JPWO2018199264A1 - Binary tetrafluoroethylene / ethylene copolymer and method for producing the same - Google Patents

Binary tetrafluoroethylene / ethylene copolymer and method for producing the same Download PDF

Info

Publication number
JPWO2018199264A1
JPWO2018199264A1 JP2019514639A JP2019514639A JPWO2018199264A1 JP WO2018199264 A1 JPWO2018199264 A1 JP WO2018199264A1 JP 2019514639 A JP2019514639 A JP 2019514639A JP 2019514639 A JP2019514639 A JP 2019514639A JP WO2018199264 A1 JPWO2018199264 A1 JP WO2018199264A1
Authority
JP
Japan
Prior art keywords
binary
tfe
polymerization
tetrafluoroethylene
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019514639A
Other languages
Japanese (ja)
Inventor
圭司 堀
圭司 堀
篤 船木
篤 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2018199264A1 publication Critical patent/JPWO2018199264A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene

Abstract

機械的強度及び熱安定性に優れた2元系テトラフルオロエチレン(TFE)/エチレン(E)共重合体の製造方法の提供。水性媒体、乳化剤及び前記水性媒体に対して10〜5000ppmのラジカル重合開始剤を含む反応系にて、TFEとEとを、TFEとEとの合計量に対してTFEを60〜85モル%、Eを40〜15モル%の比率を保持して重合させ、2元系TFE/E共重合体を製造する方法であって、前記ラジカル重合開始剤が、水中で還元されたときにラジカルを発生するものであり、重合温度が5〜40℃であり、重合反応に伴って発生する酸を中和するアルカリ、及び前記ラジカル重合開始剤を還元する還元剤をそれぞれ前記水性媒体に添加する。Provided is a method for producing a binary tetrafluoroethylene (TFE) / ethylene (E) copolymer having excellent mechanical strength and thermal stability. In a reaction system containing an aqueous medium, an emulsifier, and a radical polymerization initiator in an amount of 10 to 5000 ppm based on the aqueous medium, TFE and E are used. A method for producing a binary TFE / E copolymer by polymerizing E while maintaining a ratio of 40 to 15 mol%, wherein the radical polymerization initiator generates a radical when reduced in water. A polymerization temperature of 5 to 40 ° C., and an alkali for neutralizing an acid generated during the polymerization reaction and a reducing agent for reducing the radical polymerization initiator, respectively, are added to the aqueous medium.

Description

本発明は、機械的強度及び熱安定性に優れた2元系テトラフルオロエチレン/エチレン共重合体及びその製造方法に関する。   The present invention relates to a binary tetrafluoroethylene / ethylene copolymer excellent in mechanical strength and thermal stability and a method for producing the same.

フッ素樹脂の成形体は、耐熱性、耐薬品性、耐候性に優れており、各種用途に広く用いられている。例えばフッ素樹脂多孔体は、フィルターや通気性を有する防水膜として広く使用されている。
フッ素樹脂のうちポリテトラフルオロエチレン(以下、PTFEともいう。)は容易にフィブリル化する。そのため、乳化重合によって得られるPTFEのファインパウダーをカレンダ成形した予備成形品を延伸することで比較的簡単に、微細孔を有するPTFEフィルム(多孔体)が得られる。
Fluororesin molded articles have excellent heat resistance, chemical resistance, and weather resistance, and are widely used in various applications. For example, a fluororesin porous material is widely used as a filter or a waterproof membrane having air permeability.
Of the fluororesins, polytetrafluoroethylene (hereinafter also referred to as PTFE) easily fibrillates. Therefore, a PTFE film (porous body) having fine pores can be obtained relatively easily by stretching a preform obtained by calendering PTFE fine powder obtained by emulsion polymerization.

近年、テトラフルオロエチレン/エチレン共重合体(以下、TFE/E共重合体ともいう。)についても多孔体の成形が試みられている。TFE/E共重合体の多孔体の製造方法として、例えば以下の方法が提案されている。
(1)TFE/E共重合体と溶剤可溶性樹脂と無機微粉末との混合物を溶融成形し、得られた成形品から前記溶剤可溶性樹脂及び無機微粉末を抽出する方法(特許文献1、2)。
(2)TFE/E共重合体を特定の溶媒に溶解し、その溶液を相分離温度以上の温度で成形し、得られた成形品を相分離温度以下の温度に冷却して前記TFE/E共重合体を凝固させる方法(特許文献3)。
(3)フィブリル化可能な高結晶性高分子量のTFE/E共重合体を潤滑させ、カレンダ成形し、前記TFE/E共重合体の溶融温度未満の温度で加圧する方法(特許文献4)。
In recent years, attempts have been made to mold a porous body of a tetrafluoroethylene / ethylene copolymer (hereinafter, also referred to as a TFE / E copolymer). As a method for producing a porous body of a TFE / E copolymer, for example, the following method has been proposed.
(1) A method of melt-molding a mixture of a TFE / E copolymer, a solvent-soluble resin, and an inorganic fine powder, and extracting the solvent-soluble resin and the inorganic fine powder from the obtained molded article (Patent Documents 1 and 2) .
(2) The TFE / E copolymer is dissolved in a specific solvent, the solution is molded at a temperature equal to or higher than the phase separation temperature, and the obtained molded product is cooled to a temperature equal to or lower than the phase separation temperature to obtain the TFE / E copolymer. A method of coagulating a copolymer (Patent Document 3).
(3) A method of lubricating a high crystalline high molecular weight TFE / E copolymer which can be fibrillated, calendering it, and pressurizing the TFE / E copolymer at a temperature lower than the melting temperature of the TFE / E copolymer (Patent Document 4).

日本特許第3265678号公報Japanese Patent No. 3265678 日本特開2008−013615号公報Japanese Patent Application Laid-Open No. 2008-013615 国際公開第2010/044425号WO 2010/044255 国際公開第2016/018970号International Publication No. WO 2016/018970

しかし、特許文献1〜3で用いられているTFE/E共重合体は、機械的強度が充分ではない。そのため、これらの文献に記載の方法で得られる多孔体は、成形時及び成形後の機械的強度、特に空孔率を高くしようとした時の機械的強度が低くなる問題がある。   However, the TFE / E copolymer used in Patent Documents 1 to 3 has insufficient mechanical strength. Therefore, the porous bodies obtained by the methods described in these documents have a problem in that the mechanical strength at the time of molding and after the molding, particularly the mechanical strength at the time of trying to increase the porosity, becomes low.

TFE/E共重合体の分野では、機械的強度を高めるために、モノマー(エチレン、テトラフルオロエチレン)に他のモノマー(第3成分)を共重合する手法が検討されている。しかし通常、第3成分を共重合すると、得られるポリマーの融点が低下し、熱安定性が悪くなる。   In the field of TFE / E copolymers, a method of copolymerizing a monomer (ethylene, tetrafluoroethylene) with another monomer (third component) has been studied in order to increase mechanical strength. However, usually, when the third component is copolymerized, the melting point of the obtained polymer decreases, and the thermal stability deteriorates.

特許文献4で用いられているTFE/E共重合体は、高分子量の2元系TFE/E共重合体であり、その熱安定性はある程度高いものの、用途によっては十分とはいえない。
また、特許文献4では、フッ素系乳化剤及びフッ素系溶媒を用いた乳化重合により前記TFE/E共重合体を乳化重合により得ている。フッ素系乳化剤及びフッ素系溶媒は、重合に必要なラジカルがそれらフッ素系有機化合物に連鎖移動しにくいため、高分子量体を得るために好適であるが、高コストであると同時に、環境負荷が高い。そのため、これらの材料をできるだけ含まない系で高分子量の2元系TFE/E共重合体が得られる製造方法が望まれる。
The TFE / E copolymer used in Patent Document 4 is a high molecular weight binary TFE / E copolymer, and although its thermal stability is high to some extent, it cannot be said that it is sufficient for some applications.
In Patent Document 4, the TFE / E copolymer is obtained by emulsion polymerization using emulsion polymerization using a fluorine-based emulsifier and a fluorine-based solvent. Fluorinated emulsifiers and fluorinated solvents are suitable for obtaining high molecular weight compounds because radicals required for polymerization are unlikely to be chain-transferred to these fluorinated organic compounds, but they are expensive and have a high environmental load. . Therefore, a production method which can obtain a high-molecular-weight binary TFE / E copolymer in a system containing as little as possible of these materials is desired.

本発明の目的は、機械的強度及び熱安定性に優れた2元系TFE/E共重合体、及びその重合体の製造方法を提供することにある。   An object of the present invention is to provide a binary TFE / E copolymer excellent in mechanical strength and thermal stability, and a method for producing the polymer.

本発明は、以下の態様を有する。
〔1〕水と水溶性有機溶剤との混合液又は水である水性媒体、乳化剤及び前記水性媒体に対して10〜5000ppmのラジカル重合開始剤を含む反応系にて、テトラフルオロエチレンとエチレンとを、テトラフルオロエチレンとエチレンとの合計量に対してテトラフルオロエチレンを60〜85モル%、エチレンを40〜15モル%の比率を保持して重合させ、2元系TFE/E共重合体を製造する方法であって、
前記ラジカル重合開始剤が、水中で還元されたときにラジカルを発生するものであり、
重合温度が5〜40℃であり、
重合反応に伴って発生する酸を中和するアルカリを、重合開始前及び重合中の少なくとも一方にて前記反応系に添加すると共に、前記ラジカル重合開始剤を還元する還元剤を一括で、又は連続的若しくは間欠的に前記反応系に添加する、2元系TFE/E共重合体の製造方法。
〔2〕重合開始時から重合終了までの期間において前記反応系のpHが3.5〜12である、〔1〕の製造方法。
〔3〕前記アルカリの少なくとも一部を、重合中に連続的又は間欠的に前記反応系に添加する〔1〕又は〔2〕の製造方法。
〔4〕前記乳化剤の添加量(重合工程で使用される全量)が、2元系TFE/E共重合体の収量に対して1,500〜20,000ppmである〔1〕〜〔3〕のいずれかの製造方法。
〔5〕前記還元剤の添加量(重合工程で使用される全量)が、ラジカル重合開始剤100質量部に対して1〜200質量部である〔1〕〜〔4〕のいずれかの製造方法。
〔6〕前記アルカリが、アンモニア又はアルカリ金属水酸化物である〔1〕〜〔5〕のいずれかの製造方法。
〔7〕重合圧力を1.8〜5.0MPaに保持して重合させる〔1〕〜〔6〕のいずれかの製造方法。
〔8〕テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、
ASTM1238に準拠して温度320℃、荷重588.4Nにて測定される容量流速が10mm/秒以下である、2元系TFE/E共重合体。
〔9〕テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、下記測定方法により測定される融点1stが294〜300℃である、2元系TFE/E共重合体。
「融点の測定方法」
示差走査熱量測定法で融解による吸熱ピークを測定する。測定中の温度推移プログラムは−20℃→310℃→−70℃→310℃とし、各昇温速度は10℃/分、降温速度は5℃/分とする。最初の昇温時の融解熱による吸熱ピークにおける温度を「融点1st」とし、−70℃まで降温した後の2度目の昇温時の融解熱による吸熱ピークにおける温度を「融点2nd」とする。
〔10〕テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、
前記測定方法により測定される融点2ndが290〜295℃ である、2元系TFE/E共重合体。
The present invention has the following aspects.
[1] In a reaction system containing a mixed solution of water and a water-soluble organic solvent or a water-based aqueous medium, an emulsifier, and a radical polymerization initiator of 10 to 5000 ppm with respect to the aqueous medium, tetrafluoroethylene and ethylene are used. Polymerizing tetrafluoroethylene at a ratio of 60 to 85 mol% and ethylene at a ratio of 40 to 15 mol% with respect to the total amount of tetrafluoroethylene and ethylene to produce a binary TFE / E copolymer A way to
The radical polymerization initiator is to generate a radical when reduced in water,
The polymerization temperature is 5 to 40 ° C.,
An alkali for neutralizing an acid generated during the polymerization reaction is added to the reaction system at least one of before and during the polymerization, and a reducing agent for reducing the radical polymerization initiator is collectively or continuously added. A method for producing a binary TFE / E copolymer, which is added to the reaction system intermittently or intermittently.
[2] The production method of [1], wherein the pH of the reaction system is 3.5 to 12 during the period from the start of polymerization to the end of polymerization.
[3] The production method of [1] or [2], wherein at least a part of the alkali is continuously or intermittently added to the reaction system during polymerization.
[4] The amount of [1] to [3], wherein the amount of the emulsifier added (the total amount used in the polymerization step) is 1,500 to 20,000 ppm based on the yield of the binary TFE / E copolymer. Any manufacturing method.
[5] The method according to any one of [1] to [4], wherein the amount of the reducing agent (the total amount used in the polymerization step) is 1 to 200 parts by mass with respect to 100 parts by mass of the radical polymerization initiator. .
[6] The method of any one of [1] to [5], wherein the alkali is ammonia or an alkali metal hydroxide.
[7] The method according to any one of [1] to [6], wherein the polymerization is performed while maintaining the polymerization pressure at 1.8 to 5.0 MPa.
[8] the ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%,
A binary TFE / E copolymer having a volume flow rate of 10 mm 3 / sec or less measured at a temperature of 320 ° C. and a load of 588.4 N according to ASTM1238.
[9] A binary system in which the ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%, and the melting point 1st measured by the following measurement method is 294 to 300 ° C. TFE / E copolymer.
"Measurement method of melting point"
The endothermic peak due to melting is measured by differential scanning calorimetry. The temperature transition program during the measurement is -20.degree. C. → 310.degree. C. → -70.degree. C. → 310.degree. C., and the rate of temperature rise is 10.degree. The temperature at the endothermic peak due to the heat of fusion at the time of the first temperature rise is defined as “melting point 1st”, and the temperature at the endothermic peak due to the heat of fusion at the second temperature rise after the temperature is lowered to −70 ° C. is defined as “melting point 2nd”.
[10] The ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%,
A binary TFE / E copolymer having a melting point 2nd measured by the above-mentioned measuring method of 290 to 295 ° C.

