JPWO2018174250A1 - Prepreg and fiber reinforced composite materials - Google Patents

Prepreg and fiber reinforced composite materials Download PDF

Info

Publication number
JPWO2018174250A1
JPWO2018174250A1 JP2018518751A JP2018518751A JPWO2018174250A1 JP WO2018174250 A1 JPWO2018174250 A1 JP WO2018174250A1 JP 2018518751 A JP2018518751 A JP 2018518751A JP 2018518751 A JP2018518751 A JP 2018518751A JP WO2018174250 A1 JPWO2018174250 A1 JP WO2018174250A1
Authority
JP
Japan
Prior art keywords
component
particles
prepreg
mass
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018518751A
Other languages
Japanese (ja)
Other versions
JP6673474B2 (en
Inventor
行弘 原田
行弘 原田
敦 野原
敦 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2018174250A1 publication Critical patent/JPWO2018174250A1/en
Application granted granted Critical
Publication of JP6673474B2 publication Critical patent/JP6673474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)成分、(B)成分および(C)成分を含むプリプレグであって、前記(A)成分が強化繊維基材であり、前記(B)成分がエポキシ樹脂組成物であり、 前記(C)成分が、(c1)成分又は(c2)成分であり、前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含む、プリプレグ。It is the prepreg containing (A) component, (B) component, and (C) component, Comprising: The said (A) component is a reinforcement fiber base material, The said (B) component is an epoxy resin composition, The said (C) Component) is the component (c1) or the component (c2), the component (c1) contains polyamide particles and thermosetting polyimide particles, and the component (c2) is a true sphere of polyamide having a melting point of 140 to 175 ° C. Prepreg, containing particles of shape.

Description

本発明は、プリプレグおよび繊維強化複合材料に関する。
本願は、2017年3月24日に、日本に出願された特願2017−058507号、2017年3月24日に、日本に出願された特願2017−058508号、及び2018年2月23日に、日本に出願された特願2018−030289号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a prepreg and a fiber reinforced composite material.
The present application is Japanese Patent Application No. 2017-058507 filed on March 24, 2017, Japanese Patent Application No. 2017-058508 filed on March 24, 2017, and February 23, 2018 The priority is claimed based on Japanese Patent Application No. 2018-030289 filed in Japan, the contents of which are incorporated herein by reference.

繊維強化複合材料は、軽量、高強度および高剛性であることから、スポーツ・レジャー分野、自動車分野、航空機分野、他の一般産業分野等に幅広く用いられている。最近では、より軽量、高強度および高剛性である繊維強化複合材料が、自動車分野、航空機分野等においてよく用いられている。   Fiber reinforced composite materials are widely used in the sports and leisure fields, automotive fields, aircraft fields, other general industrial fields and the like because they are light in weight, high in strength and high in rigidity. Recently, fiber reinforced composite materials that are lighter in weight, higher in strength and higher in rigidity are often used in the automotive field, the aircraft field and the like.

繊維強化複合材料は、強化繊維およびマトリックス樹脂を必須の構成要素とする材料である。繊維強化複合材料は、強化繊維の繊維軸方向の強度および弾性率が極めて高いものの、繊維軸方向に対して直角方向の強度および弾性率が低い、異方性材料である。   The fiber reinforced composite material is a material having reinforcing fibers and a matrix resin as essential components. The fiber-reinforced composite material is an anisotropic material in which the strength and elastic modulus of the reinforcing fiber in the fiber axial direction are extremely high but the strength and elastic modulus in the direction perpendicular to the fiber axial direction are low.

繊維強化複合材料は、例えば強化繊維基材に未硬化の熱硬化性樹脂組成物を含浸させたプリプレグを積層し、加熱成形し、熱硬化性樹脂組成物を硬化させて製造される。繊維強化複合材料を製造する際には、強化繊維の織物を用いたプリプレグを用いたり、一方向に配列した強化繊維を用いたプリプレグの繊維軸方向を異方向に組み合わせて積層したりすることによって、異方性材料である繊維強化複合材料の各方向における物性の制御が行われる。   The fiber-reinforced composite material is produced, for example, by laminating a prepreg obtained by impregnating a non-hardened thermosetting resin composition on a reinforcing fiber base, thermoforming, and curing the thermosetting resin composition. When manufacturing a fiber-reinforced composite material, it is possible by using a prepreg using a woven fabric of reinforcing fibers or laminating by combining the fiber axial directions of prepregs using reinforcing fibers arranged in one direction in different directions. Control of physical properties in each direction of the fiber reinforced composite material which is an anisotropic material is performed.

しかし、プリプレグを積層して製造された繊維強化複合材料においては、積層されるプリプレグの表面近傍のマトリックス樹脂からなる層間領域における強化繊維の分率が小さく、かつ層間領域の両側の強化繊維の配向が異なる場合があるため、層間領域に応力が集中しやすくなる。そのため、繊維強化複合材料の衝撃後圧縮強度等については、層間領域での破壊が支配的となる。したがって、強化繊維の強度を向上させても、繊維強化複合材料の衝撃後圧縮強度等の抜本的な改良には結びつかないことが知られている。特に熱硬化性樹脂組成物の硬化物をマトリックス樹脂とする場合、熱硬化性樹脂組成物の硬化物は、コスト、生産性、耐熱性といった種々の利点を有する一方で、靱性に乏しいという欠点を有するため、繊維強化複合材料の層間領域の靱性も不十分なものとなる。   However, in a fiber-reinforced composite material produced by laminating prepregs, the fraction of reinforcing fibers in the interlayer region made of matrix resin in the vicinity of the surface of the laminated prepreg is small, and the orientation of reinforcing fibers on both sides of the interlayer region The stress tends to be concentrated in the interlayer region because Therefore, regarding the post-impact compressive strength and the like of the fiber-reinforced composite material, breakage in the interlayer region is dominant. Therefore, it is known that improving the strength of the reinforcing fiber does not lead to a drastic improvement such as post-impact compressive strength of the fiber-reinforced composite material. In particular, when a cured product of a thermosetting resin composition is used as a matrix resin, the cured product of the thermosetting resin composition has various advantages such as cost, productivity, and heat resistance, while having a drawback of poor toughness. Because of this, the toughness of the interlayer region of the fiber-reinforced composite material is also insufficient.

層間領域の靱性が向上した繊維強化複合材料としては、例えば、下記のものが提案されている。
(1)層間領域に高靱性なポリアミド等の微粒子を配置した繊維強化複合材料(特許文献1、2)。
(2)層間領域に特定の粒子径分布指数、真球度およびガラス転移温度を有する微粒子を配置し、マトリックス樹脂にエラストマー成分を含ませた特定の繊維強化複合材料(特許文献3)。
(3)層間領域に高靱性なポリアミドの微粒子を配置し特異なモルホロジーを形成させた繊維強化複合材料、および製造方法。(特許文献4、5)。
近年、航空機の構造材、風車のブレード等の大型かつ3次元的な曲面形状を有する部材への繊維強化複合材料の適応が進められている。大型部材や3次元的な曲面形状を有する部材に引張や圧縮の応力が負荷された場合、繊維強化複合材料の層間領域に面外方向への引き剥がし応力が発生する。よって、繊維強化複合材料の層間領域において生じた亀裂の進行を抑制するモードI層間破壊靱性およびモードII層間破壊靱性が重要な特性となっている。
As a fiber-reinforced composite material in which the toughness in the interlayer region is improved, for example, the following ones have been proposed.
(1) A fiber-reinforced composite material in which fine particles of high toughness polyamide or the like are disposed in an interlayer region (Patent Documents 1 and 2).
(2) A specific fiber-reinforced composite material in which fine particles having a specific particle size distribution index, sphericity and glass transition temperature are disposed in an interlayer region, and an elastomer component is contained in a matrix resin (Patent Document 3).
(3) A fiber-reinforced composite material in which fine particles of high-toughness polyamide are disposed in an interlayer region to form a unique morphology, and a manufacturing method. (Patent Documents 4 and 5).
In recent years, the application of fiber reinforced composite materials to members having large and three-dimensional curved surface shapes such as aircraft structural materials and blades of wind turbines has been promoted. When a large-sized member or a member having a three-dimensional curved surface shape is loaded with tensile or compressive stress, an out-of-plane peeling stress is generated in the interlayer region of the fiber-reinforced composite material. Therefore, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness, which suppress the progress of cracks generated in the interlaminar region of the fiber reinforced composite material, are important characteristics.

(1)の繊維強化複合材料においては、モードII層間破壊靱性によって進展する際の層間破壊靱性が高いため、衝撃後圧縮強度が高く、部材表面への落錘衝撃による損傷が抑えられる。しかし、特許文献1の繊維強化複合材料は、成型後の微粒子のモルホロジーや微粒子とマトリックス樹脂組成物との界面性状に関して十分に考慮されておらず、部材の大型化や3次元的な曲面形状のような複雑化に必要なモードI層間破壊靱性およびモードII層間破壊靱性が不十分である。また特許文献2のプリプレグやその繊維強化複合材料の成型方法では、層間領域に配置した微粒子の融点や成型温度により維強化複合材料中の微粒子に関わるモルホロジーを制御している。このため製造条件に制約がかかる。また微粒子とマトリックス樹脂との界面性状に関して十分に考慮されておらず、繊維強化複合材料の層間領域に面外方向への引き剥がし応力により生じた亀裂は微粒子とマトリックス樹脂との界面を進行するため微粒子配置の効果が十分に得ることが出来ず、さらに前記亀裂は微粒子とマトリックス樹脂組成物との界面を進行する際に強化繊維とマトリックス樹脂との界面へ転移していってしまう。
(2)の繊維強化複合材料は、衝撃後圧縮強度の向上に有効なモードII層間破壊靱性および大型化や3次元的な曲面形状のような複雑化に必要なモードI層間破壊靱性が高い。しかし、成型後の微粒子のモルホロジーや微粒子とマトリックス樹脂組成物との界面性状に関して十分に考慮されておらず、繊維強化複合材料の製造条件によっては特許文献2と同様に繊維強化複合材料の層間領域に面外方向への引き剥がし応力により生じた亀裂が層間領域に安定して留まることが出来ないため、微粒子配置の効果が十分に得ることが出来ない。
(3)の特許文献には、層間領域に高靱性なポリアミドの微粒子を配置し特異なモルホロジーを形成させることで、モードI層間破壊靱性およびモードII層間破壊靱性に優れた繊維強化複合材料を製造できる方法が開示されている。しかし、硬化温度や昇温速度等の製造条件に制約がかかり、前記特異なモルホロジーを形成させることができなければ、十分なモードI層間破壊靱性およびモードII層間破壊靱性は発現しない。
In the fiber-reinforced composite material of (1), since the interlaminar fracture toughness at the time of development is high due to the mode II interlaminar fracture toughness, the compressive strength after impact is high, and the damage due to the falling weight impact on the member surface is suppressed. However, the fiber-reinforced composite material of Patent Document 1 is not sufficiently considered with respect to the morphology of fine particles after molding and the interface properties of the fine particles and the matrix resin composition, and the enlargement of the member and the three-dimensional curved surface shape The mode I interlaminar fracture toughness and the mode II interlaminar fracture toughness necessary for such a complication are insufficient. Further, in the method for molding the prepreg of Patent Document 2 and the fiber-reinforced composite material thereof, the morphology related to the fine particles in the fiber-reinforced composite material is controlled by the melting point and the molding temperature of the fine particles arranged in the interlayer region. This imposes restrictions on the manufacturing conditions. In addition, since the interface properties between the fine particles and the matrix resin are not sufficiently considered, cracks generated by the peeling stress in the out-of-plane direction in the interlayer region of the fiber reinforced composite material propagate in the interface between the fine particles and the matrix resin. The effect of the arrangement of the fine particles can not be sufficiently obtained, and furthermore, the crack is transferred to the interface between the reinforcing fiber and the matrix resin when advancing the interface between the fine particles and the matrix resin composition.
The fiber-reinforced composite material of (2) has high mode II interlaminar fracture toughness effective for improving compressive strength after impact and high mode I interlaminar fracture toughness necessary for complication such as enlargement and three-dimensional curved surface shape. However, the morphology of the fine particles after molding and the interface properties of the fine particles and the matrix resin composition are not sufficiently considered, and depending on the production conditions of the fiber reinforced composite material, the interlayer region of the fiber reinforced composite material as in Patent Document 2 Since the cracks generated by the peeling stress in the out-of-plane direction can not stably stay in the interlayer region, the effect of the fine particle arrangement can not be obtained sufficiently.
In the patent document of (3), a fiber-reinforced composite material excellent in mode I interlayer fracture toughness and mode II interlayer fracture toughness is produced by arranging highly tough polyamide fine particles in an interlayer region to form a unique morphology. Methods are disclosed. However, the manufacturing conditions such as the curing temperature and the temperature rise rate are restricted, and sufficient mode I interlaminar fracture toughness and mode II interlaminar fracture toughness can not be exhibited unless the above-mentioned specific morphology can be formed.

特開昭63−162732号公報Japanese Patent Application Laid-Open No. 63-162732 特開2009−286895号公報JP, 2009-286895, A 国際公開第2012/102201号公報International Publication No. 2012/102201 特願2017−206615号公報Japanese Patent Application No. 2017-206615 特開2016−199682号公報JP, 2016-199682, A

本発明は、硬化温度や昇温速度等の製造条件に関わらず、安定してモードI層間破壊靱性およびモードII層間破壊靱性に優れたプリプレグおよび繊維強化複合材料を提供することを目的とする。   An object of the present invention is to provide a prepreg and a fiber-reinforced composite material stably having excellent mode I interlaminar fracture toughness and mode II interlaminar fracture toughness regardless of manufacturing conditions such as a curing temperature and a temperature rise rate.

本発明は以下の態様を有する。
[1] (A)成分、(B)成分および(C)成分を含むプリプレグであって、
前記(A)が強化繊維基材であり、
前記(B)がエポキシ樹脂組成物であり、
前記(C)成分が(c1)成分または(c2)成分であり、
前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、
前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含む、プリプレグ。
[2] 前記(C)成分が前記(c1)成分である、[1]に記載のプリプレグ。
[3] 前記(C)成分が前記(c1)成分であり、
[ポリアミド粒子]:[熱硬化性ポリイミド粒子]で表される質量比が60:40〜95:5である、[1]または[2]に記載のプリプレグ。
[4] 前記(C)成分が前記(c1)成分であり、
前記(c1)成分中のポリアミド粒子の融点が140℃〜175℃である、[1]から[3]のいずれか一項に記載のプリプレグ。
[5] 前記(C)成分が前記(c1)成分であり、
前記(c1)中のポリアミド粒子が結晶性共重合ナイロン粒子である、[1]から[4]のいずれか一項に記載のプリプレグ。
[6] 前記(C)成分が前記(c1)成分であり、
前記(c1)中のポリアミド粒子が、ナイロン12とナイロン6との共重合体からなる真球形状の粒子である、[1]から[4]のいずれか一項に記載のプリプレグ。
[7] 前記(C)成分が前記(c2)成分である、[1]に記載のプリプレグ。
[8] 前記融点140〜175℃のポリアミドの真球形状の粒子が、結晶性共重合ナイロン粒子である、[7]に記載のプリプレグ。
[9] 前記融点140〜175℃のポリアミドの真球形状の粒子が、ナイロン12とナイロン6との共重合体からなる真球形状の粒子である、[7]に記載のプリプレグ。
[10] 前記(C)成分が前記(c2)成分であり、
前記(c2)が、更に熱硬化性ポリイミド粒子を含む、[1]、および[7]から[9]のいずれかに記載のプリプレグ。
[11]
前記(C)成分が前記(c2)成分であり、
前記(c2)が、更に熱硬化性ポリイミド粒子を含み、
前記熱硬化性ポリイミド粒子が、下記一般式(1)または下記一般式(2)の化学構造を含む、[1]、および[7]〜[10]のいずれか一項に記載のプリプレグ。
(式(1)中、Rは2価の連結基を表す。)
[12] 前記(C)成分の70質量%以上が前記(A)成分の表層に存在する、[1]から[11]のいずれか一項に記載のプリプレグ。
[13] 前記(A)成分が強化繊維を含み、前記強化繊維が炭素繊維である、[1]から[12]のいずれか一項に記載のプリプレグ。
[14] 前記(B)成分が、エポキシ樹脂、及び芳香族ポリアミンを含有し、
前記エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含有し、
前記ナフタレン骨格を有するエポキシ樹脂の含有量が、前記エポキシ樹脂の総質量に対し、60〜100質量%である、[1]から[13]のいずれか一項に記載のプリプレグ。
[15] 前記(C)成分の含有量が、前記(B)成分100質量部に対し5〜25質量部である、[1]〜[14]のいずれか一項に記載のプリプレグ。
[16] [1]から[15]のいずれか一項に記載のプリプレグを2枚以上積層し、前記(B)成分の硬化温度以上で加熱してなる繊維強化複合材料。
[17] (A)成分、(B’)成分および(C)成分を含む繊維強化複合材料であって、
前記(A)成分が強化繊維基材であり、
前記(B’)成分がエポキシ樹脂組成物の硬化物であり、
前記(C)成分が(c1)成分又は(c2)成分であり、
前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、
前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含み、
前記(A)成分が複数枚積層されており、かつ前記(C)成分が前記(A)成分の層間に存在する、繊維強化複合材料。
The present invention has the following aspects.
[1] A prepreg comprising a component (A), a component (B) and a component (C),
The above (A) is a reinforcing fiber base,
Said (B) is an epoxy resin composition,
The component (C) is the component (c1) or the component (c2),
The component (c1) contains polyamide particles and thermosetting polyimide particles,
The prepreg in which said (c2) component contains the particle | grains of a true-spherical shape of polyamide of 140-175 degreeC of melting | fusing point.
[2] The prepreg according to [1], wherein the component (C) is the component (c1).
[3] The component (C) is the component (c1),
The prepreg according to [1] or [2], wherein the mass ratio represented by [polyamide particles]: [thermosetting polyimide particles] is 60:40 to 95: 5.
[4] The component (C) is the component (c1),
The prepreg according to any one of [1] to [3], wherein the melting point of the polyamide particles in the component (c1) is 140 ° C. to 175 ° C.
[5] The component (C) is the component (c1),
The prepreg according to any one of [1] to [4], wherein the polyamide particles in (c1) are crystalline copolymerized nylon particles.
[6] The component (C) is the component (c1),
The prepreg according to any one of [1] to [4], wherein the polyamide particles in (c1) are particles of a true sphere shape consisting of a copolymer of nylon 12 and nylon 6.
[7] The prepreg according to [1], wherein the component (C) is the component (c2).
[8] The prepreg according to [7], wherein the spherical particles of polyamide having a melting point of 140 to 175 ° C. are crystalline copolymerized nylon particles.
[9] The prepreg according to [7], wherein the true-spherical particles of polyamide having a melting point of 140 to 175 ° C. are true-spherical particles consisting of a copolymer of nylon 12 and nylon 6.
[10] The component (C) is the component (c2),
The prepreg according to any of [1] and [7] to [9], wherein (c2) further comprises a thermosetting polyimide particle.
[11]
The component (C) is the component (c2),
The above (c2) further contains a thermosetting polyimide particle,
The prepreg according to any one of [1] and [7] to [10], wherein the thermosetting polyimide particles contain a chemical structure of the following general formula (1) or the following general formula (2).
(In formula (1), R represents a divalent linking group.)
[12] The prepreg according to any one of [1] to [11], wherein 70% by mass or more of the component (C) is present in the surface layer of the component (A).
[13] The prepreg according to any one of [1] to [12], wherein the component (A) contains a reinforcing fiber, and the reinforcing fiber is a carbon fiber.
[14] The component (B) contains an epoxy resin and an aromatic polyamine,
The epoxy resin contains an epoxy resin having a naphthalene skeleton,
The prepreg according to any one of [1] to [13], wherein the content of the epoxy resin having a naphthalene skeleton is 60 to 100% by mass with respect to the total mass of the epoxy resin.
[15] The prepreg according to any one of [1] to [14], wherein the content of the component (C) is 5 to 25 parts by mass with respect to 100 parts by mass of the component (B).
[16] A fiber-reinforced composite material obtained by laminating two or more sheets of the prepreg according to any one of [1] to [15] and heating the same at a curing temperature of the component (B) or more.
[17] A fiber-reinforced composite material comprising the (A) component, the (B ') component and the (C) component,
The component (A) is a reinforcing fiber base,
The component (B ') is a cured product of an epoxy resin composition,
The component (C) is the component (c1) or the component (c2),
The component (c1) contains polyamide particles and thermosetting polyimide particles,
The component (c2) includes particles of a true sphere shape of polyamide having a melting point of 140 to 175 ° C.,
A fiber reinforced composite material, wherein a plurality of the component (A) is laminated, and the component (C) is present between layers of the component (A).

