路であり、第一または第二部分流路とは、このような流路の部分を指す。第一部材10と第二部材20との組み合わせは、第二部材20を第一部材10の中空部16に挿通させることによって行われる。第一実施形態では、第一部材10の中空部16に第二部材20を挿通させる場合、第一部材10の内表面と第二部材20の上面21a、側面21b、21d及び下面21cとが適度な摩擦を持って接し、第二部材20が中空部16内で滑らかに移動すると共に安定して静止するように第一部材10及び第二部材20のサイズや材質が設計されている。
そして、第一実施形態の流路切換機構1では、第一部材10と第二部材20との組み合わせを維持しながら第二部材20がx軸方向に移動することにより、連通する第一部分流路と第二部分流路との組み合わせが変更されて流路が他の流路に切り換えられる。なお、「流路が切換えられる」とは、流路の始端や終端が変更される他、始端と終端との間の経路が変更されることを含む。
By combining the first member 10 and the second member 20, the first partial flow path and the second partial flow path communicate with each other to form a flow path. Here, the flow path is a path through which the fluid that has entered the one flow path switching mechanism 1 flows out of the flow path switching mechanism 1, and the first or second partial flow path is such a flow path. Refers to the part of the road. The combination of the first member 10 and the second member 20 is performed by inserting the second member 20 into the hollow portion 16 of the first member 10. In the first embodiment, when the second member 20 is inserted into the hollow portion 16 of the first member 10, the inner surface of the first member 10 and the upper surface 21a, the side surfaces 21b, 21d, and the lower surface 21c of the second member 20 are appropriate. The sizes and materials of the first member 10 and the second member 20 are designed so that the second member 20 moves smoothly in the hollow portion 16 and stably stops while contacting with each other with great friction.
Then, in the flow path switching mechanism 1 of the first embodiment, the second member 20 moves in the x-axis direction while maintaining the combination of the first member 10 and the second member 20, thereby communicating the first partial flow path. The combination of the second partial flow path and the second partial flow path is changed to switch the flow path to another flow path. It should be noted that “switching the flow path” includes changing the starting end and the terminating end of the flow path and changing the path between the starting end and the terminating end.

以下、上記構成について詳細に説明する。
(流路の切り換え)
図2、図3及び図4は、第一実施形態の流路の切り換えを説明するための図である。図2(a)は第一部材10の上面図、図2(b)は第一部材10の正面図、図2(c)は第一部材10の側面図である。図3(a)は第二部材20の上面図、図3(b)は第二部材20の正面図、図3(c)は第二部材20の側面図である。図4(a)は、第二部材20が位置P1の位置にあるときの流路切換機構1の上面図である。図4(b)は第二部材20が位置P2にあるときの流路切換機構1の上面図であり、図4(c)は第二部材20が位置P3にあるときの流路切換機構1の上面図である。なお、第一実施形態では、位置P1、位置P2及び位置P3をいずれも第一部材10の前面11eを基準位置P0にした前面21eの位置として表すものとする。図4(a)、図4(b)及び図4(c)から明らかなように、第二部材20は、位置P1、位置P2、位置P3の順番で第一部材10に対して押し込まれるように移動している。
Hereinafter, the above configuration will be described in detail.
(Switch of flow path)
2, 3 and 4 are diagrams for explaining the switching of the flow paths of the first embodiment. 2A is a top view of the first member 10, FIG. 2B is a front view of the first member 10, and FIG. 2C is a side view of the first member 10. 3A is a top view of the second member 20, FIG. 3B is a front view of the second member 20, and FIG. 3C is a side view of the second member 20. FIG. 4A is a top view of the flow path switching mechanism 1 when the second member 20 is at the position P1. FIG. 4B is a top view of the flow path switching mechanism 1 when the second member 20 is at the position P2, and FIG. 4C is a flow path switching mechanism 1 when the second member 20 is at the position P3. FIG. In the first embodiment, the position P1, the position P2, and the position P3 are all represented as the position of the front surface 21e with the front surface 11e of the first member 10 being the reference position P0. As is apparent from FIGS. 4A, 4B, and 4C, the second member 20 is pushed into the first member 10 in the order of position P1, position P2, and position P3. Have moved to.

図2(a)に示すように、第一部材10には一直線上に第一部分流路12bと第一部分流路12dとが形成されていて、両者の開口部12bb、12daは中空部16に繋がっている。このとき、図3(a)に示す第二部材20が図4(a)に示す位置P1に移動すると、第一部分流路12dの開口部12da(図2(a)参照)と第二部分流路22aの開口部22abとが接続し、第二部分流路22aの開口部22aaと第一部分流路12aの開口部12ab(図2(c)参照)とが接続して流路が形成される。第一実施形態では、このような流路を、以降、「流路12d−22a−12a」と記すものとする。流路12d、22a,12aでは、開口部12dbから開口部12aaまでが連通し、この間に流体を流すことができる。 As shown in FIG. 2A, the first member 10 has a first partial flow path 12b and a first partial flow path 12d formed in a straight line, and the openings 12bb and 12da of both are connected to the hollow portion 16. ing. At this time, when the second member 20 shown in FIG. 3A moves to the position P1 shown in FIG. 4A, the opening 12da (see FIG. 2A) of the first partial flow path 12d and the second partial flow. The opening 22ab of the passage 22a is connected, and the opening 22aa of the second partial flow passage 22a and the opening 12ab of the first partial flow passage 12a (see FIG. 2C) are connected to form a flow passage. .. In the first embodiment, such a flow path is hereinafter referred to as “flow path 12d-22a-12a”. In the flow paths 12d, 22a, 12a, the openings 12db to 12aa communicate with each other, and a fluid can flow between them.

また、第二部材20が図4(b)に示す位置P2に移動すると、第一部分流路12dの開口部12da(図2(a)参照)と第二部分流路22bの開口部22bbとが接続し、第二部分流路22bの開口部22baと第一部分流路12bの開口部12bb(図2(c)参照)とが接続して流路が形成される。以降、この流路を、「流路12d−22b−12b」と記すものとする。流路12d−22b−12bでは、開口部12daから開口部12baまでが連通し、この間に流体を流すことができる。
さらに、第二部材20が図4(c)に示す位置P3に移動すると、第一部分流路12bの開口部12bb(図2(c)参照)と第二部分流路22cの開口部22cb(図3(c)参照)とが接続し、第二部分流路22bの開口部22aaと第一部分流路12aの開口部12ab(図2(c)参照)とが接続して流路が形成される。このような流路を、以降、「流路12b−22c−12a」と記すものとする。流路12b−22c−12aでは、開口部12baから開口部12aaまでが連通し、この間に流体を流すことができる。
Moreover, when the second member 20 moves to the position P2 shown in FIG. 4B, the opening 12da of the first partial flow path 12d (see FIG. 2A) and the opening 22bb of the second partial flow path 22b are separated from each other. The opening 22ba of the second partial flow path 22b and the opening 12bb of the first partial flow path 12b (see FIG. 2C) are connected to form a flow path. Hereinafter, this flow path will be referred to as "flow path 12d-22b-12b". In the flow paths 12d-22b-12b, the openings 12da to 12ba are in communication with each other, and a fluid can flow between them.
Further, when the second member 20 moves to the position P3 shown in FIG. 4C, the opening 12bb of the first partial flow passage 12b (see FIG. 2C) and the opening 22cb of the second partial flow passage 22c (see FIG. 3(c)), and the opening 22aa of the second partial flow path 22b and the opening 12ab of the first partial flow path 12a (see FIG. 2(c)) are connected to form a flow path. .. Hereinafter, such a flow channel will be referred to as "flow channel 12b-22c-12a". In the flow paths 12b-22c-12a, the openings 12ba to 12aa communicate with each other, and a fluid can flow between them.

上記したように、第一実施形態の流路切換機構1は、第二部分流路が一の軸(x軸)と直交し、第一部分流路は、第二部分流路と連通してx軸と直交する二軸(y軸、z軸)のうちの少なくとも一方に沿う流路を形成している。
具体的には、第二部分流路22a、22b、22cは、いずれも一の軸であるx軸と直交している。ここで、直交とは、図1中の座標軸のx−y平面上での交差ばかりでなく、x−z平面上での交差をも含んでいる。
例えば、第二部分流路22aは、開口部22abから角度が90度変わる部分までx軸とx−y平面上で直交し、この部分から開口部22aaまではx軸とx−z平面上で直交している。また、第二部分流路22bは、開口部22baから開口部22bbの全体がx軸とx−y平面上で直交している。さらに、第二部分流路22cは、開口部22cbから角度が90度変わる部分までx軸とx−y平面上で直交し、この部分から開口部22caまではx軸とx−z平面上で直交している。
As described above, in the flow path switching mechanism 1 of the first embodiment, the second partial flow path is orthogonal to the one axis (x-axis), and the first partial flow path communicates with the second partial flow path and is x. A flow path is formed along at least one of two axes (y axis and z axis) orthogonal to the axis.
Specifically, each of the second partial flow paths 22a, 22b, 22c is orthogonal to the x axis, which is one axis. Here, “orthogonal” includes not only the intersection of the coordinate axes in FIG. 1 on the xy plane but also the intersection on the xz plane.
For example, the second partial flow path 22a is orthogonal to the x axis on the xy plane from the opening 22ab to a portion where the angle changes by 90 degrees, and from this portion to the opening 22aa on the x axis and the xz plane. They are orthogonal. Further, in the second partial flow path 22b, the entire opening 22ba to the opening 22bb are orthogonal to the x axis on the xy plane. Further, the second partial flow path 22c is orthogonal to the x axis on the xy plane from the opening 22cb to a portion where the angle changes by 90 degrees, and from this portion to the opening 22ca on the x axis and the xz plane. They are orthogonal.

このような第一実施形態の構成によれば、流路の角度が変わる部位における液体材料の残留量を小さくし、また、不活性ガス等により液体材料を流路の内表面から速やかに除去することができる。
ただし、上記構成は第一実施形態の一例であって、第一実施形態はこのような構成に限定されるものではない。第一実施形態は、例えば、第一部分流路及び第二部分流路が90度以外の角度を持って曲がるものであってもよい。さらに、第一部分流路及び第二部分流路は、両端の開口部の間を曲がらずに、かつ斜めに連通させる経路であってもよい。
According to the configuration of the first embodiment as described above, the residual amount of the liquid material in the portion where the angle of the flow channel changes is reduced, and the liquid material is promptly removed from the inner surface of the flow channel by an inert gas or the like. be able to.
However, the above configuration is an example of the first embodiment, and the first embodiment is not limited to such a configuration. In the first embodiment, for example, the first partial flow path and the second partial flow path may be bent at an angle other than 90 degrees. Further, the first partial flow path and the second partial flow path may be paths that allow the openings at both ends to communicate with each other obliquely without bending.

(駆動力受容凸部)
上記した第一実施形態の駆動力受容凸部27は、曲面部分27a及び平面部分27bを有する周面を含む板部材である10。図3(a)から図3(c)に示したように、駆動力受容凸部27は、支持部23を介して第二部材20の前面21eに固定されている。第一実施形態の駆動力受容凸部27は、モータ等の駆動力を伝達する部材と係合し、第二部材20を押す、または引くことによって第二部材20をx軸方向にプッシュプルする方向の駆動力を受け付けている。
図5(a)及び図5(b)は、第一実施形態の駆動力受容凸部27を押し引きする側の駆動力を伝達する部材を例示するための図である。図5(a)、図5(b)に示す駆動力を伝達する部材51、53は、いずれも駆動力受容凸部27と係り合い、駆動力受容凸部27をx軸に沿って押し引きする駆動力を伝達する構成である。部材51、53は、部材51が一体的に成形されているのに対し、部材53は二部品によって形成されている点で相違する。なお、第一実施形態では、駆動力の駆動源としてモータ、ソレノイド、シリンダー等のアクチュエータであってもよいし、操作者の筋肉を化学的アクチュエータとして第二部材20の移動を手動で行ってもよい。
(Drive force receiving convex part)
The driving force receiving convex portion 27 of the above-described first embodiment is a plate member 10 including a peripheral surface having a curved surface portion 27a and a flat surface portion 27b. As shown in FIGS. 3A to 3C, the driving force receiving convex portion 27 is fixed to the front surface 21e of the second member 20 via the support portion 23. The driving force receiving convex portion 27 of the first embodiment is engaged with a member that transmits a driving force such as a motor, and pushes or pulls the second member 20 to push or pull the second member 20 in the x-axis direction. The driving force in the direction is accepted.
FIG. 5A and FIG. 5B are views for illustrating a member that transmits the driving force on the side that pushes and pulls the driving force receiving convex portion 27 of the first embodiment. The members 51 and 53 for transmitting the driving force shown in FIGS. 5A and 5B engage with the driving force receiving convex portion 27 and push and pull the driving force receiving convex portion 27 along the x-axis. This is a configuration for transmitting the driving force to be applied. The members 51 and 53 are different in that the member 51 is integrally molded, whereas the member 53 is formed by two parts. In the first embodiment, an actuator such as a motor, a solenoid, or a cylinder may be used as a drive source of the driving force, or the second member 20 may be manually moved using the operator's muscle as a chemical actuator. Good.

図5(a)に示した部材51は、曲面である周面51d、この周面51dに対して垂直に設けられる側面51g、51f及び側面51g、51fの両方に垂直な面51eを備えている。部材51には駆動力受容凸部27と係り合う係合部51aが形成されていて、部材51は矢線Aの方向から駆動力受容凸部27を51a内に収容する。駆動力受容凸部27は、そのz軸方向の長さが係合部51aの上端51b、下端51c間の間隔に対応するように設計されていて、係合部51aに嵌め合わされる。このような構成により、駆動力受容凸部27は、係合部51aに嵌め合わされた後にx軸に沿う力が加えられても係合部51aから外れることがない。
また、図5(b)に示した部材53は、三つの平面を含む周面53d、周面53dに対して垂直に設けられる側面53g、53f及び側面53g、53fの両方に垂直な面53eを備えている。部材53には駆動力受容凸部27と係り合う係合部53aが形成されていて、部材53は矢線Aの方向から駆動力受容凸部27を53a内に収容する。駆動力受容凸部27は、そのz軸方向の長さが係合部53aの上端53b、下端53c間の間隔に対応するように設計されていて、係合部53aに嵌め合わされる。このような構成により、駆動力受容凸部27は、係合部53aに嵌め合わされた後にx軸に沿う力が加えられても係合部53aから外れることがない。
The member 51 shown in FIG. 5A includes a peripheral surface 51d that is a curved surface, and side surfaces 51g and 51f that are provided perpendicular to the peripheral surface 51d and a surface 51e that is perpendicular to both the side surfaces 51g and 51f. .. The member 51 is formed with an engaging portion 51a that engages with the driving force receiving convex portion 27, and the member 51 accommodates the driving force receiving convex portion 27 in the direction of arrow A in the member 51a. The driving force receiving convex portion 27 is designed such that its length in the z-axis direction corresponds to the interval between the upper end 51b and the lower end 51c of the engaging portion 51a, and is fitted to the engaging portion 51a. With such a configuration, the driving force receiving convex portion 27 does not come off from the engaging portion 51a even if a force along the x-axis is applied after being fitted to the engaging portion 51a.
Further, the member 53 shown in FIG. 5B has a peripheral surface 53d including three planes, side surfaces 53g and 53f provided perpendicular to the peripheral surface 53d, and a surface 53e perpendicular to both the side surfaces 53g and 53f. I have it. The member 53 is formed with an engagement portion 53a that engages with the driving force receiving convex portion 27, and the member 53 accommodates the driving force receiving convex portion 27 in the direction of arrow A in the member 53. The driving force receiving convex portion 27 is designed so that its length in the z-axis direction corresponds to the interval between the upper end 53b and the lower end 53c of the engaging portion 53a, and is fitted to the engaging portion 53a. With such a configuration, the driving force receiving convex portion 27 does not come off from the engaging portion 53a even if a force along the x-axis is applied after being fitted to the engaging portion 53a.

ただし、第一実施形態の駆動力受容部は、上記したように凸形状を有するものであることに限定されず、駆動力を伝達する部材と係合するものならば、この部材の形状に応じて凹形状その他どのような形状を有するものであってもよい。このとき、部材51,53も駆動力受容部に対応するどのような形状を有するものであってもよい。
さらに、第一実施形態は、駆動力受容部がプッシュプルの駆動力を受け付けるものに限定されるものではない。例えば、第二部材20の前面21eと背面21fとに押圧方向の駆動力を交互に加え、第二部材20をx軸に沿って移動させるようにしてもよい。このような場合、駆動力受容部は、前面21e及び背面21fである。すなわち、駆動力受容部は、平坦な面であってもよい。
However, the driving force receiving portion of the first embodiment is not limited to the one having the convex shape as described above, and if it engages with the member that transmits the driving force, the driving force receiving portion may be formed according to the shape of this member. It may have a concave shape or any other shape. At this time, the members 51 and 53 may have any shape corresponding to the driving force receiving portion.
Further, the first embodiment is not limited to the one in which the driving force receiving portion receives the push pull driving force. For example, the driving force in the pressing direction may be alternately applied to the front surface 21e and the back surface 21f of the second member 20 to move the second member 20 along the x axis. In such a case, the driving force receiving portion is the front surface 21e and the back surface 21f. That is, the driving force receiving portion may be a flat surface.

以上説明した流路切換機構1は、全体が樹脂の一体成形によって形成されている。流路切換機構1の材料となる樹脂としては、流路切換機構1に要求される熱可塑性、剛性、弾性、透明性、耐溶剤性及びコスト等の条件を満たすものであればどのようなものであってもよい。このような条件を満たす樹脂としては、例えば、ポリエチレンテレフタレート(Poly Ethylene Terephthalate)やサーモポリオレフィン(Thermo Poly Olefin)、ポリプロピレン(Poly Propylene)等が考えられる。
ただし、第一実施形態は、流路切換機構1を樹脂による一体成形によって形成することに限定されるものではない。流路切換機構1は、流路切換機構1の全部または一部に例えば金属等の樹脂以外の材料を使用するものであってもよい。
The flow path switching mechanism 1 described above is entirely formed by resin integral molding. Any resin can be used as the material of the flow path switching mechanism 1 as long as it satisfies the requirements of the flow path switching mechanism 1 such as thermoplasticity, rigidity, elasticity, transparency, solvent resistance, and cost. May be As a resin satisfying such a condition, for example, polyethylene terephthalate (Poly Ethylene Terephthalate), thermopolyolefin (Thermo Poly Olefin), polypropylene (Poly Propylene) and the like are considered.
However, the first embodiment is not limited to forming the flow path switching mechanism 1 by integral molding with resin. The flow path switching mechanism 1 may use a material other than resin, such as metal, for all or part of the flow path switching mechanism 1.

以上説明した第一実施形態の流路切換機構1は、第二部材20を一軸に沿って移動させることによって流体の流路を切り換えることができる。このため、例えばロータリー式の三方活栓のように部品を回転させて流路を切り換える構成よりも流路の切り換え操作に必要なスペースを小さくすることができる。また、必要に応じて流路を形成する第一実施形態の流路切換機構1は、常に三つの流路が形成されている三方活栓等よりも部品におけるデッドスペースを低減することに有利である。さらに、第一実施形態の流路切換機構1は、必要なときに必要な流路だけが形成されるため、複数の流路を他の部材により選択的に開閉するよりも部品構成を単純化することに有利である。そして、このために、流路の径を公知の構成よりも小さくし、材料の残存量を低減して少量の材料を使用するプロセスに適した流路切換機構を提供することができる。 The flow path switching mechanism 1 of the first embodiment described above can switch the flow path of the fluid by moving the second member 20 along one axis. For this reason, the space required for the switching operation of the flow paths can be made smaller than the structure in which the flow paths are switched by rotating the parts such as a rotary type three-way stopcock. In addition, the flow path switching mechanism 1 of the first embodiment that forms flow paths as needed is advantageous in reducing the dead space in parts compared to a three-way stopcock or the like in which three flow paths are always formed. .. Further, the flow path switching mechanism 1 of the first embodiment has only a necessary flow path formed when needed, so that the component structure is simplified as compared with the case where a plurality of flow paths are selectively opened and closed by other members. It is advantageous to For this reason, it is possible to provide a flow path switching mechanism that is suitable for a process in which the diameter of the flow path is made smaller than that of a known configuration, the remaining amount of material is reduced, and a small amount of material is used.

次に、第二実施形態の流路切換機構、材料供給ユニット及びホルダについて説明する。
[第二実施形態]
(流路切換機構)
図6、図7、図8、図14(a)、図14(b)及び図14(c)は、第二実施形態の流路切換機構3を説明するための図である。図6は流路切換機構3の斜視図であって、図7は図6の第一部材60と第二部材20とを分解した分解斜視図である。図8は図7の第一部材60の流路を説明するための図、図14(a)は第一部材60の上面図であり図14(b)は第一部材60の正面図、図14(c)は第一部材60の9c−9cに沿う断面図である。
Next, the flow path switching mechanism, material supply unit and holder of the second embodiment will be described.
[Second embodiment]
(Flow path switching mechanism)
6, FIG. 7, FIG. 8, FIG. 14(a), FIG. 14(b) and FIG. 14(c) are views for explaining the flow path switching mechanism 3 of the second embodiment. 6 is a perspective view of the flow path switching mechanism 3, and FIG. 7 is an exploded perspective view in which the first member 60 and the second member 20 of FIG. 6 are disassembled. FIG. 8 is a diagram for explaining the flow path of the first member 60 of FIG. 7, FIG. 14( a) is a top view of the first member 60, and FIG. 14( b) is a front view of the first member 60. 14C is a cross-sectional view of the first member 60 taken along line 9c-9c.