本発明の製造方法によれば、フッ素系溶媒を使用しなくても機械的強度及び熱安定性に優れた2元系TFE/E共重合体を製造することができる。
本発明の2元系TFE/E共重合体は新規なものであり、機械的強度及び熱安定性に優れる。
According to the production method of the present invention, a binary TFE / E copolymer excellent in mechanical strength and thermal stability can be produced without using a fluorine-based solvent.
The binary TFE / E copolymer of the present invention is novel and has excellent mechanical strength and thermal stability.

本明細書における以下の用語の意味及び測定方法などは、以下の通りである。
「2元系TFE/E共重合体」とは、テトラフルオロエチレン(以下、TFEとも記す。)とエチレンとの2元系共重合体であり、TFE由来の単位(以下、TFE単位とも記す。)とエチレン由来の単位(以下、E単位とも記す。)とから構成される。該2元系共重合体は、TFE及びエチレン以外の単量体に由来する単位を含まない。2元系共重合体において、TFE単位及びE単位以外の成分の質量は痕跡程度であり無視できる。
「共重合体組成(単位:モル%)は、全フッ素量測定及び溶融19F−NMR測定の結果より算出される。
「容量流速」(以下、Q値(単位:mm/秒)とも記す。)は、ASTM1238に準拠して温度320℃、荷重588.4N(=60kgf)にて測定される値である。
The meaning of the following terms in this specification, the measuring method, and the like are as follows.
The “binary TFE / E copolymer” is a binary copolymer of tetrafluoroethylene (hereinafter, also referred to as TFE) and ethylene, and is a unit derived from TFE (hereinafter, also referred to as a TFE unit). ) And a unit derived from ethylene (hereinafter, also referred to as E unit). The binary copolymer does not contain units derived from monomers other than TFE and ethylene. In the binary copolymer, the masses of components other than the TFE unit and the E unit are traces and can be ignored.
“The copolymer composition (unit: mol%) is calculated from the results of the total fluorine amount measurement and the melt 19 F-NMR measurement.
The “volume flow rate” (hereinafter, also referred to as Q value (unit: mm 3 / sec)) is a value measured at a temperature of 320 ° C. and a load of 588.4 N (= 60 kgf) in accordance with ASTM1238.

「融点(単位:℃)」は、示差走査熱分析器(TA Instruments社製 DSC Q200)を用いて、窒素雰囲気下に測定した融解による吸熱ピークにおける温度である。測定中の温度推移プログラムは−20℃→310℃→−70℃→310℃とし、各昇温速度は10℃/分、降温速度は5℃/分とする。最初の昇温時の融解熱による吸熱ピークにおける温度を「融点1st」とし、−70℃まで降温した後の2度目の昇温時の融解熱による吸熱ピークにおける温度を「融点2nd」とする。
「含有量」の単位である「ppm」は質量基準である。
「重合圧力」はゲージ圧で表す。
「%」は、特に規定のない場合、「質量%」を示す。
The “melting point (unit: ° C.)” is a temperature at an endothermic peak due to melting measured under a nitrogen atmosphere using a differential scanning calorimeter (DSC Q200 manufactured by TA Instruments). The temperature transition program during the measurement is -20.degree. C. → 310.degree. C. → -70.degree. C. → 310.degree. C., and the rate of temperature rise is 10.degree. The temperature at the endothermic peak due to the heat of fusion at the time of the first temperature rise is defined as “melting point 1st”, and the temperature at the endothermic peak due to the heat of fusion at the second temperature rise after the temperature is lowered to −70 ° C. is defined as “melting point 2nd”.
"Ppm" which is a unit of "content" is based on mass.
"Polymerization pressure" is represented by gauge pressure.
“%” Indicates “% by mass” unless otherwise specified.

〔2元系TFE/E共重合体の製造方法〕
本発明の2元系TFE/E共重合体の製造方法では、水性媒体、乳化剤及び特定量のラジカル重合開始剤を含む反応系にて、TFEとエチレンとを、特定の比率を保持して重合させる(重合工程)。
前記ラジカル重合開始剤としては、水中で還元されたときにラジカルを発生するものが使用される。
本発明の製造方法では、前記ラジカル重合開始剤は、前記ラジカル重合開始剤を還元する還元剤と組み合わされ、レドックス重合開始剤として使用される。したがって、重合工程では、還元剤が反応系に添加される。また、重合工程では、アルカリも添加される。
前記重合工程では、水性媒体中に2元系TFE/E共重合体が分散した水性乳化液(ラテックス)が得られる。前記重合工程の後、必要に応じて、この水性乳化液から2元系TFE/E共重合体を回収する(回収工程)。
[Method for producing binary TFE / E copolymer]
In the method for producing a binary TFE / E copolymer of the present invention, TFE and ethylene are polymerized in a reaction system containing an aqueous medium, an emulsifier, and a specific amount of a radical polymerization initiator while maintaining a specific ratio. (Polymerization step).
As the radical polymerization initiator, one that generates a radical when reduced in water is used.
In the production method of the present invention, the radical polymerization initiator is used as a redox polymerization initiator in combination with a reducing agent that reduces the radical polymerization initiator. Therefore, in the polymerization step, a reducing agent is added to the reaction system. In the polymerization step, an alkali is also added.
In the polymerization step, an aqueous emulsion (latex) in which the binary TFE / E copolymer is dispersed in an aqueous medium is obtained. After the polymerization step, if necessary, a binary TFE / E copolymer is recovered from the aqueous emulsion (recovery step).

(水性媒体)
水性媒体としては、水と水溶性有機溶剤との混合液、又は水が用いられる。
水としては、イオン交換水、純水、超純水等が挙げられる。
水溶性有機溶媒としては、アルコール類、ケトン類、エーテル類、エチレングリコール類、プロピレングリコール類等が挙げられる。これらのうちガス吸収の点で、アルコール類が好ましい。
アルコール類としては、tert−ブタノール、n−ブタノール、エタノール、メタノール等が挙げられる。特に連鎖移動反応が生起し難く、高分子量のTFE/E共重合体が生成し易い点で、tert−ブタノールが好ましい。
(Aqueous medium)
As the aqueous medium, a mixed solution of water and a water-soluble organic solvent, or water is used.
Examples of the water include ion-exchanged water, pure water, ultrapure water, and the like.
Examples of the water-soluble organic solvent include alcohols, ketones, ethers, ethylene glycols, propylene glycols and the like. Of these, alcohols are preferred in terms of gas absorption.
Examples of alcohols include tert-butanol, n-butanol, ethanol, methanol and the like. In particular, tert-butanol is preferable since a chain transfer reaction hardly occurs and a high molecular weight TFE / E copolymer is easily formed.

水性媒体が水と水溶性有機溶剤との混合液である場合、水性媒体中の水溶性有機溶剤の含有量は、水の100質量部に対して1〜50質量部が好ましく、3〜20質量部がより好ましい。
連鎖移動剤として機能し得る水溶性有機溶剤(アルコール類、チオール類、アミン類等)の含有量は、水の100質量部に対して0〜20質量部が好ましく、0〜5質量部が特に好ましい。連鎖移動剤として機能し得る水溶性有機溶剤の含有量が少ないほど、得られる2元系TFE/E共重合体の分子量が高くなり、熱安定性が高まる傾向がある。
When the aqueous medium is a mixture of water and a water-soluble organic solvent, the content of the water-soluble organic solvent in the aqueous medium is preferably 1 to 50 parts by mass, and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of water. Parts are more preferred.
The content of the water-soluble organic solvent (alcohols, thiols, amines, etc.) that can function as a chain transfer agent is preferably 0 to 20 parts by mass, particularly preferably 0 to 5 parts by mass with respect to 100 parts by mass of water. preferable. The smaller the content of the water-soluble organic solvent that can function as a chain transfer agent, the higher the molecular weight of the obtained binary TFE / E copolymer, and the higher the thermal stability tends to be.

(乳化剤)
乳化剤は、特に限定されず、公知の含フッ素乳化剤を用いることができる。残留性が低く、生体蓄積性が低い点で、エーテル性酸素原子を有していてもよい炭素数4〜7の含フッ素カルボン酸及びその塩からなる群から選ばれる1種以上の含フッ素乳化剤が好ましく、なかでも、エーテル性酸素原子を有する含フッ素乳化剤がより好ましい。ここで、炭素数とは、含フッ素乳化剤中の全炭素数を意味する。
該エーテル性酸素原子を有する含フッ素カルボン酸は、炭素数が4〜7で主鎖の炭素鎖の途中にエーテル性酸素原子を有し、末端に−COOHを有する化合物である。末端の−COOHは塩を形成していてもよい。主鎖の途中に存在するエーテル性酸素原子は1個以上であり、1〜4個が好ましく、1又は2個がより好ましい。炭素数は5〜7が好ましい。
(emulsifier)
The emulsifier is not particularly limited, and a known fluorine-containing emulsifier can be used. One or more fluorine-containing emulsifiers selected from the group consisting of fluorine-containing carboxylic acids having 4 to 7 carbon atoms which may have an etheric oxygen atom and salts thereof, which have low persistence and low bioaccumulation. Are preferable, and among them, a fluorine-containing emulsifier having an etheric oxygen atom is more preferable. Here, the carbon number means the total carbon number in the fluorinated emulsifier.
The fluorine-containing carboxylic acid having an etheric oxygen atom is a compound having 4 to 7 carbon atoms, having an etheric oxygen atom in the middle of the carbon chain of the main chain, and having -COOH at a terminal. The terminal -COOH may form a salt. The number of etheric oxygen atoms present in the middle of the main chain is one or more, preferably one to four, more preferably one or two. The carbon number is preferably 5-7.