[18] 前記(B)成分が、エポキシ樹脂を含有し、
前記エポキシ樹脂が、オキサゾリドン環骨格を有するエポキシ樹脂を含有する、[1]から[15]のいずれか一項に記載のプリプレグ。
[19] 前記オキサゾリドン環骨格を有するエポキシ樹脂の割合は、前記(B)成分中の前記エポキシ樹脂100質量%に対し、10〜40質量%である、[18]に記載のプリプレグ。
[20] 前記(B)成分が、芳香族ポリアミンを含有し、
前記芳香族ポリアミンが4,4’−ジアミノジフェニルスルホンである、[1]から[15]、[18]、及び[19]のいずれか一項に記載のプリプレグ。
[21] 前記(B)成分が、エポキシ樹脂を含有し、
前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び3官能以上のエポキシ樹脂からなる群から選択される少なくとも1種のエポキシ樹脂を含む、[1]から[15]、および[18]から[20]に記載のプリプレグ。
[18] The component (B) contains an epoxy resin,
The prepreg according to any one of [1] to [15], wherein the epoxy resin contains an epoxy resin having an oxazolidone ring skeleton.
[19] The prepreg according to [18], wherein the proportion of the epoxy resin having an oxazolidone ring skeleton is 10 to 40% by mass with respect to 100% by mass of the epoxy resin in the component (B).
[20] The component (B) contains an aromatic polyamine,
The prepreg according to any one of [1] to [15], [18], and [19], wherein the aromatic polyamine is 4,4′-diaminodiphenyl sulfone.
[21] The component (B) contains an epoxy resin,
[1] to [15], and [1], wherein the epoxy resin comprises at least one epoxy resin selected from the group consisting of bisphenol A epoxy resin, bisphenol F epoxy resin, and trifunctional or higher epoxy resin. The prepreg as described in 18] to [20].

本発明によれば、硬化温度や昇温速度等の製造条件に関わらず、安定してモードI層間破壊靱性およびモードII層間破壊靱性に優れたプリプレグおよび繊維強化複合材料を提供することができる。   According to the present invention, it is possible to provide a prepreg and a fiber-reinforced composite material stably having excellent mode I interlaminar fracture toughness and mode II interlaminar fracture toughness regardless of manufacturing conditions such as a curing temperature and a temperature rising rate.

DCB試験における繊維強化複合材料の破面SEM像((C)成分の界面が露出している様相)である。It is a torn surface SEM image (The aspect which the interface of (C) component is exposed) of the fiber reinforced composite material in a DCB test. DCB試験における繊維強化複合材料の破面SEM像((C)成分の界面が露出していない様相)である。It is a torn surface SEM image (the aspect in which the interface of (C) component is not exposed) of the fiber reinforced composite material in a DCB test. 実施例で用いた評価用成型板の平面図である。It is a top view of the molding board for evaluation used in the Example.

以下に、本発明の一実施形態に係る繊維強化複合材料、およびその製造方法についてより詳細に説明する。
本発明のプリプレグは、下記(A)成分、(B)成分および(C)成分を含むプリプレグである。
(A)成分:強化繊維基材
(B)成分:エポキシ樹脂組成物
(C)成分:(c1)成分又は(c2)成分であり、前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子を含み、前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含む。
また、本発明の繊維強化複合材料は、上記(A)成分、(B’)成分の硬化物および(C)成分を含む繊維強化複合材料であって、(A)成分が複数枚積層されており、かつ(C)成分が(A)成分の表層に存在する、繊維強化複合材料である。
更に本発明の繊維強化複合材料は、上記のプリプレグの2枚以上が積層された積層体の硬化物である。
Hereinafter, the fiber-reinforced composite material according to an embodiment of the present invention, and the method for producing the same will be described in more detail.
The prepreg of the present invention is a prepreg containing the following components (A), (B) and (C).
(A) Component: Reinforcing Fiber Base Material (B) Component: Epoxy Resin Composition (C) Component: Component (c1) or Component (c2), wherein Component (c1) is a polyamide particle and a thermosetting polyimide particle (C2) component contains the particle | grains of a true-spherical shape of the polyamide of melting | fusing point 140-175 degreeC.
The fiber-reinforced composite material of the present invention is a fiber-reinforced composite material including the cured product of the component (A), the cured product of the component (B ') and the component (C), and a plurality of the component (A) is laminated And a fiber-reinforced composite material in which the component (C) is present in the surface layer of the component (A).
Furthermore, the fiber reinforced composite material of the present invention is a cured product of a laminate in which two or more of the above prepregs are laminated.

<定義>
本発明および本発明に関する説明において使用する用語は、以下の通りである。
「結晶性ポリアミド樹脂」とは、示差走査熱量測定(以下、DSCと記載する。)において融点が現れる樹脂のことを意味する。
「非晶性ポリアミド樹脂」とは、DSCにおいて融点が現れない樹脂のことを意味する。
・「層間」とはプリプレグを積層して製造された繊維強化複合材料において、積層されるプリプレグとプリプレグとの境界近傍の強化繊維の分率が小さくなっている領域を意味する。
「真球形状の粒子」とは、真球状の粒子とは、走査型電子顕微鏡(日本電子社製、JSM−6390)を用い、無作為に選ばれた10個の粒子について短径および長径を測定し、当該10個の粒子の長径に対する短径の比(短径/長径)の平均値が0.95以上である粒子のことを指す。
「融点」は、以下のように得られた結晶性樹脂のDSC曲線の融解ピーク温度である。結晶性樹脂を、室温から、推測される融点よりも約30℃高い温度まで、10℃/分で加熱し、推測される融点よりも約30℃高い温度にて10分間保った。次に結晶性樹脂を、推測される融点よりも約50℃低い温度まで10℃/分で冷却した。そして結晶性樹脂を、推測される融点よりも約30℃高い温度まで10℃/分で加熱した。
「ガラス転移温度」は、以下の通り非結晶性樹脂のDSC測定から求めた中間点ガラス転移温度である。非晶性樹脂を、室温から、推測されるガラス転移温度よりも約30℃高い温度まで、10℃/分で加熱し、推測されるガラス転移温度よりも約30℃高い温度にて10分間保った。非晶性樹脂を、推測されるガラス転移温度よりも約50℃低い温度まで急冷した非晶性樹脂を、推測されるガラス転移温度よりも約30℃高い温度まで20℃/分で加熱した。得られたDSC曲線のガラス転移温度に伴うベースラインの転移箇所において、低温側のベースラインを延長した直線と高温側のベースラインを延長した直線とから縦軸方向に等距離にある直線とベースラインの転移部分の曲線が交わる点をガラス転移温度とした。
「平均粒子径」は、粒子径分布測定によって得られた体積基準による累積分布において累積頻度50%にあたる粒子径(D50)のことを意味する。
「エポキシ樹脂」とは、分子内に2つ以上のエポキシ基を有する化合物のことを意味する。
「層間破壊靱性」とは、単位面積辺りの層間剥離亀裂を生じる際に必要なエネルギーの限界値のことを意味する。
「GIC」とは、亀裂進展初期のモードI層間破壊靱性値のことを意味する。
「GIIC」とは、亀裂進展初期のモードII層間破壊靱性値のことを意味する。
「モードI」とは、亀裂開口変位の方向が各々亀裂面に対して垂直な(開口形)変形モードのことを意味する。
「モードII」とは、亀裂開口変位の方向が亀裂面に平行で、亀裂前縁に垂直な(縦せん断形)変形モードのことを意味する。
「亀裂開口変位」とは、亀裂上下面の相対的変位をいう。
<Definition>
The terms used in the present invention and in the description of the present invention are as follows.
The "crystalline polyamide resin" means a resin whose melting point appears in differential scanning calorimetry (hereinafter referred to as DSC).
"Amorphous polyamide resin" means a resin whose melting point does not appear in DSC.
"Interlayer" means a region in the fiber-reinforced composite material produced by laminating prepregs, in which the fraction of reinforcing fibers in the vicinity of the boundary between the laminated prepreg and the prepreg is small.
The term "spherical-shaped particles" means that the spherical particles have a minor axis and a major axis for 10 randomly selected particles using a scanning electron microscope (JSM-6390, manufactured by Nippon Denshi Co., Ltd.) It refers to particles that are measured, and the mean value of the ratio of the minor diameter to the major diameter of the ten particles (minor diameter / major diameter) is 0.95 or more.
The "melting point" is the melting peak temperature of the DSC curve of the crystalline resin obtained as follows. The crystalline resin was heated at 10 ° C./min from room temperature to about 30 ° C. above the expected melting point and held for 10 minutes at about 30 ° C. above the expected melting point. The crystalline resin was then cooled at 10 ° C./min to a temperature about 50 ° C. below the expected melting point. The crystalline resin was then heated at 10 ° C./min to a temperature about 30 ° C. above the expected melting point.
The "glass transition temperature" is the midpoint glass transition temperature determined from the DSC measurement of the non-crystalline resin as follows. The amorphous resin is heated at 10 ° C./min from room temperature to about 30 ° C. higher than the estimated glass transition temperature, and kept at about 30 ° C. higher than the estimated glass transition temperature for 10 minutes The The amorphous resin was quenched at a temperature of about 50 ° C. lower than the estimated glass transition temperature, and the amorphous resin was heated at a rate of 20 ° C./min to a temperature about 30 ° C. higher than the estimated glass transition temperature. At the transition point of the baseline according to the glass transition temperature of the obtained DSC curve, a straight line and a base that are equidistant in the vertical axis direction from the straight line extending the low temperature side baseline and the straight line extending the high temperature side baseline The point at which the curves of the transition portions of the line intersect is taken as the glass transition temperature.
The “average particle size” means a particle size (D50) corresponding to a cumulative frequency of 50% in a volume-based cumulative distribution obtained by particle size distribution measurement.
"Epoxy resin" means a compound having two or more epoxy groups in the molecule.
"Interlaminar fracture toughness" means the limit value of energy required to cause delamination cracks around a unit area.
"GIC" means Mode I interlaminar fracture toughness value at the early stage of crack growth.
"GIIC" means the mode II interlaminar fracture toughness value at the early stage of crack growth.
"Mode I" means a (opening) deformation mode in which the direction of crack opening displacement is each perpendicular to the crack plane.
"Mode II" means a (longitudinal shear form) deformation mode in which the direction of crack opening displacement is parallel to the crack plane and perpendicular to the crack front edge.
"Crack opening displacement" refers to the relative displacement of the upper and lower surfaces of the crack.

<繊維強化複合材料>
本発明の一実施形態に係る繊維強化複合材料は、特定の条件を満たす2つ以上のプリプレグを積層して硬化させてなる繊維強化複合材料である。
<Fiber-reinforced composite material>
The fiber reinforced composite material according to an embodiment of the present invention is a fiber reinforced composite material formed by laminating and curing two or more prepregs that satisfy a specific condition.

<プリプレグ>
プリプレグは、(A)成分、(B)成分、および(C)成分を含む。
Prepreg
The prepreg contains (A) component, (B) component, and (C) component.

((A)成分)
(A)成分は、強化繊維基材であり、シート状であることが好ましい。強化繊維基材は、強化繊維が単一方向に配列したものであってもよく、ランダム方向に配列したものであってもよい。
(A)成分の形態としては強化繊維の織物、および不織布、並びに強化繊維の長繊維が一方向に引き揃えられたシート等が挙げられる。
(A)成分は、比強度や比弾性率が高い繊維強化複合材料を成形することができるという観点からは、長繊維が単一方向に引き揃えられた強化繊維の束からなるシートであることが好ましく、取り扱いが容易であるという観点からは、強化繊維の織物であることが好ましい。
((A) ingredient)
The component (A) is a reinforcing fiber base and is preferably in the form of a sheet. The reinforcing fiber base may be one in which reinforcing fibers are arranged in a single direction, or one in which they are arranged in a random direction.
Examples of the form of the component (A) include a woven fabric of a reinforcing fiber, a nonwoven fabric, and a sheet in which long fibers of the reinforcing fiber are aligned in one direction.
Component (A) is a sheet comprising a bundle of reinforcing fibers in which long fibers are aligned in a single direction from the viewpoint of being able to form a fiber-reinforced composite material having a high specific strength and a high specific elastic modulus. Are preferred, and in view of ease of handling, it is preferable to be a woven fabric of reinforcing fibers.

強化繊維は、長繊維であってもよく、前記長繊維はストランド状であってもよい。また、強化繊維は、粉砕されていてもよく(ミルド)、長繊維、またはそのストランドが切断されたものであってもよい(チョップド)。
強化繊維の材質としては、ガラス繊維、炭素繊維(黒鉛繊維を包含する。)、アラミド繊維、およびボロン繊維等が挙げられる。強化繊維基材は、繊維強化複合材料の機械的物性および軽量化の観点から、炭素繊維基材が好ましい。
The reinforcing fibers may be long fibers, and the long fibers may be in the form of strands. Also, the reinforcing fibers may be crushed (milled), long fibers, or strands of which have been cut (chopped).
Examples of the material of the reinforcing fiber include glass fiber, carbon fiber (including graphite fiber), aramid fiber, and boron fiber. The reinforcing fiber base is preferably a carbon fiber base from the viewpoint of mechanical properties and weight reduction of the fiber-reinforced composite material.

炭素繊維のASTM D4018に準拠した引張強度は、3500MPa以上であることが好ましく、5000MPa以上であることがより好ましく、6000MPa以上であることがさらに好ましい。引張弾性率は150GPa以上であることが好ましく、200GPa以上であることがより好ましく、250GPa以上であることがさらに好ましい。   The tensile strength of the carbon fiber according to ASTM D4018 is preferably 3500 MPa or more, more preferably 5000 MPa or more, and still more preferably 6000 MPa or more. The tensile modulus of elasticity is preferably 150 GPa or more, more preferably 200 GPa or more, and still more preferably 250 GPa or more.

例えば、航空機の構造材として、一実施形態に係る繊維強化複合材料を用いる場合、前記繊維強化複合材料に用いられる炭素繊維は、ストランド強度が高いものであることが好ましく、炭素繊維のASTM D4018に準拠したストランド強度は、6000MPa以上であることが好ましい。   For example, when using a fiber reinforced composite material according to one embodiment as a structural material of an aircraft, it is preferable that carbon fibers used for the fiber reinforced composite material have high strand strength, according to ASTM D4018 of carbon fiber. The compliant strand strength is preferably 6000 MPa or more.

炭素繊維の繊維径は、3μm以上であることが好ましく、12μm以下であることが好ましい。炭素繊維の繊維径が3μm以上であれば、炭素繊維を加工するための、例えば、コーム、ロール等のプロセスにおいて、炭素繊維が横移動して炭素繊維同士が擦れたり、炭素繊維とロール表面等とが擦れたりするときに、炭素繊維が切断したり、毛羽だまりが生じたりしにくい。このため、安定した強度の繊維強化複合材料を好適に製造することができる。また、炭素繊維の繊維径が12μm以下であれば、通常の方法で炭素繊維を製造することができる。つまり、炭素繊維の繊維径は、3〜12μmであることが好ましい。
炭素繊維束における炭素繊維の本数は、1,000〜70,000本が好ましい。
The fiber diameter of the carbon fiber is preferably 3 μm or more, and preferably 12 μm or less. If the fiber diameter of carbon fibers is 3 μm or more, carbon fibers move laterally and carbon fibers are rubbed, for example, in a process for processing carbon fibers, such as combs, rolls, etc., carbon fibers and roll surfaces, etc. It is difficult for carbon fibers to cut or fuzz when rubs with one another. For this reason, the fiber reinforced composite material of the stable intensity | strength can be manufactured suitably. Moreover, if the fiber diameter of carbon fiber is 12 micrometers or less, carbon fiber can be manufactured by a normal method. That is, it is preferable that the fiber diameter of carbon fiber is 3-12 micrometers.
The number of carbon fibers in the carbon fiber bundle is preferably 1,000 to 70,000.

((B)成分)
(B)成分は、エポキシ樹脂組成物である。
(B)成分は、エポキシ樹脂およびエポキシ樹脂の硬化剤を含むことが好ましい。(B)成分は、必要に応じてエポキシ樹脂および硬化剤以外の他の成分を含んでもよい。
((B) ingredient)
Component (B) is an epoxy resin composition.
The component (B) preferably contains an epoxy resin and a curing agent for the epoxy resin. The component (B) may optionally contain other components other than the epoxy resin and the curing agent.

エポキシ樹脂:
エポキシ樹脂としては、通常、分子内に2つ以上のエポキシ基を有する2官能以上のエポキシ樹脂が用いられる。エポキシ樹脂としては、(B)成分の硬化物の耐熱性、剛性を維持したまま、靱性を向上できる点からは、オキサゾリドン環骨格を有するエポキシ樹脂が好ましい。
Epoxy resin:
As the epoxy resin, a bifunctional or more epoxy resin having two or more epoxy groups in the molecule is usually used. As the epoxy resin, an epoxy resin having an oxazolidone ring skeleton is preferable from the viewpoint that the toughness can be improved while maintaining the heat resistance and the rigidity of the cured product of the component (B).

エポキシ樹脂としては、比較低粘度であり、かつ(B)成分の硬化物の耐熱性、靱性等の特性に悪影響を与えない点からは、25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂のいずれか一方または両方が好ましい。   As epoxy resin, bisphenol A type epoxy resin which is liquid at 25 ° C. and 25 ° C., from the point that it has relatively low viscosity and does not adversely affect the heat resistance, toughness and other properties of the cured product of component (B). One or both of the liquid bisphenol F-type epoxy resins are preferred.

エポキシ樹脂としては、(B)成分の硬化物に靱性を付与する点からは、25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂のいずれか一方または両方が好ましい。   The epoxy resin is preferably either one or both of bisphenol A epoxy resin solid at 25 ° C. and bisphenol F epoxy resin solid at 25 ° C. from the viewpoint of imparting toughness to the cured product of component (B) .

エポキシ樹脂としては、(B)成分の硬化物の耐熱性の向上の点からは、分子内に3つ以上のエポキシ基を有する3官能以上のエポキシ樹脂が好ましい。   The epoxy resin is preferably a trifunctional or more epoxy resin having three or more epoxy groups in the molecule from the viewpoint of improving the heat resistance of the cured product of the component (B).

オキサゾリドン環骨格を有するエポキシ樹脂:
オキサゾリドン環骨格を有するエポキシ樹脂は、ウレタン変性エポキシ樹脂またはイソシアネート変性エポキシ樹脂とも呼ばれる。オキサゾリドン環骨格を有するエポキシ樹脂の市販品としては、DIC社製のEPICLON(登録商標)TSR−400、新日鉄住金化学社製のエポトート(登録商標)YD−952、DOW社製のD.E.R.(登録商標)858、旭化成イーマテリアルズ社製のLSA3301等が挙げられる。
Epoxy resin having oxazolidone ring skeleton:
The epoxy resin having an oxazolidone ring skeleton is also referred to as a urethane-modified epoxy resin or an isocyanate-modified epoxy resin. Commercial products of the epoxy resin having an oxazolidone ring skeleton include EPICLON (registered trademark) TSR-400 manufactured by DIC, Epototh (registered trademark) YD-952 manufactured by Nippon Steel Sumikin Chemical Co., Ltd., and D. E. R. (Registered trademark) 858, LSA 3301 manufactured by Asahi Kasei E-Materials, and the like.