図6から図8に示すように、流路切換機構3は、第二部材20が一の列方向(図中に示したy軸方向)に複数配置されて第一部材60と組み合わされている。流路切換機構3の流路の少なくとも一つは、複数の第二部材20の第二部分流路が第一部分流路を介して連通して形成されている。
第二実施形態では、図6中に示すy軸を第二部材20の列方向とする。第一部材60は、上面61a、側面61b、61d、下面61c、前面61e及び背面61fを有している。第一部材60には中空部66(図8、図9)が形成されていて、前面61e及び背面61fは複数の中空部66に対応する枠形状を有している。上面61aには流路凸部63aが形成され、側面61b、61dにはそれぞれ流路凸部63b、63dが形成されている。さらに、下面61cにはホルダ係合部65が形成されている。
As shown in FIGS. 6 to 8, in the flow path switching mechanism 3, a plurality of second members 20 are arranged in one row direction (y-axis direction shown in the drawing) and combined with the first member 60. .. At least one of the flow paths of the flow path switching mechanism 3 is formed by connecting the second partial flow paths of the plurality of second members 20 via the first partial flow path.
In the second embodiment, the y-axis shown in FIG. 6 is the column direction of the second members 20. The first member 60 has an upper surface 61a, side surfaces 61b and 61d, a lower surface 61c, a front surface 61e and a back surface 61f. A hollow portion 66 (FIGS. 8 and 9) is formed in the first member 60, and the front surface 61e and the back surface 61f have a frame shape corresponding to the plurality of hollow portions 66. Flow passage protrusions 63a are formed on the upper surface 61a, and flow passage protrusions 63b and 63d are formed on the side surfaces 61b and 61d, respectively. Further, a holder engaging portion 65 is formed on the lower surface 61c.

図6から図9に示すように、第一部材60は、本体64を有している。本体64には第一部分流路62a、62b、62c、62d、62e、62f、62g、63h、62i、62j、62k、62o、62p、62q、62r、62s、62t、62u、62v、62w、62x、62yが形成されていて、第一部分流路62a〜62yはそれぞれ中空部66に連通している。中空部66には開口部62ab〜62jbと、開口部62ab〜62jbに対向して開口される開口部(図示せず)及び第一部分流路62o〜62yの開口部(図示せず)が形成されている(図8参照)。
また、第二実施形態では、第一実施形態と同様に、中空部66に第二部材20が挿通され、第一部分流路と中空部66内部の第二部材20の第二部分流路とが連通して流路を形成する。このような流路切換機構3では、複数の第二部材20の第二部分流路を、第一部分流路を介して連通させて流路を形成することができる。
As shown in FIGS. 6 to 9, the first member 60 has a main body 64. In the main body 64, the first partial flow paths 62a, 62b, 62c, 62d, 62e, 62f, 62g, 63h, 62i, 62j, 62k, 62o, 62p, 62q, 62r, 62s, 62t, 62u, 62v, 62w, 62x, 62y is formed, and the first partial flow paths 62a to 62y each communicate with the hollow portion 66. The hollow portion 66 is formed with openings 62ab to 62jb, openings (not shown) opened to face the openings 62ab to 62jb, and openings (not shown) of the first partial flow paths 62o to 62y. (See FIG. 8).
Further, in the second embodiment, as in the first embodiment, the second member 20 is inserted into the hollow portion 66, and the first partial flow passage and the second partial flow passage of the second member 20 inside the hollow portion 66 are formed. A channel is formed in communication with each other. In such a flow path switching mechanism 3, the second partial flow paths of the plurality of second members 20 can be connected to each other via the first partial flow path to form a flow path.

例えば、図7、図8において、第一部分流路62bと第一部分流路62cとの間に挿通された第二部材20(説明の便宜上「第二部材20A」とする)を図4に示した位置P1に移動させる。また、第一部分流路62cと第一部分流路62dとの間に挿通された第二部材20(「第二部材20B」とする)を図4に示した位置P2に移動させ、第一部分流路62dと第一部分流路62eとの間に挿通された第二部材20(「第二部材20C」とする)を図4に示した位置P3に移動させる。このとき、流路切換機構3には、流路62p−22a−62c−22b−62d−12c−62rが形成される。この流路に液体を通すと、第二部材20Aに第一部分流路62pから流入された流体を第二部材20Bの第二部分流路22bを通して第二部材20Cの第二部分流路22cから第一部分流路62rを介して外部に流出させることができる。
また、例えば、流路切換機構3の全ての第二部材20を図4に示した位置P2に移動させた場合、流路切換機構3には第一部分流路62aから第一部分流路62yまでを一直線に連通する流路が形成される。さらに、流路凸部63a同士を接続すれば、流体を流路切換機構3内で循環、攪拌することもできる。
以上のことから、第二実施形態は、複数の第二部材20の間で第二部分流路22a、22b、22cを任意に接続することができる。このような第二実施形態は、第一実施形態よりも流路の設計の自由度を高め、合成装置内における流体の移動を任意に制御することができる。
For example, FIG. 4 shows the second member 20 (referred to as “second member 20A” for convenience of description) inserted between the first partial flow passage 62b and the first partial flow passage 62c in FIGS. 7 and 8. Move to position P1. Further, the second member 20 (referred to as "second member 20B") inserted between the first partial flow path 62c and the first partial flow path 62d is moved to the position P2 shown in FIG. The second member 20 (hereinafter referred to as "second member 20C") inserted between 62d and the first partial flow path 62e is moved to the position P3 shown in FIG. At this time, channels 62p-22a-62c-22b-62d-12c-62r are formed in the channel switching mechanism 3. When the liquid is passed through this flow path, the fluid that has flowed into the second member 20A from the first partial flow path 62p is passed through the second partial flow path 22b of the second member 20B to the second partial flow path 22c of the second member 20C. It can be made to flow out through the partial flow path 62r.
Further, for example, when all the second members 20 of the flow path switching mechanism 3 are moved to the position P2 shown in FIG. 4, the flow path switching mechanism 3 includes the first partial flow path 62a to the first partial flow path 62y. A flow path that communicates in a straight line is formed. Further, by connecting the flow path convex portions 63a to each other, the fluid can be circulated and stirred in the flow path switching mechanism 3.
From the above, in the second embodiment, the second partial flow paths 22a, 22b, 22c can be arbitrarily connected between the plurality of second members 20. In the second embodiment as described above, the degree of freedom in designing the flow path is increased more than in the first embodiment, and the movement of the fluid in the synthesizing device can be arbitrarily controlled.

(材料供給ユニット)
図10は、第二実施形態の材料供給ユニット100を説明するための図である。材料供給ユニット100は、第二実施形態の流路切換機構3と、材料容器80と、を含んでいる。材料容器80は、流路切換機構3の流路凸部63a(図6から図9参照)によって破断される底面83(図11から図13参照)を有する材料容器80を含んでいる。図10に示した90は、流路切換機構3の流路凸部63aにその底面83が挿通されて、流路凸部63aから流路切換機構3に内部の材料が供給されている。
図11は、図10中に示した材料容器80の斜視図である。図12は、矢線XIIに沿う断面図である。図13は、図11、12に示した底面83の拡大図である。
材料容器80は、上下方向に長い容器本体部である容器本体90を備えている。容器本体90は、外径及び内径が一定の筒形形状を有する筒部87、筒部87よりも小さい一定の外径及び内径を有する筒部89と、筒部87と筒部89とを接続する斜面を有するテーパー部88と、を有している。テーパー部88と筒部89との境界と筒部89の下端部79との間には、底面83が設けられている。
(Material supply unit)
FIG. 10 is a diagram for explaining the material supply unit 100 of the second embodiment. The material supply unit 100 includes the flow path switching mechanism 3 of the second embodiment and the material container 80. The material container 80 includes the material container 80 having a bottom surface 83 (see FIGS. 11 to 13) that is broken by the flow passage protrusion 63a (see FIGS. 6 to 9) of the flow passage switching mechanism 3. In 90 shown in FIG. 10, the bottom surface 83 is inserted into the flow passage convex portion 63a of the flow passage switching mechanism 3, and the internal material is supplied from the flow passage convex portion 63a to the flow passage switching mechanism 3.
FIG. 11 is a perspective view of the material container 80 shown in FIG. FIG. 12 is a sectional view taken along the arrow line XII. FIG. 13 is an enlarged view of the bottom surface 83 shown in FIGS.
The material container 80 includes a container body 90 that is a container body portion that is long in the vertical direction. The container body 90 connects a tubular portion 87 having a tubular shape with a constant outer diameter and an inner diameter, a tubular portion 89 having a constant outer diameter and an inner diameter smaller than the tubular portion 87, and the tubular portion 87 and the tubular portion 89. And a tapered portion 88 having an inclined surface. A bottom surface 83 is provided between the boundary between the tapered portion 88 and the tubular portion 89 and the lower end 79 of the tubular portion 89.

また、材料容器80は、上端部に蓋部5を備えている。筒部87の上端には蓋部5の蓋板81と当接して容器本体90を閉じる当接部86が設けられている。また、蓋部5には、蓋部5と筒部87とを接続する接続片84、82及び接続片84と接続片82との間にあって接続片84と接続片82とが重なるように折り曲げるための屈曲部73が直接または間接的に接続されている。
また、材料容器80は、容器本体90に蓋部5を固定する蓋固定機構を備えている。第二実施形態の蓋固定機構は、蓋部5に形成された切欠部110、係止部材85及び弾性片45によって構成される。
Further, the material container 80 is provided with the lid portion 5 on the upper end portion. An abutting portion 86 that abuts the lid plate 81 of the lid 5 and closes the container body 90 is provided at the upper end of the tubular portion 87. Further, since the lid 5 is bent so that the connecting pieces 84 and 82 for connecting the lid 5 and the tubular portion 87 and between the connecting piece 84 and the connecting piece 82 are overlapped with each other, the connecting piece 84 and the connecting piece 82 are bent. The bent portion 73 is directly or indirectly connected.
Further, the material container 80 includes a lid fixing mechanism that fixes the lid 5 to the container body 90. The lid fixing mechanism of the second embodiment is configured by the notch 110 formed in the lid 5, the locking member 85, and the elastic piece 45.

第二実施形態の材料容器80は、全体が樹脂の一体成形によって形成されている。材料容器80の材料となる樹脂としては、材料容器80に要求される熱可塑性、剛性、弾性、透明性、耐溶剤性及びコスト等の条件を満たすものであればどのようなものであってもよい。このような条件を満たす樹脂としては、例えば、ポリエチレンテレフタレートやサーモポリオレフィン、ポリプロピレン等が考えられる。
ただし、第二実施形態は、材料容器80を樹脂による一体成形によって形成することに限定されるものではない。材料容器80は、材料容器80の全部または一部に例えば金属等の樹脂以外の材料を使用するものであってもよい。
The entire material container 80 of the second embodiment is formed by integral molding of resin. Any resin may be used as the material of the material container 80 as long as it satisfies the requirements of the material container 80 such as thermoplasticity, rigidity, elasticity, transparency, solvent resistance, and cost. Good. As the resin satisfying such a condition, for example, polyethylene terephthalate, thermopolyolefin, polypropylene and the like are considered.
However, the second embodiment is not limited to forming the material container 80 by resin integral molding. The material container 80 may use a material other than resin, such as metal, for all or part of the material container 80.

図12に示すように、底面83は、材料を収容する容器本体90と共に、容器本体90の内部を封止する底面である。底面83は、破断可能な脆弱部831を少なくとも一部に含んでいる。第二実施形態の脆弱部831は、破断が底面83の他の部分である基部832よりも起きやすい部分をいう。第二実施形態では、脆弱部831を薄膜部とし、基部832を薄膜部よりも厚さの大きい厚膜部とした。このようにすることにより、第二実施形態は、基部832よりも破れ易い脆弱部831を形成することができる。 As shown in FIG. 12, the bottom surface 83 is a bottom surface that seals the inside of the container body 90 together with the container body 90 that contains the material. The bottom surface 83 includes a fragile fragile portion 831 at least in part. The fragile portion 831 of the second embodiment is a portion where breakage is more likely to occur than the base portion 832 which is another portion of the bottom surface 83. In the second embodiment, the fragile portion 831 is a thin film portion, and the base portion 832 is a thick film portion having a larger thickness than the thin film portion. By doing so, the second embodiment can form the fragile portion 831 that is easier to tear than the base portion 832.

また、図13に示すように、底面83は、脆弱部831と共に脆弱部831よりも破断し難い基部832と、脆弱部831の破断の前後に容器本体90の内表面と基部832とを接続する接続部833と、を有している。接続部833は、脆弱部831の破断の前においても破断の後にあっても容器本体90の内表面と基部832とを接続した状態にある。つまり、接続部833は、破断前から容器本体90の内表面に接続され、かつ、脆弱部831よりも破断し難い部位である。このような接続部833は、脆弱部831の破断の前には底面83の一部として容器本体90の内表面に接続されていて、脆弱部831の破断後には脆弱部831が底面83から欠落した状態で容器本体90の内表面に残っている。
このようにすれば、脆弱部831の破断後に基部832が容器本体90から離れて筒部89を塞ぐ、あるいは破断片が材料に混入するといったことを防ぐことができる。
In addition, as shown in FIG. 13, the bottom surface 83 connects the fragile portion 831 and the base portion 832 that is more difficult to break than the fragile portion 831, and connects the inner surface of the container body 90 and the base portion 832 before and after the fragile portion 831 is ruptured. And a connection portion 833. The connection portion 833 is in a state of connecting the inner surface of the container body 90 and the base portion 832 before and after the fragile portion 831 is broken. That is, the connecting portion 833 is a portion that is connected to the inner surface of the container body 90 before breaking and is less likely to break than the fragile portion 831. Such a connecting portion 833 is connected to the inner surface of the container body 90 as a part of the bottom surface 83 before the fragile portion 831 is broken, and the fragile portion 831 is missing from the bottom surface 83 after the fragile portion 831 is broken. The remaining state remains on the inner surface of the container body 90.
By doing so, it is possible to prevent the base portion 832 from separating from the container body 90 and closing the tubular portion 89 after the fragile portion 831 is broken, or the broken pieces being mixed into the material.

図14(a)、図14(b)は、底面83が破断する過程を説明するための図である。図14(a)は、図10に示した流路凸部63aが筒部89内に挿入される以前の状態を示している。図14(b)は、流路凸部63aが筒部89内に挿入されて底面83を破断した状態を示している。図14(b)において、底面83は、脆弱部831が破断して基部832の周囲がなくなっている。このため、基部832が筒部89の内表面から離れると共に流路凸部63aに押し上げられて上方にめくれ上がっている。
また、流路凸部63aには周方向に段差部232が形成されている。一方、筒部89にも筒部89の内表面が周状に段差部191を有している。筒部89内に挿入された流路凸部63aは、段差部232が段差部191と係合して固定され、筒部89から抜け落ちることを防いでいる。
このような状態においては、容器本体90の内部と流路凸部63aに形成されている例えば第一部分流路62x(図8参照)が連通し、容器本体90から流路凸部63aに材料が流れ込むようになる。
14(a) and 14(b) are diagrams for explaining a process in which the bottom surface 83 breaks. FIG. 14A shows a state before the flow passage convex portion 63 a shown in FIG. 10 is inserted into the tubular portion 89. FIG. 14B shows a state in which the flow path convex portion 63 a is inserted into the cylindrical portion 89 and the bottom surface 83 is broken. In FIG. 14B, the fragile portion 831 is broken at the bottom surface 83, and the periphery of the base portion 832 is lost. Therefore, the base portion 832 separates from the inner surface of the tubular portion 89 and is pushed up by the flow path convex portion 63a and turned up upward.
In addition, a step portion 232 is formed in the circumferential direction on the flow passage convex portion 63a. On the other hand, the cylindrical portion 89 also has a step portion 191 on the inner surface of the cylindrical portion 89 in a circumferential shape. The flow path convex portion 63a inserted into the tubular portion 89 is fixed by the step portion 232 engaging with the step portion 191, and prevents the flow channel convex portion 63a from coming off the tubular portion 89.
In such a state, for example, the first partial flow channel 62x (see FIG. 8) formed in the flow path convex portion 63a and the inside of the container main body 90 communicate with each other, and the material flows from the container main body 90 to the flow path convex portion 63a. It begins to flow.

(流路切換機構のホルダ)
図15(a)、図15(b)及び図15(c)は、第二実施形態のホルダ70を説明するための図である。図15(a)は、第二実施形態の流路切換機構3がホルダ70に保持される以前の状態を示している。図15(b)は、流路切換機構3がホルダ70に保持される過程を示し、図15(c)は、ホルダ70による流路切換機構3の保持が完了した状態を示している。
ホルダ70は、流路切換機構3を保持し、流路切換機構3において第二部材20の列方向(y方向及び−y方向)と交差する少なくとも一つの方向から流路切換機構3が挿入される挿入溝70cと、挿入溝70cに挿入された流路切換機構3が−y方向に移動することにより係止する係止凸部70bと、を交互に有している。
図15(a)に示すように、流路切換機構3では、第二部材20(図7等)がy軸に沿って一列に配置されている。第二実施形態では、y方向及び−y方向を第二部材20の列方向と記す。一方、ホルダ70は、y軸方向に長い基板70aと、基板70aの長手方向の二辺のそれぞれに設けられる係止凸部70b及び挿入溝70cと、を備えている。係止凸部70b及び挿入溝70cは、上記各辺に沿って交互に設けられている。
(Holder of flow path switching mechanism)
15(a), 15(b) and 15(c) are views for explaining the holder 70 of the second embodiment. FIG. 15A shows a state before the flow path switching mechanism 3 of the second embodiment is held by the holder 70. 15B shows a process in which the flow path switching mechanism 3 is held by the holder 70, and FIG. 15C shows a state in which the holding of the flow path switching mechanism 3 by the holder 70 is completed.
The holder 70 holds the flow path switching mechanism 3, and the flow path switching mechanism 3 is inserted from at least one direction intersecting the column direction (y direction and −y direction) of the second members 20 in the flow path switching mechanism 3. The insertion groove 70c and the locking projection 70b that locks when the flow path switching mechanism 3 inserted in the insertion groove 70c moves in the -y direction are alternately provided.
As shown in FIG. 15A, in the flow path switching mechanism 3, the second members 20 (FIG. 7 etc.) are arranged in a line along the y-axis. In the second embodiment, the y direction and the −y direction will be referred to as the column direction of the second members 20. On the other hand, the holder 70 includes a substrate 70a that is long in the y-axis direction, and locking protrusions 70b and an insertion groove 70c that are provided on each of two longitudinal sides of the substrate 70a. The locking projections 70b and the insertion grooves 70c are alternately provided along the above-mentioned sides.

このようなホルダ70に対し、第二実施形態では、流路切換機構3の下面61cに形成されているホルダ係合部65を挿入溝70cに合わせて図中の矢線Bの方向からスライドさせて基板70a上に載置する。なお、流路切換機構3をホルダ70に対してスライドさせる方向は、矢線Bに示す方向に限定されるものではない。他の方向としては、図中に示すz軸方向が考えられる。z軸方向からホルダ70に流路切換機構3を保持させる場合、流路切換機構3は、ホルダ係合部65を挿入溝70cに合わせて上方から基板70a上に載置される。
なお、第二実施形態のホルダ70は、流路切換機構3が直交方向から挿入溝70cに挿入される構成に限定されるものではなく、第二部材20の配列方向と交差する方向から挿入されるものであればどのような方向から挿入されるものであってもよい。流路切換機構3の挿入方向は、挿入溝70cの形状や設計に応じて任意に設定することができる。
In such a holder 70, in the second embodiment, the holder engaging portion 65 formed on the lower surface 61c of the flow path switching mechanism 3 is aligned with the insertion groove 70c and slid in the direction of arrow B in the drawing. On the substrate 70a. The direction in which the flow path switching mechanism 3 is slid with respect to the holder 70 is not limited to the direction indicated by the arrow B. As another direction, the z-axis direction shown in the figure can be considered. When the holder 70 holds the flow path switching mechanism 3 from the z-axis direction, the flow path switching mechanism 3 is placed on the substrate 70a from above with the holder engaging portion 65 aligned with the insertion groove 70c.
The holder 70 of the second embodiment is not limited to the configuration in which the flow path switching mechanism 3 is inserted into the insertion groove 70c from the orthogonal direction, but is inserted from the direction intersecting the arrangement direction of the second members 20. Any direction may be used as long as it is inserted. The insertion direction of the flow path switching mechanism 3 can be arbitrarily set according to the shape and design of the insertion groove 70c.

次に、第二実施形態では、図15(b)に示すように、基板70a上の流路切換機構3を、基板70a上で図中に矢線Cで示す第二部材20の配列方向に移動させる。移動後、流路切換機構3は、図15(c)に示すようにホルダ70上に固定される。より詳細には、第二実施形態のホルダ係合部65の表面は、下面61cから下方に向かって広がるテーパー面になっている。一方、係止凸部70bは、ホルダ係合部65と接する側の表面がホルダ係合部65の表面に沿う逆テーパー面になっている。流路切換機構3が矢線Cの方向に係止凸部70b一つ分移動することによってホルダ係合部65の位置が基板70aの短辺方向の両側の係止凸部70bと一致する。このとき、ホルダ係合部65と係止凸部70bとが係り合い、ホルダ係合部65が係止凸部70bによって係止されて流路切換機構3がホルダ70から外れることを防ぐことができる。また、ホルダ70を、弾性を有する樹脂等の材料で製造すれば、ホルダ係合部65は両側の係止凸部70bから圧縮方向の力を受けて、係止凸部70bとの係合がいっそう強固なものになる。
このような第二実施形態のホルダ70によれば、ホルダ70の任意の位置に流路切換機構3をセットするにあたり、流路切換機構3を固定位置まで矢線Cの方向に移動させる必要がない。このため、流路切換機構3をホルダ70に簡易にセットすることができる。
Next, in the second embodiment, as shown in FIG. 15B, the flow path switching mechanism 3 on the substrate 70a is arranged on the substrate 70a in the arrangement direction of the second members 20 indicated by the arrow C in the figure. To move. After the movement, the flow path switching mechanism 3 is fixed on the holder 70 as shown in FIG. More specifically, the surface of the holder engagement portion 65 of the second embodiment is a tapered surface that spreads downward from the lower surface 61c. On the other hand, the locking convex portion 70b has a surface on the side in contact with the holder engaging portion 65 which is a reverse taper surface along the surface of the holder engaging portion 65. When the flow path switching mechanism 3 moves in the direction of arrow C by one locking protrusion 70b, the position of the holder engagement portion 65 coincides with the locking protrusions 70b on both sides of the substrate 70a in the short side direction. At this time, it is possible to prevent the holder engaging portion 65 and the locking convex portion 70b from engaging with each other, preventing the holder engaging portion 65 from being locked by the locking convex portion 70b and the flow path switching mechanism 3 coming off the holder 70. it can. If the holder 70 is made of a material such as a resin having elasticity, the holder engagement portion 65 receives a force in the compression direction from the locking projections 70b on both sides and is engaged with the locking projection 70b. It will be even stronger.
According to the holder 70 of the second embodiment, when setting the flow path switching mechanism 3 at an arbitrary position of the holder 70, it is necessary to move the flow path switching mechanism 3 to the fixed position in the direction of arrow C. Absent. Therefore, the flow path switching mechanism 3 can be easily set in the holder 70.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態は、以上説明した材料供給ユニットに用いられる材料容器に関するものである。以下、第三実施形態の材料容器の具体的な説明に先立って、第三実施形態の材料容器の発明の目的について説明する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. The third embodiment relates to the material container used in the material supply unit described above. Prior to the specific description of the material container of the third embodiment, the purpose of the invention of the material container of the third embodiment will be described below.