含フッ素カルボン酸としては、パーフルオロモノオキサアルカン酸、エーテル性酸素原子に置換された炭素原子の数が2〜4個の(つまりエーテル性酸素原子を2〜4個有する)パーフルオロポリオキサアルカン酸、又はこれらカルボン酸のフッ素原子の1〜3個が水素原子に置換されたカルボン酸が好ましい。なお、これらカルボン酸の炭素数は酸素原子に置換された炭素原子を含まない数である。
該含フッ素カルボン酸の好ましい具体例としては、COCFCFOCFCOOH、COCFCFOCFCOOH、CFOCFOCFOCFOCFCOOH、CFO(CFCFO)CFCOOH、CFCFO(CFCOOH、CFCFHO(CFCOOH、CFOCF(CF)CFOCF(CF)COOH、CFO(CFOCF(CF)COOH、CFO(CFOCHFCFCOOH、COCF(CF)COOH、COCFCFCOOH、CFO(CFOCFCOOH、CFO(CFOCHFCOOH、CFOCFOCFOCFCOOH、COCFCOOH、COCFCFCOOH、COCHFCFCOOH、COCF(CF)COOH、CFCFHO(CFCOOH、CFOCFCFOCFCOOH、COCFCFCOOH、COCHFCOOH、CFOCFCFCOOH、CF(CFCOOHが挙げられる。
より好ましい具体例としては、COCFCFOCFCOOH、CFO(CFOCFCOOH、CFOCF(CF)CFOCF(CF)COOH、CFO(CFOCFCFCOOH、CFO(CFOCHFCFCOOH、COCF(CF)COOH、COCF(CF)COOHが挙げられる。
Examples of the fluorinated carboxylic acid include perfluoromonooxaalkanoic acid and perfluoropolyoxaalkane having 2 to 4 carbon atoms substituted with an etheric oxygen atom (that is, having 2 to 4 etheric oxygen atoms). Acids or carboxylic acids in which 1 to 3 fluorine atoms of these carboxylic acids have been replaced by hydrogen atoms are preferred. In addition, the carbon number of these carboxylic acids does not include the carbon atom substituted by the oxygen atom.
Preferred specific examples of the fluorinated carboxylic acid include C 2 F 5 OCF 2 CF 2 OCF 2 COOH, C 3 F 7 OCF 2 CF 2 OCF 2 COOH, CF 3 OCF 2 OCF 2 OCF 2 OCF 2 COOH, CF 3 O (CF 2 CF 2 O) 2 CF 2 COOH, CF 3 CF 2 O (CF 2) 4 COOH, CF 3 CFHO (CF 2) 4 COOH, CF 3 OCF (CF 3) CF 2 OCF (CF 3) COOH , CF 3 O (CF 2) 3 OCF (CF 3) COOH, CF 3 O (CF 2) 3 OCHFCF 2 COOH, C 4 F 9 OCF (CF 3) COOH, C 4 F 9 OCF 2 CF 2 COOH, CF 3 O (CF 2) 3 OCF 2 COOH, CF 3 O (CF 2) 3 OCHFCOOH, CF 3 OCF 2 O F 2 OCF 2 COOH, C 4 F 9 OCF 2 COOH, C 3 F 7 OCF 2 CF 2 COOH, C 3 F 7 OCHFCF 2 COOH, C 3 F 7 OCF (CF 3) COOH, CF 3 CFHO (CF 2) 3 COOH, CF 3 OCF 2 CF 2 OCF 2 COOH, C 2 F 5 OCF 2 CF 2 COOH, C 3 F 7 OCHFCOOH, CF 3 OCF 2 CF 2 COOH, CF 3 (CF 2) 4 COOH and the like.
More preferred examples, C 2 F 5 OCF 2 CF 2 OCF 2 COOH, CF 3 O (CF 2) 3 OCF 2 COOH, CF 3 OCF (CF 3) CF 2 OCF (CF 3) COOH, CF 3 O (CF 2) 3 OCF 2 CF 2 COOH, CF 3 O (CF 2) 3 OCHFCF 2 COOH, C 4 F 9 OCF (CF 3) COOH, C 3 F 7 OCF (CF 3) COOH can be mentioned.

含フッ素カルボン酸塩としては、そのアルカリ金属塩やアンモニウム塩が挙げられ、具体的には、Li塩、Na塩、K塩、NH塩等が挙げられる。特に好ましくは、上記化合物のアンモニウム塩(NH塩)である。アンモニウム塩であると水性媒体中への溶解性に優れるとともに、金属イオン成分が得られるTFE/E共重合体中に不純物として残留するおそれがない。Examples of the fluorinated carboxylate include alkali metal salts and ammonium salts thereof, and specific examples thereof include Li salts, Na salts, K salts, and NH 4 salts. Particularly preferred is an ammonium salt (NH 4 salt) of the above compound. An ammonium salt is excellent in solubility in an aqueous medium, and there is no possibility that a metal ion component remains as an impurity in the obtained TFE / E copolymer.

(レドックス重合開始剤)
水中で還元されたときにラジカルを発生するラジカル重合開始剤としては、公知のラジカル重合開始剤のなかから適宜選定でき、典型的には水溶性のラジカル重合開始剤が用いられる。水溶性のラジカル重合開始剤としては、過硫酸アンモニウム(以下、「APS」とも記す。)等の過硫酸塩、過酸化水素、過マンガン酸カリウム等が挙げられる。
(Redox polymerization initiator)
The radical polymerization initiator that generates a radical when reduced in water can be appropriately selected from known radical polymerization initiators, and a water-soluble radical polymerization initiator is typically used. Examples of the water-soluble radical polymerization initiator include persulfates such as ammonium persulfate (hereinafter also referred to as “APS”), hydrogen peroxide, potassium permanganate, and the like.

前記ラジカル重合開始剤を還元する還元剤としては、公知の還元剤のなかから適宜選定でき、例えばロンガリット(ヒドロキシメタンスルフィン酸ナトリウム)、硫酸水素ナトリウム、チオ硫酸ナトリウム、シュウ酸等が挙げられる。   The reducing agent for reducing the radical polymerization initiator can be appropriately selected from known reducing agents, and includes, for example, Rongalite (sodium hydroxymethanesulfinate), sodium hydrogen sulfate, sodium thiosulfate, oxalic acid and the like.

レドックス重合開始剤に、少量の鉄、第一鉄塩(例えば硫酸第一鉄塩等)、硫酸銀等を共存させてもよい。また、レドックス重合開始剤に、キレート剤(例えばエチレンジアミン四酢酸(EDTA)二ナトリウム塩等)を共存させてもよい。   A small amount of iron, a ferrous salt (eg, ferrous sulfate), silver sulfate, and the like may coexist in the redox polymerization initiator. Further, a chelating agent (for example, disodium salt of ethylenediaminetetraacetic acid (EDTA) or the like) may be allowed to coexist with the redox polymerization initiator.

(アルカリ)
アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物、アンモニア等が挙げられる。アルカリとしては、上記のなかでも、水性乳化液中で2元系TFE/E共重合体の分散安定性が優れることから、アンモニア又は水酸化セシウムが好ましい。得られる共重合体中の残留金属イオンが懸念される場合は、アンモニアがより好ましい。
水性乳化液中で、2元系TFE/E共重合体の粒子の表面は負に帯電している。アルカリ由来の正イオンは、この粒子の表面に分布して拡散電気二重層を形成し、静電的反発作用によって粒子同士が凝集することを抑制し、分散安定性を高めると考えられる。特にアンモニア又は水酸化セシウム由来の正イオン(NH 又はCs)は、Na、K等に比べてイオン半径が大きいため、静電的反発作用が遠距離まで及びやすく、分散安定性の向上効果に優れると考えられる。
(alkali)
Examples of the alkali include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and cesium hydroxide, and ammonia. As the alkali, ammonia or cesium hydroxide is preferred among the above, because the dispersion stability of the binary TFE / E copolymer in the aqueous emulsion is excellent. When residual metal ions in the obtained copolymer are concerned, ammonia is more preferable.
In the aqueous emulsion, the surface of the binary TFE / E copolymer particles is negatively charged. It is considered that the alkali-derived positive ions are distributed on the surface of the particles to form a diffusion electric double layer, suppress aggregation of the particles due to electrostatic repulsion, and enhance dispersion stability. In particular, since the cation radius (NH 4 + or Cs + ) derived from ammonia or cesium hydroxide has a larger ionic radius than Na + , K +, etc., the electrostatic repulsion is easily extended to a long distance, and the dispersion stability is high. It is considered to be excellent in the effect of improving.

(他の成分)
反応系には、水性媒体、乳化剤、レドックス重合開始剤及びアルカリ以外の他の成分が併存していてもよい。他の成分としては、例えば、前記アルカリとの混合溶液が緩衝溶液となる塩、酸等が挙げられる。前記アルカリとの混合溶液が緩衝溶液となる塩、酸はそれぞれ、pH調整のために用いられる。
前記アルカリとの混合溶液が緩衝溶液となる塩としては、前記アルカリのリン酸塩、炭酸塩、ホウ酸塩等が挙げられる。例えばアルカリが水酸化ナトリウムである場合、前記塩としては、リン酸水素二ナトリウム、リン酸二水素ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。
酸としては、例えば塩酸、リン酸、ホウ酸等が挙げられる。
(Other ingredients)
The reaction system may contain components other than the aqueous medium, the emulsifier, the redox polymerization initiator, and the alkali. Other components include, for example, salts, acids, and the like, in which the mixed solution with the alkali becomes a buffer solution. Salts and acids whose mixed solution with the alkali becomes a buffer solution are used for pH adjustment.
Examples of the salt in which the mixed solution with the alkali becomes a buffer solution include phosphates, carbonates, borates and the like of the alkali. For example, when the alkali is sodium hydroxide, examples of the salt include disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium hydrogen carbonate, sodium carbonate and the like.
Examples of the acid include hydrochloric acid, phosphoric acid, boric acid and the like.

(重合工程)
重合工程では、水性媒体中で、乳化剤及びラジカル重合開始剤の存在下にて、TFEとエチレンとを重合反応させる。
(Polymerization step)
In the polymerization step, TFE and ethylene are polymerized in an aqueous medium in the presence of an emulsifier and a radical polymerization initiator.

TFEとエチレンとの重合反応においては、TFEとエチレンとの合計量に対してTFEを60〜85モル%、エチレンを40〜15モル%の比率(TFE/エチレン=60/40〜85/15(モル比))を保持する。
この重合反応時の単量体の比率を保持することにより、2元系TFE/E共重合体中のTFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%(E単位の割合が55〜35モル%)である2元系TFE/E共重合体が生成しやすい。
TFE/E共重合体のTFE単位の割合が45〜65モル%であると、共重合体の結晶化度が高くなる。TFE単位の割合が45〜55モル%であると結晶化度がより高くなる。TFE単位の割合が50〜55モル%であると結晶化度が高いだけでなく、TFE/E共重合体中にE単位の連鎖が減るため、2元系TFE/E共重合体の耐熱性が優れる。
In the polymerization reaction of TFE and ethylene, the ratio of TFE is 60 to 85 mol% and ethylene is 40 to 15 mol% based on the total amount of TFE and ethylene (TFE / ethylene = 60/40 to 85/15 ( (Molar ratio)) is maintained.
By maintaining the ratio of the monomer at the time of this polymerization reaction, the ratio of the TFE unit to the total amount of the TFE unit and the E unit in the binary TFE / E copolymer is 45 to 65 mol% (E unit Is 55 to 35 mol%), and a binary TFE / E copolymer is easily produced.
When the proportion of TFE units in the TFE / E copolymer is 45 to 65 mol%, the crystallinity of the copolymer increases. When the proportion of TFE units is 45 to 55 mol%, the crystallinity becomes higher. When the proportion of TFE units is 50 to 55 mol%, not only the degree of crystallinity is high, but also the chain of E units is reduced in the TFE / E copolymer, so that the heat resistance of the binary TFE / E copolymer is reduced. Is excellent.