オキサゾリドン環骨格を有するエポキシ樹脂の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、5〜70質量%が好ましく、10〜60質量%がより好ましい。オキサゾリドン環骨格を有するエポキシ樹脂の割合が前記範囲の下限値以上であれば、(B)成分の硬化物の耐熱性、剛性を十分に維持したまま、靱性を十分に向上できる。オキサゾリドン環骨格を有するエポキシ樹脂の割合が前記範囲の上限値以下であれば、(B)成分の粘度が高くなりすぎないため、(B)成分の取扱性がよく、プリプレグの作製が容易であり、プリプレグのタック性およびドレープ性がよくなる。   5-70 mass% is preferable with respect to 100 mass% of all the epoxy resins in (B) component, and, as for the ratio of the epoxy resin which has oxazolidone ring frame, 10-60 mass% is more preferable. If the proportion of the epoxy resin having an oxazolidone ring skeleton is at least the lower limit value of the above range, the toughness can be sufficiently improved while sufficiently maintaining the heat resistance and the rigidity of the cured product of the component (B). If the proportion of the epoxy resin having an oxazolidone ring skeleton is not more than the upper limit value of the above range, the viscosity of the component (B) does not become too high, so that the handleability of the component (B) is good and the preparation of the prepreg is easy. , The tackiness and the drapability of the prepreg are improved.

ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂:
固形であるオキサゾリドン環骨格を有するエポキシ樹脂を用いた場合、(B)成分の粘度が高くなるため、25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂のいずれか一方または両方と併用することが好ましい。
Bisphenol A Epoxy Resin and Bisphenol F Epoxy Resin:
When an epoxy resin having a solid oxazolidone ring skeleton is used, the viscosity of the component (B) increases, so either a bisphenol A epoxy resin liquid at 25 ° C. or a bisphenol F epoxy resin liquid at 25 ° C. It is preferable to use one or both in combination.

25℃で液状のビスフェノールF型エポキシ樹脂は、25℃で液状のビスフェノールA型エポキシ樹脂に比べやや耐熱性が劣るものの、液状のビスフェノールA型エポキシ樹脂よりも低粘度であり、かつ(B)成分の硬化物に比較的高い弾性率を付与できる点か
ら好ましい。
Although the bisphenol F-type epoxy resin liquid at 25 ° C. is slightly inferior in heat resistance to the bisphenol A-type epoxy resin liquid at 25 ° C., the viscosity is lower than that of the liquid bisphenol A-type epoxy resin, and the component (B) is It is preferable from the point which can give comparatively high elasticity modulus to hardened | cured material of 1 ..

25℃で液状のビスフェノールA型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)828、DOW社製のD.E.R.(登録商標)331、新日鉄住金化学社製のエポトート(登録商標)YD−128、DIC社製のEPICLON(登録商標)850等が挙げられる。   As commercially available products of bisphenol A type epoxy resin which is liquid at 25 ° C., jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corp., D. E. R. (Registered trademark) 331, Epotote (registered trademark) YD-128 manufactured by Nippon Steel Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 850 manufactured by DIC Corporation, and the like.

25℃で液状のビスフェノールF型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)807、DOW社製のD.E.R.(登録商標)354、新日鉄住金化学社製のエポトート(登録商標)YD−170、DIC社製のEPICLON(登録商標)830等が挙げられる。   As commercially available products of bisphenol F-type epoxy resin which is liquid at 25 ° C., jER (registered trademark) 807 manufactured by Mitsubishi Chemical Corp., D. E. R. (Registered trademark) 354, Epototh (registered trademark) YD-170 manufactured by Nippon Steel Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 830 manufactured by DIC, and the like.

25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂の合計の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、10〜80質量%が好ましく、20〜60質量%がより好ましい。25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂の合計の割合が前記範囲の下限値以上であれば、(B)成分を適当な粘度とすることができ、(B)成分の取扱性を向上させたり、(A)成分への含浸を容易にしたりすることができる。25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂の合計の割合が前記範囲の上限値以下であれば、(B)成分の粘度が過度に低くなることを抑制でき、(B)成分を(A)成分へ含浸させて作製されたプリプレグを加熱して硬化させる際に多量の(B)成分が系外に流れ出ることを抑制することができ、繊維強化複合材料の形状や機械特性に悪影響を及ぼす可能性を防ぐことができる。   The total proportion of bisphenol A epoxy resin liquid at 25 ° C. and bisphenol F epoxy resin liquid at 25 ° C. is preferably 10 to 80% by mass with respect to 100% by mass of all epoxy resins in component (B), 20-60 mass% is more preferable. If the total proportion of the bisphenol A epoxy resin liquid at 25 ° C. and the bisphenol F epoxy resin liquid at 25 ° C. is equal to or more than the lower limit of the above range, the component (B) can have an appropriate viscosity The handleability of the component (B) can be improved, and the impregnation into the component (A) can be facilitated. If the ratio of the total of bisphenol A epoxy resin liquid at 25 ° C. and bisphenol F epoxy resin liquid at 25 ° C. is not more than the upper limit value of the above range, the viscosity of component (B) is prevented from becoming excessively low. Can be prevented, when a prepreg prepared by impregnating the component (B) into the component (A) is heated and cured, a large amount of the component (B) can be prevented from flowing out of the system, and a fiber-reinforced composite material The possibility of adversely affecting the shape and mechanical characteristics of the

25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂は、25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂に比べ、耐熱性がやや低下するものの、(B)成分の粘度調整や(B)成分の硬化物に靱性を付与することができる。   The bisphenol A type epoxy resin solid at 25 ° C and the bisphenol F type epoxy resin solid at 25 ° C have heat resistance compared to bisphenol A type epoxy resin liquid at 25 ° C and bisphenol F type epoxy resin liquid at 25 ° C. Although slightly reduced, it is possible to impart toughness to the viscosity control of the component (B) and the cured product of the component (B).

25℃で固形のビスフェノールF型エポキシ樹脂は、25℃で固形のビスフェノールA型エポキシ樹脂に比べやや耐熱性が劣るものの、(B)成分の硬化物に比較的高い弾性率を付与できる点から好ましい。   Although bisphenol F-type epoxy resin solid at 25 ° C. is slightly inferior in heat resistance to bisphenol A-type epoxy resin solid at 25 ° C., it is preferable from the viewpoint that relatively high elastic modulus can be given to the cured product of component (B). .

25℃で固形のビスフェノールA型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)1001、jER(登録商標)1002、jER(登録商標)1003、jER(登録商標)1004、新日鉄住金化学社製のエポトート(登録商標)YD−903、DIC社製のEPICLON(登録商標)1050、EPICLON(登録商標)2050、EPICLON(登録商標)3050、EPICLON(登録商標)4050等が挙げられる。   Commercial products of bisphenol A type epoxy resin solid at 25 ° C. include jER (registered trademark) 1001, jER (registered trademark) 1002, jER (registered trademark) 1003, jER (registered trademark) 1004, Nippon Steel Corp. Epototh (registered trademark) YD-903 manufactured by Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 1050 manufactured by DIC, EPICLON (registered trademark) 2050, EPICLON (registered trademark) 3050, EPICLON (registered trademark) 4050 and the like.

25℃で固形のビスフェノールF型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)4004P、jER(登録商標)4005P、jER(登録商標)4007P、jER(登録商標)4010P、新日鉄住金化学社製のエポトート(登録商標)YD−2001、エポトート(登録商標)YD−2004等が挙げられる。   Commercial products of bisphenol F-type epoxy resin solid at 25 ° C. include jER (registered trademark) 4004 P, jER (registered trademark) 4005 P, jER (registered trademark) 4007 P, jER (registered trademark) 4010 P, manufactured by Mitsubishi Chemical Corporation, Nippon Steel Epototh (registered trademark) YD-2001 manufactured by Sumikin Chemical Co., Ltd., Epototh (registered trademark) YD-2004, and the like.

25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂の合計の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、1〜60質量%が好ましく、5〜40質量%がより好ましい。25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂の合計の割合が前記範囲の下限値以上であれば、(B)成分の硬化物に靱性を十分に付与できる。25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂の合計の割合が前記範囲の上限値以下であれば、(B)成分の粘度が過度に高くなることを抑制することができ、(B)成分の取扱性の悪化や(A)成分への含浸が困難となることを抑制することができる。   The total proportion of bisphenol A epoxy resin solid at 25 ° C. and bisphenol F epoxy resin solid at 25 ° C. is preferably 1 to 60 mass% with respect to 100 mass% of all epoxy resins in the component (B), 5-40 mass% is more preferable. If the total proportion of bisphenol A epoxy resin solid at 25 ° C. and bisphenol F epoxy resin solid at 25 ° C. is at least the lower limit of the above range, sufficient toughness can be imparted to the cured product of component (B) . If the ratio of the total of bisphenol A epoxy resin solid at 25 ° C. and bisphenol F epoxy resin solid at 25 ° C. is not more than the upper limit value of the above range, the viscosity of component (B) is prevented from becoming excessively high. It is possible to prevent the deterioration of the handleability of the component (B) and the difficulty in impregnating the component (A).

3官能以上のエポキシ樹脂:
3官能のエポキシ樹脂としては、トリアジン骨格含有エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂等が挙げられる。
Trifunctional or higher epoxy resin:
Examples of the trifunctional epoxy resin include triazine skeleton-containing epoxy resin, aminophenol type epoxy resin, aminocresol type epoxy resin and the like.

4官能以上のエポキシ樹脂としては、ジアミノジフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂等が挙げられる。   Examples of the tetrafunctional or higher epoxy resin include diaminodiphenylmethane epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, and aromatic glycidyl amine epoxy resin.

3官能以上のエポキシ樹脂の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、50質量%未満であることが好ましく、5〜40質量%であることがより好ましい。3官能以上のエポキシ樹脂の割合が前記範囲であれば、(B)成分の反応性を適切な範囲とすることができ、かつ硬化したマトリックス樹脂組物の耐熱性を向上させることもできる。(B)成分の反応性が適切な範囲であると、後述の(C)成分、特に(C)成分と(B)成分との界面の接着が弱くなりすぎることを防ぎ、(C)成分配合による繊維強化複合材料への優れた層間破壊靱性を付与効果が十分に発現できる。またさらに3官能以上のエポキシ樹脂の割合が前記範囲であれば、(B)成分の硬化物の架橋密度が過度に高くなることを抑制でき、(B)成分の硬化物の靭性が著しく低下することも抑制できる。   The proportion of the trifunctional or higher epoxy resin is preferably less than 50% by mass, and more preferably 5 to 40% by mass, with respect to 100% by mass of all epoxy resins in the component (B). If the proportion of the trifunctional or higher epoxy resin is in the above range, the reactivity of the component (B) can be made into an appropriate range, and the heat resistance of the cured matrix resin composition can also be improved. If the reactivity of the component (B) is in an appropriate range, the adhesion of the interface between the component (C) described later, particularly the component (C) and the component (B) is prevented from becoming too weak, and the component (C) is blended. The effect of imparting excellent interlaminar fracture toughness to the fiber-reinforced composite material can be sufficiently exhibited. Furthermore, if the ratio of the trifunctional or higher functional epoxy resin is in the above range, it can be suppressed that the crosslink density of the cured product of the component (B) is excessively high, and the toughness of the cured product of the component (B) is significantly reduced. Can also be suppressed.

3官能のエポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)630、HUNTSMAN製のAraldite(登録商標)MY0500、MY0510、MY0600、MY0610、日産化学社製のTEPIC(登録商標)−G、−S、−SP、−VL等が挙げられる。また4官能以上のエポキシ樹脂の市販品としては、三菱化学社製のjER(登録商標)604、152、154、HUNTSMAN製のAraldite(登録商標)MY720、新日鐵住金化学製のYH434L、YDPN−638、YDCN−700−7、DIC社製のEPICLON(登録商標)N−740、N−770、N−775等が挙げられる。
中でもアミノフェノール型エポキシ樹脂である三菱ケミカル社製のjER(登録商標)630、HUNTSMAN製のAraldite(登録商標)MY0500、MY0510、MY0600、MY0610やジアミノジフェニルメタン型エポキシ樹脂である三菱化学社製のjER(登録商標)604、HUNTSMAN製のAraldite(登録商標)MY720、新日鐵住金化学製のYH434Lは、配合することでマトリックス樹脂組成物の粘度を大きく上げることなく、硬化したマトリックス樹脂の耐熱性や弾性率を上げることができるため好ましく、さらにジアミノジフェニルメタン型エポキシ樹脂は上記の点に加え、硬化したマトリックス樹脂の吸水率を過度に上げることが無いためより好ましい。
Commercial products of trifunctional epoxy resin include jER (registered trademark) 630 manufactured by Mitsubishi Chemical Corporation, Araldite (registered trademark) MY0500, MY 0510, MY 0600, MY 0610 manufactured by HUNTSMAN, TEPIC (registered trademark) manufactured by Nissan Chemical Industries, Ltd. G, -S, -SP, -VL and the like can be mentioned. Commercial products of tetrafunctional or higher epoxy resins include jER (registered trademark) 604, 152, 154 manufactured by Mitsubishi Chemical Corporation, Araldite (registered trademark) MY720 manufactured by HUNTSMAN, YH434L manufactured by Nippon Steel & Sumikin Chemical, YDPN- 638, YDCN-700-7, EPICLON (registered trademark) N-740, N-770, N-775 and the like manufactured by DIC.
Among them, jER (registered trademark) 630 made by Mitsubishi Chemical Co., Ltd., which is an aminophenol type epoxy resin, Araldite (registered trademark) MY0500, MY 0510, MY 0600, MY 0610 made by HUNTSMAN or jER manufactured by Mitsubishi Chemical Co., Ltd. Registered trademark 604, Araldite (registered trademark) MY720 manufactured by HUNTSMAN, and YH 434L manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., by blending, the heat resistance and elasticity of the cured matrix resin without largely increasing the viscosity of the matrix resin composition. In addition to the above-mentioned point, diaminodiphenylmethane type epoxy resin is more preferable because it can increase the rate, and in addition, it does not excessively increase the water absorption of the cured matrix resin.

他のエポキシ樹脂:
(B)成分は、必要に応じて、ビスフェノールS型、ナフタレン型、ジシクロペンタジエン型、レゾルシン型、ヒドロキノン型、ビスフェノキシエタノールフルオレン型、ビスフェノールフルオレン型、ビスクレゾールフルオレン型エポキシ樹脂等の他のエポキシ樹脂を含んでいてもよい。
Other epoxy resin:
The component (B) is, if necessary, another epoxy resin such as bisphenol S type, naphthalene type, dicyclopentadiene type, resorcinol type, hydroquinone type, bisphenoxyethanol fluorene type, bisphenol fluorene type, biscresol fluorene type epoxy resin, etc. May be included.

硬化剤:
硬化剤は、エポキシ樹脂を硬化させ得るものであればよい。
Hardener:
The curing agent may be any one that can cure the epoxy resin.

硬化剤としては、アミン、酸無水物(カルボン酸無水物)、フェノール(ノボラック樹脂等)、メルカプタン、ルイス酸アミン錯体、オニウム塩、イミダゾール等が挙げられる。エポキシ樹脂硬化剤としては、(B)成分の硬化物の耐熱性および靱性に優れる点から、芳香族ポリアミンが好ましく、ジアミノジフェニルスルホンがより好ましい。   Examples of the curing agent include amines, acid anhydrides (carboxylic acid anhydrides), phenols (novolak resins etc.), mercaptans, Lewis acid amine complexes, onium salts, imidazoles and the like. The epoxy resin curing agent is preferably an aromatic polyamine, and more preferably diaminodiphenyl sulfone, from the viewpoint of the excellent heat resistance and toughness of the cured product of the component (B).

硬化剤の添加量は、硬化剤の種類によって異なる。硬化剤がジアミノジフェニルスルホンである場合、ジアミノジフェニルスルホンの添加量は、エポキシ樹脂のエポキシ基1当量に対してジアミノジフェニルスルホンの活性水素当量数が0.9〜1.5倍となる量が好ましく、1.1〜1.3倍となる量がより好ましい。ジアミノジフェニルスルホンの添加量が前記範囲内であれば、(B)成分の硬化物の耐熱性および靱性がさらに優れる。   The amount of curing agent added varies depending on the type of curing agent. When the curing agent is diamino diphenyl sulfone, the amount of diamino diphenyl sulfone added is preferably such that the number of active hydrogen equivalents of diamino diphenyl sulfone is 0.9 to 1.5 times that of one equivalent of the epoxy group of the epoxy resin. An amount of 1.1 to 1.3 times is more preferable. If the addition amount of diaminodiphenyl sulfone is within the above range, the heat resistance and toughness of the cured product of the component (B) are further excellent.

3,3’−ジアミノジフェニルスルホンは、4,4’−ジアミノジフェニルスルホンと比較して、より高弾性の硬化物を得ることができるが、硬化物の耐熱性の面は劣ったり、後述の(C)成分、特に(C)成分と(B)成分との界面の接着が弱くなり、繊維強化複合材料の層間破壊靱性が低下したりする場合もある。4,4’−ジアミノジフェニルスルホンは、3,3’−ジアミノジフェニルスルホンと比較して、得られる硬化物の弾性が劣るが、硬化物の耐熱性に優れ、かつ後述の(C)成分、特に(C)成分と(B)成分との界面の接着が弱くなりにくく、繊維強化複合材料の層間破壊靱性をより高く発現できる場合がある。よって、繊維強化複合材料の圧縮特性が求められる用途においては3,3’−ジアミノジフェニルスルホンがより好ましく、繊維強化複合材料の耐熱性や層間破壊靱性が求められる用途においては4,4’−ジアミノジフェニルスルホンがより好ましい。また用途によっては、3,3’−ジアミノジフェニルスルホンと4,4’−ジアミノジフェニルスルホンとを共に使用することも可能である。   Although 3,3'-diaminodiphenyl sulfone can obtain a cured product having higher elasticity as compared to 4,4'-diaminodiphenyl sulfone, the cured product has inferior heat resistance, or the below-mentioned The adhesion at the interface between the C) component, in particular the (C) component and the (B) component, may be weakened, and the interlaminar fracture toughness of the fiber-reinforced composite material may be lowered. 4,4'-Diaminodiphenyl sulfone is inferior in elasticity of the obtained cured product as compared to 3,3'-diaminodiphenyl sulfone, but is superior in heat resistance of the cured product and is the component (C) described below, in particular, The adhesion at the interface between the component (C) and the component (B) is not easily weakened, and in some cases, the interlaminar fracture toughness of the fiber-reinforced composite material can be expressed higher. Therefore, 3,3'-diaminodiphenyl sulfone is more preferable in applications where the compression properties of fiber reinforced composite materials are required, and 4,4'-diamino in applications where heat resistance and interlaminar fracture toughness of fiber reinforced composite materials are required. More preferred is diphenyl sulfone. Depending on the application, it is also possible to use 3,3'-diaminodiphenyl sulfone and 4,4'-diaminodiphenyl sulfone together.

他の成分:
(B)成分に含まれ得る他の成分としては、公知の各種添加剤が挙げられる。
Other ingredients:
Examples of other components that can be included in the component (B) include various known additives.