化学処理によって薬剤を合成する装置にあっては、一つの装置で複数の種類の薬剤の合成に対応できるものがある。薬剤を合成するにあたっては、この薬剤に対応した材料を供給する機構が必要になる。なお、ここで、「材料」は、薬剤の合成に使用される物質、薬品(試薬)、触媒及び水等を含んでいる。
複数の種類の薬剤合成を一つの装置で行う場合、材料を反応容器に供給する機構を複数の合成プロセスで共用することになる。このような機構において、各薬剤に対応する材料の変更を簡便に行うため、供給機構に任意の材料をセット可能にし、合成すべき薬剤に応じてセットされる材料を変更するものがある。また、このような機構においては、合成のプロセスにおいて他の合成のプロセスに使用される薬剤、あるいは他のプロセスで生成された生成物が混入すること(コンタミネーション:Contamination/Carry over含む)を防ぐため、材料の容器を含む供給機構の少なくとも一部を使い捨てにすることが好ましい。薬剤の合成に使用される材料の容器として、例えば、特開2010−270068号公報(以下、参考文献1と記す)に記載された合成装置では、バイアル容器が使用されている。
Some devices for synthesizing drugs by chemical treatment are capable of synthesizing a plurality of types of drugs with one device. In synthesizing a drug, a mechanism for supplying a material corresponding to this drug is required. Here, the “material” includes a substance, a drug (reagent), a catalyst, water and the like used for synthesizing a drug.
When synthesizing a plurality of types of drugs in one apparatus, the mechanism for supplying the material to the reaction vessel is shared by the plurality of synthesizing processes. In such a mechanism, in order to easily change the material corresponding to each drug, there is a mechanism in which an arbitrary material can be set in the supply mechanism and the material to be set is changed according to the drug to be synthesized. In addition, in such a mechanism, it is possible to prevent contamination (including Contamination/Carry over) of a drug used in another synthesis process or a product produced in another process in the synthesis process. Therefore, it is preferable that at least a part of the supply mechanism including the material container is disposable. As a container for materials used for synthesizing a drug, for example, a vial container is used in the synthesizer described in JP 2010-270068 A (hereinafter referred to as Reference Document 1).

また、生化学や分子生物学の分野では、特開平10−323176号公報(以下、参考文献2と記す)や特表2014−507256号公報(以下、参考文献3と記す)に記載された容器がポリメラーゼ連鎖反応の容器として使用されている。参考文献2及び参考文献3に記載の容器は、いずれも容器本体の上端が開口していて、開口を開閉可能な蓋を備えており、容器の蓋と反対側にある「底」が閉塞している。そして、開口部からピペットにより液体試料の注入、取り出しを行う。 Further, in the fields of biochemistry and molecular biology, the containers described in Japanese Patent Application Laid-Open No. 10-323176 (hereinafter referred to as Reference 2) and Japanese Patent Publication No. 2014-507256 (hereinafter referred to as Reference 3). Is used as a container for the polymerase chain reaction. Each of the containers described in References 2 and 3 has an opening at the upper end of the container body and a lid capable of opening and closing the opening, and the “bottom” on the side opposite to the lid of the container is closed. ing. Then, the liquid sample is injected and taken out from the opening portion with a pipette.

参考文献1に記載の合成装置等で使用されるバイアル容器に材料をセットする場合、バイアル容器のゴム栓をアルミニウム薄膜等によって封止する。固体の材料の場合は、溶媒で溶解し、ゴム栓に流体の流路を有する針(以下、「注射針」と記す)を挿通させることで、材料の供給機構側の流路とバイアル瓶の内部とを流通させている。
しかしながら、このようにバイアル容器に材料を収容すると、バイアル容器に残る材料の残存量が、供給機構側に供給される液量が少なくなるにつれて、問題となる。
また、参考文献2及び参考文献3に記載の容器では、ピペットによる液体試料の注入、取り出しが前提とされており、自動化された合成装置の流路に対する材料の供給機構への適用は何ら想定されていない。
第三実施形態は、上記の点に鑑みてなされたものであり、材料の残存量が少なく、しかも材料の供給機構への脱着が簡便に行える材料容器に関するものである。また、第三実施形態は、このような材料容器を使用した材料供給ユニットに関するものである。
When the material is set in the vial container used in the synthesizer described in Reference 1, the rubber stopper of the vial container is sealed with an aluminum thin film or the like. In the case of a solid material, it is dissolved in a solvent, and a needle having a fluid flow path (hereinafter referred to as “injection needle”) is inserted into a rubber stopper, so that the flow path on the material supply mechanism side and the vial It is in circulation with the inside.
However, when the material is contained in the vial container in this manner, the remaining amount of the material remaining in the vial container becomes a problem as the amount of liquid supplied to the supply mechanism side decreases.
In addition, the containers described in References 2 and 3 are premised on the injection and removal of a liquid sample by a pipette, and it is assumed that the container is applied to a material supply mechanism for a flow path of an automated synthesizer. Not not.
The third embodiment is made in view of the above points, and relates to a material container in which the remaining amount of the material is small and the material can be easily attached to and detached from the supply mechanism. Moreover, the third embodiment relates to a material supply unit using such a material container.

以下、本発明の第三実施形態を図面に基づいて説明する。なお、すべての図面において、同様の構成要素には同様の符号を付し、重複する説明は適宜省略する。また、第三実施形態において、材料容器1001及び材料供給ユニット1004は、材料容器1001を受容部材1002にセットした状態において蓋部1005の側を上、材料容器1001に対する受容部材1002の側を下とする。このような上下の方向は、重力方向とは無関係に定められる。
また、第三実施形態中に示す図16から図24は、材料容器1001及び材料供給ユニット1004の機構やその配置関係を説明することを目的としたものであり、各部材の長さ、厚さ及び幅等を必ずしも正確に示すものではない。
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. In all the drawings, the same constituents will be referred to with the same signs, while omitting their overlapping descriptions. Further, in the third embodiment, the material container 1001 and the material supply unit 1004 have the lid 1005 side up and the receiving member 1002 side down with respect to the material container 1001 when the material container 1001 is set in the receiving member 1002. To do. Such a vertical direction is determined independently of the gravity direction.
Moreover, FIGS. 16 to 24 shown in the third embodiment are for the purpose of explaining the mechanism of the material container 1001 and the material supply unit 1004 and the positional relationship thereof, and the length and thickness of each member. The width and the like are not necessarily shown accurately.

[材料供給ユニット]
図16は、第三実施形態の材料供給ユニット1004を説明するための斜視図である。材料供給ユニット1004は、第三実施形態の材料容器1001と、材料容器1001の脆弱部1031(図22、図23)を破断する凸部1023aと、この凸部1023aの内部にあって、凸部1023aが脆弱部1031を破断して底面1003に挿通された状態で材料容器1001と連通する流路1231(図24)と、を有する受容部材1002と、を有している。凸部1023aの先端には、流路1231の開口端が開口されている。
第三実施形態では、材料容器1001を化学処理による化合物または薬剤の合成に使用されるものとし、材料容器1001の飲食物の混合への使用を除く。さらに、材料容器1001を放射性化合物または放射性薬剤(放射性核種で標識された高分子や抗体などを含む、以下、総称して「放射性薬剤等」ともいう。)の合成に使用する場合、材料容器1001には、これら放射性薬剤等の合成の材料が収容される。放射性薬剤等の合成の材料としては、例えば、放射性薬剤等の合成に使用される物質(標識前駆体等)や薬品(試薬)、触媒及び水等がある。
[Material supply unit]
FIG. 16 is a perspective view for explaining the material supply unit 1004 of the third embodiment. The material supply unit 1004 includes a material container 1001 according to the third embodiment, a convex portion 1023a that breaks the fragile portion 1031 (FIGS. 22 and 23) of the material container 1001, and a convex portion inside the convex portion 1023a. The receiving member 1002 has a flow channel 1231 (FIG. 24) that communicates with the material container 1001 in a state in which the fragile portion 1031 is broken by the 1023a and is inserted into the bottom surface 1003. An opening end of the flow path 1231 is opened at the tip of the convex portion 1023a.
In the third embodiment, the material container 1001 is used for synthesizing a compound or drug by a chemical treatment, and the use of the material container 1001 for mixing food and drink is excluded. Further, when the material container 1001 is used for synthesizing a radioactive compound or a radiopharmaceutical (including macromolecules or antibodies labeled with a radionuclide, hereinafter also collectively referred to as “radioactive agent”), the material container 1001 is used. The housing contains synthetic materials such as radiopharmaceuticals. Examples of materials for synthesizing radiopharmaceuticals include substances (label precursors) used for synthesizing radiopharmaceuticals, drugs (reagents), catalysts, water and the like.

受容部材1002は、図示しない放射性薬剤等の合成装置にセットされ、この合成装置に化学反応に使用される材料を供給することに使用される部材である。受容部材1002は、壁面1021a、1021b、1021c、1021d、1021eを少なくとも有する本体1021と、本体1021の壁面1021aに設けられた凸部1023a、壁面1021eに設けられた凸部1023eを備えている。受容部材1002は、本体1021に設けられた断面形状が矩形の貫通孔1042と、貫通孔1042に挿通される切換ユニット1043と、を有している。切換ユニット1043は、図示しない流路を有し、この流路と凸部1023a内に形成されている流路1231とを接離するように受容部材1002の長さ方向と直交する軸の両方向に移動可能である。切換ユニット1043は、把持部1041を図示しないアクチュエータ等によって押す、または引くことによって移動される。 The receiving member 1002 is a member that is set in a synthesizer (not shown) for synthesizing a radiopharmaceutical and is used for supplying a material used in a chemical reaction to the synthesizer. The receiving member 1002 includes a main body 1021 having at least wall surfaces 1021a, 1021b, 1021c, 1021d, 1021e, a convex portion 1023a provided on the wall surface 1021a of the main body 1021, and a convex portion 1023e provided on the wall surface 1021e. The receiving member 1002 has a through hole 1042 provided in the main body 1021 and having a rectangular cross section, and a switching unit 1043 inserted into the through hole 1042. The switching unit 1043 has a flow path (not shown), and is provided in both directions of an axis orthogonal to the length direction of the receiving member 1002 so as to contact and separate the flow path and the flow path 1231 formed in the convex portion 1023a. Can be moved. The switching unit 1043 is moved by pushing or pulling the grip portion 1041 by an actuator (not shown) or the like.

材料容器1001は、上下方向に長い容器本体部である容器本体1010(図17、図18、図21)を備えている。容器本体1010は、外径及び内径が一定の筒形形状を有する筒部1017、筒部1017よりも小さい一定の外径及び内径を有する筒部1019と、筒部1017と筒部1019とを接続する斜面を有するテーパー部1018と、を有している。テーパー部1018と筒部1019との境界と筒部1019の下端部1049との間には、底面1003が設けられている。 The material container 1001 includes a container body 1010 (FIGS. 17, 18, and 21) that is a container body portion that is long in the vertical direction. The container body 1010 connects a tubular portion 1017 having a tubular shape with a constant outer diameter and an inner diameter, a tubular portion 1019 having a constant outer diameter and an inner diameter smaller than the tubular portion 1017, and the tubular portion 1017 and the tubular portion 1019. And a tapered portion 1018 having an inclined surface. A bottom surface 1003 is provided between the boundary between the tapered portion 1018 and the tubular portion 1019 and the lower end portion 1049 of the tubular portion 1019.

また、材料容器1001は、上端部に蓋部1005を備えている。筒部1017の上端には蓋部1005の蓋板1011と当接して容器本体1010を閉じる当接部1016が設けられている。また、蓋部1005には、蓋部1005と筒部1017とを接続する接続片1014、1012及び接続片1014と接続片1012との間にあって接続片1014と接続片1012とが重なるように折り曲げるための屈曲部1013が直接または間接的に接続されている。
また、材料容器1001は、容器本体1010に蓋部1005を固定する蓋固定機構を備えている。第三実施形態の蓋固定機構は、蓋部1005に形成された切欠部1110、係止部材1015及び弾性片1045(図18)によって構成される。
Further, the material container 1001 includes a lid portion 1005 at the upper end portion. An abutting portion 1016 that abuts the lid plate 1011 of the lid 1005 and closes the container body 1010 is provided at the upper end of the tubular portion 1017. Further, since the lid 1005 is bent so that the connecting pieces 1014 and 1012 that connect the lid 1005 and the tubular portion 1017 are between the connecting pieces 1014 and 1012 and the connecting pieces 1014 and 1012, the connecting pieces 1014 and 1012 are overlapped. The bent portion 1013 is directly or indirectly connected.
The material container 1001 also includes a lid fixing mechanism that fixes the lid portion 1005 to the container body 1010. The lid fixing mechanism of the third embodiment includes a notch 1110 formed in the lid 1005, a locking member 1015, and an elastic piece 1045 (FIG. 18).

上記した材料供給ユニット1004は、受容部材1002が凸形状を有する複数の凸部1023aを有している。材料容器1001は、筒部1019の内部に底面1003(図17から図23)を備えている。第三実施形態は、底面1003に凸部1023aを挿通させることによって受容部材1002に材料容器1001をセットすることができる。このような構成は、受容部材1002への材料容器1001のセットを簡便に行うことができる。 In the material supply unit 1004 described above, the receiving member 1002 has a plurality of convex portions 1023a having a convex shape. The material container 1001 includes a bottom surface 1003 (FIGS. 17 to 23) inside the cylindrical portion 1019. In the third embodiment, the material container 1001 can be set in the receiving member 1002 by inserting the convex portion 1023a into the bottom surface 1003. With such a configuration, the material container 1001 can be easily set on the receiving member 1002.

また、第三実施形態の材料容器1001は、底面を破断させて材料を取り出しているため、比較的大径の材料の流路を確保することができる。このため、第三実施形態は、容器本体1010における容器本体1010の残存量を少なくすることができる。また、材料容器1001は、受容部材に対して任意に差し替えることができるので、材料の供給機構への脱着を簡便に行うことができる。
また、第三実施形態は、合成される放射性薬剤等に応じた任意の材料を収容する材料容器1001を受容部材1002にセットし、他の放射性薬剤等の合成に際しては他の材料を収容する材料容器1001を受容部材1002にセットすることができる。このようにすれば、合成装置が合成する放射性薬剤等に合わせて供給すべき材料を簡便に変更することができる。さらに、第三実施形態は、材料容器1001及び受容部材1002を使い捨てにすることにより、合成装置内における材料や残留物及び生成物によるコンタミネーションを防ぐことができる。
Further, in the material container 1001 of the third embodiment, the bottom surface is broken to take out the material, so that the flow path of the material having a relatively large diameter can be secured. Therefore, in the third embodiment, the remaining amount of the container body 1010 in the container body 1010 can be reduced. Further, since the material container 1001 can be arbitrarily replaced with the receiving member, the material can be easily attached to and detached from the supply mechanism.
Further, in the third embodiment, a material container 1001 containing an arbitrary material corresponding to a radiopharmaceutical or the like to be synthesized is set in the receiving member 1002, and a material containing another material when synthesizing another radiopharmaceutical or the like. The container 1001 can be set on the receiving member 1002. With this configuration, the material to be supplied can be easily changed according to the radiopharmaceutical or the like synthesized by the synthesizer. Furthermore, in the third embodiment, by making the material container 1001 and the receiving member 1002 disposable, it is possible to prevent contamination due to materials, residues, and products in the synthesizer.

[容器本体]
次に、図16に示した材料容器1001について説明する。
図17、図18、図19、図20、図21及び図22は、材料容器1001の容器本体1010に係る構成を説明するための図である。図17及び図18は、材料容器1001の斜視図であって、図17は蓋部1005が開口部1047を閉じた状態を示し、図18は蓋部1005が開口部1047を開放した状態を示している。図19は、図18中に示した材料容器1001を矢線IVの方向から見た上面図である。図20は、図18中に示した材料容器1001を矢線Vの方向から見た底面図である。図21は、図18中に示した材料容器1001の矢線VIに沿う断面図であり、図22は、図21に示した破線VIIで囲う範囲を拡大して示した容器本体1010の拡大図である。図23は、図22に示した底面1003を図17中の矢線Vの方向から見た拡大図である。
[Container body]
Next, the material container 1001 shown in FIG. 16 will be described.
17, FIG. 18, FIG. 19, FIG. 20, FIG. 21, and FIG. 22 are diagrams for explaining the configuration of the container body 1010 of the material container 1001. 17 and 18 are perspective views of the material container 1001. FIG. 17 shows a state in which the lid 1005 closes the opening 1047, and FIG. 18 shows a state in which the lid 1005 opens the opening 1047. ing. FIG. 19 is a top view of the material container 1001 shown in FIG. 18 seen from the direction of arrow IV. FIG. 20 is a bottom view of the material container 1001 shown in FIG. 18 as seen from the direction of arrow V. 21 is a cross-sectional view of the material container 1001 shown in FIG. 18 along the arrow VI, and FIG. 22 is an enlarged view of the container body 1010 in which the range enclosed by the broken line VII shown in FIG. 21 is enlarged. Is. FIG. 23 is an enlarged view of the bottom surface 1003 shown in FIG. 22 seen from the direction of arrow V in FIG.

図16、図17及び図18に示すように、材料容器1001は、化学処理に使用される材料を収容する有底の容器である。
容器本体1010及び底面1003は、上面視において円形を有している。そして、容器本体1010の内径は、底面1003の径よりも大きくなっている。なお、第三実施形態では、容器本体1010の内径は一定であるが、容器本体1010は内径が変化するものであってもよい。容器本体1010の内径が変化する場合、この内径はいずれの箇所においても底面1003の径より大きくなっている。換言すれば、容器本体1010の最小の内径が底面1003の径よりも小さくなっている。
As shown in FIGS. 16, 17 and 18, the material container 1001 is a bottomed container for containing a material used for chemical processing.
The container body 1010 and the bottom surface 1003 have a circular shape in a top view. The inner diameter of the container body 1010 is larger than the diameter of the bottom surface 1003. Although the inner diameter of the container body 1010 is constant in the third embodiment, the container body 1010 may have a different inner diameter. When the inner diameter of the container body 1010 changes, this inner diameter is larger than the diameter of the bottom surface 1003 at any place. In other words, the smallest inner diameter of the container body 1010 is smaller than the diameter of the bottom surface 1003.

つまり、材料容器1001は、容器本体1010を有している。容器本体1010は、筒部1017、テーパー部1018及び筒部1019によって構成されていて、筒部1017、テーパー部1018及び筒部1019の長手方向と直交する断面はいずれも円形の形状を有している。筒部1017、テーパー部1018及び筒部1019の断面の径は、筒部1017、テーパー部1018、筒部1019の順に小さくなっていく。テーパー部1018は、筒部1017の下端部から筒部1019の上端部に向かうにしたがって細くなる円錐の一部をなしている。
なお、第三実施形態は、上記構成に限定されるものではない。例えば、第三実施形態は、テーパー部1018が一定の径を有する筒体であってもよいし、傾きが変化するテーパー筒であってもよい。また、筒部1019についても径が一定または変化するものであってよい。
That is, the material container 1001 has a container body 1010. The container body 1010 is composed of a tubular portion 1017, a tapered portion 1018, and a tubular portion 1019, and each of the tubular portion 1017, the tapered portion 1018, and the tubular portion 1019 has a circular cross section orthogonal to the longitudinal direction. There is. The diameter of the cross section of the tubular portion 1017, the tapered portion 1018, and the tubular portion 1019 decreases in the order of the tubular portion 1017, the tapered portion 1018, and the tubular portion 1019. The tapered portion 1018 forms a part of a cone that becomes thinner from the lower end of the tubular portion 1017 toward the upper end of the tubular portion 1019.
The third embodiment is not limited to the above configuration. For example, in the third embodiment, the tapered portion 1018 may be a cylindrical body having a constant diameter, or a tapered cylinder whose inclination changes. The diameter of the cylindrical portion 1019 may be constant or change.