2元系TFE/E共重合体におけるTFE単位の割合は上記の理由から、45〜65モル%(Eの単位割合は55〜35モル%)が好ましく、45〜55モル%(Eの単位割合は55〜45モル%)がより好ましく、50〜55モル%(E単位の割合は50〜45モル%)がさらに好ましい。
TFE単位の割合が45〜65モル%である2元系TFE/E共重合体を得るためには、重合反応において、TFEとエチレンとの合計量に対してTFEを60〜85モル%、エチレンを40〜15%の比率を保持することが好ましい。TFE単位の割合が45〜55モル%である2元系TFE/E共重合体を得るためには、重合反応において、TFEとエチレンとの合計量に対してTFEを60〜78モル%、エチレンを40〜22%の比率を保持することが好ましい。TFE単位の割合が50〜55モル%である2元系TFE/E共重合体を得るためには、重合反応において、TFEとエチレンとの合計量に対してTFEを65〜78モル%、エチレンを35〜22%の比率を保持することが好ましい。
2元系TFE/E共重合体の製造方法において、2元系TFE/E共重合体の収率はほぼ100%であり、2元系TFE/E共重合体におけるTFE単位とE単位のモル比は、TFEとエチレンとの重合反応において消費されたTFEとエチレンのモル比と等しいと見積ることができる。
For the above reason, the ratio of TFE units in the binary TFE / E copolymer is preferably 45 to 65 mol% (the unit ratio of E is 55 to 35 mol%), and is preferably 45 to 55 mol% (the unit ratio of E Is more preferably 55 to 45 mol%, and still more preferably 50 to 55 mol% (the ratio of the E unit is 50 to 45 mol%).
In order to obtain a binary TFE / E copolymer having a TFE unit ratio of 45 to 65 mol%, in the polymerization reaction, TFE is added in an amount of 60 to 85 mol% based on the total amount of TFE and ethylene. Is preferably maintained at a ratio of 40 to 15%. In order to obtain a binary TFE / E copolymer having a TFE unit ratio of 45 to 55 mol%, in the polymerization reaction, TFE is added in an amount of 60 to 78 mol% based on the total amount of TFE and ethylene. Is preferably maintained at a ratio of 40 to 22%. In order to obtain a binary TFE / E copolymer in which the proportion of TFE units is 50 to 55 mol%, in the polymerization reaction, 65 to 78 mol% of TFE and ethylene to TFE are added to the total amount of TFE and ethylene. Is preferably maintained at a ratio of 35 to 22%.
In the method for producing a binary TFE / E copolymer, the yield of the binary TFE / E copolymer is almost 100%, and the moles of TFE units and E units in the binary TFE / E copolymer The ratio can be estimated to be equal to the molar ratio of TFE and ethylene consumed in the polymerization reaction of TFE and ethylene.

重合温度は5〜40℃であり、5〜25℃が好ましく、5〜15℃がより好ましい。重合温度が前記範囲の下限値以上であると、良好な重合速度が得られやすい。重合温度が前記範囲の上限値以下であると、ガス状の単量体(TFE、エチレン)が反応系中に良好に溶解し、伸長反応が進みやすい。そのため、TFE/E共重合体の分子量が高くなり、高融点、低MFR、低Q値のTFE/E共重合体が得られやすい。
なお、重合温度が40℃を超える場合には、還元剤が無くても、熱によってラジカル重合開始剤が水中で還元され、重合反応が進行する。
The polymerization temperature is from 5 to 40C, preferably from 5 to 25C, more preferably from 5 to 15C. When the polymerization temperature is equal to or higher than the lower limit of the above range, a good polymerization rate is easily obtained. When the polymerization temperature is lower than the upper limit of the above range, the gaseous monomer (TFE, ethylene) is well dissolved in the reaction system, and the elongation reaction proceeds easily. Therefore, the molecular weight of the TFE / E copolymer increases, and a TFE / E copolymer having a high melting point, a low MFR, and a low Q value is easily obtained.
When the polymerization temperature is higher than 40 ° C., the radical polymerization initiator is reduced in water by heat even if there is no reducing agent, and the polymerization reaction proceeds.

重合圧力は1.8〜5.0MPaが好ましく、2.0〜4.0MPaがより好ましく、3.0〜4.0MPaが特に好ましい。重合圧力が前記範囲の下限値以上であると重合反応が速やかに開始され、高分子量の2元系TFE/E共重合体が得られやすい。重合圧力が前記範囲の上限値以下であると操作性に優れる。   The polymerization pressure is preferably 1.8 to 5.0 MPa, more preferably 2.0 to 4.0 MPa, and particularly preferably 3.0 to 4.0 MPa. When the polymerization pressure is equal to or higher than the lower limit of the above range, the polymerization reaction is rapidly started, and a high molecular weight binary TFE / E copolymer is easily obtained. When the polymerization pressure is at most the upper limit of the above range, the operability will be excellent.

重合開始時から重合終了までの期間において、反応系のpHは、3.5〜12.0が好ましく、7.0〜10.5がより好ましく、9.0〜10.0が特に好ましい。反応系のpHが前記範囲内であると、乳液の分散安定性が得られやすく、良好な重合速度も得やすい。反応系のpHは、20℃におけるpHである。
通常、重合開始時及び重合終了時それぞれの反応系のpHが前記範囲内であれば、それらの間の期間における反応系のpHも前記範囲内であったと判断できる。
During the period from the start of the polymerization to the end of the polymerization, the pH of the reaction system is preferably from 3.5 to 12.0, more preferably from 7.0 to 10.5, and particularly preferably from 9.0 to 10.0. When the pH of the reaction system is within the above range, dispersion stability of the emulsion is easily obtained, and a good polymerization rate is easily obtained. The pH of the reaction system is the pH at 20 ° C.
Usually, if the pH of the reaction system at the start of polymerization and at the end of polymerization are within the above range, it can be determined that the pH of the reaction system during the period between them is also within the above range.

重合開始時から重合終了までの期間において、反応系の正イオン濃度は、0.200モル/L以下が好ましく、0.050モル/L以下がより好ましく、0.010モル/L以下が特に好ましい。反応系の温度(重合温度)が低くなると、重合反応で生成した2元系TFE/E共重合体が凝集しやすくなる。また、反応系の正イオン濃度が高すぎると、塩析効果によって2元系TFE/E共重合体が凝集しやすくなる。反応系の正イオン濃度が前記上限値以下であれば、反応系の温度が低くても、良好な分散安定性を維持でき、重合反応が良好に進行する。   In the period from the start of the polymerization to the end of the polymerization, the positive ion concentration of the reaction system is preferably 0.200 mol / L or less, more preferably 0.050 mol / L or less, and particularly preferably 0.010 mol / L or less. . When the temperature of the reaction system (polymerization temperature) decreases, the binary TFE / E copolymer generated by the polymerization reaction tends to aggregate. On the other hand, if the positive ion concentration in the reaction system is too high, the binary TFE / E copolymer tends to aggregate due to the salting out effect. When the positive ion concentration of the reaction system is equal to or lower than the above upper limit, good dispersion stability can be maintained and the polymerization reaction proceeds favorably even when the temperature of the reaction system is low.

正イオン濃度は、下式(1)で求められる。
正イオン濃度=アルカリ又は前記アルカリの塩である物質の合計のモル濃度(モル/L)×前記物質が完全解離したときに発生する正イオン数 ・・・(1)
ただし、アンモニア等、完全電離しない物質由来の正イオン濃度は、塩基解離定数Kbから解離度を考慮した値とすることが好ましい。解離度を考慮した正イオン濃度xは、下式(2)に、重合温度におけるKb、完全解離したと仮定した場合の濃度c(モル/L)を代入して得られる。
Kb=x2/(c−x) ・・・(2)
The positive ion concentration is obtained by the following equation (1).
Positive ion concentration = total molar concentration of a substance which is an alkali or a salt of the alkali (mol / L) × the number of positive ions generated when the substance is completely dissociated (1)
However, the concentration of positive ions derived from a substance that does not completely ionize, such as ammonia, is preferably a value that takes into account the degree of dissociation from the base dissociation constant Kb. The positive ion concentration x in consideration of the degree of dissociation is obtained by substituting Kb at the polymerization temperature and the concentration c (mol / L) assuming complete dissociation into the following equation (2).
Kb = x2 / (c−x) (2)

解離平衡反応: MOH ⇔ M + OH
解離前の濃度 c 0 0
解離後の濃度 c−x x x
Kb=[M][OH]/[MOH]
Dissociation equilibrium reaction: MOH ⇔ M + + OH -
Concentration before dissociation c 0 0
Concentration after dissociation c-xxx
Kb = [M + ] [OH ] / [MOH]

例えば、アンモニアの場合、25℃でのKb=1.81×10−5であるため、完全解離時に発生する正イオン濃度が0.1モル/Lの場合、前記式(2)から求められる正イオン濃度[NH ]は、1.34×10−3モル/Lとなる。
反応系に前記物質が複数種添加される場合、各物質ごとに前記正イオン濃度を求め、それらを合計した値を反応系の正イオン濃度とする。
For example, in the case of ammonia, since Kb at 25 ° C. is 1.81 × 10 −5 , when the concentration of positive ions generated at the time of complete dissociation is 0.1 mol / L, the positive ion calculated from the above equation (2) is obtained. The ion concentration [NH 4 + ] is 1.34 × 10 −3 mol / L.
When a plurality of the above-mentioned substances are added to the reaction system, the above-mentioned positive ion concentrations are obtained for each substance, and the total value thereof is defined as the positive ion concentration of the reaction system.

重合工程では、重合反応に伴って発生する酸を中和するアルカリを、重合開始前及び重合中の少なくとも一方にて反応系に添加する。これにより、重合中に反応系のpHが低くなりすぎる(例えばpH3.5を下回る)ことが抑制され、反応系のpHが重合開始時から重合終了時まで前記範囲内に維持されて、良好な重合速度で重合反応が進行する。
重合開始前とは、還元剤を添加する前の時点(初期仕込み)を示す。
重合中とは、還元剤を最初に添加した時点(重合開始時)及びそれ以降の時点を示す。
In the polymerization step, an alkali for neutralizing an acid generated during the polymerization reaction is added to the reaction system at least one of before and during the polymerization. Thereby, the pH of the reaction system is prevented from being too low (for example, below 3.5) during the polymerization, and the pH of the reaction system is maintained within the above range from the start of the polymerization to the end of the polymerization. The polymerization reaction proceeds at the polymerization rate.
“Before the start of polymerization” refers to the time before the addition of the reducing agent (initial preparation).
The term “during polymerization” refers to a point in time when the reducing agent is first added (at the start of polymerization) and a point in time thereafter.

重合反応に伴って発生する酸としては、ラジカル重合開始剤から発生するラジカル由来の酸、TFE由来のフッ酸等が挙げられる。
例えば、過硫酸塩をラジカル重合開始剤とした場合、次のような反応が起こる。
SOOSO → 2(・OSO
SO・+CF=CFSOCFCF
SOCFCF・+n(CF=CF)→ SO(CFCF
SO(CFCF・+HO → HO(CFCF +HSO
OH(CFCF +HO → HOOCCF(CFCFn−1+2HF
実際に起こる反応はこれに限ったものではないと考えられるが、例として還元剤1分子あたり過硫酸塩1分子が分解する酸化還元反応をラジカル発生機構として利用する場合、かつNaOH、CsOH等の完全解離するアルカリを添加する場合は、還元剤1分子あたり10当量程度のアルカリを添加すると、重合反応前後で反応系のpHがほぼ同等に保たれ、水性乳化液の安定性が良好になる。アンモニア等の完全解離しないアルカリを添加する場合は、電離度を考慮して、重合反応前後で反応系のpHが前記範囲内に保たれるように添加量を調整する。添加量の調整は、経験的に行ってもよく実験的に行ってもよい。
Examples of the acid generated during the polymerization reaction include a radical-derived acid generated from a radical polymerization initiator, and TFE-derived hydrofluoric acid.
For example, when persulfate is used as the radical polymerization initiator, the following reaction occurs.
O 3 SOOSO 3 → 2 (OSO 3 )
- O 3 SO · + CF 2 = CF 2 → - O 3 SOCF 2 CF 2 ·
- O 3 SOCF 2 CF 2 · + n (CF 2 = CF 2) → - O 3 SO (CF 2 CF 2) n ·
- O 3 SO (CF 2 CF 2) n · + H 2 O → HO (CF 2 CF 2) n - + HSO 4 -
OH (CF 2 CF 2) n - + H 2 O → HOOCCF 2 (CF 2 CF 2) n-1 + 2HF
It is considered that the reaction actually occurring is not limited to this. For example, when an oxidation-reduction reaction in which one molecule of persulfate is decomposed per molecule of the reducing agent is used as a radical generation mechanism, and NaOH, CsOH, etc. In the case of adding an alkali that completely dissociates, adding about 10 equivalents of alkali per molecule of the reducing agent keeps the pH of the reaction system almost equal before and after the polymerization reaction, and improves the stability of the aqueous emulsion. When adding an alkali that does not completely dissociate, such as ammonia, the amount of addition is adjusted in consideration of the degree of ionization so that the pH of the reaction system is maintained within the above range before and after the polymerization reaction. Adjustment of the addition amount may be performed empirically or experimentally.