添加剤としては、熱可塑性エラストマー、エラストマー微粒子((C)成分を除く。)、コアシェル型エラストマー微粒子、アクリル樹脂等から構成されるブロック共重合体、分子中に1つのエポキシ基を有する化合物、希釈剤、無機粒子(シリカ等)、炭素質成分(カーボンナノチューブ等)、難燃剤(リン化合物等)、脱泡剤等が挙げられる。添加剤としては、(B)成分の硬化物の耐熱性を低下させることなく靱性を向上させる点から、コアシェル型エラストマー微粒子やアクリル樹脂等から構成されるブロック共重合体が好ましい。   Additives include block copolymers composed of thermoplastic elastomer, elastomer fine particles (excluding component (C)), core-shell type elastomer fine particles, acrylic resin, etc., compounds having one epoxy group in molecule, dilution Agents, inorganic particles (such as silica), carbonaceous components (such as carbon nanotubes), flame retardants (such as phosphorus compounds), defoamers, and the like. From the viewpoint of improving the toughness without reducing the heat resistance of the cured product of the component (B), the additive is preferably a block copolymer composed of core-shell type elastomer fine particles, an acrylic resin or the like.

コアシェル型エラストマー微粒子の市販品としては、三菱レイヨン社製のメタブレン(登録商標)、アイカ工業社製のスタフィロイド、ダウケミカル社製のパラロイド(登録商標)等が挙げられる。   As a commercial product of core-shell type elastomer fine particles, Metabrene (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd., staphyroid manufactured by Aika Kogyo Co., Ltd., Paraloid (registered trademark) manufactured by Dow Chemical Co., etc. may be mentioned.

コアシェル型エラストマー微粒子は、エポキシ樹脂にあらかじめ分散されていてもよい。コアシェル型エラストマー微粒子分散エポキシ樹脂の市販品としては、カネカ社製のカネエース(登録商標)、日本触媒社製のアクリセット(登録商標)BPシリーズ等が挙げられる。コアシェル型エラストマー微粒子分散エポキシ樹脂は、(B)成分の調製を容易にするだけでなく、(B)成分中のコアシェル型エラストマー微粒子の分散状態を良好にすることができる点から、好ましく用いられる。   The core-shell type elastomer fine particles may be dispersed in advance in an epoxy resin. Commercially available products of core-shell type elastomer fine particle dispersed epoxy resin include Kaneace (registered trademark) manufactured by Kaneka Co., Ltd., Acreset (registered trademark) BP series manufactured by Nippon Shokuhin Co., Ltd., and the like. The core-shell type elastomer fine particle dispersed epoxy resin is preferably used not only because it facilitates the preparation of the component (B) but also because the dispersed state of the core-shell type elastomer fine particles in the component (B) can be improved.

アクリル樹脂等から構成されるブロック共重合体の市販品としては、Arkema社製のNanostrength(登録商標)シリーズ、例えばNanostrength(登録商標)M52N、Nanostrength(登録商標)M22Nが挙げられる。
(B)成分としては、エポキシ樹脂を含み、前記エポキシ樹脂100質量%に対し、60〜100質量%がナフタレン骨格を有するエポキシ樹脂であり、さらに硬化剤として芳香族ポリアミンを含むエポキシ樹脂組成物も挙げられる。この(B)成分は、必要に応じてエポキシ樹脂および硬化剤以外の他の成分を含んでもよい。以下、(B)成分が、エポキシ樹脂を含み、エポキシ樹脂100質量%に対し60〜100質量%がナフタレン骨格を有するエポキシ樹脂であり、さらに硬化剤として芳香族ポリアミンを含むエポキシ樹脂組成物である場合について説明する。
Examples of commercially available products of block copolymers composed of acrylic resin and the like include Nanostrength (registered trademark) series manufactured by Arkema, such as Nanostrength (registered trademark) M52N and Nanostrength (registered trademark) M22N.
As the component (B), an epoxy resin composition containing an epoxy resin, an epoxy resin having 60 to 100 mass% having a naphthalene skeleton with respect to 100 mass% of the epoxy resin, and further containing an aromatic polyamine as a curing agent It can be mentioned. This (B) component may contain other components other than an epoxy resin and a hardening agent as needed. Hereinafter, the component (B) is an epoxy resin composition containing an epoxy resin, an epoxy resin having a naphthalene skeleton having 60 to 100% by mass with respect to 100% by mass of the epoxy resin, and further containing an aromatic polyamine as a curing agent. The case will be described.

ナフタレン骨格を有するエポキシ樹脂:
エポキシ樹脂とは、通常、分子内に2つ以上のエポキシ基を有する2官能以上のエポキシ樹脂であり、ナフタレン骨格を有するエポキシ樹脂とは分子内にナフタレン環を有し、かつ2つ以上のエポキシ基を有する2官能以上のエポキシ樹脂である。通常のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂と比較してナフタレン骨格を有するエポキシ樹脂はその剛直な骨格のため、硬化物に良好な耐熱性を付与することができる。
Epoxy resin having naphthalene skeleton:
An epoxy resin is usually a bifunctional or more epoxy resin having two or more epoxy groups in the molecule, and an epoxy resin having a naphthalene skeleton has a naphthalene ring in the molecule and two or more epoxy It is a bifunctional or more epoxy resin having a group. An epoxy resin having a naphthalene skeleton compared with a normal bisphenol A epoxy resin or a bisphenol F epoxy resin can impart good heat resistance to a cured product because of its rigid skeleton.

ナフタレン骨格を有する2官能のエポキシ樹脂:
ナフタレン骨格を有する2官能のエポキシ樹脂とは、分子内にナフタレン環を有し、かつ2つのエポキシ基を有する2官能のエポキシ樹脂である。ナフタレン骨格を有する2官能のエポキシ樹脂は前述のとおり、その剛直な骨格のため硬化後のマトリックス樹脂に良好な耐熱性を付与することができる。通常、硬化物の耐熱性付与に使用される多官能エポキシ樹脂と異なり、硬化物の架橋密度を上げないため、硬化後のマトリックス樹脂の靭性が低下してしまったり、強化繊維とマトリックス樹脂との界面の密着性が低下してしまったりして、上述の微粒子配置の効果が十分に得ることが出来ないことを防ぐことができる。またさらに多量の多官能エポキシを使用すると硬化後のマトリックス樹脂の吸水量が多くなる傾向があるが、ナフタレン骨格を有する2官能のエポキシ樹脂は硬化後のマトリックス樹脂の吸水量を多くすることも防ぐことができる。ナフタレン骨格を有する2官能のエポキシ樹脂の市販品としては、DIC社製のEPICLON(登録商標)HP−4032D、HP−4032SS等が挙げられる。
ナフタレン骨格を有する2官能のエポキシ樹脂の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、50〜100質量%が好ましく、55〜90質量%がより好ましく、60〜85質量%がより一層好ましい。ナフタレン骨格を有する2官能のエポキシ樹脂の割合が前記範囲の下限値以上であれば、(B)成分の硬化物の靱性、強化繊維とマトリックス樹脂との界面の密着性、吸水量を維持したまま、硬化物の耐熱性を十分に向上できる。またナフタレン骨格を有する2官能のエポキシ樹脂は通常、液状であるため固形のエポキシ樹脂やポリエーテルスルホンのようなエポキシ樹脂に可溶な熱可塑性樹脂を一緒に使用することで、(B)成分の取扱性がよくなり、プリプレグの作製が容易になったり、プリプレグのタック性およびドレープ性がよくなったりする。
Bifunctional epoxy resin having naphthalene skeleton:
The bifunctional epoxy resin having a naphthalene skeleton is a bifunctional epoxy resin having a naphthalene ring in the molecule and having two epoxy groups. As described above, the bifunctional epoxy resin having a naphthalene skeleton can impart good heat resistance to the matrix resin after curing because of its rigid skeleton. In general, unlike the polyfunctional epoxy resin used to impart heat resistance to the cured product, the crosslink density of the cured product is not increased, so the toughness of the matrix resin after curing may be reduced, or between the reinforcing fiber and the matrix resin. It is possible to prevent the adhesion of the interface from being lowered and the effect of the above-mentioned fine particle arrangement can not be sufficiently obtained. When a large amount of multifunctional epoxy resin is used, the amount of water absorption of the matrix resin after curing tends to increase, but the bifunctional epoxy resin having a naphthalene skeleton also prevents the amount of water absorption of the matrix resin after curing be able to. As a commercial item of bifunctional epoxy resin which has naphthalene frame, EPICLON (registered trademark) HP-4032D made from DIC, HP-4032 SS, etc. are mentioned.
The proportion of the bifunctional epoxy resin having a naphthalene skeleton is preferably 50 to 100% by mass, more preferably 55 to 90% by mass, and more preferably 60 to 85% by mass with respect to 100% by mass of all epoxy resins in the component (B). Is even more preferred. If the proportion of the bifunctional epoxy resin having a naphthalene skeleton is at least the lower limit of the above range, the toughness of the cured product of the component (B), the adhesion of the interface between the reinforcing fiber and the matrix resin, and the water absorption amount are maintained The heat resistance of the cured product can be sufficiently improved. In addition, since a bifunctional epoxy resin having a naphthalene skeleton is usually liquid, a thermoplastic resin soluble in an epoxy resin such as a solid epoxy resin or a polyethersulfone is used together to form the (B) component. The handling property is improved, the preparation of the prepreg is facilitated, and the tackiness and the drapability of the prepreg are improved.

ナフタレン骨格を有する3〜4官能のエポキシ樹脂:
ナフタレン骨格を有する3〜4官能のエポキシ樹脂とは、分子内にナフタレン骨格を有し、かつ3〜4個のエポキシ基を有する3〜4官能のエポキシ樹脂である。ナフタレン骨格を有する3〜4官能のエポキシ樹脂は前述のとおり、その剛直な骨格のため硬化後のマトリックス樹脂に良好な耐熱性を付与することができ、さらに硬化物の架橋密度を上げることでも硬化後のマトリックス樹脂に良好な耐熱性を付与することができる。ナフタレン骨格を有する3〜4官能のエポキシ樹脂の市販品としては、DIC株式会社製のEPICLON(登録商標)HP−4700、HP−4710、HP−4770、日本化薬株式会社製のNC−7000L、NC−7300L等が挙げられる。
ナフタレン骨格を有する3〜4官能のエポキシ樹脂の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、5〜50質量%が好ましく、10〜40質量%がより好ましく、15〜35質量%がより一層好ましい。ナフタレン骨格を有する3〜4官能のエポキシ樹脂の割合が前記範囲の下限値以上であれば、(B)成分の硬化物の耐熱性を十分に向上できる。一方で上限値以下であれば(B)成分の硬化物の靱性、強化繊維とマトリックス樹脂との界面の密着性、吸水量を十分に維持でき、さらに(B)成分の粘度が高くなりすぎないため、(B)成分の取扱性がよく、プリプレグの作製が容易であり、プリプレグのタック性およびドレープ性がよくなる。
3- to 4-functional epoxy resin having naphthalene skeleton:
The trifunctional to tetrafunctional epoxy resin having a naphthalene skeleton is a trifunctional to tetrafunctional epoxy resin having a naphthalene skeleton in the molecule and having three to four epoxy groups. As described above, the rigid skeleton of the 3- to 4-functional epoxy resin having a naphthalene skeleton can impart good heat resistance to the cured matrix resin, and the resin is also cured by increasing the crosslink density of the cured product. Good heat resistance can be imparted to the later matrix resin. As a commercial item of the 3-4 functional epoxy resin which has naphthalene frame, EPICLON (registered trademark) HP-4700 made by DIC Corporation, HP-4710, HP-4770, NC-7000L made by Nippon Kayaku Co., Ltd. NC-7300L etc. are mentioned.
The proportion of the 3- to 4-functional epoxy resin having a naphthalene skeleton is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, with respect to 100% by mass of all epoxy resins in the component (B). % By weight is even more preferred. If the proportion of the 3- to 4-functional epoxy resin having a naphthalene skeleton is at least the lower limit value of the above range, the heat resistance of the cured product of the component (B) can be sufficiently improved. On the other hand, if it is below the upper limit value, the toughness of the cured product of component (B), the adhesion of the interface between reinforcing fiber and matrix resin, and the amount of water absorption can be sufficiently maintained, and the viscosity of component (B) does not become too high. Therefore, the handleability of the component (B) is good, the preparation of the prepreg is easy, and the tackiness and the drapability of the prepreg are improved.

他のエポキシ樹脂:
(B)成分は、ナフタレン骨格を有するエポキシ樹脂に加えて、必要に応じて、オキサゾリドン環骨格を有するエポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型、トリアジン骨格含有エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン型、レゾルシン型、ヒドロキノン型、ビスフェノキシエタノールフルオレン型、ビスフェノールフルオレン型、ビスクレゾールフルオレン型エポキシ樹脂等の他のエポキシ樹脂を含んでいてもよい。
Other epoxy resin:
The component (B) is, in addition to the epoxy resin having a naphthalene skeleton, an epoxy resin having an oxazolidone ring skeleton, a bisphenol A epoxy resin, a bisphenol F epoxy resin, a bisphenol S type, a triazine skeleton-containing epoxy resin, if necessary. Aminophenol type epoxy resin, aminocresol type epoxy resin, cresol novolac type epoxy resin, phenol novolak type epoxy resin, aromatic glycidyl amine type epoxy resin, dicyclopentadiene type, resorcinol type, hydroquinone type, bisphenoxyethanol fluorene type, bisphenol Other epoxy resins such as fluorene type and biscresol fluorene type epoxy resins may be included.

オキサゾリドン環骨格を有するエポキシ樹脂の割合は、(B)成分中の全エポキシ樹脂100質量%に対し、10〜40質量%が好ましく、10〜35質量%がより好ましく、15〜30質量%がさらに好ましい。オキサゾリドン環骨格を有するエポキシ樹脂の割合が前記範囲の下限値以上であれば、(B)成分の硬化物の耐熱性、剛性を十分に維持したまま、靱性や強化繊維とマトリックス樹脂との界面の密着性を向上できる。オキサゾリドン環骨格を有するエポキシ樹脂の割合が前記範囲の上限値以下であれば、(B)成分の粘度が高くなりすぎないため、(B)成分の取扱性がよく、プリプレグの作製が容易であり、プリプレグのタック性およびドレープ性がよくなる。   10-40 mass% is preferable with respect to 100 mass% of all the epoxy resins in (B) component, as for the ratio of the epoxy resin which has oxazolidone ring frame, 10-35 mass% is more preferable, and 15-30 mass% is further more preferable. preferable. If the proportion of the epoxy resin having an oxazolidone ring skeleton is at least the lower limit value of the above range, while maintaining the heat resistance and the rigidity of the cured product of the component (B) sufficiently, the toughness or the interface between the reinforcing fiber and the matrix resin Adhesion can be improved. If the proportion of the epoxy resin having an oxazolidone ring skeleton is not more than the upper limit value of the above range, the viscosity of the component (B) does not become too high, so that the handleability of the component (B) is good and the preparation of the prepreg is easy. , The tackiness and the drapability of the prepreg are improved.

比較低粘度であり、かつ(B)成分の硬化物の耐熱性、靱性等の特性に悪影響を与えない点からは、25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂は(B)成分の粘度調整に効果的に使用可能である。25℃で液状のビスフェノールA型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)828、DOW社製のD.E.R.(登録商標)331、新日鉄住金化学社製のエポトート(登録商標)YD−128、DIC社製のEPICLON(登録商標)850等が挙げられる。25℃で液状のビスフェノールF型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)807、DOW社製のD.E.R.(登録商標)354、新日鉄住金化学社製のエポトート(登録商標)YD−170、DIC社製のEPICLON(登録商標)830等が挙げられる。
25℃で固形のビスフェノールA型エポキシ樹脂および25℃で固形のビスフェノールF型エポキシ樹脂は、25℃で液状のビスフェノールA型エポキシ樹脂および25℃で液状のビスフェノールF型エポキシ樹脂に比べ、耐熱性がやや低下するものの、(B)成分の粘度調整や(B)成分の硬化物に靱性を付与することができる。
The bisphenol A type epoxy resin which is liquid at 25 ° C and bisphenol F type which is liquid at 25 ° C from the viewpoint of having a relatively low viscosity and not adversely affecting the heat resistance, toughness and other properties of the cured product of component (B). The epoxy resin can be effectively used to adjust the viscosity of the component (B). As commercially available products of bisphenol A type epoxy resin which is liquid at 25 ° C., jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corp., D. E. R. (Registered trademark) 331, Epotote (registered trademark) YD-128 manufactured by Nippon Steel Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 850 manufactured by DIC Corporation, and the like. As commercially available products of bisphenol F-type epoxy resin which is liquid at 25 ° C., jER (registered trademark) 807 manufactured by Mitsubishi Chemical Corp., D. E. R. (Registered trademark) 354, Epototh (registered trademark) YD-170 manufactured by Nippon Steel Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 830 manufactured by DIC, and the like.
The bisphenol A type epoxy resin solid at 25 ° C and the bisphenol F type epoxy resin solid at 25 ° C have heat resistance compared to bisphenol A type epoxy resin liquid at 25 ° C and bisphenol F type epoxy resin liquid at 25 ° C. Although slightly reduced, it is possible to impart toughness to the viscosity control of the component (B) and the cured product of the component (B).

25℃で固形のビスフェノールA型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)1001、jER(登録商標)1002、jER(登録商標)1003、jER(登録商標)1004、新日鉄住金化学社製のエポトート(登録商標)YD−903、DIC社製のEPICLON(登録商標)1050、EPICLON(登録商標)2050、EPICLON(登録商標)3050、EPICLON(登録商標)4050等が挙げられる。
25℃で固形のビスフェノールF型エポキシ樹脂は、25℃で固形のビスフェノールA型エポキシ樹脂に比べやや耐熱性が劣るものの、(B)成分の硬化物に比較的高い弾性率を付与できる点から好ましい。25℃で固形のビスフェノールF型エポキシ樹脂の市販品としては、三菱ケミカル社製のjER(登録商標)4004P、jER(登録商標)4005P、jER(登録商標)4007P、jER(登録商標)4010P、新日鉄住金化学社製のエポトート(登録商標)YD−2001、エポトート(登録商標)YD−2004等が挙げられる。
より一層、(B)成分の硬化物の耐熱性を向上させるためにトリアジン骨格含有エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂等の多官能エポキシ樹脂を含んでもよい。
Commercial products of bisphenol A type epoxy resin solid at 25 ° C. include jER (registered trademark) 1001, jER (registered trademark) 1002, jER (registered trademark) 1003, jER (registered trademark) 1004, Nippon Steel Corp. Epototh (registered trademark) YD-903 manufactured by Sumikin Chemical Co., Ltd., EPICLON (registered trademark) 1050 manufactured by DIC, EPICLON (registered trademark) 2050, EPICLON (registered trademark) 3050, EPICLON (registered trademark) 4050 and the like.
Although bisphenol F-type epoxy resin solid at 25 ° C. is slightly inferior in heat resistance to bisphenol A-type epoxy resin solid at 25 ° C., it is preferable from the viewpoint that relatively high elastic modulus can be given to the cured product of component (B). . Commercial products of bisphenol F-type epoxy resin solid at 25 ° C. include jER (registered trademark) 4004 P, jER (registered trademark) 4005 P, jER (registered trademark) 4007 P, jER (registered trademark) 4010 P, manufactured by Mitsubishi Chemical Corporation, Nippon Steel Epototh (registered trademark) YD-2001 manufactured by Sumikin Chemical Co., Ltd., Epototh (registered trademark) YD-2004, and the like.
To further improve the heat resistance of the cured product of component (B), triazine skeleton-containing epoxy resin, aminophenol type epoxy resin, aminocresol type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, aromatic A multifunctional epoxy resin such as glycidyl amine type epoxy resin may be included.