第三実施形態の材料容器1001は、容器本体1010の内部と材料の供給先との間に圧力差を設け、材料を圧力差によって材料の流出を促している。このとき、第三実施形態は、容器本体1010が筒部1019を含むことにより、ヘリウム等のガスの流れを筒部1019に向かって集中させて材料の流出を促すことができる。
上記構成により、第三実施形態は、材料がテーパー部1018の内周面に沿って筒部1019から円滑に流出し、容器本体1010内の材料の残存量をいっそう少なくすることができる。
In the material container 1001 of the third embodiment, a pressure difference is provided between the inside of the container body 1010 and the material supply destination, and the material is urged to flow out by the pressure difference. At this time, in the third embodiment, since the container body 1010 includes the tubular portion 1019, the flow of gas such as helium can be concentrated toward the tubular portion 1019 to promote the outflow of the material.
With the above configuration, in the third embodiment, the material smoothly flows out from the cylindrical portion 1019 along the inner peripheral surface of the tapered portion 1018, and the remaining amount of the material in the container body 1010 can be further reduced.

図18に示すように、蓋部1005の蓋板1011の容器本体1010の内部に向かう側には嵌合部1111が形成されている。嵌合部1111は、外周面が当接部1016の内周面に接するように当接部1016に嵌合されて嵌合部1111の当接面1112と当接部1016の側の当接面1162とが接触して開口部1047を閉じている。開口部1047を閉じた状態の蓋部1005の蓋固定機構については後述する。 As shown in FIG. 18, a fitting portion 1111 is formed on the side of the lid plate 1011 of the lid portion 1005 facing the inside of the container body 1010. The fitting portion 1111 is fitted to the contact portion 1016 so that the outer peripheral surface thereof contacts the inner peripheral surface of the contact portion 1016, and the contact surface 1112 of the fitting portion 1111 and the contact surface of the contact portion 1016 side. 1162 is in contact with and closes the opening 1047. The lid fixing mechanism of the lid 1005 with the opening 1047 closed will be described later.

[底面]
また、容器本体1010は、図17から図23に示すように、底面1003を備えている。図17、図18、図21及び図22に示すように、底面1003は、材料を収容する容器本体1010と、容器本体1010の内部を封止する底面である。底面1003は、筒部1019の下端部1049から距離を持って設けられていて、破損が抑止されている。
[Bottom]
Further, the container body 1010 has a bottom surface 1003 as shown in FIGS. 17 to 23. As shown in FIGS. 17, 18, 21, and 22, the bottom surface 1003 is a bottom surface that seals the inside of the container body 1010 that contains the material and the container body 1010. The bottom surface 1003 is provided at a distance from the lower end portion 1049 of the tubular portion 1019 and is prevented from being damaged.

底面1003は、底面1003は、図20及び図23に示すように、破断可能な脆弱部1031を少なくとも一部に含んでいる。第三実施形態の脆弱部1031は、破断が底面1003の他の部分である基部1032よりも起きやすい部分をいう。第三実施形態では、脆弱部1031を薄膜とし、基部1032を脆弱部1031の厚みよりも厚さの大きい厚膜とした。このようにすることにより、第三実施形態は、基部1032よりも破れ易い脆弱部1031を形成することができる。 As shown in FIGS. 20 and 23, the bottom surface 1003 includes a fragile fragile portion 1031 at least in part. The fragile portion 1031 of the third embodiment is a portion where breakage is more likely to occur than the base portion 1032 which is another portion of the bottom surface 1003. In the third embodiment, the fragile portion 1031 is a thin film, and the base portion 1032 is a thick film having a thickness larger than the thickness of the fragile portion 1031. By doing so, in the third embodiment, the fragile portion 1031 that is easier to break than the base portion 1032 can be formed.

ただし、第三実施形態の破断は、底面1003が破れることのみを指すのではなく、底面1003がテーパー部1018と筒部1017との間で材料の移動が起こる状態になることを指す。このため、底面1003の破断には、底面1003が裂ける、あるいは割れること等も含まれる。また、第三実施形態でいう「破断可能」とは、筒部1019の内部に突起物を挿通させることによって底面1003を破断できることを指す。突起物は、凸部1023aであってもよいし、他の突起物を使って1003を破断させた後に筒部1019に凸部1023aを差し込むものであってもよい。
他の部分より裂け易い脆弱部は、例えば、脆弱部に他の部分よりも一方向に裂け易い部材を用いることによって形成できる。他の部分より割れ易い脆弱部は、例えば、他の部分より膜厚が薄い部分を線状に形成しておき、線で囲まれている部分に圧力が加えられることによって底面1003が線に沿って割れるようにすることで形成できる。
However, the breakage in the third embodiment does not only mean that the bottom surface 1003 is broken, but also means that the bottom surface 1003 is in a state in which material movement occurs between the tapered portion 1018 and the cylindrical portion 1017. Therefore, breakage of the bottom surface 1003 includes tearing or breaking of the bottom surface 1003. The term “breakable” in the third embodiment means that the bottom surface 1003 can be broken by inserting a protrusion into the inside of the tubular portion 1019. The protrusion may be the protrusion 1023a, or the protrusion 1023a may be inserted into the tubular portion 1019 after the protrusion 1003 is broken using another protrusion.
The fragile portion that is easier to tear than the other portion can be formed, for example, by using a member that is easier to tear in one direction than the other portion in the weak portion. The fragile portion that is more easily cracked than the other portion is, for example, a portion having a film thickness smaller than that of the other portion is formed into a linear shape, and pressure is applied to the portion surrounded by the line, so that the bottom surface 1003 extends along the line. It can be formed by breaking it.

また、底面1003は、図23に示すように、脆弱部1031よりも破断し難い基部1032と、脆弱部1031の破断の前後に容器本体1010の内周面と基部1032とを接続する接続部1033と、を更に有している。
また、図23に示すように、第三実施形態の脆弱部1031は、基部1032よりも底面1003の径方向の外側に配置されている。このような構成により、第三実施形態は、底面1003の周囲を破断させて中央部分の基部1032を容器本体1010から切り離し、かつ、切り離された基部1032を容器本体1010の内部に留めておくことができる。つまり、底面1003の周囲を基部とし、中央部分を脆弱部1031とする構成では、脆弱部1031が破断して基部から切り離され、破断後の破断片の位置をコントロールすることができなくなる。さらに、底面1003の周囲を基部とし、中央部分を脆弱部とする構成では、筒部1019の内周面に基部1032が残って筒部1019の内径、即ち材料の流路が狭くなると思われる。基部1032の外側に脆弱部1031を設ける第三実施形態は、破断した脆弱部1031が筒部1019の内周面に残ることがなく、材料の流路の径を確保することができる。そして、このような構成は、材料が容器本体1010に残存する残存量を低減することに効果的である。
Also, as shown in FIG. 23, the bottom surface 1003 has a base portion 1032 that is more difficult to break than the weak portion 1031 and a connection portion 1033 that connects the inner peripheral surface of the container body 1010 and the base portion 1032 before and after the weak portion 1031 is broken. And further have.
Further, as shown in FIG. 23, the fragile portion 1031 of the third embodiment is arranged outside the base portion 1032 in the radial direction of the bottom surface 1003. With such a configuration, in the third embodiment, the periphery of the bottom surface 1003 is broken to separate the central portion base 1032 from the container body 1010, and the separated base portion 1032 is retained inside the container body 1010. You can That is, in the configuration in which the periphery of the bottom surface 1003 is the base portion and the central portion is the fragile portion 1031, the fragile portion 1031 is fractured and separated from the base portion, and it becomes impossible to control the position of the fragment after fracture. Further, in the configuration in which the periphery of the bottom surface 1003 is the base portion and the central portion is the weak portion, the base portion 1032 remains on the inner peripheral surface of the tubular portion 1019, and the inner diameter of the tubular portion 1019, that is, the material flow path is narrowed. In the third embodiment in which the fragile portion 1031 is provided outside the base portion 1032, the broken fragile portion 1031 does not remain on the inner peripheral surface of the tubular portion 1019, and the diameter of the flow path of the material can be secured. Further, such a configuration is effective in reducing the amount of material remaining in the container body 1010.

さらに、第三実施形態は、図23示すように、接続部1033の外縁の形状が基部1032に向けて内側に凸になるように緩やかに曲がっている部分1034を有している。このような構成により、第三実施形態は、接続部1033の周囲に材料が残存することをなくし、ひいては容器本体1010における材料の残存量を低減することができる。 Furthermore, as shown in FIG. 23, the third embodiment has a portion 1034 that is gently curved so that the shape of the outer edge of the connection portion 1033 is convex inward toward the base portion 1032. With such a configuration, in the third embodiment, it is possible to prevent the material from remaining around the connection portion 1033 and to reduce the remaining amount of the material in the container body 1010.

なお、図19、図20及び図22に示すように、第三実施形態の底面1003は、下側においてのみ脆弱部1031と基部1032との間に段差が生じている。つまり、底面1003では基部1032が下側に向けて厚くなっている。底面1003のこのような形状は、材料容器1001の形成プロセスに依存するものであり、基部1032は底面1003の上方に向けて厚くなっていてもよい。また、両側に向けて厚くなっていてもよい。ただし、脆弱部1031と基部1032との厚さは、破断を起こしたい位置において急峻に変化することが破断位置の再現性の観点から好ましい。 As shown in FIGS. 19, 20, and 22, the bottom surface 1003 of the third embodiment has a step between the fragile portion 1031 and the base portion 1032 only on the lower side. That is, on the bottom surface 1003, the base portion 1032 is thickened downward. Such a shape of the bottom surface 1003 depends on the forming process of the material container 1001, and the base portion 1032 may be thickened toward the upper side of the bottom surface 1003. It may also be thicker on both sides. However, it is preferable that the thicknesses of the fragile portion 1031 and the base portion 1032 change sharply at the position where breakage is desired from the viewpoint of reproducibility of the breakage position.

第三実施形態は、上記した接続部1033を、基部1032と一続きの厚膜で形成した。このようにすることにより、接続部1033は基部1032と同様の強度を有し、接続部1033及び基部1032が破断するよりも先に脆弱部1031を破断させることができる。また、材料容器1001を樹脂による射出成形等によって一体的に成形する場合、基部1032との膜厚を同じにして接続部1033を形成することは、樹脂の充填性等の観点から有利である。
なお、第三実施形態は、以上説明した構成に限定されるものではない。例えば、第三実施形態は、底面1003の全面を脆弱部1031としても、容器本体1010に残存する材料を低減する効果を得ることができる。
In the third embodiment, the above-mentioned connecting portion 1033 is formed of a thick film that is continuous with the base portion 1032. By doing so, the connecting portion 1033 has the same strength as the base portion 1032, and the fragile portion 1031 can be broken before the connecting portion 1033 and the base portion 1032 are broken. Further, when the material container 1001 is integrally molded by injection molding or the like of resin, it is advantageous from the viewpoint of resin filling property, etc. to form the connection portion 1033 with the same film thickness as the base portion 1032.
The third embodiment is not limited to the configuration described above. For example, in the third embodiment, the effect of reducing the material remaining in the container body 1010 can be obtained even when the entire bottom surface 1003 is the weakened portion 1031.

また、上記構成において、底面1003は、テーパー部1018と筒部1019との境界と下端部1049との間に形成されている。このような底面1003の位置は、凸部1023aが段差部1191と係合した上で底面1003を押し上げて脆弱部1031を破断させるのに適正な位置である。例えば、底面1003が下端部1049のより近くにある場合、凸部1023aが挿入、固定される構成がなくなって凸部1023aが底面1003に圧力を加える方向にばらつきが生じる可能性がある。このことから、第三実施形態は、凸部1023aが底面1003に対して常に最適な方向から力を加えることができる。なお、第三実施形態の最適な方向とは、底面1003に垂直な方向である。 Further, in the above structure, the bottom surface 1003 is formed between the boundary between the tapered portion 1018 and the tubular portion 1019 and the lower end portion 1049. Such a position of the bottom surface 1003 is an appropriate position for engaging the convex portion 1023a with the step portion 1191 and pushing up the bottom surface 1003 to break the fragile portion 1031. For example, when the bottom surface 1003 is closer to the lower end portion 1049, the convex portion 1023a may not be inserted and fixed, and the convex portion 1023a may vary in the direction of applying pressure to the bottom surface 1003. From this, in the third embodiment, the convex portion 1023a can always apply a force to the bottom surface 1003 from the optimum direction. The optimum direction in the third embodiment is a direction perpendicular to the bottom surface 1003.

[蓋固定機構]
次に、第三実施形態の蓋固定機構を説明する。
図24(a)、図24(b)及び図24(c)は、第三実施形態の蓋固定機構を説明するための図である。図24(a)は蓋部1005が開口部1047を開放している状態を示し、図24(b)は開口部1047を蓋部1005の蓋板1011で閉じた状態、図24(c)は蓋板1011が固定された状態を示している。
先に説明したように、容器本体1010は、底面1003に垂直な軸方向の一方の端部に底面1003が設けられている。また、他方の端部に開口部1047を有し、開口部1047を底面1003と平行な蓋板1011を有する蓋部1005によって閉じている。第三実施形態の蓋固定機構は、蓋板1011の外表面に形成された切欠部1110と、容器本体1010と接続する弾性片1045と、この弾性片1045の先端に設けられる切欠部1110の切り欠きの幅wよりも大きい部分を有する係止部材1015と、を備えている。弾性片1045は、切欠部1110に保持されると共に係止部材1015によって蓋板1011の外表面に伸張された状態で固定されている。
[Lid fixing mechanism]
Next, the lid fixing mechanism of the third embodiment will be described.
24(a), 24(b), and 24(c) are views for explaining the lid fixing mechanism of the third embodiment. 24A shows a state in which the lid 1005 opens the opening 1047, FIG. 24B shows a state in which the opening 1047 is closed by the lid plate 1011 of the lid 1005, and FIG. The state where the lid plate 1011 is fixed is shown.
As described above, the container body 1010 is provided with the bottom surface 1003 at one end in the axial direction perpendicular to the bottom surface 1003. Further, the other end has an opening 1047, and the opening 1047 is closed by a lid 1005 having a lid plate 1011 parallel to the bottom surface 1003. The lid fixing mechanism of the third embodiment includes a cutout 1110 formed on the outer surface of the lid plate 1011, an elastic piece 1045 connected to the container body 1010, and a cutout 1110 provided at the tip of the elastic piece 1045. And a locking member 1015 having a portion larger than the width w of the cutout. The elastic piece 1045 is held in the notch 1110 and is fixed to the outer surface of the lid plate 1011 in a stretched state by a locking member 1015.

具体的には、図24(a)から図24(c)に示すように、第三実施形態の蓋板1011には切欠部1110が形成されている。第三実施形態の切欠部1110は、図19及び図20に示したように、平面視において「U」字状である。ただし、第三実施形態は切欠部1110の閉面視の形状を限定するものではない。切欠部1110の形状は、弾性片1045を保持することができればどのような形状であってもよい。
弾性片1045の先端には、切欠部1110の切り欠きの幅wよりも大きい部分を有する係止部材1015が接続されている。第三実施形態の係止部材1015は球体であり、弾性片1045との境界にごく近い部分から反対側の外表面にごく近い部分までの径が切り欠きの幅wよりも大きくなっている。
Specifically, as shown in FIGS. 24A to 24C, a notch 1110 is formed in the lid plate 1011 of the third embodiment. As shown in FIGS. 19 and 20, the cutout 1110 of the third embodiment has a “U” shape in plan view. However, the third embodiment does not limit the shape of the cutout 1110 in a closed view. The cutout 1110 may have any shape as long as it can hold the elastic piece 1045.
A locking member 1015 having a portion larger than the width w of the cutout portion 1110 is connected to the tip of the elastic piece 1045. The locking member 1015 of the third embodiment is a sphere, and the diameter from a portion very close to the boundary with the elastic piece 1045 to a portion very close to the outer surface on the opposite side is larger than the width w of the notch.

上記構成において、先ず、図24(b)に示すように、材料容器1001の使用者は、開口部1047に蓋板1011を重ね合わせるようにして蓋部1005で開口部1047を閉じる。次に、使用者は、図24(c)に示すように、弾性片1045を切欠部1110の切欠部分に嵌め合わせる。第三実施形態では、使用者が弾性片1045を切欠部1110に嵌め合わせる場合に、係止部材1015を上方に引っ張りながら弾性片1045を伸張させるような長さに弾性片1045等を設計しておく。このようにすると、使用者が係止部材1015及び弾性片1045に力を加えていない状態にあっても、係止部材1015が切欠部1110に当たって弾性片1045が伸張前の状態に戻ることを防いでいる。このため、第三実施形態の弾性片1045は、蓋板1011の外表面に伸張された状態で固定されるようになる。
以上の構成により、第三実施形態の材料容器1001は、蓋部1005が開口部1047に密着し、容器本体1010の気密性及び液密性を高めることができる。
In the above configuration, first, as shown in FIG. 24B, the user of the material container 1001 closes the opening 1047 with the lid 1005 so that the lid 1011 is superposed on the opening 1047. Next, the user fits the elastic piece 1045 into the cutout portion of the cutout portion 1110, as shown in FIG. In the third embodiment, when the user fits the elastic piece 1045 into the cutout portion 1110, the elastic piece 1045 and the like are designed to have a length that extends the elastic piece 1045 while pulling the locking member 1015 upward. deep. In this way, even when the user is not applying force to the locking member 1015 and the elastic piece 1045, it is possible to prevent the locking member 1015 from hitting the notch portion 1110 and returning the elastic piece 1045 to the state before the extension. I'm out. Therefore, the elastic piece 1045 according to the third embodiment is fixed to the outer surface of the lid plate 1011 in a stretched state.
With the above configuration, in the material container 1001 according to the third embodiment, the lid 1005 is in close contact with the opening 1047, and the airtightness and liquid-tightness of the container body 1010 can be improved.

以上説明したように、第三実施形態の材料容器1001は、底面1003を破断させて材料を取り出しているため、比較的大径の材料の流路を確保することができる。このため、第三実施形態は、容器本体1010における容器本体1010の残存量を少なくすることができる。また、材料容器1001及び材料供給ユニット1004は、材料容器1001が受容部材に対して任意に差し替えられるので、材料の供給機構への脱着を簡便に行うことができる。 As described above, in the material container 1001 according to the third embodiment, the bottom surface 1003 is broken to take out the material, so that the flow path of the material having a relatively large diameter can be secured. Therefore, in the third embodiment, the remaining amount of the container body 1010 in the container body 1010 can be reduced. Further, in the material container 1001 and the material supply unit 1004, the material container 1001 can be arbitrarily replaced with respect to the receiving member, so that the material can be easily attached to and detached from the supply mechanism.

[第四実施形態]
次に、本発明の第四実施形態について説明する。図25及び図26は、本発明の第四実施形態の流路切換機構7を説明するための図である。図25は、流路切換機構7の斜視図であって、図26は、図25に示した流路切換機構7の分解斜視図である。
図25、図26に示すように、流路切換機構7は、第一実施形態、第二実施形態と同様に、第一部材30、第二部材40が組み合わされて構成される。第一部材30、第二部材40の組み合わせは、第二部材40が中空部36に挿通されることによって行われる。
第二部材40は、上面41a、側面41b、41d、下面41c、前面41e及び背面41fを有する直方体の本体44を有し、本体44の前面41eに駆動力受容凸部47が形成されている。第一部材30は、上面31a、側面31b、31d、下面31c、前面31e及び背面31fを有する本体34を有している。本体34は所定の厚みを有する枠体であり、中空部36を有している。このため、前面31e及び背面31fは枠形状を有している。
上面31aには流路凸部331a、332aが形成されていて、側面31dには流路凸部331d、332dが形成されている。下面31cには、ホルダ係合部35が形成されている。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. 25 and 26 are views for explaining the flow path switching mechanism 7 according to the fourth embodiment of the present invention. 25 is a perspective view of the flow path switching mechanism 7, and FIG. 26 is an exploded perspective view of the flow path switching mechanism 7 shown in FIG.
As shown in FIGS. 25 and 26, the flow path switching mechanism 7 is configured by combining the first member 30 and the second member 40 as in the first embodiment and the second embodiment. The combination of the first member 30 and the second member 40 is performed by inserting the second member 40 into the hollow portion 36.
The second member 40 has a rectangular parallelepiped main body 44 having an upper surface 41a, side surfaces 41b and 41d, a lower surface 41c, a front surface 41e and a rear surface 41f, and a driving force receiving convex portion 47 is formed on the front surface 41e of the main body 44. The first member 30 has a main body 34 having an upper surface 31a, side surfaces 31b and 31d, a lower surface 31c, a front surface 31e and a back surface 31f. The main body 34 is a frame body having a predetermined thickness and has a hollow portion 36. Therefore, the front surface 31e and the back surface 31f have a frame shape.
Flow passage projections 331a and 332a are formed on the upper surface 31a, and flow passage projections 331d and 332d are formed on the side surface 31d. A holder engaging portion 35 is formed on the lower surface 31c.

第一部材30は、第一部分流路321a、322a、321d、322dを有している。第一部分流路321aは、開口部321aa、321abを両端とし、第一部分流路322aは、開口部322aa、322abを両端とする。また、第一部分流路321dは、開口部321da、321dbを両端とし、第一部分流路322dは、開口部322da、322dbを両端とする。第二部材40は、第二部分流路42a、42bを有している。第二部分流路42aは、上面41aに開口部42aaを有し、側面41dに開口部42abを有している。第二部分流路42bは、上面41aに開口部42baを有し、側面41dに開口部42bbを有している。
第四実施形態は、第二部材40が所定の位置にあるときに第二部分流路と連通する第一部分流路である移動前連通流路と、第二部材が所定の位置から軸に沿って移動したときに第二部分流路と連通する第一部分流路である移動後連通流路と、を有している。上記構成において、第一部分流路321a、321dは第四実施形態の移動前連通流路であり、第一部分流路322a、322dが移動後連通流路である。
The first member 30 has first partial flow paths 321a, 322a, 321d, 322d. The first partial flow path 321a has openings 321aa and 321ab at both ends, and the first partial flow path 322a has openings 322aa and 322ab at both ends. Further, the first partial flow path 321d has the openings 321da and 321db at both ends, and the first partial flow path 322d has the openings 322da and 322db at both ends. The second member 40 has second partial flow paths 42a and 42b. The second partial flow channel 42a has an opening 42aa on the upper surface 41a and an opening 42ab on the side surface 41d. The second partial flow path 42b has an opening 42ba on the upper surface 41a and an opening 42bb on the side surface 41d.
In the fourth embodiment, the pre-movement communication channel that is the first partial flow channel that communicates with the second partial flow channel when the second member 40 is at the predetermined position, and the second member along the axis from the predetermined position. A post-movement communication channel that is a first partial channel that communicates with the second partial channel when moved. In the above configuration, the first partial flow paths 321a and 321d are the pre-movement communication flow paths of the fourth embodiment, and the first partial flow paths 322a and 322d are the post-movement communication flow paths.