重合工程では、乳化剤、ラジカル重合開始剤、還元剤及びアルカリのほか、必要に応じて、前述のレドックス重合開始剤に共存させてもよい成分(共存成分)、他の成分等を反応系に添加してもよい。
他の成分のうち、前記アルカリとの混合溶液が緩衝溶液となる塩をアルカリと共に含むと、反応系が緩衝作用を有するものとなり、重合反応に伴って発生する酸によるpH変動が抑制される。一方で、該塩を含むと、反応系の正イオン濃度が高くなって水性乳化液の安定性が低下しやすい。
In the polymerization step, in addition to an emulsifier, a radical polymerization initiator, a reducing agent, and an alkali, if necessary, a component (coexisting component) that may coexist with the above-described redox polymerization initiator, and other components are added to the reaction system. May be.
Among the other components, when the mixed solution with the alkali contains a salt that becomes a buffer solution together with the alkali, the reaction system has a buffering action, and pH fluctuation due to an acid generated during the polymerization reaction is suppressed. On the other hand, when the salt is contained, the positive ion concentration of the reaction system increases, and the stability of the aqueous emulsion tends to decrease.

乳化剤及びラジカル重合開始剤はそれぞれ、重合開始前に(つまり初期仕込みとして)全量を添加してもよいし、重合開始前に一部を添加し、残部を重合中に連続的又は間欠的に添加してもよい。必要に応じて添加される共存成分も同様である。
還元剤は、重合開始時に全量を一括で反応系に添加してもよいし、重合中に連続的又は間欠的に反応系に添加してもよい。反応系の還元剤濃度が低い方が、得られる2元系TFE/E共重合体の分子量が高くなる傾向がある。そのため、還元剤は、連続的又は間欠的に反応系に添加することが好ましい。
アルカリは、重合開始時から重合終了までの期間において反応系の正イオン濃度が前記上限値を超えない範囲であれば、重合開始時に全量を一括で反応系に添加してもよいし、重合中に連続的又は間欠的に反応系に添加してもよい。重合開始時におけるpHを前記範囲内とし、かつ重合開始時から重合終了までの期間において反応系の正イオン濃度を前記上限値以下とする観点から、アルカリの少なくとも一部は、重合中に連続的又は間欠的に反応系に添加することが好ましい。必要に応じて添加される、前記アルカリとの混合溶液が緩衝溶液となる塩も同様である。
The emulsifier and the radical polymerization initiator may be added in their entirety before the start of the polymerization (that is, as an initial preparation), or a part thereof may be added before the start of the polymerization, and the rest may be added continuously or intermittently during the polymerization. May be. The same applies to the coexisting components added as needed.
The reducing agent may be added to the reaction system in its entirety at the beginning of the polymerization, or may be continuously or intermittently added to the reaction system during the polymerization. The lower the concentration of the reducing agent in the reaction system, the higher the molecular weight of the resulting binary TFE / E copolymer tends to be. Therefore, the reducing agent is preferably added to the reaction system continuously or intermittently.
The alkali may be added to the reaction system all at once at the start of the polymerization, as long as the positive ion concentration of the reaction system does not exceed the upper limit in the period from the start of the polymerization to the end of the polymerization, or during the polymerization. May be continuously or intermittently added to the reaction system. From the viewpoint that the pH at the start of polymerization is within the above range, and the positive ion concentration of the reaction system is equal to or lower than the upper limit during the period from the start of polymerization to the end of polymerization, at least a part of the alkali is continuously added during polymerization. Alternatively, it is preferable to add the reaction system intermittently. The same applies to a salt which is added as necessary and which becomes a buffer solution from the mixed solution with the alkali.

重合工程の具体的な手順としては、例えば以下のような手順が挙げられる。
耐圧反応器を脱気し、該反応器内に水性媒体、乳化剤及びラジカル重合開始剤を仕込む。必要に応じて、所定のpHとなるように、アルカリを仕込んでもよい。必要に応じて、共存成分、他の成分を仕込んでもよい。次いで、所定の重合温度に昇温し、初期仕込みの単量体(TFE及びエチレン)を導入し、その後、還元剤を添加することで重合を開始させる。還元剤を添加する際、アルカリを添加してもよい。
単量体の重合反応が開始されると、反応器内の圧力が低下し始める。したがって、重合反応の開始(重合反応時間の始点)は、反応器内の圧力低下によって確認できる。
反応器内の圧力低下を確認してから、単量体を追加供給し、所定の重合温度及び所定の重合圧力を保ちながら重合反応を行って、2元系TFE/E共重合体を生成させる。重合中、還元剤、アルカリ等を連続的又は間欠的に追加供給してもよい。
重合反応期間で追加供給される単量体の合計量が所定の値に達したら、反応器内を冷却して重合反応を停止させて(重合反応時間の終点)、2元系TFE/E共重合体の水性乳化液を得る。
Specific procedures of the polymerization step include, for example, the following procedures.
The pressure-resistant reactor is degassed, and an aqueous medium, an emulsifier and a radical polymerization initiator are charged into the reactor. If necessary, an alkali may be charged so as to have a predetermined pH. If necessary, coexisting components and other components may be charged. Next, the temperature is raised to a predetermined polymerization temperature, monomers (TFE and ethylene) initially charged are introduced, and thereafter, a polymerization is started by adding a reducing agent. When adding the reducing agent, an alkali may be added.
When the polymerization reaction of the monomer is started, the pressure in the reactor starts to decrease. Therefore, the start of the polymerization reaction (the starting point of the polymerization reaction time) can be confirmed by the pressure drop in the reactor.
After confirming the pressure drop in the reactor, a monomer is additionally supplied, and a polymerization reaction is carried out while maintaining a predetermined polymerization temperature and a predetermined polymerization pressure to produce a binary TFE / E copolymer. . During the polymerization, a reducing agent, an alkali or the like may be additionally supplied continuously or intermittently.
When the total amount of monomers additionally supplied during the polymerization reaction period reaches a predetermined value, the reactor is cooled to stop the polymerization reaction (end point of the polymerization reaction time), and the binary TFE / E An aqueous emulsion of the polymer is obtained.

重合工程での乳化剤の添加量(重合工程で使用される全量)は、2元系TFE/E共重合体の収量に対して1,500〜20,000ppmが好ましく、2,000〜20,000ppmがより好ましく、3,000〜20,000ppmがさらに好ましい。上記範囲の下限値以上かつ上記範囲の上限値以下であると、重合時の良好な乳液安定性が得られやすい。   The amount of the emulsifier added in the polymerization step (the total amount used in the polymerization step) is preferably 1,500 to 20,000 ppm, more preferably 2,000 to 20,000 ppm, based on the yield of the binary TFE / E copolymer. Is more preferable, and 3,000 to 20,000 ppm is further preferable. When it is not less than the lower limit of the above range and not more than the upper limit of the above range, good emulsion stability during polymerization is easily obtained.

ラジカル重合開始剤の添加量(重合工程で使用される全量)は、水性媒体に対して10〜5000ppmであり、30〜3000ppmが好ましく、50〜2500ppmがより好ましい。該添加量が前記範囲の下限値以上であると、良好な重合速度が得られる。該添加量が前記範囲の上限値以下であると、高分子量のTFE/E共重合体が得られやすい。
なお、重合開始剤の添加量の基準となる水性媒体の量は、水と水溶性有機溶剤との合計量であり、重合開始剤等の他の添加剤の含有量は含まれない。
The addition amount of the radical polymerization initiator (the total amount used in the polymerization step) is 10 to 5000 ppm, preferably 30 to 3000 ppm, and more preferably 50 to 2500 ppm based on the aqueous medium. When the amount is at least the lower limit of the above range, a good polymerization rate can be obtained. When the amount is less than or equal to the upper limit of the above range, a high molecular weight TFE / E copolymer is easily obtained.
The amount of the aqueous medium serving as a reference for the amount of the polymerization initiator is the total amount of water and the water-soluble organic solvent, and does not include the content of other additives such as the polymerization initiator.

還元剤の添加量(重合工程で使用される全量)は、ラジカル重合開始剤100質量部に対して1〜200質量部が好ましく、1〜100質量部がより好ましく、1〜100質量部がさらに好ましい。還元剤の使用量が前記範囲の下限値以上であると、良好な重合速度が得られやすい。還元剤の使用量が前記範囲の上限値以下であると、高分子量のTFE/E共重合体が得られやすい。   The addition amount of the reducing agent (the total amount used in the polymerization step) is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, and further preferably 1 to 100 parts by mass with respect to 100 parts by mass of the radical polymerization initiator. preferable. When the amount of the reducing agent used is equal to or more than the lower limit of the above range, a good polymerization rate is easily obtained. When the amount of the reducing agent used is not more than the upper limit of the above range, a high molecular weight TFE / E copolymer is easily obtained.

アルカリの添加量(重合工程で使用される全量)は、重合反応に伴って発生する酸を中和する量である。重合開始時及び重合終了時における反応系のpHが前記の好ましい範囲内に維持される量であることが好ましい。
アルカリの添加量は、アルカリ/還元剤で表される当量比が0超5000以下となる量であることが好ましい。アルカリ/還元剤で表される当量比は、0超3000以下がより好ましく、0超1000以下がさらに好ましい。この当量比が前記範囲内であると、重合中の反応系のpHが前記の好ましい範囲内となりやすい。また、この当量比が前記上限値以下であると、反応系の正イオン濃度が高くなりすぎず、水性乳化液の安定性がより優れる。
The amount of the alkali added (the total amount used in the polymerization step) is an amount that neutralizes the acid generated during the polymerization reaction. It is preferable that the pH of the reaction system at the start of polymerization and at the end of polymerization be such an amount that the pH is maintained within the above preferred range.
The amount of alkali added is preferably such that the equivalent ratio represented by alkali / reducing agent is more than 0 and not more than 5000. The equivalent ratio represented by alkali / reducing agent is more preferably more than 0 and 3000 or less, and further preferably more than 0 and 1000 or less. When the equivalent ratio is within the above range, the pH of the reaction system during polymerization tends to be within the above preferable range. When the equivalent ratio is equal to or less than the upper limit, the positive ion concentration of the reaction system does not become too high, and the stability of the aqueous emulsion is more excellent.

アルカリとの混合溶液が緩衝溶液となる塩の添加量(重合工程で使用される全量)は、水性乳化液の安定性の点から、少ないほど好ましい。
反応系は、連鎖移動剤を含まないことが好ましい。重合時に連鎖移動剤が存在すると、低分子量のTFE/E共重合体が生成しやすい。
From the viewpoint of the stability of the aqueous emulsion, the smaller the amount of the salt (the total amount used in the polymerization step) in which the mixed solution with the alkali becomes a buffer solution, the more preferable.
The reaction system preferably does not contain a chain transfer agent. If a chain transfer agent is present during polymerization, a low molecular weight TFE / E copolymer is likely to be produced.