芳香族ポリアミン:
(B)成分は、硬化剤として芳香族ポリアミンを含むことが好ましい。芳香族ポリアミンを硬化剤として使用することで良好な耐熱性の硬化物を得ることができる。
芳香族ポリアミンとしては、硬化剤としては、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミン、メタフェニレンジアミンおよびこれらのアルキル置換体等の誘導体や異性体などがある。中でも(B)成分の硬化物により良好な耐熱性および靭性を付与できる点からジアミノジフェニルスルホンが好ましい。
硬化剤の添加量は、硬化剤の種類によって異なる。硬化剤がジアミノジフェニルスルホンである場合、ジアミノジフェニルスルホンの添加量は、エポキシ樹脂のエポキシ基1当量に対してジアミノジフェニルスルホンの活性水素当量数が0.9〜1.5倍となる量が好ましく、1.05〜1.4倍となる量がより好ましく1.1〜1.3倍となる量がより一層好ましい。ジアミノジフェニルスルホンの添加量が前記範囲内であれば、(B)成分の硬化物の耐熱性および靱性がさらに優れる。
3,3’−ジアミノジフェニルスルホンは、4,4’−ジアミノジフェニルスルホンと比較して、より高弾性の硬化物を得ることができるが、硬化物の耐熱性の面は劣ったり、後述の(C)成分、特に(C)成分と(B)成分との界面の接着が弱くなり、繊維強化複合材料の層間破壊靱性が低下したりする場合もある。4,4’−ジアミノジフェニルスルホンは、3,3’−ジアミノジフェニルスルホンと比較して、得られる硬化物の弾性が劣るが、硬化物の耐熱性に優れ、かつ後述の(C)成分、特に(C)成分と(B)成分との界面の接着が弱くなりにくく、繊維強化複合材料の層間破壊靱性をより高く発現できる場合がある。よって、繊維強化複合材料の圧縮特性が求められる用途においては3,3’−ジアミノジフェニルスルホンがより好ましく、繊維強化複合材料の耐熱性や層間破壊靱性が求められる用途においては4,4’−ジアミノジフェニルスルホンがより好ましい。また用途によっては、3,3’−ジアミノジフェニルスルホンと4,4’−ジアミノジフェニルスルホンとを共に使用することも可能である。3,3’−ジアミノジフェニルスルホンの市販品としては三井化学ファイン株式会社の3,3’−DASが挙げられ、4,4’−ジアミノジフェニルスルホンの市販品としては和歌山精化工業株式会社のセイカキュアSが挙げられる。
Aromatic polyamines:
The component (B) preferably contains an aromatic polyamine as a curing agent. By using an aromatic polyamine as a curing agent, a cured product having good heat resistance can be obtained.
As the aromatic polyamine, as a curing agent, there are diaminodiphenylmethane, diaminodiphenyl sulfone, metaxylene diamine, metaphenylene diamine, derivatives and isomers such as alkyl substituted products thereof, and the like. Among these, diaminodiphenyl sulfone is preferable because it can impart good heat resistance and toughness to the cured product of component (B).
The amount of curing agent added varies depending on the type of curing agent. When the curing agent is diamino diphenyl sulfone, the amount of diamino diphenyl sulfone added is preferably such that the number of active hydrogen equivalents of diamino diphenyl sulfone is 0.9 to 1.5 times that of one equivalent of the epoxy group of the epoxy resin. An amount of 1.05 to 1.4 times is more preferable, and an amount of 1.1 to 1.3 times is even more preferable. If the addition amount of diaminodiphenyl sulfone is within the above range, the heat resistance and toughness of the cured product of the component (B) are further excellent.
Although 3,3'-diaminodiphenyl sulfone can obtain a cured product having higher elasticity as compared to 4,4'-diaminodiphenyl sulfone, the cured product has inferior heat resistance, or the below-mentioned The adhesion at the interface between the C) component, in particular the (C) component and the (B) component, may be weakened, and the interlaminar fracture toughness of the fiber-reinforced composite material may be lowered. 4,4'-Diaminodiphenyl sulfone is inferior in elasticity of the obtained cured product as compared to 3,3'-diaminodiphenyl sulfone, but is superior in heat resistance of the cured product and is the component (C) described below, in particular, The adhesion at the interface between the component (C) and the component (B) is not easily weakened, and in some cases, the interlaminar fracture toughness of the fiber-reinforced composite material can be expressed higher. Therefore, 3,3'-diaminodiphenyl sulfone is more preferable in applications where the compression properties of fiber reinforced composite materials are required, and 4,4'-diamino in applications where heat resistance and interlaminar fracture toughness of fiber reinforced composite materials are required. More preferred is diphenyl sulfone. Depending on the application, it is also possible to use 3,3'-diaminodiphenyl sulfone and 4,4'-diaminodiphenyl sulfone together. Commercially available products of 3,3'-diaminodiphenyl sulfone include 3,3'-DAS manufactured by Mitsui Chemicals Fine Inc., and commercially available products of 4,4'-diaminodiphenyl sulfone include Seika Cure of Wakayama Seika Kogyo Co., Ltd. S is mentioned.

他の成分:
(B)成分に含まれ得る他の成分としては、公知の各種添加剤が挙げられる。
添加剤としては、ポリエーテルスルホン等のエポキシ樹脂に可溶な熱可塑性樹脂、エラストマー微粒子((C)成分を除く。)、コアシェル型エラストマー微粒子、アクリル樹脂等から構成されるブロック共重合体、分子中に1つのエポキシ基を有する化合物、希釈剤、無機粒子(シリカ等)、炭素質成分(カーボンナノチューブ等)、難燃剤(リン化合物等)、脱泡剤等が挙げられる。添加剤としては、(B)成分の硬化物の耐熱性を低下させることなく靱性を向上させる点から、コアシェル型エラストマー微粒子やアクリル樹脂等から構成されるブロック共重合体が好ましい。
コアシェル型エラストマー微粒子の市販品としては、三菱レイヨン社製のメタブレン(登録商標)、アイカ工業社製のスタフィロイド、ダウケミカル社製のパラロイド(登録商標)等が挙げられる。
コアシェル型エラストマー微粒子は、エポキシ樹脂にあらかじめ分散されていてもよい。コアシェル型エラストマー微粒子分散エポキシ樹脂の市販品としては、カネカ社製のカネエース(登録商標)、日本触媒社製のアクリセット(登録商標)BPシリーズ等が挙げられる。コアシェル型エラストマー微粒子分散エポキシ樹脂は、(B)成分の調製を容易にするだけでなく、(B)成分中のコアシェル型エラストマー微粒子の分散状態を良好にすることができる点から、好ましく用いられる。
アクリル樹脂等から構成されるブロック共重合体の市販品としては、Arkema社製のNanostrength(登録商標)シリーズ、例えばNanostrength(登録商標)M52N、Nanostrength(登録商標)M22Nが挙げられる。
Other ingredients:
Examples of other components that can be included in the component (B) include various known additives.
Additives include thermoplastic resins soluble in epoxy resins such as polyether sulfone, elastomer fine particles (except for component (C)), core-shell type elastomer fine particles, block copolymers composed of acrylic resin, etc., molecules Examples thereof include compounds having one epoxy group, diluents, inorganic particles (such as silica), carbonaceous components (such as carbon nanotubes), flame retardants (such as phosphorus compounds), and defoamers. From the viewpoint of improving the toughness without reducing the heat resistance of the cured product of the component (B), the additive is preferably a block copolymer composed of core-shell type elastomer fine particles, an acrylic resin or the like.
As a commercial product of core-shell type elastomer fine particles, Metabrene (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd., staphyroid manufactured by Aika Kogyo Co., Ltd., Paraloid (registered trademark) manufactured by Dow Chemical Co., etc. may be mentioned.
The core-shell type elastomer fine particles may be dispersed in advance in an epoxy resin. Commercially available products of core-shell type elastomer fine particle dispersed epoxy resin include Kaneace (registered trademark) manufactured by Kaneka Co., Ltd., Acreset (registered trademark) BP series manufactured by Nippon Shokuhin Co., Ltd., and the like. The core-shell type elastomer fine particle dispersed epoxy resin is preferably used not only because it facilitates the preparation of the component (B) but also because the dispersed state of the core-shell type elastomer fine particles in the component (B) can be improved.
Examples of commercially available products of block copolymers composed of acrylic resin and the like include Nanostrength (registered trademark) series manufactured by Arkema, such as Nanostrength (registered trademark) M52N and Nanostrength (registered trademark) M22N.

(B)成分の調製方法:
(B)成分は、様々な公知の方法で調製できる。(B)成分の調製方法としては、例えば、各成分をプラネタリーミキサーやニーダーにて加熱、混練する方法が挙げられる。
Preparation Method of Component (B):
The component (B) can be prepared by various known methods. Examples of the method for preparing the component (B) include a method in which each component is heated and kneaded with a planetary mixer or a kneader.

硬化剤としてジアミノジフェニルスルホン等の粒子状の硬化剤を用いる場合、粒子状の硬化剤が凝集して分散不良となる可能性があるため、粒子状の硬化剤を液状のエポキシ樹脂に予備混練してマスターバッチ化することが好ましい。予備混練には、三本ロールミル、ボールミル等の混練装置を用いることが好ましい。粒子状の硬化剤をあらかじめマスターバッチ化することによって、分散不良による(B)成分の硬化物における物性ムラや硬化不良、(B)成分の(A)成分への含浸不良が抑えられる。   When a particulate curing agent such as diaminodiphenyl sulfone is used as a curing agent, the particulate curing agent may coagulate to cause poor dispersion, so the particulate curing agent is prekneaded in a liquid epoxy resin. It is preferable to make it into a masterbatch. For pre-kneading, it is preferable to use a kneader such as a three-roll mill or a ball mill. By making a particulate curing agent into a masterbatch in advance, it is possible to suppress physical property unevenness and curing failure in the cured product of component (B) due to dispersion failure, and impregnation failure in component (A) of component (B).

((C)成分)
(C)成分は、(c1)成分又は(c2)成分であり、(c1)成分が、ポリアミド粒子と熱硬化性ポリイミド粒子を含み、(c2)成分が融点140〜175℃の真球形状のポリアミド粒子を含む。
((C) ingredient)
The component (C) is the component (c1) or the component (c2), and the component (c1) contains polyamide particles and thermosetting polyimide particles, and the component (c2) is a true sphere having a melting point of 140 to 175 ° C Containing polyamide particles.

((c1)成分のポリアミド粒子と熱硬化性ポリイミド粒子)
((c1)成分のポリアミド粒子)
(c1)成分のポリアミド粒子は、繊維強化複合材料により優れた層間破壊靱性を付与するものである。(c1)成分のポリアミド粒子を構成するポリアミド樹脂は、繰り返し構造中にアミド結合を有していれば、特に限定されない。前記ポリアミド樹脂は1種のポリアミド樹脂からなるポリアミド樹脂粒子でも、2種以上のポリアミド樹脂からなるポリアミド樹脂粒子でもよい。2種以上のポリアミド樹脂からなるポリアミド樹脂粒子である場合は、各ポリアミド樹脂が粒子中で均一に存在していても、層構造のように不均一に存在していてもよい。ポリアミド樹脂は例えばラクタム類の開環重合、ジアミンとジカルボン酸の重縮合、アミノカルボン酸の重縮合等の方法により得ることができる。前記ポリアミド樹脂の具体的な例としてはナイロン6、ナイロン46、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、またダイセル・エボニック社のトロガミド(登録商標)T5000、トロガミド(登録商標)CX7323のように芳香族環や脂環を含むポリアミド樹脂等が挙げられる。
また結晶性ポリアミド樹脂、非晶性ポリアミド樹脂、いずれも好ましく使用することができ、結晶性ポリアミド樹脂、非晶性ポリアミド樹脂をいずれか単独で使用しても、混合して使用してもよい。
(c1)のポリアミド粒子としては、結晶性共重合ナイロン粒子が好ましく、ナイロン12とナイロン6との共重合体からなる真球形状の粒子がより好ましい。
ポリアミド樹脂の市販品としては、ダイセル・エボニック社製のVESTOSINTシリーズ(VESTOSINT(登録商標)2158、VESTOSINT(登録商標)2159等)、エムスケミー社製のグリルアミド(登録商標)TR90NZ、グリルアミド(登録商標)TR55、ダイセル・エボニック社製のTOROGAMID(登録商標)CX7323、TOROGAMID(登録商標)T5000等が挙げられる。
ポリアミド粒子の融点は、140℃〜175℃が好ましく、155〜170℃がより好ましい。
ポリアミド粒子の融点が上記範囲内であると、プリプレグを硬化する過程でマトリックス樹脂とポリアミド粒子との界面を十分に強くすることができ、高い層間破壊靭性を持つ繊維強化複合材料とすることができる。
(Polyamide particles of (c1) component and thermosetting polyimide particles)
(Polyamide particles of (c1) component)
The polyamide particles of the component (c1) impart better interlaminar fracture toughness to the fiber-reinforced composite material. The polyamide resin constituting the polyamide particles of the component (c1) is not particularly limited as long as it has an amide bond in the repeating structure. The polyamide resin may be polyamide resin particles composed of one kind of polyamide resin or polyamide resin particles composed of two or more kinds of polyamide resins. In the case of polyamide resin particles composed of two or more types of polyamide resins, each polyamide resin may be uniformly present in the particles or may be unevenly present as in a layer structure. The polyamide resin can be obtained, for example, by ring-opening polymerization of lactams, polycondensation of diamine and dicarboxylic acid, polycondensation of aminocarboxylic acid and the like. Specific examples of the polyamide resin include nylon 6, nylon 46, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6 T, nylon 6 I, nylon 9 T, nylon M5 T, and Trocelamide by Daicel-Evonic Co. Examples thereof include polyamide resins containing an aromatic ring and an alicyclic ring such as (registered trademark) T5000 and Trogamide (registered trademark) CX7323.
In addition, any of crystalline polyamide resin and non-crystalline polyamide resin can be preferably used, and either crystalline polyamide resin or non-crystalline polyamide resin may be used alone or in combination.
As the polyamide particles of (c1), crystalline copolymerized nylon particles are preferable, and true spherical particles made of a copolymer of nylon 12 and nylon 6 are more preferable.
Commercially available polyamide resins include VESTOSINT series (VESTOSINT (registered trademark) 2158, VESTOSINT (registered trademark) 2159, etc.) manufactured by Daicel-Evonik, Grilamide (R) TR 90 NZ manufactured by Emskemy, Grilamide (R) TR 55 And TOROGAMID (registered trademark) CX7323 and TOROGAMID (registered trademark) T 5000 manufactured by Daicel Evonik.
The melting point of the polyamide particles is preferably 140 ° C to 175 ° C, and more preferably 155 to 170 ° C.
When the melting point of the polyamide particles is in the above range, the interface between the matrix resin and the polyamide particles can be sufficiently strengthened in the process of curing the prepreg, and a fiber-reinforced composite material having high interlaminar fracture toughness can be obtained. .

((c1)成分のポリアミド粒子の平均粒子径)
(c1)成分のポリアミド粒子の平均粒子径は、2〜50μmが好ましく、5〜35μmがより好ましい。前記ポリアミド粒子の平均粒子径が前記範囲の下限値以上であれば、プリプレグを製造する際に、前記ポリアミド粒子が(A)成分に入り込みにくくなる。そのため、後述の全ての(C)成分の70質量%以上が(A)成分の表層に存在する条件を満たすプリプレグを得やすく、結果として繊維強化複合材料にさらに優れた層間破壊靱性を付与できる。なお表層に存在する(C)成分は後述の偏在化率を持って判断できる。また、(B)成分と(C)成分とを混合した際の粘度の増加を抑制できる。前記ポリアミド粒子の平均粒子径が前記範囲の上限値以下であれば、繊維強化複合材料において(C)成分が(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。また、プリプレグの製造において、(B)成分と(C)成分との混合物を離型紙の表面に均一な厚さで塗工する際に、ロールコーター、ダイコーター等の設備で目詰まりを起こすことが抑えられる。
(Average particle diameter of polyamide particles of component (c1))
2-50 micrometers is preferable and, as for the average particle diameter of the polyamide particle of (c1) component, 5-35 micrometers is more preferable. When the average particle diameter of the polyamide particles is equal to or more than the lower limit value of the range, the polyamide particles are less likely to enter the component (A) when producing a prepreg. Therefore, it is easy to obtain a prepreg that satisfies the condition that 70% by mass or more of all the (C) components described below is present in the surface layer of the (A) component, and as a result, it is possible to impart better interlayer fracture toughness to the fiber reinforced composite material. The component (C) present in the surface layer can be determined with the uneven distribution rate described later. Moreover, the increase in the viscosity at the time of mixing (B) component and (C) component can be suppressed. If the average particle diameter of the polyamide particles is equal to or less than the upper limit of the above range, the component (C) in the fiber-reinforced composite material can be inhibited from impairing the straightness of the reinforcing fiber of the component (A). It is possible to suppress the deterioration of the mechanical properties of the fiber-reinforced composite material, and to keep the crack generated in the interlayer region of the fiber reinforced composite material in the interlayer region due to the peeling stress in the out-of-plane direction. In addition, when applying a mixture of the (B) component and the (C) component on the surface of a release paper with uniform thickness in the production of a prepreg, clogging may be caused by equipment such as a roll coater or a die coater. Is reduced.

((c1)成分の熱硬化性ポリイミド粒子)
(c1)成分の熱硬化性ポリイミド粒子を構成するポリイミド樹脂は、繰り返し構造中にイミド結合を有す高分子化合物である。ポリイミド樹脂の中で、主鎖の分子量が比較的小さく、かつ反応性末端基を有すものが熱硬化性ポリイミド樹脂である。反応性末端基を有すため、繊維強化複合材料中で熱硬化性ポリイミド粒子とマトリックス樹脂との界面性状を強固にすることができ、後述の前記熱硬化性ポリイミド粒子の効果を十分に発現させることができる。分子量が比較的大きく、かつほぼ反応性末端基を有さない熱可塑性ポリイミド樹脂はマトリックス樹脂との界面性状を強固にすることができず、さらに熱硬化性ポリイミドと比較的して靭性に優れるため、後述の熱硬化性ポリイミド粒子の効果を十分に発現させることができない。
熱硬化性ポリイミド粒子の構成樹脂として好ましく使用できる熱硬化性ポリイミド樹脂は、一般式(1)の化学構造を含む熱硬化性ポリイミド樹脂であり、さらに具体的にはベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’−メチレンジアニリン(MDA)、および2,4−トルエンジアミン(TDA)から調製され、90〜92パーセントの芳香族炭素を含む非フタルイミド炭素含有量を有する熱硬化性ポリイミド樹脂である。市販の前記熱硬化性ポリイミド樹脂の粒子としては、HP Polymer社製のP84(登録商標)Polyimideがある。
(Thermosetting polyimide particles of (c1) component)
The polyimide resin which comprises the thermosetting polyimide particle of (c1) component is a high molecular compound which has an imide bond in a repeating structure. Among polyimide resins, those having a relatively low molecular weight of the main chain and having reactive end groups are thermosetting polyimide resins. Since the reactive terminal group is included, the interface properties between the thermosetting polyimide particles and the matrix resin can be strengthened in the fiber-reinforced composite material, and the effects of the thermosetting polyimide particles described later can be sufficiently expressed. be able to. A thermoplastic polyimide resin having a relatively large molecular weight and having substantially no reactive terminal group can not strengthen the interface properties with the matrix resin, and is relatively excellent in toughness as a thermosetting polyimide. And the effects of the thermosetting polyimide particles described later can not be sufficiently expressed.
A thermosetting polyimide resin which can be preferably used as a constituent resin of thermosetting polyimide particles is a thermosetting polyimide resin containing the chemical structure of the general formula (1), and more specifically benzophenonetetracarboxylic acid dianhydride ( Thermoset polyimide having nonphthalimidic carbon content prepared from BTDA), 4,4'-methylenedianiline (MDA), and 2,4-toluenediamine (TDA) and containing 90 to 92 percent aromatic carbon It is a resin. Examples of the commercially available thermosetting polyimide resin particles include P84 (registered trademark) Polyimide manufactured by HP Polymer.