例えば、第四実施形態では、第一部分流路321a、321dと連通する位置において第二部分流路42aに流体が導入される。流体の導入は、第二部分流路42aと流体の導入先との間に圧力差を設けることによって行われる。第二部分流路42aに流体が満たされた後、第四実施形態では、第二部材40をx軸に沿って移動させ、第二部分流路42aを第一部分流路322a、または第一部分流路322dから第二部分流路42a内の流体を流体の導入元と異なる導出先に導出する。
このような構成は、化学反応の過程にある流体の一部を微量ずつサンプリングする場合に有用である。つまり、第四実施形態は、化学反応の反応容器等に流路切換機構7を接続しておけば、反応を停止させることはもちろん容器を開封することもなく反応中の流体をサンプリングすることができる。
図27は、第四実施形態の流路切換機構7を用いた微量サンプリングシステムを示す図である。図28は、図27の微量サンプリングシステムにおいて流路切換機構7を流れる流体を説明するための図である。なお、図27においてキャピラリー107は、シリカゲルが充填されたガラス製の毛管であり、例えば、Radio−Capの商品名でFutureChem社が製造販売している。キャピラリー107と流路切換機構3との間は液移送チューブ109によって接続され、流体はキャピラリー107及び液移送チューブ109、または液移送チューブ109を介して流路切換機構7の外部との間を移動する。
また、反応器103には、反応液が格納されており、反応液内では、溶媒中で種々の有機反応が進行している。また、展開溶媒容器105には、対象化合物の分析に適して配合された、クロマトグラフィーの展開溶媒が充填されている。
図27、図28で示す微量サンプリングシステムの使用手順を以下に説明する。先ず、流路凸部331aを通じて反応器及び第二部分流路42aの内部を減圧にすることによって、第二部分流路42a内が反応液で満たされる(図28、矢線E)。次いで、駆動力受容凸部47を−x方向に移動させることにより、流路42aを開口部322ab、322daと接続する。そして、展開溶媒容器105、及び、材料供給ユニット100を通じてキャピラリー107内を減圧することにより、キャピラリー107内に反応液及び展開溶媒を導入し(矢線D、F、G、H)、反応液中の成分を展開溶媒とともにキャピラリー107内に展開させる。展開溶媒がキャピラリー107内で所定の距離(高さ)にまで展開したところで、減圧を停止し、キャピラリー107を外して、対象化合物に適した検出器で検出する。例えば、放射線を発する化合物の検出には、ラジオTLCスキャナーを用いることができる。その後、駆動力受容凸部47を押し込み、更に反応追跡を行う場合は、同じ動作を繰り返す。
For example, in the fourth embodiment, the fluid is introduced into the second partial flow passage 42a at a position communicating with the first partial flow passages 321a and 321d. The fluid is introduced by providing a pressure difference between the second partial flow path 42a and the fluid introduction destination. After the second partial flow channel 42a is filled with the fluid, in the fourth embodiment, the second member 40 is moved along the x-axis to move the second partial flow channel 42a to the first partial flow channel 322a or the first partial flow channel. The fluid in the second partial flow path 42a is led out from the passage 322d to a lead-out destination different from the fluid feed-in source.
Such a configuration is useful when a small amount of a portion of a fluid in the course of a chemical reaction is sampled. That is, in the fourth embodiment, if the flow path switching mechanism 7 is connected to a reaction container for chemical reaction or the like, the reaction fluid can be sampled without opening the container as well as stopping the reaction. it can.
FIG. 27 is a diagram showing a trace amount sampling system using the flow path switching mechanism 7 of the fourth embodiment. FIG. 28 is a diagram for explaining the fluid flowing through the flow path switching mechanism 7 in the trace amount sampling system of FIG. Note that, in FIG. 27, the capillary 107 is a glass capillary filled with silica gel, and is manufactured and sold by FutureChem under the product name of Radio-Cap, for example. The capillary 107 and the flow path switching mechanism 3 are connected by a liquid transfer tube 109, and the fluid moves between the capillary 107 and the liquid transfer tube 109, or the outside of the flow path switching mechanism 7 via the liquid transfer tube 109. To do.
A reaction solution is stored in the reactor 103, and various organic reactions are progressing in the solvent in the reaction solution. Further, the developing solvent container 105 is filled with a developing solvent for chromatography, which is appropriately blended for the analysis of the target compound.
The procedure for using the trace amount sampling system shown in FIGS. 27 and 28 will be described below. First, the inside of the reactor and the second partial flow passage 42a is depressurized through the flow passage convex portion 331a, so that the inside of the second partial flow passage 42a is filled with the reaction liquid (FIG. 28, arrow E). Then, the driving force receiving convex portion 47 is moved in the −x direction to connect the flow path 42a to the openings 322ab and 322da. Then, by depressurizing the inside of the capillary 107 through the developing solvent container 105 and the material supply unit 100, the reaction liquid and the developing solvent are introduced into the capillary 107 (arrow lines D, F, G, H), and the reaction liquid Component is developed in the capillary 107 together with the developing solvent. When the developing solvent has spread to a predetermined distance (height) in the capillary 107, the depressurization is stopped, the capillary 107 is removed, and detection is performed with a detector suitable for the target compound. For example, a radio TLC scanner can be used to detect compounds that emit radiation. After that, when the driving force receiving convex portion 47 is pushed in and further reaction tracing is performed, the same operation is repeated.

上記したように、第四実施形態の構成では、反応中の流体を複数回に亘って経時的にサンプリングできるので、反応による流体の経時的な成分変化を追跡することができる。流体の経時的な成分変化の追跡によれば、流体の反応速度が所望の速度になっているかを判定し、加熱や試薬の投入量等の条件をフィードバックして反応を所望の状態に制御することができる。
さらに、上記した構成は、第二部分流路42aを満たす量の流体を採取すれば、第二部分流路42aが第一部分流路321a及び第一部分流路321dと切り離される。そして、第二部分流路42aを満たした流体が第一部分流路322a及び第一部分流路322dと連通して導出される。このため、第四実施形態は、正確に第二部分流路42aを満たす分量の流体をサンプリング溶液に送ることができる。
なお、上記動作は、第二部分流路42bを第一部分流路322a、322dと連通する位置から第一部分流路321a、321dと連通する位置に移動させても行うことができる。
As described above, in the configuration of the fourth embodiment, since the fluid in the reaction can be sampled over time over a plurality of times, it is possible to trace the change in the component over time of the fluid due to the reaction. By tracking the change in the composition of the fluid over time, it is determined whether the reaction rate of the fluid is the desired rate, and the reaction is controlled to the desired state by feeding back conditions such as heating and the amount of reagent input. be able to.
Further, in the above-described configuration, the second partial flow channel 42a is separated from the first partial flow channel 321a and the first partial flow channel 321d when the amount of fluid that fills the second partial flow channel 42a is collected. Then, the fluid that fills the second partial flow path 42a communicates with the first partial flow path 322a and the first partial flow path 322d and is drawn out. Therefore, in the fourth embodiment, a sufficient amount of fluid that accurately fills the second partial flow path 42a can be sent to the sampling solution.
The above operation can be performed by moving the second partial flow path 42b from the position communicating with the first partial flow paths 322a, 322d to the position communicating with the first partial flow paths 321a, 321d.

[第五実施形態]
図29(a)、図29(b)は、第五実施形態の第一部材50及び第二部材20を説明するための図である。図29(a)は、第五実施形態の第一部材50の斜視図であって、図29(b)は第二部材20の斜視図である。図29(b)に示した第二部材20は、図1(c)に示した第二部材20と同様の部材である。
図29(a)に示すように、第一部材50は、第二部材20と組み合わされて流路切換機構を構成する。第一部材50には第一部分流路12a、12b、12dが形成されている。第二部材20は、第二部材20の第二部分流路22a、22b、22cのいずれかが第一部分流路12a、12b、12dと組み合わされるように図29中の±x方向に移動する。
第一部分流路12aが第二部分流路22aと組み合わされた場合、流路12a−22a−12dが形成される。また、第一部分流路12aが第二部分流路22cと組み合わされた場合、流路12a−22c−12bが形成され、第一部分流路12bが第二部分流路22bと組み合わされた場合、流路12b−22b−12dが形成される。
[Fifth Embodiment]
29(a) and 29(b) are diagrams for explaining the first member 50 and the second member 20 of the fifth embodiment. 29A is a perspective view of the first member 50 of the fifth embodiment, and FIG. 29B is a perspective view of the second member 20. The second member 20 shown in FIG. 29(b) is the same member as the second member 20 shown in FIG. 1(c).
As shown in FIG. 29A, the first member 50 is combined with the second member 20 to form a flow path switching mechanism. The first member 50 is formed with first partial flow paths 12a, 12b, 12d. The second member 20 moves in the ±x direction in FIG. 29 so that any one of the second partial flow paths 22a, 22b, 22c of the second member 20 is combined with the first partial flow paths 12a, 12b, 12d.
When the first partial flow passage 12a is combined with the second partial flow passage 22a, the flow passages 12a-22a-12d are formed. Further, when the first partial flow channel 12a is combined with the second partial flow channel 22c, the flow channels 12a-22c-12b are formed, and when the first partial flow channel 12b is combined with the second partial flow channel 22b, the flow is Channels 12b-22b-12d are formed.

第一部材50は、少なくとも一部が枠体であり、第五実施形態では、本体14の全体が枠体形状を有している。なお、ここで枠体とは、少なくとも一つの空間の周囲を部分的に囲む形状を指す。つまり、第五実施形態でいう枠体は、空間の全部を覆うものではなく、例えば、図29(a)のように、第二部材20の少なくとも一部が嵌入される空間である中空部16を、±x方向に向く面を除いて囲んでいる。また、第一部材50となる枠体は、所定の剛性を有する基準歪み部と、この基準歪み部よりも剛性が小さい容易歪み部55と、を含んでいる。 At least a part of the first member 50 is a frame, and in the fifth embodiment, the entire main body 14 has a frame shape. Here, the frame means a shape that partially surrounds at least one space. That is, the frame body in the fifth embodiment does not cover the entire space, and for example, as shown in FIG. 29A, the hollow portion 16 that is a space into which at least a part of the second member 20 is fitted. Are enclosed except for the surface facing in the ±x direction. Further, the frame body serving as the first member 50 includes a reference strained portion having a predetermined rigidity and an easy strained portion 55 having a lower rigidity than the reference strained portion.

図29(a)において、容易歪み部55は、本体14の四隅に一つずつ形成されている。第五実施形態でいう基準歪み部は、本体14のうちの容易歪み部55を除く部位である。
第五実施形態では、容易歪み部55の少なくとも一部の肉厚を、基準歪み部の肉厚よりも薄くすることによって容易歪み部55の剛性を低下させている。図29(a)にあっては、容易歪み部55が二つの薄肉部55aを含み、二つの薄肉部55aが本体14の他の箇所より薄肉になっている。第五実施形態では、基準歪み部の薄肉部55aよりも肉厚の部位を厚肉部55bとして示す。
枠形状の本体14は、容易歪み部55が形成されていることによって第二部材20が嵌入される際に全体的に四方に広がる。このとき、厚肉部55bは局所的には歪まずに、厚肉部55b全体が枠の外側に向かって広がるようになる。
In FIG. 29A, the easy strain portions 55 are formed at the four corners of the main body 14 one by one. The reference strain portion in the fifth embodiment is a portion of the main body 14 excluding the easy strain portion 55.
In the fifth embodiment, the rigidity of the easy strain portion 55 is reduced by making the wall thickness of at least a portion of the easy strain portion 55 smaller than the wall thickness of the reference strain portion. In FIG. 29A, the easily strained portion 55 includes two thin portions 55 a, and the two thin portions 55 a are thinner than the other portions of the main body 14. In the fifth embodiment, a thicker portion 55b is a portion that is thicker than the thin portion 55a of the reference strained portion.
The frame-shaped main body 14 is expanded in all directions when the second member 20 is fitted because the easily deformed portion 55 is formed. At this time, the thick portion 55b is not locally distorted, and the entire thick portion 55b expands toward the outside of the frame.

容易歪み部55は、基準歪み部よりも剛性が低く、基準歪み部よりも歪み量が大きい部位である。ここで、「剛性」とは、内側方向及び外側方向への外力負荷時の歪みの大小を指す。「歪み量」とは、例えば、容易歪み部55と基準歪み部とに同じ力を加えて歪ませた場合の歪みの前後における変形量をいう。
薄肉部55aの形状は、図29(a)に示した形状に限定されるものではない。例えば、第五実施形態においては、薄肉部55aの幅や肉厚、数は任意であってよい。また、第五実施形態は、薄肉部55aに代えて切り込みを形成して容易歪み部55の剛性を低減させるものであってもよい。このような場合、容易歪み部55の剛性は、切り込みの数や深さによって調整することが可能になる。
The easily strained portion 55 is a portion having a lower rigidity than the reference strained portion and a larger strain amount than the reference strained portion. Here, “rigidity” refers to the magnitude of strain when an external force is applied inward and outward. The “distortion amount” means, for example, a deformation amount before and after the strain when the easy strain portion 55 and the reference strain portion are distorted by applying the same force.
The shape of the thin portion 55a is not limited to the shape shown in FIG. For example, in the fifth embodiment, the thin portion 55a may have any width, thickness and number. Further, in the fifth embodiment, a cut may be formed in place of the thin portion 55a to reduce the rigidity of the easily strained portion 55. In such a case, the rigidity of the easily strained portion 55 can be adjusted by the number and depth of the cuts.

また、第五実施形態の第一部材50の有する基準歪み部及び容易歪み部55は、第三実施形態の第一部材30の本体に設けてもよく、基準歪み部及び容易歪み部55を有する第一部材30からなる流路切換機構を用いて上記の微量サンプリングシステムとして用いることもできる。 The reference strain portion and the easy strain portion 55 of the first member 50 of the fifth embodiment may be provided in the main body of the first member 30 of the third embodiment, and the reference strain portion and the easy strain portion 55 are included. The flow path switching mechanism composed of the first member 30 can be used for the above-mentioned trace amount sampling system.

また、第五実施形態は、容易歪み部55の剛性を肉厚によって調整するものに限定されるものではない。本体14の剛性は、例えば、本体14の材料の硬度を容易歪み部55と基準歪み部とで異なるようにしてもよい。さらに、第五実施形態は、本体14の一部に孔を開口して容易歪み部55としてもよい。このようにする場合、容易歪み部55の剛性は、開口の数や径によって調整することができる。 Further, the fifth embodiment is not limited to one in which the rigidity of the easily strained portion 55 is adjusted by the wall thickness. Regarding the rigidity of the main body 14, for example, the hardness of the material of the main body 14 may be different between the easy strain portion 55 and the reference strain portion. Furthermore, in the fifth embodiment, a hole may be opened in a part of the main body 14 to form the easily strained portion 55. In this case, the rigidity of the easily strained portion 55 can be adjusted by the number and diameter of the openings.

[第六実施形態]
次に、本発明の第六実施形態を説明する。図30は、第六実施形態の流路切換装置2を含む流路切換システムを示した図である。流路切換装置2は、先に説明した流路切換機構及び材料容器80を取り付けて用いられ、その応用例として、放射性薬剤の合成装置が挙げられる。流路切換装置2に取り付けられる流路切換機構4は、一または複数の第一部分流路が形成された第一部材と、移動可能な状態で前記第一部材と組み合わされ、複数または一の第二部分流路を有する第二部材と、第二部材を一の軸の両方向に移動させる駆動力を受け付ける駆動力受容部と、第一部材と第二部材とが組み合わされることにより、第一部分流路と第二部分流路とが連通して流路を形成し、第一部材と第二部材との組み合わせを維持しながら第二部材が一の軸の両方向に移動することにより、連通する第一部分流路と第二部分流路との組み合わせが変更されて流路が他の流路に切り換えられるものであればどのようなものであってもよい。
図30に示した流路切換装置2は、ユニット体8と、ユニット体8が載置、固定される台座9と、を有している。ユニット体8は、三つの流路切換機構保持ユニット8A、8B、8Cで構成される。第六実施形態では流路切換機構保持ユニット8A、8B、8Cが全て同様の構成を有しているものとする。このため、第六実施形態では、以降流路切換機構保持ユニット8Aについて説明し、流路切換機構保持ユニット8B、流路切換機構保持ユニット8Cの説明に代えるものとする。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. FIG. 30 is a diagram showing a flow channel switching system including the flow channel switching device 2 of the sixth embodiment. The flow path switching device 2 is used by attaching the flow path switching mechanism and the material container 80 described above, and an application example thereof is a radiopharmaceutical synthesizing device. The flow path switching mechanism 4 attached to the flow path switching device 2 is a combination of a first member in which one or a plurality of first partial flow paths are formed and the first member in a movable state, and a plurality of or one By combining the second member having the two partial flow paths, the driving force receiving portion that receives the driving force that moves the second member in both directions of the one axis, and the first member and the second member, the first partial flow The passage and the second partial flow passage communicate with each other to form a passage, and the second member moves in both directions of the one axis while maintaining the combination of the first member and the second member, whereby Any type may be used as long as the combination of the partial flow path and the second partial flow path is changed to switch the flow path to another flow path.
The flow path switching device 2 shown in FIG. 30 has a unit body 8 and a pedestal 9 on which the unit body 8 is placed and fixed. The unit body 8 is composed of three flow path switching mechanism holding units 8A, 8B and 8C. In the sixth embodiment, it is assumed that the flow path switching mechanism holding units 8A, 8B, 8C all have the same configuration. Therefore, in the sixth embodiment, the flow path switching mechanism holding unit 8A will be described below, and will be replaced with the description of the flow path switching mechanism holding unit 8B and the flow path switching mechanism holding unit 8C.

流路切換機構保持ユニット8Aは、第六実施形態の流路切換機構4を保持する保持面912、流路切換機構4に対して図30中のx方向(前方)から当接するホルダ240(図31)のホルダ壁部240cを有している。保持面912上の流路切換機構4の両端部には流路切換機構4と係り合い、流路切換機構4のストッパーとして機能する係合保持部911が設けられている。保持面912は流路切換機構4のy方向の長さに対応する長さを有し、流路切換機構4は係合保持部911間にセットするように載置される。このような係合保持部911は、流路切換機構4を流路切換装置2に取付ける際の位置合わせに利用されると共に、流路切換機構4を固定する機能を有している。
また、流路切換機構4は、第二部材に、材料容器80や固相抽出カートリッジをセットすることができる。図30においては、流路切換機構4の第二部材の一部に材料容器80をセットし、材料容器80等には流路切換機構4によって形成される流路と連通する液移送チューブ109を接続した例を示すが、その位置、数及び組合せは、これに限定されるものではなく、目的に応じて、種々、選択することができる。
さらに、第六実施形態の流路切換装置2は、薄層クロマトグラフィー(Thin-Layer Chromatography)の保持部を備えたものであってもよい。
The flow path switching mechanism holding unit 8A includes a holding surface 912 that holds the flow path switching mechanism 4 of the sixth embodiment, and a holder 240 that abuts the flow path switching mechanism 4 from the x direction (front) in FIG. 31) has a holder wall portion 240c. Engagement holding portions 911 that engage with the flow path switching mechanism 4 and function as stoppers of the flow path switching mechanism 4 are provided at both ends of the flow path switching mechanism 4 on the holding surface 912. The holding surface 912 has a length corresponding to the length of the flow path switching mechanism 4 in the y direction, and the flow path switching mechanism 4 is placed so as to be set between the engagement holding portions 911. The engagement holding portion 911 as described above is used for alignment when the flow path switching mechanism 4 is attached to the flow path switching device 2, and has a function of fixing the flow path switching mechanism 4.
Further, the flow path switching mechanism 4 can set the material container 80 and the solid phase extraction cartridge in the second member. In FIG. 30, the material container 80 is set in a part of the second member of the flow path switching mechanism 4, and the liquid transfer tube 109 communicating with the flow path formed by the flow path switching mechanism 4 is set in the material container 80 or the like. Although an example of connection is shown, the position, number, and combination are not limited to this, and can be selected variously according to the purpose.
Furthermore, the flow path switching device 2 of the sixth embodiment may include a thin-layer chromatography (Thin-Layer Chromatography) holding unit.

流路切換機構保持ユニット8Aは、流路切換機構保持ユニット8B及び流路切換機構保持ユニット8Cと重ねて一体化されてユニット体8を構成し、台座9の載置面91に固定される。このとき、流路切換機構保持ユニット8Aは、載置面91に対して流路切換機構保持ユニット8B、8Cを介して間接的に固定されるものであっても良いし、載置面91に直接固定されるものであってもよい。このような流路切換機構保持ユニット8A、8B、8Cは、それぞれが流路切換機構4が取付けられる流路切換機構設置体である。流路切換機構保持ユニット8A、8B、8Cは、x方向にずれながら複数重ねて一体化している。図30では、三つの流路切換機構保持ユニット8A、8B、8Cが重ねられているが、流路切換機構保持ユニットの数は任意であって、操作性や使用される材料容器80の数に応じて適宜決定される。また、流路切換機構保持ユニット8A、8B、8Cは、台座9上に載置されるものに限定されず、操作性や安定性を損なわない範囲でどのように設置されるものであってもよい。 The flow path switching mechanism holding unit 8A is integrated with the flow path switching mechanism holding unit 8B and the flow path switching mechanism holding unit 8C to form a unit body 8 and is fixed to the mounting surface 91 of the pedestal 9. At this time, the flow path switching mechanism holding unit 8A may be indirectly fixed to the mounting surface 91 via the flow path switching mechanism holding units 8B and 8C, or may be fixed to the mounting surface 91. It may be directly fixed. Each of the flow path switching mechanism holding units 8A, 8B, and 8C is a flow path switching mechanism installation body to which the flow path switching mechanism 4 is attached. The flow path switching mechanism holding units 8A, 8B, and 8C are integrated by superimposing a plurality of them while shifting in the x direction. In FIG. 30, the three flow path switching mechanism holding units 8A, 8B, and 8C are stacked, but the number of flow path switching mechanism holding units is arbitrary, and the operability and the number of material containers 80 to be used are different. It is determined accordingly. Further, the flow path switching mechanism holding units 8A, 8B, 8C are not limited to those placed on the pedestal 9, and may be installed in any manner as long as the operability and stability are not impaired. Good.