こうして得られる水性乳化液は、水性媒体中に、粒状の2元系TFE/E共重合体及び乳化剤を含む。
2元系TFE/E共重合体の平均粒子径は、典型的には、30〜400nmである。平均粒子径は、堀場製作所社製、製品名SZ100を用いた動的光散乱法により測定される「D50:メジアン径」である。
水性乳化液中の2元系TFE/E共重合体の濃度は、1〜50質量%が好ましく、5〜40質量%がより好ましい。
The aqueous emulsion thus obtained contains a granular binary TFE / E copolymer and an emulsifier in an aqueous medium.
The average particle size of the binary TFE / E copolymer is typically 30 to 400 nm. The average particle diameter is “D50: median diameter” measured by a dynamic light scattering method using a product name SZ100 manufactured by Horiba, Ltd.
The concentration of the binary TFE / E copolymer in the aqueous emulsion is preferably 1 to 50% by mass, more preferably 5 to 40% by mass.

(回収工程)
重合工程で得られた水性乳化液からの2元系TFE/E共重合体の回収は、公知の方法で行える。
例えば水性乳化液に凝集剤を添加して、2元系TFE/E共重合体を凝集させることができる。又は水性乳化液を凍結させて凝集させることもできる。
凝集剤としては、例えば、塩化カルシウム、塩化マグネシウム、塩化アルミニウム、硝酸アルミニウム等の水溶性塩、硝酸、塩酸、硫酸等の酸類、アルコール、アセトン等の水溶性有機溶媒類等が挙げられる。
凝集剤の添加量は、水性乳化液の100質量部に対して、0.001〜20質量部が好ましく、0.01〜10質量部が特に好ましい。
(Recovery process)
The binary TFE / E copolymer can be recovered from the aqueous emulsion obtained in the polymerization step by a known method.
For example, a coagulant can be added to the aqueous emulsion to coagulate the binary TFE / E copolymer. Alternatively, the aqueous emulsion may be frozen and aggregated.
Examples of the coagulant include water-soluble salts such as calcium chloride, magnesium chloride, aluminum chloride, and aluminum nitrate; acids such as nitric acid, hydrochloric acid, and sulfuric acid; and water-soluble organic solvents such as alcohol and acetone.
The amount of the coagulant to be added is preferably 0.001 to 20 parts by mass, particularly preferably 0.01 to 10 parts by mass, per 100 parts by mass of the aqueous emulsion.

凝集させた2元系TFE/E共重合体は、濾別して、洗浄水で洗浄することが好ましい。洗浄水としては、イオン交換水、純水、超純水などが挙げられる。
洗浄後、乾燥させることにより2元系TFE/E共重合体の粉末が得られる。乾燥方法としては、真空乾燥、高周波乾燥、熱風乾燥が挙げられる。乾燥温度は60〜110℃が好ましく、75〜90℃がより好ましい。
The coagulated binary TFE / E copolymer is preferably separated by filtration and washed with washing water. Examples of the washing water include ion exchange water, pure water, ultrapure water, and the like.
After washing and drying, a binary TFE / E copolymer powder is obtained. Examples of the drying method include vacuum drying, high frequency drying, and hot air drying. The drying temperature is preferably from 60 to 110C, more preferably from 75 to 90C.

本発明の2元系TFE/E共重合体の製造方法によれば、機械的強度及び熱安定性に優れた2元系TFE/E共重合体が得られる。
TFEとエチレンとの重合に、乳化剤を用いる共重合法である乳化重合法を用い、重合温度を40℃以下とすることによって、高分子量のTFE/E共重合体が得られやすい。特に、還元剤を連続的又は間欠的に前記反応系に添加すると、反応系の還元剤濃度が高くなりすぎず、高分子量(低MFR、低Q値)のTFE/E共重合体がより得られやすい。
また、TFEとエチレンとの重合反応においてTFEとエチレンとの合計量に対してTFE、エチレンそれぞれの単量体の比率を特定範囲内とすることで、2元系TFE/E共重合体中のTFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%、さらには45〜55モル%、より好ましくは50〜55モル%である2元系TFE/E共重合体が生成しやすい。かかる2元系TFE/E共重合体にあっては、TFE単位を一定以上の割合で含むことで耐熱性に優れ(高融点)、E単位を一定以上の割合で含むことで結晶性が高い。
したがって、得られる2元系TFE/E共重合体は、高分子量、高結晶性、高融点を有するものとなる。高分子量、高結晶性であることで、機械的強度に優れる。また、高融点であることで、熱安定性に優れる。
According to the method for producing a binary TFE / E copolymer of the present invention, a binary TFE / E copolymer excellent in mechanical strength and thermal stability can be obtained.
By using an emulsion polymerization method, which is a copolymerization method using an emulsifier, for the polymerization of TFE and ethylene and setting the polymerization temperature to 40 ° C. or lower, a high molecular weight TFE / E copolymer is easily obtained. In particular, when the reducing agent is continuously or intermittently added to the reaction system, the concentration of the reducing agent in the reaction system does not become too high, and a high molecular weight (low MFR, low Q value) TFE / E copolymer is obtained. Easy to be.
Further, in the polymerization reaction of TFE and ethylene, the ratio of each monomer of TFE and ethylene with respect to the total amount of TFE and ethylene falls within a specific range, whereby the binary TFE / E copolymer has A binary TFE / E copolymer is produced in which the proportion of TFE units to the total amount of TFE units and E units is 45 to 65 mol%, more preferably 45 to 55 mol%, and more preferably 50 to 55 mol%. It's easy to do. Such a binary TFE / E copolymer has excellent heat resistance (high melting point) by containing TFE units at a certain ratio or more, and has high crystallinity by containing E units at a certain ratio or more. .
Therefore, the obtained binary TFE / E copolymer has high molecular weight, high crystallinity, and high melting point. High mechanical strength due to high molecular weight and high crystallinity. In addition, because of its high melting point, it has excellent thermal stability.

また、本発明の2元系TFE/E共重合体の製造方法にあっては、重合反応に伴って発生する酸を中和するアルカリを添加することで、重合中の反応系のpHが前記の範囲内に保持され、良好な重合速度が得られる。特に、重合開始時における反応系の正イオン濃度が低いほど、生成する2元系TFE/E共重合体の分散安定性(水性乳化液の安定性)が良好で、重合反応が良好に進行しやすい傾向がある。
また、本発明の2元系TFE/E共重合体の製造方法にあっては、特許文献4で用いられているようなフッ素系溶媒を用いなくても、高分子量の2元系TFE/E共重合体が得られる。そのため、コストの低減も可能である。また、フッ素系溶媒を用いないことは、廃液処理等における環境負荷の低減を実現する。
したがって、本発明の2元系TFE/E共重合体の製造方法によれば、前記のような2元系TFE/E共重合体を優れた生産性で製造できる。
In the method for producing a binary TFE / E copolymer of the present invention, the pH of the reaction system during the polymerization is adjusted by adding an alkali that neutralizes an acid generated during the polymerization reaction. And a good polymerization rate can be obtained. In particular, the lower the positive ion concentration of the reaction system at the start of polymerization, the better the dispersion stability (stability of the aqueous emulsion) of the resulting binary TFE / E copolymer, and the better the polymerization reaction proceeds. Tends to be easy.
Further, in the method for producing a binary TFE / E copolymer of the present invention, a high molecular weight binary TFE / E copolymer is used without using a fluorine-based solvent as used in Patent Document 4. A copolymer is obtained. Therefore, cost can be reduced. Further, not using a fluorinated solvent realizes a reduction in environmental load in waste liquid treatment and the like.
Therefore, according to the method for producing a binary TFE / E copolymer of the present invention, the binary TFE / E copolymer as described above can be produced with excellent productivity.

〔2元系TFE/E共重合体〕
本発明の2元系TFE/E共重合体の第一の態様(以下、2元系TFE/E共重合体(1)とも記す。)は、TFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%であり、Q値が10mm/秒以下である。
本発明の2元系TFE/E共重合体の第二の態様(以下、2元系TFE/E共重合体(2)とも記す。)は、TFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%であり、融点1stが294〜300℃である。
本発明の2元系TFE/E共重合体の第三の態様(以下、2元系TFE/E共重合体(3)とも記す。)は、TFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%であり、融点2ndが290〜295℃である。
[Binary TFE / E copolymer]
The first embodiment of the binary TFE / E copolymer of the present invention (hereinafter also referred to as a binary TFE / E copolymer (1)) is based on the total amount of TFE units and E units. Is 45 to 65 mol%, and the Q value is 10 mm 3 / sec or less.
The second embodiment of the binary TFE / E copolymer of the present invention (hereinafter also referred to as a binary TFE / E copolymer (2)) includes a TFE unit based on the total amount of the TFE unit and the E unit. Is 45 to 65 mol%, and the melting point 1st is 294 to 300 ° C.
The third embodiment of the binary TFE / E copolymer of the present invention (hereinafter also referred to as a binary TFE / E copolymer (3)) is based on the total amount of TFE units and E units. Is 45 to 65 mol%, and the melting point 2nd is 290 to 295 ° C.

2元系TFE/E共重合体(1)〜(3)それぞれにおいて、TFE単位とE単位との合計量に対するTFE単位の割合は、45〜55モル%が好ましく、50〜55モル%がより好ましい。
TFE単位の割合が前記範囲の下限値以上であると、2元系TFE/E共重合体の耐熱性が優れる。TFE単位の割合が前記範囲の上限値以下であると、2元系TFE/E共重合体の結晶性が高く、機械的強度に優れる。
In each of the binary TFE / E copolymers (1) to (3), the ratio of TFE units to the total amount of TFE units and E units is preferably 45 to 55 mol%, more preferably 50 to 55 mol%. preferable.
When the proportion of TFE units is at least the lower limit of the above range, the binary TFE / E copolymer will have excellent heat resistance. When the proportion of TFE units is at most the upper limit of the above range, the binary TFE / E copolymer will have high crystallinity and excellent mechanical strength.

2元系TFE/E共重合体(1)のQ値は、10mm/秒以下であり、1mm/秒以下がより好ましい。Q値が前記範囲の上限値以下であると、機械的強度に優れる。Q値の下限は特に限定されないが、例えば0.1mm/秒であってよい。Q values of binary system TFE / E copolymer (1) is 10 mm 3 / sec or less, more preferably 1 mm 3 / sec. When the Q value is equal to or less than the upper limit of the above range, the mechanical strength is excellent. The lower limit of the Q value is not particularly limited, but may be, for example, 0.1 mm 3 / sec.

2元系TFE/E共重合体(2)の融点1stは、294〜300℃であり、296〜300℃が好ましく、298〜300℃がより好ましい。融点1stが前記範囲の下限値以上であると、熱安定性に優れる。   The melting point 1st of the binary TFE / E copolymer (2) is 294 to 300 ° C, preferably 296 to 300 ° C, and more preferably 298 to 300 ° C. When the melting point 1st is equal to or higher than the lower limit of the above range, thermal stability is excellent.

2元系TFE/E共重合体(3)の融点2ndは、290〜295℃であり、293〜295℃が好ましい。融点2ndが前記範囲の下限値以上であると、熱安定性に優れる。   The melting point 2nd of the binary TFE / E copolymer (3) is from 290 to 295 ° C, preferably from 293 to 295 ° C. When the melting point is 2nd or more, the thermal stability is excellent.

2元系TFE/E共重合体(3)のQ値は、10mm/秒以下が好ましい。より好ましいQ値は2元系TFE/E共重合体(1)と同様である。
2元系TFE/E共重合体(3)の融点1stは、294〜300℃が好ましい。より好ましい融点1stは2元系TFE/E共重合体(2)と同様である。
The Q value of the binary TFE / E copolymer (3) is preferably 10 mm 3 / sec or less. The more preferable Q value is the same as that of the binary TFE / E copolymer (1).
The melting point 1st of the binary TFE / E copolymer (3) is preferably from 294 to 300 ° C. The more preferable melting point 1st is the same as that of the binary TFE / E copolymer (2).

2元系TFE/E共重合体(1)〜(3)は、前述の本発明の2元系TFE/E共重合体の製造方法によって製造することが可能である。   The binary TFE / E copolymers (1) to (3) can be produced by the aforementioned method for producing a binary TFE / E copolymer of the present invention.