(式(1)中のRは2価の連結基を表す。) (R in Formula (1) represents a divalent linking group.)

2価の連結基としては、−Ph−、−Ph−CH−Ph−等が挙げられる。ここで−Ph−はフェニレン基を表す。Examples of the divalent linking group, -Ph -, - Ph-CH 2 -Ph- , and the like. Here, -Ph- represents a phenylene group.

また一般式(2)の化学構造を含む熱硬化性ポリイミド樹脂であり、さらに具体的にはピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルから調製される熱硬化性ポリイミド樹脂も(c1)成分の熱硬化性ポリイミド粒子として好ましく使用できる。市販の前記熱硬化性ポリイミド樹脂の粒子としては、山曹ミクロン社製のポリイミドパウダーPIPシリーズ、PIP−3、PIP−25が挙げられる。   It is also a thermosetting polyimide resin containing a chemical structure of the general formula (2), and more specifically, a thermosetting polyimide resin prepared from pyromellitic dianhydride and 4,4'-diaminodiphenyl ether (c1 The thermosetting polyimide particles of the component can be preferably used. Examples of commercially available particles of the thermosetting polyimide resin include polyimide powder PIP series, PIP-3 and PIP-25 manufactured by Sanyo Micron Corporation.

(c1)成分の熱硬化性ポリイミド粒子を構成するポリイミド樹脂として好ましく使用できない熱可塑性ポリイミド樹脂の市販品としては、Huntsman社製のMatrimid(登録商標)5218がある。   Commercially available thermoplastic polyimide resins which can not be preferably used as the polyimide resin constituting the thermosetting polyimide particles of the component (c1) include Matrimid (registered trademark) 5218 manufactured by Huntsman.

((c1)成分の熱硬化性ポリイミド粒子の平均粒子径)
(c1)成分の熱硬化性ポリイミド粒子の平均粒子径は、2〜50μmが好ましく、5〜35μmがより好ましい。前記熱硬化性ポリイミド粒子の平均粒子径が前記範囲の下限値以上であれば、プリプレグを製造する際に、(C)成分が(A)成分に入り込みにくくなる。そのため、前述の全ての(C)成分の70質量%以上が(A)成分の表層に存在する条件を満たすプリプレグを得やすく、結果として繊維強化複合材料にさらに優れた層間破壊靱性を付与できる。また、(B)成分と(C)成分とを混合した際の粘度の増加を抑制できる。そして、さらに凝集して分散不良となることを防ぐこともできる。
前記熱硬化性ポリイミド粒子の平均粒子径が前記範囲の上限値以下であれば、繊維強化複合材料において(C)成分が(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。また、プリプレグの製造において、(B)成分と(C)成分との混合物を離型紙の表面に均一な厚さで塗工する際に、ロールコーター、ダイコーター等の設備で目詰まりを起こすことが抑えられる。
(c1)成分の熱硬化性ポリイミド粒子の平均粒子径は、(c1)成分のポリアミド粒子の平均粒子径の0.5〜10倍の範囲であることが好ましい。(c1)成分の熱硬化性ポリイミド粒子の平均粒子径が(c1)成分のポリアミド粒子の平均粒子径の0.5倍より大きくすると後述の(c1)成分のポリアミド粒子と(c1成分)の熱硬化性ポリイミド粒子の併用の効果が十分に発現することができる。また(c1)成分の熱硬化性ポリイミド粒子の平均粒子径が(c1)成分のポリアミド粒子の平均粒子径の10倍以下にすると層間領域の厚みがより均一、すなわち(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。
(Average particle diameter of (c1) component thermosetting polyimide particles)
2-50 micrometers is preferable and, as for the average particle diameter of the thermosetting polyimide particle of (c1) component, 5-35 micrometers is more preferable. If the average particle diameter of the thermosetting polyimide particles is equal to or more than the lower limit value of the above range, the component (C) hardly enters the component (A) when producing a prepreg. Therefore, it is easy to obtain a prepreg that satisfies the condition that 70% by mass or more of all the components (C) described above is present in the surface layer of the component (A). As a result, the fiber reinforced composite material can be provided with further excellent interlaminar fracture toughness. Moreover, the increase in the viscosity at the time of mixing (B) component and (C) component can be suppressed. Then, it is possible to prevent further aggregation and dispersion failure.
If the average particle diameter of the thermosetting polyimide particles is equal to or less than the upper limit value of the above range, the component (C) in the fiber-reinforced composite material can be inhibited from damaging the straightness of the reinforcing fiber of the component (A). Deterioration of mechanical properties of the reinforced composite material can be suppressed, and a peeling stress in the out-of-plane direction can hold a crack generated in an interlayer region of the fiber reinforced composite material in the interlayer region. In addition, when applying a mixture of the (B) component and the (C) component on the surface of a release paper with uniform thickness in the production of a prepreg, clogging may be caused by equipment such as a roll coater or a die coater. Is reduced.
The average particle diameter of the thermosetting polyimide particles of the component (c1) is preferably in the range of 0.5 to 10 times the average particle diameter of the polyamide particles of the component (c1). When the average particle diameter of the thermosetting polyimide particles of the component (c1) is larger than 0.5 times the average particle diameter of the polyamide particles of the component (c1), the polyamide particles of the component (c1) and the thermal particles of the component (c1) described later The effects of the combined use of the curable polyimide particles can be sufficiently exhibited. When the average particle diameter of the thermosetting polyimide particles of component (c1) is 10 times or less the average particle diameter of the polyamide particles of component (c1), the thickness of the interlayer region is more uniform, that is, the reinforcing fibers of component (A) Since the deterioration of the straightness can be suppressed, it is possible to suppress the deterioration of the mechanical properties of the fiber-reinforced composite material, or to hold the crack generated in the interlayer region of the fiber-reinforced composite material in the interlayer region by the peeling stress in the out-of-plane direction. Can do it.

((c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子の併用の効果)
一般的に熱硬化性ポリイミド樹脂は比較的靭性に乏しく、単独の使用では繊維強化複合材料により優れた層間破壊靱性を付与することはできない。一方で面外方向への引き剥がし応力により繊維強化複合材料の層間領域に生じた亀裂はより靭性に乏しい部分、例えばマトリックス樹脂と強化繊維束の界面を選択的に進行する性質がある。そのため、従来の高靭性のマトリックス樹脂や微粒子を層間領域に配置した場合、前記層間領域に生じた亀裂は進行に伴い徐々により靭性の乏しいマトリックス樹脂と強化繊維束の界面へ転移してゆき、最終的には層間領域から強化繊維層へ完全に転移してしまっており、安定して優れた層間破壊靱性を付与することはできなかった。しかし靭性に乏しい熱硬化性ポリイミド粒子を繊維強化複合材料の層間領域に配置した場合、前記層間領域に生じた亀裂は安定して層間領域を進行する(c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子を併用することで、層間領域に生じた亀裂を安定して層間領域を進行させ、さらに(c1)成分のポリアミド粒子添加による層間破壊靱性付与することができるため、繊維強化複合材料の層間領域のモルホロジーや(c1)成分のポリアミド粒子とマトリックス樹脂組成物との界面性状に関わらず安定して得ることができる。
(Effect of combined use of polyamide particles of component (c1) and thermosetting polyimide particles of component (c1))
In general, thermosetting polyimide resins are relatively poor in toughness, and can not provide superior interlaminar fracture toughness to fiber-reinforced composite materials when used alone. On the other hand, the crack generated in the interlayer region of the fiber reinforced composite material by the peeling stress in the out-of-plane direction has a property of progressing selectively in a portion having less toughness, for example, the interface between matrix resin and reinforcing fiber bundle. Therefore, when the conventional high toughness matrix resin and fine particles are disposed in the interlayer region, the cracks generated in the interlayer region gradually transfer to the interface between the matrix resin and the reinforcing fiber bundle, which has lower toughness, as it progresses. In fact, it was completely transferred from the interlayer region to the reinforcing fiber layer, and it was not possible to stably impart excellent interlayer fracture toughness. However, when thermosetting polyimide particles having poor toughness are disposed in the interlayer region of the fiber-reinforced composite material, the cracks generated in the interlayer region stably progress to the interlayer region (c1) component polyamide particles and (c1) component By using the thermosetting polyimide particles in combination, it is possible to stably advance the cracks generated in the interlayer region, to further advance the interlayer region, and further to impart interlayer fracture toughness by the addition of the polyamide particles of the component (c1). It can be stably obtained regardless of the morphology of the interlayer region of the composite material and the interface properties of the polyamide particles of the component (c1) and the matrix resin composition.

((c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子の含有量)
(c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子の含有量の合計は(B)成分100質量部に対し5〜25質量部であり、さらに10〜25質量部が好ましく、12〜25質量部がより好ましく、15〜20質量部がより一層好ましい。(c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子の含有量の合計が前記範囲の下限値以上であれば、層間領域に偏在する(c1)成分のポリアミド粒子と(c1)成分の熱硬化性ポリイミド粒子の量が多くなり、上述の理由から繊維強化複合材料に優れた層間破壊靱性を安定して付与できる。(c1)成分のポリアミド粒子の含有量が前記範囲の上限値以下であれば、プリプレグが含む(B)成分、(c1)成分のポリアミド粒子および(c1)成分の熱硬化性ポリイミド粒子からなるマトリックス樹脂中に占める(B)成分が低くなりすぎることを抑制することができる。すなわち(B)成分不足に起因する繊維強化複合材料の機械特性低下を防ぐことができたり、マトリックス樹脂組成物の粘度が高くなりすぎることを抑制し、プリプレグを作製する際に(A)成分にマトリックス樹脂組成物を十分に含浸させることができたりする。
(Contents of polyamide particles of component (c1) and thermosetting polyimide particles of component (c1))
The total content of the polyamide particles of the component (c1) and the thermosetting polyimide particles of the component (c1) is 5 to 25 parts by mass, preferably 10 to 25 parts by mass, with respect to 100 parts by mass of the component (B). 12-25 mass parts is more preferable, and 15-20 mass parts is still more preferable. If the total of the content of the polyamide particles of the component (c1) and the thermosetting polyimide particles of the component (c1) is equal to or more than the lower limit value of the range, the polyamide particles of the component (c1) and the (c1) The amount of the component thermosetting polyimide particles is increased, and for the reasons described above, it is possible to stably impart excellent interlaminar fracture toughness to the fiber-reinforced composite material. If the content of the polyamide particles of the component (c1) is equal to or less than the upper limit value of the above range, a matrix comprising the component (B) contained in the prepreg, the polyamide particles of the component (c1) and the thermosetting polyimide particles of the component (c1) It can suppress that the (B) component which occupies in resin becomes low too much. That is, when producing a prepreg, it is possible to prevent the mechanical properties of the fiber-reinforced composite material from being deteriorated due to the lack of the component (B) or to prevent the viscosity of the matrix resin composition from becoming too high. The matrix resin composition can be sufficiently impregnated.

((c1)成分中の熱硬化性ポリイミド粒子の割合)
(c1)成分中の熱硬化性ポリイミド粒子の割合は、10〜40質量%が好ましい。熱硬化性ポリイミド粒子の割合が前記範囲の下限値以上であれば、熱硬化性ポリイミド粒子の効果を十分に得ることができ、上述の理由から繊維強化複合材料に優れた層間破壊靱性を安定して付与できる。熱硬化性ポリイミド粒子の割合が前記範囲の上限値以下であれば、靭性の乏しい熱硬化性ポリイミド粒子が繊維強化複合材料の層間破壊靱性に与える悪影響が大きくなることを抑えることが出来る。
(Proportion of thermosetting polyimide particles in component (c1))
The proportion of the thermosetting polyimide particles in the component (c1) is preferably 10 to 40% by mass. If the proportion of the thermosetting polyimide particles is at least the lower limit value of the above range, the effects of the thermosetting polyimide particles can be sufficiently obtained, and the interlayer fracture toughness excellent in the fiber reinforced composite material is stabilized from the above reasons. Can be given. If the proportion of the thermosetting polyimide particles is equal to or less than the upper limit value of the above range, it is possible to suppress that the adverse effect of the thermosetting polyimide particles having poor toughness on the interlaminar fracture toughness of the fiber-reinforced composite material becomes large.

より好ましい構熱硬化性ポリイミド粒子の割合は、構成要素の組み合わせに大きく依存する。例えば、(A)成分と(B)成分の界面がより弱い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しやすくなるため、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、20〜40質量%とより多くすることが好ましい。一方で(A)成分と(B)成分の界面がより強い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しにくくなるため、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、10〜25質量%とより少なくすることが好ましい。また(B)成分と(C)成分の界面がより弱い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しやすくなるため、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、20〜40質量%とより多くすることが好ましい。一方で(B)成分と(C)成分の界面がより強い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しにくくなるため、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、10〜25質量%とより少なくすることが好ましい。弱い(A)成分と(B)成分の界面であり、かつ弱い(B)成分と(C)成分の界面である場合、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、25〜40質量%とさらに多くすることが好ましい。強い(A)成分と(B)成分の界面であり、かつ強い(B)成分と(C)成分の界面である場合、(c1)成分中の熱硬化性ポリイミド粒子の割合は、(c1)成分の総質量に対し、10〜20質量%とさらに少なくすることが好ましい。 ここで(A)成分と(B)成分の界面が弱いとは、ASTM D790に準拠して実施の一方向(強化繊維が全て同じ方向に配向する)繊維強化複合材料の90°曲げ試験の強度が125MPa未満であることをいう。
(A)成分と(B)成分の界面が強いとは、ASTM D790に準拠して実施の一方向(強化繊維が全て同じ方向に配向する)繊維強化複合材料の90°曲げ試験の強度が125MPa以上であることをいう。
(B)成分と(C)成分の界面が弱いとは、ASTM D5528に準拠して実施の繊維強化複合材料のDCB(Double Cantilever Beam)試験の破面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を使用して観察して、図1に示すように(C)成分30の界面が露出している状態である。
(B)成分と(C)成分の界面が強いとは、ASTM D5528に準拠して実施の繊維強化複合材料のDCB(Double Cantilever Beam)試験の破面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を使用して観察して、図2に示すように(C)成分の界面が露出していない状態である。
The proportion of the more preferable thermosetting polyimide particles largely depends on the combination of components. For example, when the interface between the (A) component and the (B) component is weaker, the crack generated in the interlayer region is more likely to progress to the interface between the (A) component and the (B) component. The proportion of the thermosetting polyimide particles is preferably 20 to 40% by mass relative to the total mass of the component (c1). On the other hand, when the interface between the components (A) and (B) is stronger, the cracks generated in the interlayer region are less likely to progress to the interface between the components (A) and (B). The proportion of the thermosetting polyimide particles is preferably reduced to 10 to 25% by mass with respect to the total mass of the component (c1). In addition, when the interface between the components (B) and (C) is weaker, cracks generated in the interlayer region are more likely to progress to the interface between the components (A) and (B), so the heat in the component (c1) The proportion of the curable polyimide particles is preferably 20 to 40% by mass relative to the total mass of the component (c1). On the other hand, when the interface between the components (B) and (C) is stronger, the cracks generated in the interlayer region are less likely to progress to the interface between the components (A) and (B). The proportion of the thermosetting polyimide particles is preferably reduced to 10 to 25% by mass with respect to the total mass of the component (c1). When it is the interface between the weak (A) component and the (B) component and is the interface between the weak (B) component and the (C) component, the proportion of the thermosetting polyimide particles in the (c1) component is (c1) It is preferable to further increase to 25 to 40% by mass with respect to the total mass of the components. When it is the interface between the strong (A) component and the (B) component and the interface between the strong (B) component and the (C) component, the proportion of the thermosetting polyimide particles in the (c1) component is (c1) It is preferable to make it further less with 10-20 mass% with respect to the total mass of a component. Here, that the interface between the (A) component and the (B) component is weak means that the strength of the fiber reinforced composite material in one direction (all reinforcing fibers are oriented in the same direction) according to ASTM D 790 in 90 ° bending test. Is less than 125 MPa.
The strong interface between component (A) and component (B) means that the strength in one direction (all reinforcing fibers are oriented in the same direction) of the fiber reinforced composite material in a 90 ° bending test is 125 MPa according to ASTM D 790. It says that it is above.
A weak interface between the components (B) and (C) means that the fracture surface of a DCB (Double Cantilever Beam) test of a fiber-reinforced composite material performed according to ASTM D5528 is a scanning electron microscope (SEM: Scanning Electron Microscope) And the interface of component (C) 30 is exposed as shown in FIG.
The strong interface between the (B) component and the (C) component means that the fracture surface of the DCB (Double Cantilever Beam) test of the fiber reinforced composite material performed according to ASTM D5528 is a scanning electron microscope (SEM: Scanning Electron Microscope) And the interface of the component (C) is not exposed as shown in FIG.

(c2)成分の融点140〜175℃の真球形状のポリアミド粒子
ポリアミド粒子とは粒子形状のポリアミド樹脂のことであり、繊維強化複合材料により優れた層間破壊靱性を付与できる。ポリアミド樹脂とは、繰り返し構造中にアミド結合を有している化合物である。前記ポリアミド樹脂は1種のポリアミド樹脂からなるポリアミド樹脂でも、2種以上のポリアミド樹脂からなるポリアミド樹脂でもよい。2種以上のポリアミド樹脂からなるポリアミド樹脂粒子である場合は、各ポリアミド樹脂が粒子中で均一に存在していても、層構造のように不均一に存在していてもよい。ポリアミド樹脂は例えばラクタム類の開環重合、ジアミンとジカルボン酸の重縮合、アミノカルボン酸の重縮合等の方法により得ることができる。前記ポリアミド樹脂の具体的な例としてはナイロン6、ナイロン46、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、またダイセル・エボニック社のトロガミド(登録商標)T5000、トロガミド(登録商標)CX7323のように芳香族環や脂環を含むポリアミド樹脂等が挙げられる。 ポリアミド樹脂の市販品としては、ダイセル・エボニック社製のVESTOSINTシリーズ(VESTOSINT(登録商標)2158、VESTOSINT(登録商標)2159等)、エムスケミー社製のグリルアミド(登録商標)TR90NZ、グリルアミド(登録商標)TR55、ダイセル・エボニック社製のTOROGAMID(登録商標)CX7323、TOROGAMID(登録商標)T5000等が挙げられる。
(C2) True-Spheroidal Polyamide Particles Having a Melting Point of 140 to 175 ° C. The polyamide particles are polyamide resins in the form of particles, and can impart better interlaminar fracture toughness to the fiber-reinforced composite material. The polyamide resin is a compound having an amide bond in the repeating structure. The polyamide resin may be a polyamide resin composed of one kind of polyamide resin or a polyamide resin composed of two or more kinds of polyamide resins. In the case of polyamide resin particles composed of two or more types of polyamide resins, each polyamide resin may be uniformly present in the particles or may be unevenly present as in a layer structure. The polyamide resin can be obtained, for example, by ring-opening polymerization of lactams, polycondensation of diamine and dicarboxylic acid, polycondensation of aminocarboxylic acid and the like. Specific examples of the polyamide resin include nylon 6, nylon 46, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6 T, nylon 6 I, nylon 9 T, nylon M5 T, and Trocelamide by Daicel-Evonic Co. Examples thereof include polyamide resins containing an aromatic ring and an alicyclic ring such as (registered trademark) T5000 and Trogamide (registered trademark) CX7323. Commercially available polyamide resins include VESTOSINT series (VESTOSINT (registered trademark) 2158, VESTOSINT (registered trademark) 2159, etc.) manufactured by Daicel-Evonik, Grilamide (R) TR 90 NZ manufactured by Emskemy, Grilamide (R) TR 55 And TOROGAMID (registered trademark) CX7323 and TOROGAMID (registered trademark) T 5000 manufactured by Daicel Evonik.