台座9は、載置面91と垂直な三つの側面95(図30では左側面だけが見えている)を有していて、三つの側面95は空間99の三方を囲っている。側面95に三方が囲まれた空間99には小台座94が設けられていて、小台座94上には反応容器481がセットされる。反応容器481の周囲には、小台座94に取付けられたカバー48nが配置されてもよい。小台座94の内部は、反応容器481を加熱または冷却する温度制御機構や、反応容器中の反応液を撹拌する撹拌機構、放射性核種を用いた標識反応を行う場合に用いられる放射線検出機構等を備えてもよい。台座9は、反応容器481を支持する容器支持部93を有する。反応容器481は、ゴムセプタム481aと、ゴムセプタム481aによって封止される容器体481bを備えている。ゴムセプタム481aには、材料容器80に収容された試薬や不活性ガス等が流通する、あるいは反応容器481内の反応液を出し入れするチューブの挿入口481cが形成されている。
三つの反応容器481それぞれの上方には、容器体481b内の圧力を調整することに使用される不活性ガスを供給するガス供給機構や減圧機構に図示しないチューブを繋げる接続口96が複数形成されている。
The pedestal 9 has three side surfaces 95 (only the left side surface is visible in FIG. 30) perpendicular to the mounting surface 91, and the three side surfaces 95 surround three sides of the space 99. A small pedestal 94 is provided in a space 99 surrounded by the side surface 95 on three sides, and a reaction container 481 is set on the small pedestal 94. A cover 48n attached to the small pedestal 94 may be arranged around the reaction container 481. Inside the small pedestal 94, a temperature control mechanism for heating or cooling the reaction vessel 481, a stirring mechanism for stirring the reaction solution in the reaction vessel, a radiation detection mechanism used when performing a labeling reaction using a radionuclide, etc. You may prepare. The pedestal 9 has a container support portion 93 that supports the reaction container 481. The reaction container 481 includes a rubber septum 481a and a container body 481b sealed by the rubber septum 481a. The rubber septum 481a is formed with an insertion port 481c of a tube through which a reagent, an inert gas or the like contained in the material container 80 circulates or a reaction liquid in the reaction container 481 is taken in and out.
Above each of the three reaction vessels 481, a plurality of connection ports 96 for connecting a tube (not shown) to a gas supply mechanism and a decompression mechanism for supplying an inert gas used for adjusting the pressure inside the container body 481b are formed. ing.

図31から図34は、第六実施形態の流路切換装置の駆動に関する構成を説明するための図である。
図31は、流路切換機構保持ユニット8Aの内部を説明するための図であって、図30に示した流路切換機構保持ユニット8Aの上面8Aaを除いた状態を図30に示したz方向から下方(−z方向)に見た上面図である。図31にあっては、流路切換機構保持ユニット8Aに流路切換機構4が取り付けられた状態を示し、流路切換機構保持ユニット8B、8Cには流路切換機構4が取付けられていない状態を示している。また、図31にあっては、流路切換機構保持ユニット8Aの流路切換機構4に取り付けられている材料容器80の図示を略している。
31 to 34 are diagrams for explaining a configuration relating to driving of the flow path switching device of the sixth embodiment.
FIG. 31 is a view for explaining the inside of the flow path switching mechanism holding unit 8A, and shows a state in which the upper surface 8Aa of the flow path switching mechanism holding unit 8A shown in FIG. 30 is removed, in the z direction shown in FIG. It is a top view seen from below (-z direction). FIG. 31 shows a state in which the flow passage switching mechanism 4 is attached to the flow passage switching mechanism holding unit 8A, and a state in which the flow passage switching mechanism 4 is not attached to the flow passage switching mechanism holding units 8B and 8C. Is shown. Further, in FIG. 31, the material container 80 attached to the flow path switching mechanism 4 of the flow path switching mechanism holding unit 8A is not shown.

流路切換機構保持ユニット8Aは、内部にモータ200、モータ200の図示しないギヤヘッドに一方が接続されるカップリング222、カップリング222の他方に接続されるボールねじ部220及びボールねじ部220によって押し引きされる軸受部230を備えている。第六実施形態では、複数の第二部材20(10個)を備えた流路切換機構4が流路切換装置2に取り付けられている。モータ200、ボールねじ部220及び軸受部230は、駆動部として機能し、10個の第二部材20の各々に対応して各々10個設けられている。一つの第二部材20に対応するモータ200、ボールねじ部220及び軸受部230を個別駆動部6として図中に示す。 The flow path switching mechanism holding unit 8A is pushed by a motor 200, a coupling 222, one of which is connected to a gear head (not shown) of the motor 200, a ball screw portion 220 and a ball screw portion 220 which are connected to the other of the coupling 222. The bearing 230 is pulled. In the sixth embodiment, the flow path switching mechanism 4 including the plurality of second members 20 (10 pieces) is attached to the flow path switching device 2. The motor 200, the ball screw part 220, and the bearing part 230 function as a drive part, and 10 pieces of each are provided corresponding to each of the 10 second members 20. The motor 200, the ball screw portion 220, and the bearing portion 230 corresponding to one second member 20 are shown in the drawing as the individual drive portion 6.

図32は、流路切換機構保持ユニット8Aに取り付けられる第六実施形態の流路切換機構4を説明するための分解斜視図である。図33は、図32の第一部材46の流路を説明するための図である。図32、図33に示すように、流路切換機構4は、第一部材46と、第二部材20とが組み合わされて構成されている。流路切換機構4は、第二部材20が図中のy軸方向に複数配置されて第一部材46と組み合わされている。第一部材46は、上面41a、側面41b、41d、下面41c、前面41e及び背面41fを有している。第一部材46には中空部67が形成されていて、前面41e及び背面41fは複数の中空部67に対応する枠形状を有している。上面41aには流路凸部43aが形成され、側面41b、41dにはそれぞれ流路凸部43b、43dが形成されている。さらに、下面41cにはホルダ係合部69が形成されている。
また、図33に示すように、第一部材46の本体44には第一部分流路52a、52b、52c、52d、52e、52f、52g、53h、52i、52j、52k、52o、52p、52q、52r、52s、52t、52u、52v、52w、52xが形成されていて、第一部分流路52a〜52xはそれぞれ中空部67に連通している。中空部67には開口部52ab〜52jbと、開口部52ab〜52jbに対向して開口される開口部(図示せず)及び第一部分流路52o〜52xの開口部(図示せず)が形成されている。第六実施形態では、第二実施形態と同様に、中空部67に第二部材20が挿通され、第一部分流路と中空部67内部の第二部材20の第二部分流路とが連通して流路を形成する。
ただし、第六実施形態の流路切換機構4は、y方向に配置されている複数の中空部67のうち、隣接して配置される中空部67間に上凹部48a、下凹部48bが設けられている点で第二実施形態の流路切換機構3と相違する。下凹部48bは、後述するように、流路切換機構保持受部280(図35)に形成された係止凸部280ab、280bb(図35)が入り込むための空間である。
FIG. 32 is an exploded perspective view for explaining the channel switching mechanism 4 of the sixth embodiment attached to the channel switching mechanism holding unit 8A. FIG. 33 is a diagram for explaining the flow path of the first member 46 of FIG. As shown in FIGS. 32 and 33, the flow path switching mechanism 4 is configured by combining the first member 46 and the second member 20. In the flow path switching mechanism 4, a plurality of second members 20 are arranged in the y-axis direction in the figure and combined with the first member 46. The first member 46 has an upper surface 41a, side surfaces 41b and 41d, a lower surface 41c, a front surface 41e, and a back surface 41f. A hollow portion 67 is formed in the first member 46, and the front surface 41e and the back surface 41f have a frame shape corresponding to the plurality of hollow portions 67. Flow passage protrusions 43a are formed on the upper surface 41a, and flow passage protrusions 43b and 43d are formed on the side surfaces 41b and 41d, respectively. Further, a holder engaging portion 69 is formed on the lower surface 41c.
Further, as shown in FIG. 33, in the main body 44 of the first member 46, the first partial flow paths 52a, 52b, 52c, 52d, 52e, 52f, 52g, 53h, 52i, 52j, 52k, 52o, 52p, 52q, 52r, 52s, 52t, 52u, 52v, 52w, and 52x are formed, and the first partial flow paths 52a to 52x communicate with the hollow portion 67, respectively. Openings 52ab to 52jb, openings (not shown) opened to face the openings 52ab to 52jb, and openings (not shown) of the first partial flow channels 52o to 52x are formed in the hollow portion 67. ing. In the sixth embodiment, similarly to the second embodiment, the second member 20 is inserted into the hollow portion 67, and the first partial flow passage and the second partial flow passage of the second member 20 inside the hollow portion 67 communicate with each other. To form a flow path.
However, in the flow path switching mechanism 4 of the sixth embodiment, an upper recess 48a and a lower recess 48b are provided between adjacent hollow parts 67 among the plurality of hollow parts 67 arranged in the y direction. The difference from the flow path switching mechanism 3 of the second embodiment is that it is different. The lower concave portion 48b is a space into which the locking convex portions 280ab and 280bb (FIG. 35) formed in the flow path switching mechanism holding portion 280 (FIG. 35) enter, as described later.

図34は、流路切換機構保持ユニット8A内で流路切換機構4の第二部材20を駆動することを説明するための模式図であって、図31に示した個別駆動部6を示している。図34に示すように、流路切換機構4は、保持面912上にホルダ240を介して載置されており、ホルダ240は流路切換機構4の取り外しを容易にするための取外し流路切換機構保持受部280を有している。
図31で示したように、流路切換装置2は、モータ200、カップリング222、ボールねじ部220及び軸受部230を備えている。図示したボールねじ部220はボールの図示を略しているが、図示しないボール、軸部220a及びねじ部220bを有している。軸受部230は、ホルダ240と一体化している。また、図34では、カップリング222の図示を略している。
FIG. 34 is a schematic diagram for explaining driving the second member 20 of the flow path switching mechanism 4 in the flow path switching mechanism holding unit 8A, showing the individual drive unit 6 shown in FIG. There is. As shown in FIG. 34, the flow path switching mechanism 4 is placed on the holding surface 912 via the holder 240, and the holder 240 is a removal flow path switching device for facilitating the removal of the flow path switching mechanism 4. It has a mechanism holding portion 280.
As shown in FIG. 31, the flow path switching device 2 includes a motor 200, a coupling 222, a ball screw portion 220 and a bearing portion 230. Although the illustrated ball screw portion 220 does not show a ball, it has a ball, a shaft portion 220a, and a screw portion 220b (not shown). The bearing portion 230 is integrated with the holder 240. Further, in FIG. 34, the illustration of the coupling 222 is omitted.

上記構成のうち、モータ200、ボールねじ部220及び軸受部230は、第二部材20をx軸の+方向及び−方向に移動させる駆動力を、流路切換機構4の駆動力受容凸部27に与える駆動部として機能する。第六実施形態では、この駆動力が、軸受部230及び230と一体化したホルダ240を介して駆動力受容凸部27に与えられる。ホルダ240内に設けられた流路切換機構保持受部280は、流路切換機構4の第二部材20の静止中及び駆動部による駆動中に第一部材46が移動しないように保持している。 In the above configuration, the motor 200, the ball screw portion 220, and the bearing portion 230 apply the driving force for moving the second member 20 in the + and − directions of the x-axis to the driving force receiving convex portion 27 of the flow path switching mechanism 4. It functions as a drive unit for giving to. In the sixth embodiment, this driving force is applied to the driving force receiving convex portion 27 via the holder 240 integrated with the bearing portions 230 and 230. The flow path switching mechanism holding receiver 280 provided in the holder 240 holds the second member 20 of the flow path switching mechanism 4 so that the first member 46 does not move while the second member 20 is stationary and driven by the drive unit. ..

また、第六実施形態では、複数の第二部材20を備えた流路切換機構4が流路切換装置2に取り付けられている。駆動部として機能するモータ200、ボールねじ部220及び軸受部230は、複数の第二部材20の各々を個別に駆動する複数の個別駆動部6を含んでいる。 In addition, in the sixth embodiment, the flow path switching mechanism 4 including the plurality of second members 20 is attached to the flow path switching device 2. The motor 200 that functions as a drive unit, the ball screw unit 220, and the bearing unit 230 include a plurality of individual drive units 6 that individually drive each of the plurality of second members 20.

以上の構成は、以下のように動作する。すなわち、モータ200はステッピングモータ等の電動モータであり、電力の供給を受けて回転する。モータ200の回転は、カップリング222によってボールねじ部220に伝えられる。ボールねじ部220の軸部220aは、モータ200の回転を直線方向の運動に変換する。ねじ部220bは、モータ200が例えば右方向に回転することによってx方向に移動し、モータ200の回転方向が反転すると−x方向に移動する。ねじ部220にはホルダ240と一体化した軸受部230が固定されていて、ねじ部220bと共にホルダ240が移動する。
ホルダ240は、図34に示すように、ホルダ壁部240a、240c及びホルダ底部240bによって構成されている。ホルダ壁部240aについては、流路切換機構4に向かう面を内面240aa、内面240aaの裏面を外面240ab、内面240aaと外面240abとの間に形成されて第二部材20の駆動力受容凸部27と係合する係合部240adとする。また、ホルダ壁部240cの流路切換機構4に向かう面を内面240ca、ホルダ底部240bの流路切換機構4に向かう面を内面240baとする。
The above configuration operates as follows. That is, the motor 200 is an electric motor such as a stepping motor, and is rotated by receiving power supply. The rotation of the motor 200 is transmitted to the ball screw portion 220 by the coupling 222. The shaft portion 220a of the ball screw portion 220 converts the rotation of the motor 200 into a linear movement. The screw portion 220b moves in the x direction when the motor 200 rotates to the right, for example, and moves in the −x direction when the rotation direction of the motor 200 is reversed. A bearing portion 230 integrated with the holder 240 is fixed to the screw portion 220, and the holder 240 moves together with the screw portion 220b.
As shown in FIG. 34, the holder 240 includes holder walls 240a and 240c and a holder bottom 240b. Regarding the holder wall portion 240a, a surface facing the flow path switching mechanism 4 is formed as an inner surface 240aa, a back surface of the inner surface 240aa is an outer surface 240ab, and a driving force receiving convex portion 27 of the second member 20 is formed between the inner surface 240aa and the outer surface 240ab. And an engaging portion 240ad that engages with. A surface of the holder wall portion 240c facing the flow path switching mechanism 4 is an inner surface 240ca, and a surface of the holder bottom portion 240b facing the flow path switching mechanism 4 is an inner surface 240ba.

軸受部230及びホルダ240は、ボールねじ部220によって±x軸方向に移動する。第六実施形態では、x方向に移動することを以降「前進」と記し、−x方向に移動することを以降「後退」と記す。ねじ部220bが−x方向に移動するとホルダ240は後退し、ねじ部220bがx方向に移動するとホルダ240は前進する。このとき、ホルダ240のホルダ壁部240aは、流路切換機構4のうちの第二部材20とのみ係合部240adにおいて係合しているから、ホルダ240が後退すると第一部材46が固定されたまま第二部材20が後退する。このとき、第二部材20には、ホルダ壁部240aと係合する部位に−x方向の力が加えられると共に、ホルダ壁部240cからも−x方向の力が加えられる。このため、第六実施形態は、ボールねじ部220によって加えられる力が第二部材20に効率よく伝えられ、第二部材20と第一部材46との気密性を保ちながら第二部材20を円滑に移動させることができる。
一方、ホルダ240が前進すると第一部材46が保持されたまま第二部材20が前進する。第二部材20の前進は、ホルダ壁部240cに当接するまで前進可能である。
The bearing portion 230 and the holder 240 are moved in the ±x axis directions by the ball screw portion 220. In the sixth embodiment, moving in the x direction is hereinafter referred to as “forward”, and moving in the −x direction is hereinafter referred to as “backward”. When the screw portion 220b moves in the -x direction, the holder 240 moves backward, and when the screw portion 220b moves in the x direction, the holder 240 moves forward. At this time, since the holder wall portion 240a of the holder 240 is engaged with only the second member 20 of the flow path switching mechanism 4 at the engaging portion 240ad, the first member 46 is fixed when the holder 240 retracts. The second member 20 is retracted while keeping it. At this time, a force in the −x direction is applied to the portion of the second member 20 that engages with the holder wall portion 240a, and a force in the −x direction is also applied from the holder wall portion 240c. Therefore, in the sixth embodiment, the force applied by the ball screw portion 220 is efficiently transmitted to the second member 20, and the second member 20 is smoothly moved while maintaining the airtightness between the second member 20 and the first member 46. Can be moved to.
On the other hand, when the holder 240 moves forward, the second member 20 moves forward while the first member 46 is held. The second member 20 can be moved forward until it comes into contact with the holder wall portion 240c.

以上説明したように、第六実施形態では、第二部材20を第一部材46に対して前進、後退させることによって第一部材46と第二部材20との相対的な位置関係を変化させる。相対位置の変化により、第一部材46の第一部分流路52a〜52xと第二部材20の第二部分流路22a、22b、22cとの接続の組み合わせが変化する。このことにより、図34に示した構成は、流路切換機構4において形成される流路を切り換えることができる。
なお、第六実施形態は、個別駆動部6を上記構成に限定するものではない。例えば、個別駆動部6は一つのボールねじ部220を有し、ホルダ240の移動量の調整箇所を一箇所としている。しかし、第六実施形態の個別駆動部6は、ボールねじ部220のようなホルダ240の移動量の調整箇所を複数備え、ホルダ240の移動量を多段階に変更可能にしてもよい。
As described above, in the sixth embodiment, the relative positional relationship between the first member 46 and the second member 20 is changed by moving the second member 20 forward and backward with respect to the first member 46. The combination of the connection between the first partial flow paths 52a to 52x of the first member 46 and the second partial flow paths 22a, 22b, 22c of the second member 20 changes due to the change in the relative position. As a result, with the configuration shown in FIG. 34, the flow paths formed in the flow path switching mechanism 4 can be switched.
Note that the sixth embodiment does not limit the individual drive unit 6 to the above configuration. For example, the individual drive unit 6 has one ball screw portion 220, and the movement amount of the holder 240 is adjusted at one place. However, the individual drive unit 6 of the sixth embodiment may include a plurality of adjustment locations for the movement amount of the holder 240, such as the ball screw portion 220, so that the movement amount of the holder 240 can be changed in multiple stages.

図35(a)、図35(b)、図35(c)は、いずれも図34に示した流路切換機構保持受部280及び流路切換機構4の斜視図である。第六実施形態では、第二部材20が図中のy方向に配列され、第一部材46が複数の第二部材20と組み合わされている。流路切換機構保持受部280は、第一保持受部280a、第二保持受部280bの二部材を含んでいる。第一保持受部280aは、第一部材46を支持するベース部280aaと、ベース部280aaに形成されて第一部材46と係りあう係合部である係止凸部280abとを有している。また、第二保持受部280bは、第一部材46を支持するベース部280baと、ベース部280aaに形成されて第一部材46と係りあう係合部である係止凸部280bbとを有している。 35(a), 35(b) and 35(c) are perspective views of the flow path switching mechanism holding/receiving portion 280 and the flow path switching mechanism 4 shown in FIG. In the sixth embodiment, the second members 20 are arranged in the y direction in the drawing, and the first member 46 is combined with the plurality of second members 20. The flow path switching mechanism holding/receiving section 280 includes two members, a first holding/receiving section 280a and a second holding/receiving section 280b. The first holding receiving portion 280a has a base portion 280aa that supports the first member 46, and a locking protrusion 280ab that is an engaging portion that is formed on the base portion 280aa and that engages with the first member 46. .. Further, the second holding receiving portion 280b has a base portion 280ba that supports the first member 46, and a locking convex portion 280bb that is an engaging portion that is formed on the base portion 280aa and that engages with the first member 46. ing.

さらに、第六実施形態では、ベース部280aa、ベース部280baと共にベース部280aa、ベース部280baの第一部材が配置される配置方向(y方向)の長さを変更する長さ変更部であるバネ部材250を備えている。そして、係止凸部280abは、バネ部材250による長さ変更に伴って移動する移動方向に向かって傾斜する傾斜部280acを有し、バネ部材250によってベース部280aa、ベース部280baの長さが変化した場合に係止凸部280abがベース部280aaと第一部材46との間に入り込む。また、係止凸部280bbは、バネ部材250による長さ変更に伴って移動する移動方向に向かって傾斜する傾斜部280bcを有し、バネ部材250によってベース部280aa、ベース部280baの長さが変化した場合に係止凸部280bbがベース部280aaと第一部材46との間に入り込む。 Furthermore, in the sixth embodiment, the base portion 280aa, the base portion 280ba, the base portion 280aa, and the first member of the base portion 280ba are arranged in the arrangement direction (y direction). The member 250 is provided. The locking projection 280ab has an inclined portion 280ac that is inclined in the moving direction that moves in accordance with the length change by the spring member 250, and the length of the base portion 280aa and the base portion 280ba is changed by the spring member 250. When changed, the locking protrusion 280ab enters between the base portion 280aa and the first member 46. Further, the locking projection 280bb has an inclined portion 280bc that is inclined toward the moving direction that moves in accordance with the length change by the spring member 250, and the length of the base portion 280aa and the base portion 280ba is changed by the spring member 250. When changed, the locking protrusion 280bb enters between the base 280aa and the first member 46.