本発明の2元系TFE/E共重合体は、TFE単位とE単位との合計量に対するTFE単位の割合が45〜65モル%であり、Q値が10mm/秒以下、融点1stが294〜300℃又は融点2ndが290〜295℃であるため、機械的強度及び熱安定性に優れる。The binary TFE / E copolymer of the present invention has a TFE unit ratio of 45 to 65 mol% with respect to the total amount of TFE units and E units, a Q value of 10 mm 3 / sec or less, and a melting point of 1st of 294. Since it has a melting point of -300 ° C or a melting point of 2nd of 290-295 ° C, it has excellent mechanical strength and thermal stability.

本発明の2元系TFE/E共重合体は、溶融流動性を示さないか、溶融流動性が低い。そのため、本発明の2元系TFE/E共重合体を成形体とする際の成形方法としては、公知のPTFEの成形方法が好適に用いられる。例えば圧縮成形法を用いて本発明の2元系TFE/E共重合体を所望の形状に成形できる。例えば、金型内に2元系TFE/E共重合体の粉末を充填し、常温でプレスに挟んで圧縮(予備成形)した後、予備成形品を取り出して加熱焼結し、冷却する方法を用いることができる。該予備成形品を加熱焼結した後、加圧しながら冷却する方法もある。また、金型内に2元系TFE/E共重合体の粉末を充填して加熱した後に、加圧して圧縮し、冷却する方法を用いることもできる。   The binary TFE / E copolymer of the present invention does not show melt fluidity or has low melt fluidity. Therefore, as a molding method when the binary TFE / E copolymer of the present invention is formed into a molded body, a known PTFE molding method is suitably used. For example, the binary TFE / E copolymer of the present invention can be formed into a desired shape by using a compression molding method. For example, a method of filling a binary TFE / E copolymer powder in a mold, compressing (preforming) by pressing at room temperature, taking out the preformed product, heating and sintering, and then cooling is used. Can be used. There is also a method in which the preform is heated and sintered, and then cooled while applying pressure. Alternatively, a method may be used in which the powder of the binary TFE / E copolymer is filled in a mold, heated, and then compressed under pressure and cooled.

また、本発明の2元系TFE/E共重合体の粉末のペースト押し出し成形物は、その後に乾燥し延伸することにより、多孔体を得ることができる。延伸条件としては、適当な速度、例えば10%/秒〜50000%/秒の速度、適当な延伸倍率、例えば100%以上の延伸倍率が採用される。多孔体で構成される物品の形状としては、チューブ、シート、フィルム、繊維等、種々の形状が挙げられる。   Further, the paste extruded product of the powder of the binary TFE / E copolymer of the present invention can be dried and stretched to obtain a porous body. As the stretching conditions, an appropriate speed, for example, a speed of 10% / sec to 50,000% / sec, and an appropriate stretching ratio, for example, a stretching ratio of 100% or more are adopted. Examples of the shape of the article made of the porous body include various shapes such as a tube, a sheet, a film, and a fiber.

以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の実施例によって限定して解釈されない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not construed as being limited by the following examples.

〔試験例1〕
後述する実施例1で得た2元系TFE/E共重合体のラテックスに、NaCl又はCsClを、表1に示す正イオン濃度となるように添加し、4日間静置した。その後、ラテックスにおける凝集の有無を目視で観察し、以下の基準で評価した。結果を表1に示す。
○:凝集なし。 ×:凝集あり。
[Test Example 1]
NaCl or CsCl was added to the binary TFE / E copolymer latex obtained in Example 1 to be described later so as to have a positive ion concentration shown in Table 1, and allowed to stand for 4 days. Thereafter, the presence or absence of aggregation in the latex was visually observed and evaluated according to the following criteria. Table 1 shows the results.
:: no aggregation. X: There is aggregation.

Figure 2018199264
Figure 2018199264

上記結果から、正イオン濃度が0.050モル/L以下であると、分散安定性が良好であることが確認できた。   From the above results, it was confirmed that when the positive ion concentration was 0.050 mol / L or less, the dispersion stability was good.

〔実施例1〕
ビーカーにイオン交換水の566g、乳化剤としてCOCOCFCOONHの2.98g、tert−ブタノール(t−BuOH)の66.0g、APSの1.40g、およびNaOHの0.35gを加え、これをA液とした。
別のビーカーにイオン交換水33.3g、EDTA二ナトリウムの0.12g、およびFeSO・7HOの0.09gを以上の順で加えてB液とした。A液とB液とを混合してC液を得た。C液のpHは9.5(室温)であった。撹拌用アンカー翼及び邪魔板を備えた内容積0.97Lのステンレス製耐圧反応器内を脱気した後に、該反応器内にC液を投入した。
さらに別の容器にイオン交換水の180g、NaOHの1.51gおよびロンガリットの0.59gを混合しD液とした。D液中のNaOH/ロンガリット(モル比)は10である。
[Example 1]
In a beaker, 566 g of ion-exchanged water, 2.98 g of C 2 F 5 OC 2 F 4 OCF 2 COONH 4 as an emulsifier, 66.0 g of tert-butanol (t-BuOH), 1.40 g of APS, and 0 of NaOH were used. .35 g was added, and this was designated as solution A.
Another beaker deionized water 33.3 g, and the disodium EDTA 0.12 g, and FeSO 4 · 7H 2 O was added to the above order 0.09g of B solution. Liquid A and liquid B were mixed to obtain liquid C. The pH of the solution C was 9.5 (room temperature). After degassing the inside of a 0.97 L stainless steel pressure-resistant reactor equipped with a stirring anchor blade and a baffle plate, liquid C was charged into the reactor.
Further, in another container, 180 g of ion-exchanged water, 1.51 g of NaOH, and 0.59 g of Rongalite were mixed to obtain a liquid D. The NaOH / Rongalit (molar ratio) in the solution D is 10.

次いで25℃で、TFE/エチレン(モル比)=70/30の初期単量体混合ガスを、反応器内圧が1.92MPaになるように圧入した。アンカー翼を200rpmで回転させ、D液9.0mLを反応器中に添加した。重合温度を25℃かつ反応器内の内圧を1.92MPaに維持しながらTFE/エチレン(モル比)=50/50の単量体混合ガスを連続的に圧入し、TFEが65〜78モル%、エチレンが35〜22モル%の比率を保持するようにして重合した。重合の途中、該単量体混合ガスの圧入速度が100mL/分を下回った時点でD液を0.5mL加えた。該単量体混合ガスの圧入量が60gになった時点で反応器を5℃まで冷却し、単量体混合ガスを抜き、反応を停止して、2元系TFE/E共重合体のラテックスを得た。重合時間は205分であった。重合終了時のラテックスのpHは9.7であった。
該ラテックスを凍結凝集し、2元系TFE/E共重合体を析出させた。析出した2元系TFE/E共重合体を濾取した。次いで、得られた共重合体をイオン交換水にて洗浄し、100℃のオーブンで乾燥させ、2元系TFE/E共重合体の粉末を得た。圧入した単量体ガス質量に対し、収率は94.0質量%であった。
Next, at 25 ° C., an initial monomer mixed gas of TFE / ethylene (molar ratio) = 70/30 was injected so that the internal pressure of the reactor became 1.92 MPa. The anchor blade was rotated at 200 rpm, and 9.0 mL of solution D was added into the reactor. While maintaining the polymerization temperature at 25 ° C. and the internal pressure in the reactor at 1.92 MPa, a monomer mixed gas of TFE / ethylene (molar ratio) = 50/50 was continuously injected, and TFE was 65 to 78 mol%. The polymerization was carried out so that ethylene maintained a ratio of 35 to 22 mol%. During the polymerization, when the injection rate of the monomer mixed gas became lower than 100 mL / min, 0.5 mL of Solution D was added. When the injection amount of the monomer mixed gas reached 60 g, the reactor was cooled to 5 ° C., the monomer mixed gas was removed, the reaction was stopped, and a latex of a binary TFE / E copolymer was obtained. I got The polymerization time was 205 minutes. The pH of the latex at the end of the polymerization was 9.7.
The latex was freeze-aggregated to precipitate a binary TFE / E copolymer. The precipitated binary TFE / E copolymer was collected by filtration. Next, the obtained copolymer was washed with ion-exchanged water and dried in an oven at 100 ° C. to obtain a powder of a binary TFE / E copolymer. The yield was 94.0% by mass based on the mass of the injected monomer gas.

〔実施例2〜5、比較例1〜2〕
A液、B液、D液の組成(g)を表2に示すようにした以外は実施例1と同様にして2元系TFE/E共重合体の粉末を得た。なお、表2中、「NH(28)aq.」は28質量%アンモニウム水溶液を示す。
[Examples 2 to 5, Comparative Examples 1 and 2]
A powder of a binary TFE / E copolymer was obtained in the same manner as in Example 1 except that the compositions (g) of the solutions A, B, and D were as shown in Table 2. In Table 2, “NH 3 (28) aq.” Indicates a 28% by mass aqueous ammonium solution.

Figure 2018199264
Figure 2018199264

各例で得られた2元系TFE/E共重合体について、上記の方法で共重合体組成、Q値、融点1st、融点2ndを測定した。その結果を表3、4に示す。表3、4には主な製造条件も示した。
表3〜4中、仕込み液は、初期単量体混合ガスの圧入開始前に反応器に仕込んだ液(C液)である。後添加液は、初期単量体混合ガスの圧入開始後に反応器に添加した液(D液)である。
仕込み液組成は、仕込み液中の各成分の含有割合を、イオン交換水に対する質量比で示した。なお、ラジカル重合開始剤(APS)並びにその共存成分であるEDTA・2Na及びFeSO・7HOについては、仕込み液組成の記載を省略した。
With respect to the binary TFE / E copolymer obtained in each example, the copolymer composition, Q value, melting point 1st, and melting point 2nd were measured by the methods described above. The results are shown in Tables 3 and 4. Tables 3 and 4 also show the main production conditions.
In Tables 3 and 4, the charged liquid is a liquid (liquid C) charged to the reactor before the start of the injection of the initial monomer mixed gas. The post-addition liquid is a liquid (liquid D) added to the reactor after the start of injection of the initial monomer mixed gas.
As for the composition of the charged liquid, the content ratio of each component in the charged liquid was represented by a mass ratio to ion-exchanged water. Note that the EDTA · 2Na and FeSO 4 · 7H 2 O is a radical polymerization initiator (APS) as well as coexisting components that were omitted in the charge liquid composition.

Figure 2018199264
Figure 2018199264

Figure 2018199264
Figure 2018199264

比較例1では、重合温度が低いため、重合しなかった。乳化剤のクラフト点は4℃付近に存在する。それ以下の温度ではミセル形成せず重合は進まない。
比較例2では、アルカリを添加しなかったため、反応系のpHが低くなり、ラテックスが不安定となり凝集した。
これに対し、実施例1〜5では、凝集等の問題なく2元系TFE/E共重合体を製造できた。なかでも実施例2、3、5では、フッ素系溶媒を用いていないにもかかわらず、フッ素系溶媒を用いている特許文献4に記載の実施例1、4と比べ、高融点の2元系TFE/E共重合体が得られた。高融点であることから、機械的特性、熱安定性に優れると判断できる。
実施例2、3、5でQ値が低く、融点が高かったのは、重合温度が低かったためと考えられる。特に実施例3の結果が優れていたのは、t−BuOH量が少なくなったことで、連鎖移動が抑制されたためと考えられる。
In Comparative Example 1, polymerization was not performed because the polymerization temperature was low. The Krafft point of the emulsifier is around 4 ° C. At a temperature lower than that, micelles do not form and polymerization does not proceed.
In Comparative Example 2, since no alkali was added, the pH of the reaction system was lowered, and the latex became unstable and aggregated.
In contrast, in Examples 1 to 5, binary TFE / E copolymers could be produced without problems such as aggregation. Above all, in Examples 2, 3, and 5, binary systems having a higher melting point than Examples 1 and 4 described in Patent Literature 4 using a fluorine-based solvent, despite not using a fluorine-based solvent. A TFE / E copolymer was obtained. Since it has a high melting point, it can be determined that it has excellent mechanical properties and thermal stability.
It is considered that the reason why the Q value was low and the melting point was high in Examples 2, 3, and 5 was that the polymerization temperature was low. It is considered that the result of Example 3 was particularly excellent because the amount of t-BuOH was reduced, thereby suppressing the chain transfer.