ただし(c2)成分は、融点140〜175℃の真球形状のポリアミド粒子を含むため、(c2)成分のポリアミド樹脂は結晶性ポリアミド樹脂が好ましく用いられる。結晶性ポリアミド樹脂の具体的な例としてはナイロン6、ナイロン46、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5Tがあるが、ホモポリマーは、その高い結晶性のためほとんどが融点140〜175℃の範囲とならないため、(C)成分のポリアミド樹脂は結晶性阻害のためより融点を低くできる共重合体であることが好ましい。中でも結晶性共重合ナイロン粒子であることが好ましく、ナイロン12とナイロン6との共重合体からなる真球形状の粒子であることがより好ましい。ナイロン12を主としたナイロン12とナイロン6との共重合体は、高靭性かつ低吸湿であり、さらにその融点はナイロン12の融点よりも低くなり、より広範囲の成型条件において繊維強化複合材料へ好適に靭性付与が可能であるため好ましい。前記ナイロン12とナイロン6との共重合体における、ナイロン12とナイロン6のモル比は、ナイロン12:ナイロン6が9.8:0.2〜6.5:3.5が好ましく、9.5:0.5〜7:3がより好ましい。前記ナイロン12とナイロン6との共重合体においてナイロン12が90モル%よりも多くなるとナイロン12の融点と比較して融点が十分に低下しないため、広範囲の成型条件において繊維強化複合材料へ好適に靭性付与ができない可能性がある。一方でナイロン12が60モル%よりも少なくなるとナイロン12よりも融点が高いナイロン6の影響が大きくなり前記ナイロン12とナイロン6との共重合体の融点は高くなってしまうため、広範囲の成型条件において繊維強化複合材料へ好適に靭性付与ができない可能性がある。好適に使用可能なナイロン12とナイロン6との共重合体の真球粒子の市販品としては、住化エンバイロメンタル社製のMW−330がある。   However, since the component (c2) contains true-spherical polyamide particles having a melting point of 140 to 175 ° C., a crystalline polyamide resin is preferably used as the polyamide resin of the component (c2). Specific examples of crystalline polyamide resins include nylon 6, nylon 46, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6T, nylon 6I, nylon 9T, nylon M5T, but homopolymers are The polyamide resin of the component (C) is preferably a copolymer which can lower the melting point because of the inhibition of the crystallinity because most of the polyamide resin does not fall within the range of 140 to 175 ° C. because of its high crystallinity. Among them, crystalline copolymerized nylon particles are preferable, and true spherical particles made of a copolymer of nylon 12 and nylon 6 are more preferable. Copolymers of nylon 12 and nylon 6 mainly composed of nylon 12 have high toughness and low moisture absorption, and their melting point is lower than that of nylon 12, and they can be used in fiber reinforced composite materials under a wider range of molding conditions. It is preferable because toughness can be suitably imparted. The molar ratio of nylon 12 to nylon 6 in the copolymer of nylon 12 and nylon 6 is preferably 9.8: 0.2 to 6.5: 3.5 for nylon 12: nylon 6, 9.5 0.5 to 7: 3 is more preferable. In the copolymer of nylon 12 and nylon 6, when the amount of nylon 12 is more than 90 mol%, the melting point is not sufficiently lowered as compared to the melting point of nylon 12 and therefore suitable for fiber reinforced composite materials under a wide range of molding conditions There is a possibility that toughness can not be given. On the other hand, if the content of nylon 12 is less than 60 mol%, the effect of nylon 6 having a higher melting point than nylon 12 becomes large, and the melting point of the copolymer of nylon 12 and nylon 6 becomes high. There is a possibility that the fiber reinforced composite material can not be suitably toughened. A commercially available product of true sphere particles of a copolymer of nylon 12 and nylon 6 which can be suitably used is MW-330 manufactured by Sumika Environmental Co., Ltd.

((c2)成分の融点140〜175℃の真球形状のポリアミド粒子の形状)
融点140〜175℃の真球形状のポリアミド粒子の形状は真球状である。具体的に真球状の粒子とは、走査型電子顕微鏡(日本電子社製、JSM−6390)を用い、無作為に選ばれた10個の粒子について短径および長径を測定し、前記10個の粒子の長径に対する短径の比(短径/長径)の平均値が0.9以上である粒子のことを指す。
(The shape of a true-spherical polyamide particle having a melting point of 140 to 175 ° C. of the component (c2))
The shape of the true-spherical polyamide particles having a melting point of 140 to 175 ° C. is true spherical. Specifically, true spherical particles are obtained by measuring the minor axis and the major axis of ten randomly selected particles using a scanning electron microscope (JSM-6390, manufactured by Nippon Denshi Co., Ltd.). It refers to particles in which the average value of the ratio of the minor axis to the major axis of the particles (minor axis / major axis) is 0.9 or more.

((c2)成分の融点140〜175℃の真球形状のポリアミド粒子の平均粒子径)
融点140〜175℃の真球形状のポリアミド粒子の平均粒子径は、2〜50μmが好ましく、5〜35μmがより好ましく、6〜25μmがより一層好ましい。前記真球形状のポリアミド粒子の平均粒子径が前記範囲の下限値以上であれば、プリプレグを製造する際に、(C)成分が(A)成分に入り込みにくくなる。そのため、後述の全ての(C)成分の70質量%以上が(A)成分の表層に存在する条件を満たすプリプレグを得やすく、結果として繊維強化複合材料にさらに優れた層間破壊靱性を付与できる。また、(B)成分と(C)成分とを混合した際の粘度の増加を抑制できる。前記真球形状のポリアミド粒子の平均粒子径が前記範囲の上限値以下であれば、繊維強化複合材料において(C)成分が(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。また、プリプレグの製造において、(B)成分と(C)成分との混合物を離型紙の表面に均一な厚さで塗工する際に、ロールコーター、ダイコーター等の設備で目詰まりを起こすことが抑えられる。
なお、本発明の(c2)は、更に熱硬化性ポリイミド粒子を含むことが好ましい。
(Average particle diameter of true spherical polyamide particles having a melting point of 140 to 175 ° C. of the component (c2))
2-50 micrometers is preferable, as for the average particle diameter of the true-ball-shaped polyamide particle of 140-175 degreeC of melting | fusing point, 5-35 micrometers is more preferable, and 6-25 micrometers is still more preferable. If the average particle diameter of the true-spherical polyamide particles is equal to or more than the lower limit value of the above range, the component (C) hardly enters the component (A) when producing a prepreg. Therefore, it is easy to obtain a prepreg that satisfies the condition that 70% by mass or more of all the (C) components described below is present in the surface layer of the (A) component, and as a result, it is possible to impart better interlayer fracture toughness to the fiber reinforced composite material. Moreover, the increase in the viscosity at the time of mixing (B) component and (C) component can be suppressed. If the average particle diameter of the true-spherical polyamide particles is equal to or less than the upper limit value of the range, the component (C) in the fiber-reinforced composite material can be inhibited from impairing the straightness of the reinforcing fiber of the component (A), It is possible to suppress the deterioration of the mechanical properties of the fiber-reinforced composite material, and to hold the crack generated in the interlayer region of the fiber-reinforced composite material in the interlayer region by the peeling stress in the out-of-plane direction. In addition, when applying a mixture of the (B) component and the (C) component on the surface of a release paper with uniform thickness in the production of a prepreg, clogging may be caused by equipment such as a roll coater or a die coater. Is reduced.
In addition, it is preferable that (c2) of this invention further contains a thermosetting polyimide particle.

((c2)成分に含めることができる熱硬化性ポリイミド粒子)
(c2)成分に含めることができる熱硬化性ポリイミド粒子とは、(c2)成分の融点140〜175℃の真球形状のポリアミド粒子とともに(C)成分として併用することができる熱硬化性ポリイミド粒子を意味する。(c2)成分に含めることができる熱硬化性ポリイミド粒子は、熱硬化性ポリイミド粒子である。ポリイミド樹脂とは繰り返し構造中にイミド結合を有す高分子化合物である。ポリイミド樹脂の中で、主鎖の分子量が比較的小さく、かつ反応性末端基を有すものが熱硬化性ポリイミド樹脂である。反応性末端基を有すため、繊維強化複合材料中で熱硬化性ポリイミド粒子とマトリックス樹脂との界面性状を強固にすることができ、後述の(c2)成分に含めることができる熱硬化性ポリイミド粒子の効果を十分に発現させることができる。分子量が比較的大きく、かつほぼ反応性末端基を有さない熱可塑性ポリイミド樹脂はマトリックス樹脂との界面性状を強固にすることができず、さらに熱硬化性ポリイミドと比較的して靭性に優れるため、後述の(c2)成分に含めることができる熱硬化性ポリイミド粒子の効果を十分に発現させることができない。
(Thermosetting polyimide particles that can be included in component (c2))
The thermosetting polyimide particles that can be included in the component (c2) are thermosetting polyimide particles that can be used together with the true spherical polyamide particles having a melting point of 140 to 175 ° C of the component (c2) as the component (C). Means The thermosetting polyimide particles that can be included in the component (c2) are thermosetting polyimide particles. The polyimide resin is a polymer compound having an imide bond in the repeating structure. Among polyimide resins, those having a relatively low molecular weight of the main chain and having reactive end groups are thermosetting polyimide resins. Because of having a reactive terminal group, the interfacial properties of the thermosetting polyimide particles and the matrix resin can be strengthened in the fiber-reinforced composite material, and the thermosetting polyimide can be included in the component (c2) described later. The effect of the particles can be sufficiently expressed. A thermoplastic polyimide resin having a relatively large molecular weight and having substantially no reactive terminal group can not strengthen the interface properties with the matrix resin, and is relatively excellent in toughness as a thermosetting polyimide. The effect of the thermosetting polyimide particles that can be included in the component (c2) described later can not be sufficiently exhibited.

(c2)成分に含めることができる熱硬化性ポリイミド粒子として好ましく使用できる熱硬化性ポリイミド樹脂は、一般式(1)の化学構造を含む熱硬化性ポリイミド樹脂であり、さらに具体的にはベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’−メチレンジアニリン(MDA)、および2,4−トルエンジアミン(TDA)から調製され、90〜92パーセントの芳香族炭素を含む非フタルイミド炭素含有量を有する熱硬化性ポリイミド樹脂である。市販の前記熱硬化性ポリイミド樹脂の粒子としては、HP Polymer社製のP84(登録商標)Polyimideがある。   The thermosetting polyimide resin which can be preferably used as the thermosetting polyimide particles which can be included in the component (c2) is a thermosetting polyimide resin containing the chemical structure of the general formula (1), more specifically benzophenone tetramer Non-phthalimido carbon content prepared from carboxylic acid dianhydride (BTDA), 4,4'-methylenedianiline (MDA), and 2,4-toluenediamine (TDA) and containing 90 to 92 percent aromatic carbon A thermosetting polyimide resin. Examples of the commercially available thermosetting polyimide resin particles include P84 (registered trademark) Polyimide manufactured by HP Polymer.

(式(1)中のRは2価の連結基を表す。) (R in Formula (1) represents a divalent linking group.)

2価の連結基としては、−Ph−、−Ph−CH−Ph−等が挙げられる。ここで−Ph−はフェニレン基を表す。Examples of the divalent linking group, -Ph -, - Ph-CH 2 -Ph- , and the like. Here, -Ph- represents a phenylene group.

また一般式(2)の化学構造を含む熱硬化性ポリイミド樹脂であり、さらに具体的にはピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルから調製される熱硬化性ポリイミド樹脂も(c2)成分として好ましく使用できる。市販の前記熱硬化性ポリイミド樹脂の粒子としては、山曹ミクロン社製のポリイミドパウダーPIPシリーズ、例えばPIP−3、PIP−25が挙げられる。   It is also a thermosetting polyimide resin containing a chemical structure of the general formula (2), and more specifically, a thermosetting polyimide resin prepared from pyromellitic dianhydride and 4,4'-diaminodiphenyl ether (c2 Can be preferably used as a component). As a particle | grains of the said thermosetting polyimide resin marketed, the polyimide powder PIP series made from Sanyo Micro Inc., for example, a PIP-3, PIP-25, are mentioned.

(c2)成分に含めることができる熱硬化性ポリイミド粒子として好ましく使用できない熱可塑性ポリイミド樹脂の市販品としては、Huntsman社製のMatrimid(登録商標)5218がある。   Commercially available thermoplastic polyimide resins which can not be preferably used as thermosetting polyimide particles which can be included in the component (c2) include Matrimid (registered trademark) 5218 manufactured by Huntsman.

((c2)成分に含めることができる熱硬化性ポリイミド粒子の平均粒子径)
(c2)成分に含めることができる熱硬化性ポリイミド粒子の平均粒子径は、2〜50μmが好ましく、5〜35μmがより好ましい。前記熱硬化性ポリイミド粒子の平均粒子径が前記範囲の下限値以上であれば、プリプレグを製造する際に、前記熱硬化性ポリイミド粒子が(A)成分に入り込みにくくなる。そのため、前述の全ての(C)成分の70質量%以上が(A)成分の表層に存在する条件を満たすプリプレグを得やすく、結果として繊維強化複合材料にさらに優れた層間破壊靱性を付与できる。また、(B)成分と前記熱硬化性ポリイミド粒子とを混合した際の粘度の増加を抑制できる。そして、さらに凝集して分散不良となることを防ぐこともできる。
(Average particle size of thermosetting polyimide particles that can be included in component (c2))
The average particle diameter of the thermosetting polyimide particles that can be included in the component (c2) is preferably 2 to 50 μm, and more preferably 5 to 35 μm. If the average particle diameter of the thermosetting polyimide particles is equal to or more than the lower limit value of the range, the thermosetting polyimide particles are less likely to enter the component (A) when producing a prepreg. Therefore, it is easy to obtain a prepreg that satisfies the condition that 70% by mass or more of all the components (C) described above is present in the surface layer of the component (A). As a result, the fiber reinforced composite material can be provided with further excellent interlaminar fracture toughness. Moreover, the increase in the viscosity at the time of mixing (B) component and the said thermosetting polyimide particle can be suppressed. Then, it is possible to prevent further aggregation and dispersion failure.

前記熱硬化性ポリイミド粒子の平均粒子径が前記範囲の上限値以下であれば、繊維強化複合材料において前記熱硬化性ポリイミド粒子が(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。また、プリプレグの製造において、(B)成分と前記熱硬化性ポリイミド粒子との混合物を離型紙の表面に均一な厚さで塗工する際に、ロールコーター、ダイコーター等の設備で目詰まりを起こすことが抑えられる。   If the average particle size of the thermosetting polyimide particles is equal to or less than the upper limit value of the range, it is possible to suppress that the thermosetting polyimide particles in the fiber-reinforced composite material impair the straightness of the reinforcing fiber of the component (A). The deterioration of the mechanical properties of the fiber-reinforced composite material can be suppressed, and the tearing-off stress in the out-of-plane direction can keep the crack generated in the interlayer region of the fiber-reinforced composite material in the interlayer region. In addition, when a mixture of the component (B) and the thermosetting polyimide particles is applied to the surface of a release paper with a uniform thickness in the production of a prepreg, clogging is caused by equipment such as a roll coater and a die coater. It can be suppressed.

前記熱硬化性ポリイミド粒子の平均粒子径は、融点140〜175℃の真球形状のポリアミド粒子の平均粒子径の0.5〜10倍の範囲であることが好ましい。前記熱硬化性ポリイミド粒子の平均粒子径が融点140〜175℃の真球形状のポリアミド粒子の平均粒子径の0.5倍より大きくすると後述の融点140〜175℃の真球形状のポリアミド粒子と前記熱硬化性ポリイミド粒子の併用の効果が十分に発現することができる。また前記熱硬化性ポリイミド粒子の平均粒子径が融点140〜175℃の真球形状のポリアミド粒子の平均粒子径の10倍以下にすると層間領域の厚みがより均一、すなわち(A)成分の強化繊維の真直性を害することを抑制できるため、繊維強化複合材料の機械特性の低下を抑えることができたり、面外方向への引き剥がし応力により繊維強化複合材料の層間領域生じた亀裂を層間領域に留めることができたりする。   The average particle size of the thermosetting polyimide particles is preferably in the range of 0.5 to 10 times the average particle size of the true sphere-shaped polyamide particles having a melting point of 140 to 175 ° C. When the average particle diameter of the thermosetting polyimide particles is larger than 0.5 times the average particle diameter of the true sphere shaped polyamide particles having a melting point of 140 to 175 ° C., the true sphere shaped polyamide particles having a melting point of 140 to 175 ° C. The effects of the combined use of the thermosetting polyimide particles can be sufficiently exhibited. Further, when the average particle diameter of the thermosetting polyimide particles is 10 times or less of the average particle diameter of the spherical spherical polyamide particles having a melting point of 140 to 175 ° C., the thickness of the interlayer region is more uniform, that is, the reinforcing fiber of component (A) It is possible to suppress the deterioration of the mechanical properties of the fiber reinforced composite material, or to suppress the cracks generated in the interlayer region of the fiber reinforced composite material by the peeling stress in the out-of-plane direction to the interlayer region. You can fasten it.

((c2)成分の融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子との併用の効果)
一般的に熱硬化性ポリイミド樹脂は比較的靭性に乏しく、単独の使用では繊維強化複合材料により優れた層間破壊靱性を付与することはできない。一方で面外方向への引き剥がし応力により繊維強化複合材料の層間領域に生じた亀裂はより靭性に乏しい部分、例えばマトリックス樹脂と強化繊維束の界面を選択的に進行する性質がある。そのため、従来の高靭性のマトリックス樹脂や微粒子を層間領域に配置した場合、前記層間領域に生じた亀裂は進行に伴い徐々により靭性の乏しいマトリックス樹脂と強化繊維束の界面へ転移してゆき、最終的には層間領域から強化繊維層へ完全に転移してしまっており、安定して優れた層間破壊靱性を付与することはできなかった。しかし靭性に乏しい熱硬化性ポリイミド粒子を繊維強化複合材料の層間領域に配置した場合、前記層間領域に生じた亀裂は安定して層間領域を進行する。融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子を併用することで、層間領域に生じた亀裂を安定して層間領域を進行させ、さらに融点140〜175℃の真球形状のポリアミド粒子添加による層間破壊靱性付与することができるため、繊維強化複合材料の層間領域のモルホロジーや融点140〜175℃の真球形状のポリアミド粒子とマトリックス樹脂組成物との界面性状に関わらず安定して得ることができる。
(Effect of combined use of thermosetting polyimide particles and true spherical polyamide particles having a melting point of 140 to 175 ° C. of the component (c2))
In general, thermosetting polyimide resins are relatively poor in toughness, and can not provide superior interlaminar fracture toughness to fiber-reinforced composite materials when used alone. On the other hand, the crack generated in the interlayer region of the fiber reinforced composite material by the peeling stress in the out-of-plane direction has a property of progressing selectively in a portion having less toughness, for example, the interface between matrix resin and reinforcing fiber bundle. Therefore, when the conventional high toughness matrix resin and fine particles are disposed in the interlayer region, the cracks generated in the interlayer region gradually transfer to the interface between the matrix resin and the reinforcing fiber bundle, which has lower toughness, as it progresses. In fact, it was completely transferred from the interlayer region to the reinforcing fiber layer, and it was not possible to stably impart excellent interlayer fracture toughness. However, when thermosetting polyimide particles having poor toughness are disposed in the interlayer region of the fiber-reinforced composite material, the cracks generated in the interlayer region stably advance in the interlayer region. The crack formed in the interlayer region is stably progressed through the interlayer region by using the polyamide particles in the spherical shape and the thermosetting polyimide particles in combination of the melting point 140 to 175 ° C. in a stable manner, and further the spherical shape of 140 to 175 ° C. Interlaminar fracture toughness can be imparted by the addition of polyamide particles, and therefore, it is stable regardless of the morphology of the interlayer region of the fiber-reinforced composite material and the interface properties of the true spherical polyamide particles having a melting point of 140 to 175 ° C and the matrix resin composition. Can be obtained.