上記記載において、第六実施形態では、流路切換機構保持受部280を第一保持受部280a、第二保持受部280bの二部材にしているため、ベース部280aa、280baも二部材になっている。しかし、第六実施形態のベース部は構成部材の数が限定されるものではない。第六実施形態でいう「ベース部の長さ」は、ベース部280aa、280b及びバネ部材250の全体のy方向の長さを指す。また、ベース部280aa、280b及びバネ部材250の長さは、バネ部材250を伸縮させることによって第一保持受部280aと第二保持受部280bとの間隔を変更することによって変更される。
ただし、第六実施形態は、ベース部280aa、280bの間隔をバネ部材250によって変更する構成に限定されるものでない。例えば、ベース部を二部材で構成する場合、二部材を互いに摺動可能に構成し、一方を他方に重ねて摺動させて、この重なり量によってベース部280aa、280b全体の長さを変更するようにしてもよい。あるいは、一部材でなるベース部の両端から中心に向かって力を加えることによりベース部が短くなるように折り曲げ可能に構成してもよい。
In the above description, in the sixth embodiment, the flow path switching mechanism holding and receiving portion 280 is made into two members, that is, the first holding and receiving portion 280a and the second holding and receiving portion 280b, so the base portions 280aa and 280ba are also two members. ing. However, the number of constituent members of the base portion of the sixth embodiment is not limited. The “length of the base portion” in the sixth embodiment refers to the total length of the base portions 280aa, 280b and the spring member 250 in the y direction. Further, the lengths of the base parts 280aa, 280b and the spring member 250 are changed by expanding and contracting the spring member 250 to change the distance between the first holding receiving part 280a and the second holding receiving part 280b.
However, the sixth embodiment is not limited to the configuration in which the interval between the base portions 280aa and 280b is changed by the spring member 250. For example, when the base portion is composed of two members, the two members are configured to be slidable with respect to each other, one of them is slid on the other, and the entire length of the base portions 280aa, 280b is changed by the overlapping amount. You may do it. Alternatively, the base portion may be configured to be bendable so that the base portion is shortened by applying a force from both ends of the base portion made of one member toward the center.

次に、第六実施形態の流路切換機構保持受部280の機能について具体的に説明する。図35(a)は、流路切換装置2に流路切換機構4を取付けることを説明するための図である。図35(a)に示すように、流路切換機構4は、流路切換機構保持受部280の上方からベース部280aa、ベース部280ba上に載置される。このとき、流路切換機構4は、係止凸部280ab、280bbの間にホルダ係合部69が入るように配置される。流路切換機構4は、流路切換機構保持受部280上に載置された状態でホルダ240にセットされ、流路切換装置2に取り付けられる。 Next, the function of the flow path switching mechanism holding portion 280 of the sixth embodiment will be specifically described. FIG. 35( a) is a diagram for explaining how to attach the flow path switching mechanism 4 to the flow path switching device 2. As shown in FIG. 35A, the flow path switching mechanism 4 is placed on the base portion 280aa and the base portion 280ba from above the flow path switching mechanism holding and receiving portion 280. At this time, the flow path switching mechanism 4 is arranged so that the holder engaging portion 69 is inserted between the locking convex portions 280ab and 280bb. The flow path switching mechanism 4 is set on the holder 240 while being mounted on the flow path switching mechanism holding portion 280, and is attached to the flow path switching device 2.

図35(b)、図35(c)は、流路切換装置2から流路切換機構4を取り外すことを説明するための図である。このとき、第六実施形態では、流路切換機構保持受部280に流路切換機構4が載置された状態で、図35(b)に示すように、第一保持受部280aが矢線Jの方向に向かって移動するように力を加え、同時に第二保持受部280bが矢線Kの方向に向かって移動するように力を加える。なお、第一保持受部280a、第二保持受部280bの移動は、操作者が手動で行うものであってもよいし、流路切換装置2に第一保持受部280a、第二保持受部280bを移動させる機構を設けるものであってもよい。
第一保持受部280a、第二保持受部280bを互いに対向する方向に移動させると、移動方向に向かって傾斜している傾斜部280ac、280bcに沿ってホルダ係合部69が浮き上がり、係止凸部280ab、280bbが第一部材46の下凹部48bから出てホルダ係合部69下に入り込む。このとき、ホルダ係合部69は係止凸部280ab、280bb上に乗り上げて、流路切換機構4が流路切換機構保持受部280から容易に取り外される。
35(b) and 35(c) are diagrams for explaining the removal of the flow path switching mechanism 4 from the flow path switching device 2. At this time, in the sixth embodiment, with the flow path switching mechanism 4 placed on the flow path switching mechanism holding and receiving portion 280, as shown in FIG. A force is applied so as to move in the direction of J, and at the same time, a force is applied so that the second holding receiving portion 280b moves in the direction of arrow K. The movement of the first holding receiving portion 280a and the second holding receiving portion 280b may be manually performed by the operator, or the first holding receiving portion 280a and the second holding receiving portion of the flow path switching device 2 may be moved. A mechanism for moving the portion 280b may be provided.
When the first holding receiving portion 280a and the second holding receiving portion 280b are moved in the directions opposite to each other, the holder engaging portion 69 is lifted and locked along the inclined portions 280ac and 280bc inclined in the moving direction. The convex portions 280ab and 280bb come out from the lower concave portion 48b of the first member 46 and enter under the holder engaging portion 69. At this time, the holder engagement portion 69 rides on the locking projections 280ab and 280bb, and the flow path switching mechanism 4 is easily removed from the flow path switching mechanism holding receiving portion 280.

なお、第六実施形態の流路切換機構保持受部280は、係止凸部280ab、280bbを上記構成に限定するものではなく、ホルダ係合部69下に入り込んでホルダ係合部69をベース部280aa、280baから浮かせる構成であればどのような構成であってもよい。このような構成としては、例えば、第一保持受部280aの傾斜部を傾斜部280acとは反対に、第二保持受部280bと反対側に向かって傾斜するものとし、第二保持受部280bの傾斜部を第一保持受部280aと反対側に向かって傾斜するものとする。そして、第一保持受部280a、第二保持受部280bを互いに離れる向きに移動させるものであってもよい。
さらに、第六実施形態は、係止凸部280ab、280bbに代えて例えば折り畳まれた板バネ部材を設け、第一保持受部280a、第二保持受部280bを移動させることによってホルダ係合部69下に板バネ部材を折り畳まれた状態で入り込ませるものであってもよい。このようにすれば、ホルダ係合部69下で板バネ部材がその弾性力で開き、ホルダ係合部69をベース部280aa、280baから浮かせることができる。
In addition, the flow path switching mechanism holding receiving portion 280 of the sixth embodiment does not limit the locking convex portions 280ab and 280bb to the above-described configuration, but is inserted under the holder engaging portion 69 and the holder engaging portion 69 is used as a base. Any configuration may be used as long as it can be floated from the portions 280aa and 280ba. As such a configuration, for example, the inclined portion of the first holding receiving portion 280a is inclined toward the side opposite to the second holding receiving portion 280b, as opposed to the inclined portion 280ac, and the second holding receiving portion 280b is provided. It is assumed that the inclined portion is inclined toward the side opposite to the first holding receiving portion 280a. Then, the first holding receiving portion 280a and the second holding receiving portion 280b may be moved in directions away from each other.
Further, in the sixth embodiment, for example, a folded leaf spring member is provided in place of the locking protrusions 280ab and 280bb, and the first holding receiving portion 280a and the second holding receiving portion 280b are moved to hold the holder engaging portion. Alternatively, the leaf spring member may be inserted below 69 in a folded state. By doing so, the leaf spring member opens below the holder engaging portion 69 by its elastic force, and the holder engaging portion 69 can be floated from the base portions 280aa and 280ba.

以上説明した流路切換装置は、ガス供給機構による加圧、減圧機構による吸引またはその組み合わせにより、流路を切り換えながら目的の位置に液移送することができ、例えば、反応容器に、さらに、温度制御機構、反応容器の撹拌機構、放射線検出機構の少なくとも1つを組み合わせることで、小型で流路における残液の少ない汎用性の高い放射性薬剤の合成装置が実現可能になる。 The flow path switching device described above can transfer liquid to a desired position while switching the flow path by pressurization by a gas supply mechanism, suction by a decompression mechanism, or a combination thereof. By combining at least one of the control mechanism, the reaction vessel stirring mechanism, and the radiation detection mechanism, it becomes possible to realize a highly versatile radiopharmaceutical synthesizing device that is small in size and has little residual liquid in the flow channel.

以上説明した本発明は、以下の思想を有する。
<1> 化学処理に使用される材料を流通させる流路を切り換える流路切換機構であって、一または複数の第一部分流路が形成された第一部材と、移動可能な状態で前記第一部材と組み合わされ、複数または一の第二部分流路を有する第二部材と、前記第二部材を一の軸の両方向に移動させる駆動力を受け付ける駆動力受容部と、を有し、前記第一部材と前記第二部材とが組み合わされることにより、前記第一部分流路と前記第二部分流路とが連通して流路を形成し、前記第一部材と前記第二部材との組み合わせを維持しながら前記第二部材が前記一の軸の両方向に移動することにより、連通する前記第一部分流路と前記第二部分流路との組み合わせが変更されて前記流路が他の流路に切り換えられる、流路切換機構。
<2> 前記第二部材が一の列方向に複数配置されて前記第一部材と組み合わされ、前記流路の少なくとも一つは、複数の前記第二部材の前記第二部分流路が前記第一部分流路を介して互いに連通して形成される、<1>の流路切換機構。
<3> 前記第二部分流路は、前記一の軸と直交し、前記第一部分流路は、前記第二部分流路と連通して前記一の軸と直交する二軸のうちの少なくとも一方に沿う流路を形成する、<1>または<2>の流路切換機構。
<4> 前記駆動力受容部は、前記第二部材に設けられた凸形状の駆動力受容凸部を含む、<1>から<3>のいずれか1つの流路切換機構。
<5> 前記第一部材は、前記第二部材が所定の位置にあるときに前記第二部分流路と連通する前記第一部分流路である移動前連通流路と、前記第二部材が前記所定の位置から前記軸に沿って移動したときに前記第二部分流路と連通する前記第一部分流路である移動後連通流路と、を含む、<1>から<4>のいずれか一つの流路切換機構。
<6> 前記第一部材は、前記第一部分流路の外部に向かう側の端部周囲に凸形状を有する流路凸部を有する、<1>から<5>のいずれか一つの流路切換機構。
<7> 前記第一部材の少なくとも一部が枠体であり、前記第二部材の少なくとも一部が前記枠体に嵌入され、前記枠体は、所定の剛性を有する基準歪み部と、当該基準歪み部よりも剛性が小さい容易歪み部と、を含む、請求項1から6のいずれか一項に記載の流路切換機構。
<8> 前記容易歪み部の少なくとも一部は、前記基準歪み部の肉厚よりも肉厚が薄い、<7>の流路切換機構。
<9> <6>の流路切換機構と、当該流路切換機構の前記流路凸部によって破断される底面を有する材料容器を含む材料供給ユニット。
<10> <2>の流路切換機構を保持し、前記列方向と交差する少なくとも一の方向から前記流路切換機構が挿入される挿入溝と、当該挿入溝に挿入された前記流路切換機構が前記列方向に移動することにより係止する係止凸部と、を交互に有する流路切換機構のホルダ。
<11> <1>から<8>のいずれか一つの流路切換機構が有する第二部材を一の軸の両方向に移動させる駆動力を前記駆動力受容部に与える駆動部と、前記流路切換機構の第一部材を保持する流路切換機構保持受部と、を備え、前記流路切換機構保持受部は、前記第二部材の静止中及び前記駆動部による移動中に前記第一部材が移動しないように保持する、流路切換装置。
<12> 前記第二部材が複数取り付けられ、前記駆動部は、前記第二部材の各々を個別に駆動する複数の個別駆動部を有する、<11>の流路切換装置。
<13> 複数の前記第二部材の少なくとも一部が一方向に配列され、前記第一部材が複数の前記第二部材と組み合わされ、前記流路切換機構保持受部は、前記第一部材を支持するベース部と、前記ベース部に形成されて前記第一部材と係りあう係合部と、を有する、<11>または<12>の流路切換装置。
<14> 前記ベース部は、前記ベース部の前記第一部材が配置される配置方向の長さを変更する長さ変更部を有し、
前記ベース部に形成される前記係合部は、前記長さ変更部による長さ変更に伴って移動する移動方向に向かって傾斜する傾斜部を有し、前記長さ変更部によって前記ベース部の長さが変化した場合に前記係合部が前記ベース部と前記第一部材との間に入り込む、<113>の流路切換装置。
<15> 前記流路切換機構が取り付けられる流路切換機構設置体を更に備え、前記流路切換機構設置体は、複数重ねて一体化される、<11>から<14>のいずれか一つの流路切換装置。
<16> <9>の材料供給ユニットが取り付けられて使用される、<11>から<15>のいずれか一つの流路切換装置。
<17> ガス供給機構または減圧機構を更に備える、<11>から<16>のいずれか一つの流路切換装置。
<18> 反応容器、前記反応容器の温度制御機構、前記反応容器の撹拌機構、放射線検出機構の少なくとも1つを更に備える、<11>から<17>のいずれか一つの流路切換装置。
<19> 化学処理に使用される材料を収容する有底の容器であって、前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記底面は、破断可能な脆弱部を少なくとも一部に含む、材料容器。
<20> 前記底面は、前記脆弱部と共に前記脆弱部よりも破断し難い基部と、前記容器本体部の内周面と前記基部とを接続する接続部と、を更に有する、<1>の材料容器。
<21> 前記脆弱部は薄膜からなり、前記基部は前記脆弱部の厚みよりも厚さの大きい厚膜からなる、<20>の材料容器。
<22> 前記脆弱部は、前記基部よりも前記底面の径方向の外側に配置される、<20>または<21>の材料容器。
<23> 前記接続部は、前記基部と一続きの前記厚膜で形成される、<21>の材料容器。
<24> 前記容器本体部及び前記底面は上面視において円形を有し、前記容器本体部の内径は、前記底面の径よりも大きい、<19>から<23>のいずれか1項に記載の材料容器。
<25> 前記容器本体部は、前記底面に垂直な軸方向の一方の端部に前記底面が設けられ、他方の端部に開口部を有し、前記開口部を前記底面と平行な蓋板によって閉じる蓋部と、前記蓋部を前記容器本体部に固定する蓋固定機構と、をさらに備える、<19>から<24>のいずれか1つの材料容器。
<26> 前記蓋固定機構は、前記蓋板に形成された切り欠き部と、前記容器本体部と接続された弾性片と、当該弾性片の先端に設けられる前記切り欠き部の切り欠きの幅よりも大きい部分を有する係止部材と、を備え、前記弾性片は、前記切り欠き部に保持されると共に前記係止部材によって前記蓋板の外表面に伸張された状態で固定される、<25>の材料容器。
<27> <19>から<25>のいずれか一つの材料容器と、前記材料容器の前記脆弱部を破断する凸部と、当該凸部の内部にあって、前記凸部が前記脆弱部を破断して前記底面に挿通された状態で前記材料容器と連通する流路と、を有する受容部材と、を有する、材料供給ユニット。
<28> <1>から<8>のいずれか一つの流路切換機構と、化学処理に使用される材料を収容する有底の材料容器と、を含み、前記材料容器は、前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記底面は、破断可能な脆弱部を少なくとも一部に含む、材料供給ユニット。
<29> 前記底面は、前記脆弱部と共に前記脆弱部よりも破断し難い基部と、前記容器本体部の内周面と前記基部とを接続する接続部と、を更に有する、<28>の材料供給ユニット。
<30> 前記脆弱部は薄膜からなり、前記基部は前記脆弱部の厚みよりも厚さの大きい厚膜からなる、<29>の材料供給ユニット。
<31> 前記脆弱部は、前記基部よりも前記底面の径方向の外側に配置される、<29>または<30>の材料供給ユニット。
<32> 前記接続部は、前記基部と一続きの前記厚膜で形成される、<30>の材料供給ユニット。
<33> 前記容器本体部及び前記底面は上面視において円形を有し、前記容器本体部の内径は、前記底面の径よりも大きい、<28>から<32>のいずれか1つの材料供給ユニット。
<34> 前記容器本体部は、前記底面に垂直な軸方向の一方の端部に前記底面が設けられ、他方の端部に開口部を有し、前記開口部を前記底面と平行な蓋板によって閉じる蓋部と、前記蓋部を前記容器本体部に固定する蓋固定機構と、をさらに備える、<28>から<33>のいずれか一つの材料供給ユニット。
<35> 前記蓋固定機構は、前記蓋板に形成された切り欠き部と、前記容器本体部と接続された弾性片と、当該弾性片の先端に設けられる前記切り欠き部の切り欠きの幅よりも大きい部分を有する係止部材と、を備え、前記弾性片は、前記切り欠き部に保持されると共に前記係止部材によって前記蓋板の外表面に伸張された状態で固定される、<34>の材料供給ユニット。
<36> 前記流路切換機構は、前記材料容器の前記脆弱部を破断する凸部と、当該凸部の内部にあって、前記凸部が前記脆弱部を破断して前記底面に挿通された状態で前記材料容器と連通する流路と、を有する受容部材と、を有する、<28>から<35>のいずれか一つの材料供給ユニット。
<37> 化学処理による化合物、または薬剤の合成に使用される材料を収容する有底の材料容器であって、前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記容器本体部は、外径及び内径が一定の筒形形状を有する第一筒部、前記第一筒部よりも小さい一定の外径及び内径を有する第二筒部及び前記第一筒部と前記第二筒部とを接続する斜面を有するテーパー部を有し、前記底面は、前記テーパー部と前記第二筒部との境界と、前記第二筒部の前記テーパー部とは反対側の下端部との間に形成され、破断可能な脆弱部と、前記脆弱部よりも破断し難い基部及び前記容器本体部の内周面と前記基部とを接続する前記脆弱部よりも破断し難い接続部と、を含み、前記脆弱部は薄膜からなると共に前記底面において前記基部よりも外側の領域の一部に配置され、前記基部は前記脆弱部の厚みより厚さの大きい厚膜からなり、前記接続部は、前記基部と一続きの前記厚膜で形成される、材料容器。
<38> 化学処理による化合物、または薬剤の合成に使用される材料を収容する有底の材料容器であって、前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記底面は、破断可能な脆弱部を少なくとも一部に含み、前記容器本体部は、前記底面に垂直な軸方向の一方の端部に前記底面が設けられ、他方の端部に開口部を有し、前記開口部を前記底面と平行な蓋板によって閉じる蓋部と、前記蓋部を前記容器本体部に固定する蓋固定機構と、を備え、前記蓋固定機構は、前記蓋板に形成された切り欠き部と、前記容器本体部と接続された弾性片と、当該弾性片の先端に設けられる前記切り欠き部の切り欠きの幅よりも大きい部分を有する係止部材と、を備え、前記弾性片は、前記切り欠き部に保持されると共に前記係止部材によって前記蓋板の外表面に伸張された状態で固定される、材料容器。
The present invention described above has the following ideas.
<1> A flow path switching mechanism for switching a flow path through which a material used for chemical treatment is circulated, the first member having one or a plurality of first partial flow paths formed therein, and the first member in a movable state. A second member that is combined with a member and that has a plurality of or one second partial flow paths; and a driving force receiving portion that receives a driving force that moves the second member in both directions of one axis. By combining one member and the second member, the first partial flow path and the second partial flow path communicate with each other to form a flow path, and a combination of the first member and the second member is formed. By moving the second member in both directions of the one axis while maintaining, the combination of the communicating first partial flow path and the second partial flow path is changed to change the flow path to another flow path. A flow path switching mechanism that can be switched.
<2> A plurality of the second members are arranged in one row direction and combined with the first member, and at least one of the flow paths is configured such that the second partial flow paths of the plurality of second members are the first The flow path switching mechanism of <1> formed so as to communicate with each other through a part of the flow path.
<3> The second partial flow path is orthogonal to the one axis, and the first partial flow path is in communication with the second partial flow path and is at least one of two axes perpendicular to the one axis. The flow path switching mechanism of <1> or <2> that forms a flow path along the flow path.
<4> The flow path switching mechanism according to any one of <1> to <3>, wherein the driving force receiving portion includes a convex driving force receiving convex portion provided on the second member.
<5> The first member is a communication passage before movement that is the first partial flow passage that communicates with the second partial flow passage when the second member is in a predetermined position, and the second member is Any one of <1> to <4>, including a post-movement communication channel that is the first partial flow channel that communicates with the second partial flow channel when moving from a predetermined position along the axis. One flow path switching mechanism.
<6> The first member has a channel convex portion having a convex shape around an end portion of the first partial channel facing the outside, and the channel switching according to any one of <1> to <5>. mechanism.
<7> At least a part of the first member is a frame body, at least a part of the second member is fitted into the frame body, and the frame body is a reference strain portion having a predetermined rigidity, and the reference strain portion. The flow path switching mechanism according to any one of claims 1 to 6, further comprising: an easily strained portion having rigidity smaller than that of the strained portion.
<8> The flow path switching mechanism according to <7>, wherein at least a part of the easily strained portion has a thickness smaller than that of the reference strained portion.
<9> A material supply unit including a flow path switching mechanism according to <6> and a material container having a bottom surface that is broken by the flow path convex portion of the flow path switching mechanism.
<10> An insertion groove that holds the flow path switching mechanism of <2> and in which the flow path switching mechanism is inserted from at least one direction intersecting the row direction, and the flow path switching that is inserted into the insertion groove. A holder for a flow path switching mechanism, which has locking projections that are locked when the mechanism moves in the row direction.
<11> A drive unit that gives a drive force to the drive force receiving unit to move the second member of the flow channel switching mechanism according to any one of <1> to <8> in both directions of one axis, and the flow channel. A flow path switching mechanism holding receiver for holding the first member of the switching mechanism, wherein the flow path switching mechanism holding receiver is the first member while the second member is stationary and while the second member is moving. A flow path switching device that holds the flow path so that it does not move.
<12> The flow path switching device according to <11>, wherein a plurality of the second members are attached, and the drive unit includes a plurality of individual drive units that individually drive the second members.
<13> At least a part of the plurality of second members is arranged in one direction, the first member is combined with the plurality of second members, and the flow path switching mechanism holding portion receives the first member. The flow path switching device according to <11> or <12>, which includes a supporting base portion and an engaging portion formed on the base portion and engaging with the first member.
<14> The base portion has a length changing portion that changes the length of the base portion in the arrangement direction in which the first member is arranged,
The engaging portion formed on the base portion has an inclined portion that is inclined toward a moving direction that moves in accordance with a change in length by the length changing portion, and the length changing portion causes the engaging portion of the base portion to move. The flow path switching device according to <113>, wherein the engagement portion enters between the base portion and the first member when the length changes.
<15> The flow path switching mechanism installation body to which the flow path switching mechanism is attached is further provided, and the flow path switching mechanism installation body is integrated in a plurality of layers, and any one of <11> to <14>. Flow path switching device.
<16> The flow path switching device according to any one of <11> to <15>, in which the material supply unit of <9> is attached and used.
<17> The flow path switching device according to any one of <11> to <16>, further including a gas supply mechanism or a pressure reducing mechanism.
<18> The flow path switching device according to any one of <11> to <17>, further including at least one of a reaction container, a temperature control mechanism for the reaction container, a stirring mechanism for the reaction container, and a radiation detection mechanism.
<19> A bottomed container that contains a material used for chemical treatment, the container bottom part containing the material, and a bottom surface that seals the inside of the container body part. Is a material container including a fragile fragile portion at least in part.
<20> The material of <1>, wherein the bottom surface further includes a base portion that is more difficult to break than the weak portion together with the weak portion, and a connecting portion that connects the inner peripheral surface of the container body portion and the base portion. container.
<21> The material container according to <20>, wherein the fragile portion is made of a thin film, and the base portion is made of a thick film having a thickness larger than that of the fragile portion.
<22> The fragile portion is the material container according to <20> or <21>, which is arranged radially outside the bottom surface with respect to the base portion.
<23> The material container according to <21>, wherein the connecting portion is formed of the thick film that is continuous with the base portion.
<24> The container main body and the bottom surface have a circular shape in a top view, and the inner diameter of the container main body is larger than the diameter of the bottom surface, according to any one of <19> to <23>. Material container.
<25> In the container body, the bottom surface is provided at one end in the axial direction perpendicular to the bottom surface, the other end has an opening, and the opening is parallel to the bottom plate. The material container according to any one of <19> to <24>, further comprising: a lid part that is closed by means of; and a lid fixing mechanism that fixes the lid part to the container body part.
<26> The lid fixing mechanism includes a notch portion formed in the lid plate, an elastic piece connected to the container body, and a width of the notch portion provided at the tip of the elastic piece. A locking member having a larger portion, the elastic piece being held in the cutout portion and fixed to the outer surface of the lid plate by the locking member in a stretched state. 25> material container.
<27> The material container according to any one of <19> to <25>, a convex portion that breaks the fragile portion of the material container, and the convex portion inside the convex portion, and the convex portion is the fragile portion. A material supply unit, comprising: a receiving member having a flow path that is in communication with the material container in a state of being broken and inserted into the bottom surface.
<28> A flow path switching mechanism according to any one of <1> to <8>, and a bottomed material container for containing a material used for chemical treatment, wherein the material container contains the material. And a bottom surface that seals the inside of the container body portion, the bottom surface including a breakable fragile portion in at least a part thereof.
<29> The material according to <28>, wherein the bottom surface further includes a base portion that is more difficult to break than the weak portion together with the weak portion, and a connecting portion that connects the inner peripheral surface of the container body portion and the base portion. Supply unit.
<30> The material supply unit according to <29>, wherein the fragile portion is made of a thin film, and the base portion is made of a thick film having a thickness larger than that of the fragile portion.
<31> The material supply unit according to <29> or <30>, in which the fragile portion is arranged radially outside the bottom surface with respect to the base portion.
<32> The material supply unit according to <30>, wherein the connecting portion is formed of the thick film that is continuous with the base portion.
<33> The material supply unit according to any one of <28> to <32>, wherein the container body and the bottom surface have a circular shape in a top view, and the inner diameter of the container body is larger than the diameter of the bottom surface. ..
<34> In the container body, the bottom surface is provided at one end in the axial direction perpendicular to the bottom surface, the other end has an opening, and the opening is parallel to the bottom. The material supply unit according to any one of <28> to <33>, further including: a lid portion that is closed by means of; and a lid fixing mechanism that fixes the lid portion to the container body portion.
<35> The lid fixing mechanism includes a notch portion formed in the lid plate, an elastic piece connected to the container body, and a width of the notch portion provided at the tip of the elastic piece. A locking member having a larger portion, the elastic piece being held in the cutout portion and fixed to the outer surface of the lid plate by the locking member in a stretched state. 34> Material supply unit.
<36> The flow path switching mechanism includes a convex portion that breaks the fragile portion of the material container, and a convex portion that is inside the convex portion and that ruptures the fragile portion and is inserted into the bottom surface. A material supply unit according to any one of <28> to <35>, further comprising a receiving member having a flow path communicating with the material container in a state.
<37> A bottomed material container containing a chemical compound or a material used for synthesizing a drug, the container main body containing the material, and a bottom surface sealing the inside of the container main body. And, the container body has a first tubular portion having a tubular shape with a constant outer diameter and inner diameter, a second tubular portion having a constant outer diameter and inner diameter smaller than the first tubular portion, and It has a taper part which has a slope which connects the first cylinder part and the second cylinder part, and the bottom is the boundary of the taper part and the second cylinder part, and the taper of the second cylinder part. The fragile portion that is formed between the lower end portion on the opposite side of the portion and the fragile portion that is rupturable, the base portion that is less likely to break than the fragile portion, and the fragile portion that connects the inner peripheral surface of the container body portion and the base portion. And a connection portion that is more difficult to break than the weak portion, and the weak portion is formed of a thin film and is arranged in a part of a region outside the base portion on the bottom surface, and the base portion has a thickness larger than the thickness of the weak portion. A material container, comprising a thick film, wherein the connecting portion is formed of the thick film that is continuous with the base portion.
<38> A bottomed material container for containing a chemical compound or a material used for synthesizing a drug, the container body containing the material, and a bottom surface for sealing the inside of the container body. And, the bottom surface includes a fragile fragile portion in at least a part thereof, and the container main body portion is provided with the bottom surface at one end in an axial direction perpendicular to the bottom surface, and the other end. And a lid fixing mechanism that fixes the lid to the container body, the lid fixing mechanism comprising: A locking member having a notch formed on the lid plate, an elastic piece connected to the container body, and a portion larger than the width of the notch of the notch provided at the tip of the elastic piece. And the elastic piece is fixed to the outer surface of the lid plate in a stretched state by being held by the cutout portion and by the locking member.