本発明の2元系TFE/E共重合体の製造方法により得られる2元系TFE/E共重合体は、とりわけ、機械的強度と熱安定性が求められる用途に好適に使用することができる。より具体的には、アパレル等に用いられる多孔質体、電気機器や高電圧配線等に用いられる絶縁体、燃料用ホース等の耐薬品性物、調理器具等に用いられる防汚剤、3Dプリンティング造形物、無機微粒子の成型等に用いられるバインダー、太陽電池セル等の保護膜、摺動性複合材料、紛体塗料用途等、多岐にわたり好適に使用できる。   The binary TFE / E copolymer obtained by the method for producing a binary TFE / E copolymer of the present invention can be suitably used especially for applications requiring mechanical strength and thermal stability. . More specifically, porous materials used for apparel and the like, insulators used for electric equipment and high-voltage wiring, chemical-resistant materials such as fuel hoses, antifouling agents used for cooking utensils, etc., 3D printing It can be suitably used in a wide variety of applications, such as molded articles, binders used for molding inorganic fine particles, protective films for solar cells and the like, slidable composite materials, powder coatings, and the like.

なお、2017年4月28日に出願された日本特許出願2017−089846号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。   The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-089846 filed on April 28, 2017 are cited here as the disclosure of the specification of the present invention. , Is to take in.

Claims (10)

水と水溶性有機溶剤との混合液又は水である水性媒体、乳化剤及び前記水性媒体に対して10〜5000ppmのラジカル重合開始剤を含む反応系にて、テトラフルオロエチレンとエチレンとを、テトラフルオロエチレンとエチレンとの合計量に対してテトラフルオロエチレンを60〜85モル%、エチレンを40〜15モル%の比率を保持して重合させ、2元系テトラフルオロエチレン/エチレン共重合体を製造する方法であって、
前記ラジカル重合開始剤が、水中で還元されたときにラジカルを発生するものであり、
重合温度が5〜40℃であり、
重合反応に伴って発生する酸を中和するアルカリを、重合開始前及び重合中の少なくとも一方にて前記反応系に添加すると共に、前記ラジカル重合開始剤を還元する還元剤を一括で、又は連続的若しくは間欠的に前記反応系に添加する、2元系テトラフルオロエチレン/エチレン共重合体の製造方法。
In a reaction system containing a mixed solution of water and a water-soluble organic solvent or an aqueous medium that is water, an emulsifier, and a radical polymerization initiator in an amount of 10 to 5000 ppm with respect to the aqueous medium, tetrafluoroethylene and ethylene are converted to tetrafluoroethylene. The binary tetrafluoroethylene / ethylene copolymer is produced by polymerizing tetrafluoroethylene at a ratio of 60 to 85 mol% and ethylene at a ratio of 40 to 15 mol% with respect to the total amount of ethylene and ethylene. The method
The radical polymerization initiator is to generate a radical when reduced in water,
The polymerization temperature is 5 to 40 ° C.,
An alkali for neutralizing an acid generated during the polymerization reaction is added to the reaction system at least one of before and during the polymerization, and a reducing agent for reducing the radical polymerization initiator is collectively or continuously added. A method for producing a binary tetrafluoroethylene / ethylene copolymer, which is added to the reaction system intermittently or intermittently.
重合開始時から重合終了までの期間において前記反応系のpHが3.5〜12である、請求項1に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The method for producing a binary tetrafluoroethylene / ethylene copolymer according to claim 1, wherein the pH of the reaction system is 3.5 to 12 during a period from the start of the polymerization to the end of the polymerization. 前記アルカリの少なくとも一部を、重合中に連続的又は間欠的に前記反応系に添加する請求項1又は2に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The method for producing a binary tetrafluoroethylene / ethylene copolymer according to claim 1 or 2, wherein at least a part of the alkali is continuously or intermittently added to the reaction system during the polymerization. 前記乳化剤の添加量(重合工程で使用される全量)が、2元系TFE/E共重合体の収量に対して1,500〜20,000ppmである、請求項1〜3のいずれか1項に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The amount of the emulsifier added (the total amount used in the polymerization step) is 1,500 to 20,000 ppm with respect to the yield of the binary TFE / E copolymer. 3. The method for producing a binary tetrafluoroethylene / ethylene copolymer according to item 1. 前記還元剤の添加量(重合工程で使用される全量)が、ラジカル重合開始剤100質量部に対して1〜200質量部である、請求項1〜4のいずれか1項に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The binary according to any one of claims 1 to 4, wherein the amount of the reducing agent added (the total amount used in the polymerization step) is 1 to 200 parts by mass with respect to 100 parts by mass of the radical polymerization initiator. A method for producing a tetrafluoroethylene / ethylene copolymer. 前記アルカリが、アンモニア又はアルカリ金属水酸化物である、請求項1〜5のいずれか1項に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The method for producing a binary tetrafluoroethylene / ethylene copolymer according to any one of claims 1 to 5, wherein the alkali is ammonia or an alkali metal hydroxide. 重合圧力を1.8〜5.0MPaに保持して重合させる、請求項1〜6のいずれか1項に記載の2元系テトラフルオロエチレン/エチレン共重合体の製造方法。   The method for producing a binary tetrafluoroethylene / ethylene copolymer according to any one of claims 1 to 6, wherein the polymerization is performed while maintaining the polymerization pressure at 1.8 to 5.0 MPa. テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、
ASTM1238に準拠して温度320℃、荷重588.4Nにて測定される容量流速が10mm/秒以下である、2元系テトラフルオロエチレン/エチレン共重合体。
The ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%,
A binary tetrafluoroethylene / ethylene copolymer having a volumetric flow rate of 10 mm 3 / sec or less measured at a temperature of 320 ° C. and a load of 588.4 N according to ASTM1238.
テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、
下記測定方法により測定される融点1stが294〜300℃である、2元系テトラフルオロエチレン/エチレン共重合体。
「融点の測定方法」
示差走査熱量測定法で融解による吸熱ピークを測定する。測定中の温度推移プログラムは−20℃→310℃→−70℃→310℃とし、各昇温速度は10℃/分、降温速度は5℃/分とする。最初の昇温時の融解熱による吸熱ピークにおける温度を「融点1st」とし、−70℃まで降温した後の2度目の昇温時の融解熱による吸熱ピークにおける温度を「融点2nd」とする。
The ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%,
A binary tetrafluoroethylene / ethylene copolymer having a melting point 1st of 294 to 300 ° C. measured by the following measurement method.
"Measurement method of melting point"
The endothermic peak due to melting is measured by differential scanning calorimetry. The temperature transition program during the measurement is -20.degree. C. → 310.degree. C. → -70.degree. C. → 310.degree. C., and the rate of temperature rise is 10.degree. The temperature at the endothermic peak due to the heat of fusion at the time of the first temperature rise is defined as “melting point 1st”, and the temperature at the endothermic peak due to the heat of fusion at the second temperature rise after the temperature is lowered to −70 ° C. is defined as “melting point 2nd”.
テトラフルオロエチレン単位とエチレン単位との合計量に対するテトラフルオロエチレン単位の割合が45〜65モル%であり、
下記測定方法により測定される融点2ndが290〜295℃である、2元系テトラフルオロエチレン/エチレン共重合体。
「融点の測定方法」
示差走査熱量測定法で融解による吸熱ピークを測定する。測定中の温度推移プログラムは−20℃→310℃→−70℃→310℃とし、各昇温速度は10℃/分、降温速度は5℃/分とする。最初の昇温時の融解熱による吸熱ピークにおける温度を「融点1st」とし、−70℃まで降温した後の2度目の昇温時の融解熱による吸熱ピークにおける温度を「融点2nd」とする。
The ratio of the tetrafluoroethylene unit to the total amount of the tetrafluoroethylene unit and the ethylene unit is 45 to 65 mol%,
A binary tetrafluoroethylene / ethylene copolymer having a melting point 2nd measured by the following measurement method of 290 to 295 ° C.
"Measurement method of melting point"
The endothermic peak due to melting is measured by differential scanning calorimetry. The temperature transition program during the measurement is -20.degree. C. → 310.degree. C. → -70.degree. C. → 310.degree. C., and the rate of temperature rise is 10.degree. The temperature at the endothermic peak due to the heat of fusion at the time of the first temperature rise is defined as “melting point 1st”, and the temperature at the endothermic peak due to the heat of fusion at the second temperature rise after the temperature is lowered to −70 ° C. is defined as “melting point 2nd”.
JP2019514639A 2017-04-28 2018-04-26 Binary tetrafluoroethylene / ethylene copolymer and method for producing the same Pending JPWO2018199264A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017089846 2017-04-28
JP2017089846 2017-04-28
PCT/JP2018/017080 WO2018199264A1 (en) 2017-04-28 2018-04-26 Binary tetrafluoroethylene/ethylene copolymer and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2018199264A1 true JPWO2018199264A1 (en) 2020-03-12

Family

ID=63919859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514639A Pending JPWO2018199264A1 (en) 2017-04-28 2018-04-26 Binary tetrafluoroethylene / ethylene copolymer and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2018199264A1 (en)
WO (1) WO2018199264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962584A (en) * 1972-10-20 1974-06-18
WO1999050319A1 (en) * 1998-03-25 1999-10-07 Daikin Industries, Ltd. Method of reducing metal content in fluoroelastomer
CN104945551A (en) * 2014-03-28 2015-09-30 浙江省化工研究院有限公司 Application of environment-friendly surfactant in synthesis of fluorine-containing polymer
WO2017069069A1 (en) * 2015-10-20 2017-04-27 旭硝子株式会社 Fluororesin and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962584A (en) * 1972-10-20 1974-06-18
WO1999050319A1 (en) * 1998-03-25 1999-10-07 Daikin Industries, Ltd. Method of reducing metal content in fluoroelastomer
CN104945551A (en) * 2014-03-28 2015-09-30 浙江省化工研究院有限公司 Application of environment-friendly surfactant in synthesis of fluorine-containing polymer
WO2017069069A1 (en) * 2015-10-20 2017-04-27 旭硝子株式会社 Fluororesin and method for producing same

Also Published As

Publication number Publication date
WO2018199264A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5392251B2 (en) Method for producing polytetrafluoroethylene fine powder
JP5732850B2 (en) Method for producing polytetrafluoroethylene fine powder
US7851573B2 (en) Aqueous polytetrafluoroethylene emulsion, polytetrafluoroethylene fine powder and porous material obtained therefrom
JP6157417B2 (en) Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product
JP5983633B2 (en) Method for producing polytetrafluoroethylene fine powder
JP6801660B2 (en) Method for producing aqueous emulsion of modified polytetrafluoroethylene, fine powder and stretched porous body
EP2058341B1 (en) Process for producing melt-moldable tetrafluoroethylene copolymer
JP4792622B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer and method for producing the same
JP2018505283A (en) Tetrafluoroethylene / hexafluoropropylene copolymer having pendant sulfonyl groups
CN110809588B (en) Fluorine-containing elastic copolymer, composition thereof, and crosslinked rubber article
JP6319311B2 (en) Method for producing fluorine-containing polymer
WO2008001895A1 (en) Method for producing fluorine-containing elastomer
JP3669172B2 (en) Tetrafluoroethylene copolymer, production method thereof and use thereof
JP6885337B2 (en) Fluororesin manufacturing method
US9718930B2 (en) Process for producing polytetrafluoroethylene molding powder and process for producing polytetrafluoroethylene agglomerated product
JPWO2018199264A1 (en) Binary tetrafluoroethylene / ethylene copolymer and method for producing the same
WO2020196779A1 (en) Method for producing fluorine-containing polymer, aqueous dispersion liquid, and fluorine-containing polymer composition
JP2002020434A (en) Heat-processible tfe copolymer
US10975187B2 (en) Modified polytetrafluoroethylene fine powder and its manufacturing method, and electric wire and tube using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018