この出願は、2017年4月28日に出願された日本出願特願2017−90748号、日本出願特願2017−90749号及び2018年2月1日に出願された日本出願特願2018−016544号を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application includes Japanese application Japanese Patent Application No. 2017-90748, Japanese application Japanese Patent Application No. 2017-90749, and Japanese application Japanese Patent Application No. 2018-016544, which were filed on February 1, 2018, filed on April 28, 2017. Claim priority based on, and incorporate all of its disclosures here.

Claims (18)

化学処理に使用される材料を流通させる流路を切り換える流路切換機構であって、
一または複数の第一部分流路が形成された第一部材と、
移動可能な状態で前記第一部材と組み合わされ、複数または一の第二部分流路を有する第二部材と、
前記第二部材を一の軸の両方向に移動させる駆動力を受け付ける駆動力受容部と、を有し、
前記第一部材と前記第二部材とが組み合わされることにより、前記第一部分流路と前記第二部分流路とが連通して流路を形成し、前記第一部材と前記第二部材との組み合わせを維持しながら前記第二部材が前記一の軸の両方向に移動することにより、連通する前記第一部分流路と前記第二部分流路との組み合わせが変更されて前記流路が他の流路に切り換えられる、流路切換機構。
A flow path switching mechanism for switching a flow path for circulating a material used for chemical treatment,
A first member in which one or more first partial flow paths are formed,
A second member that is combined with the first member in a movable state and has a plurality of or one second partial flow paths,
A driving force receiving portion that receives a driving force for moving the second member in both directions of one axis,
By combining the first member and the second member, the first partial flow path and the second partial flow path communicate with each other to form a flow path, and the first member and the second member By moving the second member in both directions of the one axis while maintaining the combination, the combination of the first partial flow path and the second partial flow path communicating with each other is changed and the flow path is changed to another flow path. A flow path switching mechanism that can be switched to a road.
前記第二部材が一の列方向に複数配置されて前記第一部材と組み合わされ、前記流路の少なくとも一つは、複数の前記第二部材の前記第二部分流路が前記第一部分流路を介して互いに連通して形成される、請求項1に記載の流路切換機構。 A plurality of the second members are arranged in one row direction and combined with the first member, and at least one of the flow paths is configured such that the second partial flow paths of the plurality of second members are the first partial flow paths. The flow path switching mechanism according to claim 1, wherein the flow path switching mechanism is formed so as to communicate with each other via. 前記第二部分流路は、前記一の軸と直交し、前記第一部分流路は、前記第二部分流路と連通して前記一の軸と直交する二軸のうちの少なくとも一方に沿う流路を形成する、請求項1または2に記載の流路切換機構。 The second partial flow path is orthogonal to the one axis, and the first partial flow path is in communication with the second partial flow path and flows along at least one of two axes perpendicular to the one axis. The flow path switching mechanism according to claim 1, which forms a path. 前記駆動力受容部は、前記第二部材に設けられた凸形状の駆動力受容凸部を含む、請求項1から3のいずれか1項に記載の流路切換機構。 The flow path switching mechanism according to claim 1, wherein the driving force receiving portion includes a convex driving force receiving convex portion provided on the second member. 前記第一部材は、前記第二部材が所定の位置にあるときに前記第二部分流路と連通する前記第一部分流路である移動前連通流路と、前記第二部材が前記所定の位置から前記軸に沿って移動したときに前記第二部分流路と連通する前記第一部分流路である移動後連通流路と、を含む、請求項1から4のいずれか1項に記載の流路切換機構。 The first member is a pre-movement communication channel that is the first partial flow channel that communicates with the second partial flow channel when the second member is at a predetermined position, and the second member is at the predetermined position. Flow path after movement, which is the first partial flow path communicating with the second partial flow path when moving along the axis from the flow path according to any one of claims 1 to 4. Road switching mechanism. 前記第一部材は、前記第一部分流路の外部に向かう側の端部周囲に凸形状を有する流路凸部を有する、請求項1から5のいずれか1項に記載の流路切換機構。 The flow path switching mechanism according to claim 1, wherein the first member has a flow path convex portion having a convex shape around an end portion on the side facing the outside of the first partial flow path. 前記第一部材の少なくとも一部が枠体であり、前記第二部材の少なくとも一部が前記枠体に嵌入され、前記枠体は、所定の剛性を有する基準歪み部と、当該基準歪み部よりも剛性が小さい容易歪み部と、を含む、請求項1から6のいずれか1項に記載の流路切換機構。 At least a portion of the first member is a frame body, at least a portion of the second member is fitted into the frame body, the frame body is a reference strain portion having a predetermined rigidity, and the reference strain portion. 7. The flow path switching mechanism according to any one of claims 1 to 6, further comprising: an easily strained portion having low rigidity. 請求項6に記載の流路切換機構と、当該流路切換機構の前記流路凸部によって破断される底面を有する材料容器を含む材料供給ユニット。 A material supply unit including the flow path switching mechanism according to claim 6 and a material container having a bottom surface that is broken by the flow path convex portion of the flow path switching mechanism. 化学処理に使用される材料を収容する有底の材料容器であって、
前記材料を収容する容器本体部と、前記容器本体部の内部を封止する底面と、を有し、前記底面は、破断可能な脆弱部を少なくとも一部に含む、材料容器。
A bottomed material container containing materials used for chemical processing,
A material container, comprising: a container body that contains the material; and a bottom surface that seals the interior of the container body, the bottom surface including a breakable fragile portion in at least a portion thereof.
前記容器本体部及び前記底面は上面視において円形を有し、前記容器本体部の内径は、前記底面の径よりも大きい、請求項9に記載の材料容器。 The material container according to claim 9, wherein the container body and the bottom surface have a circular shape in a top view, and the inner diameter of the container body is larger than the diameter of the bottom surface. 前記容器本体部は、前記底面に垂直な軸方向の一方の端部に前記底面が設けられ、他方の端部に開口部を有し、前記開口部を前記底面と平行な蓋板によって閉じる蓋部と、前記蓋部を前記容器本体部に固定する蓋固定機構と、をさらに備える、請求項9または10に記載の材料容器。 The container body is provided with the bottom surface at one end in the axial direction perpendicular to the bottom surface, has an opening at the other end, and closes the opening with a lid plate parallel to the bottom. The material container according to claim 9 or 10, further comprising: a portion, and a lid fixing mechanism that fixes the lid portion to the container body portion. 請求項2に記載の流路切換機構を保持し、前記列方向と交差する少なくとも一の方向から前記流路切換機構が挿入される挿入溝と、当該挿入溝に挿入された前記流路切換機構が前記列方向に移動することにより係止する係止凸部と、を交互に有する流路切換機構のホルダ。 An insertion groove that holds the flow path switching mechanism according to claim 2 and into which the flow path switching mechanism is inserted from at least one direction intersecting the row direction, and the flow path switching mechanism that is inserted into the insertion groove. A holder for a flow path switching mechanism, which alternately has locking projections that lock by moving in the row direction. 請求項1から請求項7のいずれか一項に記載の流路切換機構が有する第二部材を一の軸の両方向に移動させる駆動力を前記駆動力受容部に与える駆動部と、
前記流路切換機構の第一部材を保持する流路切換機構保持受部と、
を備え、
前記流路切換機構保持受部は、前記第二部材の静止中及び前記駆動部による移動中に前記第一部材が移動しないように保持する、流路切換装置。
A drive unit that applies a drive force for moving the second member of the flow path switching mechanism according to any one of claims 1 to 7 in both directions of an axis, to the drive force receiving unit.
A flow path switching mechanism holding receiving portion that holds the first member of the flow path switching mechanism,
Equipped with
The flow path switching device holding portion holds the first member so that the first member does not move while the second member is stationary and while the second member is moving.
前記第二部材が複数取り付けられ、前記駆動部は、前記第二部材の各々を個別に駆動する複数の個別駆動部を有する、請求項13に記載の流路切換装置。 The flow path switching device according to claim 13, wherein a plurality of the second members are attached, and the drive unit has a plurality of individual drive units that individually drive each of the second members. 複数の前記第二部材の少なくとも一部が一方向に配列され、前記第一部材が複数の前記第二部材と組み合わされ、
前記流路切換機構保持受部は、前記第一部材を支持するベース部と、前記ベース部に形成されて前記第一部材と係りあう係合部と、を有する、請求項13または14に記載の流路切換装置。
At least a part of the plurality of second members is arranged in one direction, the first member is combined with the plurality of second members,
15. The flow path switching mechanism holding receiver has a base portion that supports the first member, and an engagement portion that is formed on the base portion and that engages with the first member. Flow path switching device.
前記流路切換機構が取り付けられる流路切換機構設置体を更に備え、前記流路切換機構設置体は、複数重ねて一体化される、請求項13から15のいずれか一項に記載の流路切換装置。 The flow path according to any one of claims 13 to 15, further comprising a flow path switching mechanism installation body to which the flow path switching mechanism is attached, and the flow path switching mechanism installation body is integrated in a plurality of layers. Switching device. 請求項8に記載の材料供給ユニットが取り付けられて使用される、請求項13に記載の流路切換装置。 The flow path switching device according to claim 13, wherein the material supply unit according to claim 8 is attached and used. ガス供給機構または減圧機構を更に備える、請求項13から17のいずれか一項に記載の流路切換装置。 The flow path switching device according to claim 13, further comprising a gas supply mechanism or a pressure reducing mechanism.
JP2019514640A 2017-04-28 2018-04-26 Flow path switching mechanism, material supply unit, material container, flow path switching mechanism holder, and flow path switching device Pending JPWO2018199266A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017090749 2017-04-28
JP2017090749 2017-04-28
JP2018016544 2018-02-01
JP2018016544 2018-02-01
PCT/JP2018/017086 WO2018199266A1 (en) 2017-04-28 2018-04-26 Flow path switching mechanism, material supply unit, material container, holder of flow path switching mechanism and flow path switching device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019095337A Division JP2019147835A (en) 2017-04-28 2019-05-21 Minute amount sampling system, capillary and sampling method

Publications (1)

Publication Number Publication Date
JPWO2018199266A1 true JPWO2018199266A1 (en) 2020-07-02

Family

ID=71140153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514640A Pending JPWO2018199266A1 (en) 2017-04-28 2018-04-26 Flow path switching mechanism, material supply unit, material container, flow path switching mechanism holder, and flow path switching device

Country Status (1)

Country Link
JP (1) JPWO2018199266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494165A (en) * 2021-06-17 2022-12-20 株式会社岛津制作所 Ratchet fitting, pipe connection structure and liquid chromatograph

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994251U (en) * 1972-12-07 1974-08-14
JPS5468527A (en) * 1977-11-11 1979-06-01 Akira Washida Distributing valve
JPS61113235U (en) * 1984-12-27 1986-07-17
US5261454A (en) * 1992-11-30 1993-11-16 Grumman Aerospace Corporation Multiport selector valve
WO2000000768A1 (en) * 1998-06-29 2000-01-06 Sugan Co., Ltd. Channel switching apparatus
JP2002228024A (en) * 2001-02-01 2002-08-14 Soken Chem & Eng Co Ltd Multi-way selector valve
JP2007253948A (en) * 2004-04-30 2007-10-04 Sadao Nozawa Plastic container
JP2012167731A (en) * 2011-02-14 2012-09-06 Matsui Mfg Co Switching valve system and transportation switching system including the same
US20140196800A1 (en) * 2013-01-11 2014-07-17 Progressive Plastics, Inc Post valve protective device
JP2014201571A (en) * 2013-04-09 2014-10-27 日本メジフィジックス株式会社 Manufacturing apparatus of an organic compound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994251U (en) * 1972-12-07 1974-08-14
JPS5468527A (en) * 1977-11-11 1979-06-01 Akira Washida Distributing valve
JPS61113235U (en) * 1984-12-27 1986-07-17
US5261454A (en) * 1992-11-30 1993-11-16 Grumman Aerospace Corporation Multiport selector valve
WO2000000768A1 (en) * 1998-06-29 2000-01-06 Sugan Co., Ltd. Channel switching apparatus
JP2002228024A (en) * 2001-02-01 2002-08-14 Soken Chem & Eng Co Ltd Multi-way selector valve
JP2007253948A (en) * 2004-04-30 2007-10-04 Sadao Nozawa Plastic container
JP2012167731A (en) * 2011-02-14 2012-09-06 Matsui Mfg Co Switching valve system and transportation switching system including the same
US20140196800A1 (en) * 2013-01-11 2014-07-17 Progressive Plastics, Inc Post valve protective device
JP2014201571A (en) * 2013-04-09 2014-10-27 日本メジフィジックス株式会社 Manufacturing apparatus of an organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494165A (en) * 2021-06-17 2022-12-20 株式会社岛津制作所 Ratchet fitting, pipe connection structure and liquid chromatograph

Similar Documents

Publication Publication Date Title
JP2019130317A (en) Syringe devices, components of syringe devices, and methods of forming components and syringe devices
JP5052347B2 (en) Syringe device and method for mixing and administering medicaments
JP5147022B2 (en) Equipment for media transfer
JP2021021739A (en) System, method and device for performing automatized reagent based analysis
EP2351548B1 (en) Connector
US8076129B2 (en) Reactor plate and reaction processing method
EP1707267A1 (en) Device having a self sealing fluid port
US8919390B2 (en) Reagent preparation and dispensing device
WO2009140502A1 (en) Reagent preparation and dispensing device and methods for the same
JP4893685B2 (en) Reaction vessel plate and reaction processing method
JP5239552B2 (en) Reaction vessel plate and reaction processing method
JPWO2018199266A1 (en) Flow path switching mechanism, material supply unit, material container, flow path switching mechanism holder, and flow path switching device
WO2018199266A1 (en) Flow path switching mechanism, material supply unit, material container, holder of flow path switching mechanism and flow path switching device
JP4946918B2 (en) Reaction vessel plate and reaction processing method
EP2415524A2 (en) Sealed Device
JP5125947B2 (en) Reaction vessel processing equipment
JP4894684B2 (en) Reaction vessel plate and reaction processing method
JP2010057403A (en) Reaction vessel plate and method for reaction treatment
AU2012315579B2 (en) Partitioned reaction vessels
JP2009281954A (en) Reaction vessel plate and reaction processing method
JP4900485B2 (en) Reaction vessel plate and reaction processing method
CN218854323U (en) Reagent storage and release device and microfluidic chip
JP4924516B2 (en) Reaction vessel plate and reaction processing method
WO2012114982A1 (en) Drug container
JP2018036157A (en) Fluid control mechanism, fluid control mechanism assembly set and fluid mixing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307