((c2)成分の融点140〜175℃の真球形状のポリアミド粒子の含有量)
融点140〜175℃の真球形状のポリアミド粒子の含有量は、(B)成分100質量部に対し5〜25質量部であり、さらに10〜25質量部が好ましく、12〜25質量部がより好ましく、15〜20質量部がより一層好ましい。(C)成分の含有量が前記範囲の下限値以上であれば、層間領域に偏在する前記真球形状のポリアミド粒子の量が多くなり、上述の理由から繊維強化複合材料に優れた層間破壊靱性を安定して付与できる。前記真球形状のポリアミド粒子の含有量が前記範囲の上限値以下であれば、プリプレグが含む(B)成分と(C)成分からなるマトリックス樹脂中に占める(B)成分が低くなりすぎることを抑制することができる。すなわち(B)成分不足に起因する繊維強化複合材料の機械特性低下を防ぐことができたり、マトリックス樹脂組成物の粘度が高くなりすぎることを抑制し、プリプレグを作製する際に(A)成分にマトリックス樹脂組成物を十分に含浸させることができたりする。
(Content of true-spherical polyamide particles having a melting point of 140 to 175 ° C of the component (c2))
The content of truly spherical polyamide particles having a melting point of 140 to 175 ° C. is 5 to 25 parts by mass, preferably 10 to 25 parts by mass, and more preferably 12 to 25 parts by mass with respect to 100 parts by mass of component (B). Preferably, 15 to 20 parts by mass is even more preferable. If the content of the component (C) is at least the lower limit of the above range, the amount of the spherical spherical polyamide particles localized in the interlayer region increases, and the interlayer fracture toughness excellent for the fiber-reinforced composite material from the above-mentioned reason Can be stably applied. If the content of the truly spherical polyamide particles is not more than the upper limit value of the above range, the (B) component occupied in the matrix resin consisting of the (B) component and the (C) component contained in the prepreg becomes too low. It can be suppressed. That is, when producing a prepreg, it is possible to prevent the mechanical properties of the fiber-reinforced composite material from being deteriorated due to the lack of the component (B) or to prevent the viscosity of the matrix resin composition from becoming too high. The matrix resin composition can be sufficiently impregnated.

((c2)成分の融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子との含有量)
(c2)成分が熱硬化性ポリイミド粒子を更に含有する場合、融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子との含有量の合計は(B)成分100質量部に対し5〜25質量部であり、さらに10〜25質量部が好ましく、12〜25質量部がより好ましく、15〜20質量部がより一層好ましい。融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子の含有量の合計が前記範囲の下限値以上であれば、層間領域に偏在する融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子の量が多くなり、上述の理由から繊維強化複合材料に優れた層間破壊靱性を安定して付与できる。融点140〜175℃の真球形状のポリアミド粒子の含有量が前記範囲の上限値以下であれば、プリプレグが含む(B)成分、融点140〜175℃の真球形状のポリアミド粒子および熱硬化性ポリイミド粒子からなるマトリックス樹脂中に占める(B)成分が低くなりすぎることを抑制することができる。すなわち(B)成分不足に起因する繊維強化複合材料の機械特性低下を防ぐことができたり、マトリックス樹脂組成物の粘度が高くなりすぎることを抑制し、プリプレグを作製する際に(A)成分にマトリックス樹脂組成物を十分に含浸させることができたりする。
(Content of (c2) component spherical polyamide particles having a melting point of 140 to 175 ° C. and thermosetting polyimide particles)
When the component (c2) further contains a thermosetting polyimide particle, the total content of the true-spherical polyamide particles having a melting point of 140 to 175 ° C. and the thermosetting polyimide particle is 100 parts by mass of the component (B). It is 5 to 25 parts by mass, more preferably 10 to 25 parts by mass, more preferably 12 to 25 parts by mass, and still more preferably 15 to 20 parts by mass. If the total content of the spherical spherical polyamide particles having a melting point of 140 to 175 ° C. and the thermosetting polyimide particles is not less than the lower limit value of the above range, a spherical spherical polyamide having a melting point of 140 to 175 ° C. The amount of particles and thermosetting polyimide particles is increased, and for the reasons described above, excellent interlaminar fracture toughness can be stably imparted to the fiber-reinforced composite material. If the content of true sphere shaped polyamide particles having a melting point of 140 to 175 ° C. is below the upper limit value of the above range, the (B) component contained in the prepreg, true sphere shaped polyamide particles having a melting point of 140 to 175 ° C. and thermosetting It can suppress that the (B) component which occupies in matrix resin which consists of a polyimide particle becomes low too much. That is, when producing a prepreg, it is possible to prevent the mechanical properties of the fiber-reinforced composite material from being deteriorated due to the lack of the component (B) or to prevent the viscosity of the matrix resin composition from becoming too high. The matrix resin composition can be sufficiently impregnated.

((c2)成分と融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子の含有量に占める熱硬化性ポリイミド粒子の割合)
融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子の混合物に占める熱硬化性ポリイミド粒子の割合は、融点140〜175℃の真球形状のポリアミド粒子と熱硬化性ポリイミド粒子との含有量の合計に対し、5〜40質量%が好ましい。前記熱硬化性ポリイミド粒子の割合が前記範囲の下限値以上であれば、前記熱硬化性ポリイミド粒子の効果を十分に得ることができ、上述の理由から繊維強化複合材料に優れた層間破壊靱性を安定して付与できる。前記熱硬化性ポリイミド粒子の割合が前記範囲の上限値以下であれば、靭性の乏しい前記熱硬化性ポリイミド粒子が繊維強化複合材料の層間破壊靱性に与える悪影響が大きくなることを抑えることが出来る。
(The proportion of the thermosetting polyimide particles in the content of the (c2) component, the spherical polyamide particles having a melting point of 140 to 175 ° C. and the thermosetting polyimide particles)
The ratio of thermosetting polyimide particles in the mixture of true-spherical shaped polyamide particles and thermosetting polyimide particles having a melting point of 140 to 175 ° C. 5-40 mass% is preferable with respect to the sum total of content of. If the proportion of the thermosetting polyimide particles is at least the lower limit value of the above range, the effect of the thermosetting polyimide particles can be sufficiently obtained, and the interlayer fracture toughness excellent in the fiber reinforced composite material from the above-mentioned reason It can be stably applied. If the ratio of the thermosetting polyimide particles is equal to or less than the upper limit value of the range, it is possible to suppress that the adverse effect of the thermosetting polyimide particles having poor toughness on the interlaminar fracture toughness of the fiber-reinforced composite material becomes large.

より好ましい前記熱硬化性ポリイミド粒子の割合は、構成要素の組み合わせに大きく依存する。例えば、(A)成分と(B)成分の界面がより弱い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しやすくなるため、前記熱硬化性ポリイミド粒子の割合は20〜40質量%とより多くすることが好ましい。一方で(A)成分と(B)成分の界面がより強い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しにくくなるため、前記熱硬化性ポリイミド粒子の割合は5〜25質量%とより少なくすることが好ましい。また(B)成分と融点140〜175℃の真球形状のポリアミド粒子の界面がより弱い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しやすくなるため、前記熱硬化性ポリイミド粒子の割合は20〜40質量%とより多くすることが好ましい。一方で(B)成分と融点140〜175℃の真球形状のポリアミド粒子の界面がより強い場合、層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しにくくなるため、前記熱硬化性ポリイミド粒子の割合は5〜25質量%とより少なくすることが好ましい。弱い(A)成分と(B)成分の界面であり、かつ弱い(B)成分と融点140〜175℃の真球形状のポリアミド粒子の界面である場合、前記熱硬化性ポリイミド粒子の割合は25〜40質量%とさらに多くすることが好ましい。強い(A)成分と(B)成分の界面であり、かつ強い(B)成分と(c2)融点140〜175℃の真球形状のポリアミド粒子の界面である場合、前記熱硬化性ポリイミド粒子の割合は5〜20質量%とさらに少なくすることが好ましい。   The proportion of the thermosetting polyimide particles more preferably depends largely on the combination of components. For example, when the interface between the (A) component and the (B) component is weaker, the crack generated in the interlayer region is more likely to progress to the interface between the (A) component and the (B) component. It is preferable to make more the ratio of 20-40 mass%. On the other hand, when the interface between the (A) component and the (B) component is stronger, the cracks generated in the interlayer region are less likely to progress to the interface between the (A) component and the (B) component. It is preferable to reduce the ratio of 5 to 25% by mass. In addition, when the interface between the component (B) and the spherical spherical polyamide particles having a melting point of 140 to 175 ° C. is weaker, cracks generated in the interlayer region are more likely to progress to the interface between the components (A) and (B). The proportion of the thermosetting polyimide particles is preferably 20 to 40% by mass. On the other hand, when the interface between the component (B) and the truly spherical polyamide particles having a melting point of 140 to 175 ° C. is stronger, the cracks produced in the interlayer region are less likely to progress to the interface between the components (A) and (B). Therefore, the proportion of the thermosetting polyimide particles is preferably reduced to 5 to 25% by mass. In the case of the interface between the weak (A) component and the (B) component and the weak (B) component and the interface of true spherical polyamide particles having a melting point of 140 to 175 ° C., the ratio of the thermosetting polyimide particles is 25 It is preferable to further increase the amount to 40% by mass. When it is the interface between the strong (A) component and the (B) component and the strong (B) component and the (c2) true spherical polyamide particle having a melting point of 140 to 175 ° C., the thermosetting polyimide particles The proportion is preferably further reduced to 5 to 20% by mass.

ここで(A)成分と(B)成分の界面が弱いとは、ASTM D790に準拠して実施の一方向(強化繊維が全て同じ方向に配向する)繊維強化複合材料の90°曲げ試験の強度が125MPa未満であることをいう。(B)成分と融点140〜175℃の真球形状のポリアミド粒子の界面や(B)成分と(c2)成分に含むことができる熱硬化性ポリイミド粒子の界面が弱いとは、ASTM D5528に準拠して実施の繊維強化複合材料のDCB(Double Cantilever Beam)試験の破面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を使用して観察して、融点140〜175℃の真球形状のポリアミド粒子の界面や熱硬化性ポリイミド粒子の界面が露出している状態である。   Here, that the interface between the (A) component and the (B) component is weak means that the strength of the fiber reinforced composite material in one direction (all reinforcing fibers are oriented in the same direction) according to ASTM D 790 in 90 ° bending test. Is less than 125 MPa. The interface between the component (B) and the spherical polyamide particles having a melting point of 140 to 175 ° C. and the interface between the components (B) and the thermosetting polyimide particles that can be included in the component (c2) are weak according to ASTM D5528 Of a sphere-shaped polyamide having a melting point of 140 ° to 175 ° C. by observing a fracture surface of a DCB (Double Cantilever Beam) test of the fiber-reinforced composite material of the present invention using a scanning electron microscope (SEM: Scanning Electron Microscope) The interface of the particles and the interface of the thermosetting polyimide particles are exposed.

(プリプレグの繊維目付)
プリプレグの繊維目付(1mあたりの強化繊維の含有量:FAW)は、プリプレグの用途に応じて適宜設定すればよく、通常、50〜300g/mである。
(Fiber weight of prepreg)
(The content of reinforcing fibers per 1 m 2: FAW) Fiber basis weight of the prepreg may be appropriately set according to the prepreg applications, usually 50 to 300 g / m 2.

(プリプレグの樹脂含有率)
プリプレグにおける樹脂含有率((B)成分および(C)成分の合計の割合)は、プリプレグの総質量に対し、25〜50質量%が好ましく、30〜40質量%がより好ましい。プリプレグにおける樹脂含有率が前記範囲の下限値以上であれば、プリプレグのタックが低くなりすぎることを抑制し、取扱に適したタックとすることができる。さらに(B)成分不足に起因する繊維強化複合材料の機械特性低下を防ぐこともできる。プリプレグにおける樹脂含有率が前記範囲の上限値以下であれば、プリプレグのタックが高くなりすぎることを抑制し、取扱に適したタックとすることができる。さらに(B)成分過剰に起因するVf(繊維強化複合材料中の強化繊維含有の体積率)向上に伴う繊維強化複合材料の機械特性低下を防ぐこともできる。
(Resin content of prepreg)
25-50 mass% is preferable with respect to the total mass of a prepreg, and, as for the resin content rate (The ratio of the sum total of (B) component and (C) component) in a prepreg, 30-40 mass% is more preferable. If the resin content in the prepreg is at least the lower limit value of the above range, it is possible to suppress that the tack of the prepreg becomes too low, and to make the tack suitable for handling. Furthermore, it is also possible to prevent the deterioration of the mechanical properties of the fiber reinforced composite material due to the lack of the component (B). If the resin content in the prepreg is not more than the upper limit value of the above range, it is possible to suppress that the tack of the prepreg becomes too high, and to make the tack suitable for handling. Furthermore, it is also possible to prevent the deterioration of the mechanical properties of the fiber-reinforced composite material accompanying the improvement of Vf (volume ratio of reinforcing fiber contained in the fiber-reinforced composite material) caused by the excess of the component (B).

(プリプレグの厚さ)
プリプレグの厚さは、プリプレグの用途に応じて適宜設定すればよく、通常、0.05〜0.3mmである。
なお、プリプレグの厚さはシックネスゲージで測定できる。
(Thickness of prepreg)
The thickness of the prepreg may be appropriately set according to the use of the prepreg, and is usually 0.05 to 0.3 mm.
The thickness of the prepreg can be measured by a thickness gauge.

(プリプレグの製造方法)
本発明におけるプリプレグは、特許文献2に開示された方法、その応用等によって製造できる。
(Production method of prepreg)
The prepreg in the present invention can be manufactured by the method disclosed in Patent Document 2, its application, and the like.

プリプレグの製造方法としては、層間領域に(C)成分が偏在しやすく、後述する条件(a)〜(c)を満たす繊維強化複合材料を製造しやすい点か
ら、方法(α)、方法(β)、方法(γ)および方法(δ)からなる群から選ばれる1つの方法が好ましく、より均一に層間領域に(C)成分を偏在させることができる点、および製造過程で多くの(C)成分が舞い散り製造環境を悪化させることを防ぐことができる点から、方法(γ)または方法(δ)がより好ましい。
As a method for producing a prepreg, the method (α) and the method (β) from the viewpoint of easily producing a fiber-reinforced composite material in which the component (C) is easily localized in the interlayer region and which satisfies the conditions (a) ), Method (γ) and method (δ) are preferred, and it is possible to more uniformly distribute the component (C) in the interlayer region more uniformly, and many (C) in the manufacturing process The method (γ) or the method (δ) is more preferable in that it can prevent the components from scattering and deteriorating the production environment.

方法(α):
方法(α)は、(B)成分からなる樹脂フィルム(F1)を(A)成分の片面または両面に貼り合わせ、(B)成分を(A)成分に含浸させてベースプリプレグ(P1)を作製し、ベースプリプレグ(P1)の片面または両面に(C)成分を散布する方法である。
樹脂フィルム(F1)は、(B)成分を離型紙等の表面に塗工することによって作製できる。(B)成分を(A)成分に含浸させる方法としては、加熱プレスロールで加熱、加圧する方法等の公知の方法が挙げられる。
Method (α):
In method (α), a resin film (F1) consisting of component (B) is laminated on one side or both sides of component (A), and component (A) is impregnated with component (B) to prepare base prepreg (P1). And (C) component is spread on one side or both sides of the base prepreg (P1).
The resin film (F1) can be produced by coating the component (B) on the surface of a release paper or the like. Examples of the method for impregnating the component (B) with the component (A) include known methods such as heating and pressing with a heating press roll.

方法(β):
方法(β)は、(B)成分からなる樹脂フィルム(F1)を(A)成分の片面または両面に貼り合わせ、(B)成分を(A)成分に含浸させてベースプリプレグ(P1)を作製し、(B)成分の表面に(C)成分が散布された樹脂フィルム(F2)を、ベースプリプレグ(P1)の片面または両面に貼り合わせる方法である。
Method (β):
In method (β), a resin film (F1) consisting of component (B) is laminated on one side or both sides of component (A), and component (A) is impregnated with component (B) to produce base prepreg (P1). The resin film (F2) in which the component (C) is dispersed on the surface of the component (B) is bonded to one side or both sides of the base prepreg (P1).

樹脂フィルム(F1)、ベースプリプレグ(P1)は、方法(α)と同様にして作製できる。樹脂フィルム(F2)は、(B)成分を離型紙等の表面に塗工し、(B)成分の表面に(C)成分を散布することによって作製できる。   The resin film (F1) and the base prepreg (P1) can be produced in the same manner as the method (α). The resin film (F2) can be produced by coating the component (B) on the surface of a release paper or the like and dispersing the component (C) on the surface of the component (B).

樹脂フィルム(F2)をベースプリプレグ(P1)に貼り合わせる方法としては、加熱プレスロールで加熱、加圧する方法等の公知の方法が挙げられる。温度が高すぎると、樹脂フィルム(F2)に含まれる(B)成分の多くがベースプリプレグ(P1)の(A)成分内に含浸し、プリプレグのタック性がほとんどなくなってしまい、繊維強化複合材料を製造する際に問題が生じる可能性がある。圧力が高すぎると、樹脂フィルム(F2)に含まれる(C)成分の多くがベースプリプレグ(P1)の(A)成分内に入り込んでしまい、強化繊維の真直性を損なってしまったり、(A)成分の表面に(C)成分がほとんど無くなってしまったりする。   Examples of the method for bonding the resin film (F2) to the base prepreg (P1) include known methods such as heating and pressing with a heating press roll. When the temperature is too high, most of the component (B) contained in the resin film (F2) is impregnated in the component (A) of the base prepreg (P1), and the tackiness of the prepreg is almost lost, and the fiber reinforced composite material Problems can arise in the manufacture of If the pressure is too high, most of the component (C) contained in the resin film (F2) will intrude into the component (A) of the base prepreg (P1) and the straightness of the reinforcing fiber may be impaired, (A The component (C) is almost lost on the surface of the component).

ベースプリプレグ(P1)に含まれる(B)成分と樹脂フィルム(F2)に含まれる(B)成分とは、同じ樹脂組成であってもよく、異なる樹脂組成であってもよい。
ベースプリプレグ(P1)にさらに樹脂フィルム(F2)を貼り合わせる方法(β)の性質上、ベースプリプレグ(P1)における(B)成分の含有率は、方法(α)に比べ低くしておくことが好ましい。
The component (B) contained in the base prepreg (P1) and the component (B) contained in the resin film (F2) may have the same resin composition or different resin compositions.
The content of the component (B) in the base prepreg (P1) may be lower than that of the method (α) due to the nature of the method (β) of bonding the resin film (F2) to the base prepreg (P1). preferable.

方法(γ):
方法(γ)は、(B)成分からなる樹脂フィルム(F1)を(A)成分の片面または両面に貼り合わせ、(B)成分を(A)成分に含浸させてベースプリプレグ(P1)を作製し、(B)成分、(C)成分を含む樹脂フィルム(F3)を、ベースプリプレグ(P1)の片面、または両面に貼り合わせる方法である。
ベースプリプレグ(P1)は、方法(α)と同様にして作製できる。
Method (γ):
In the method (γ), a resin film (F1) consisting of the component (B) is laminated on one side or both sides of the component (A), and the component (A) is impregnated with the component (B) to prepare a base prepreg (P1). The resin film (F3) containing the components (B) and (C) is bonded to one side or both sides of the base prepreg (P1).
The base prepreg (P1) can be produced in the same manner as the method (α).

樹脂フィルム(F3)は、(B)成分と(C)成分の混合物を、離型紙等の表面に塗工することによって作製できる。   The resin film (F3) can be produced by applying a mixture of the components (B) and (C) on the surface of a release paper or the like.

樹脂フィルム(F3)をベースプリプレグ(P1)に貼り合わせる方法としては、加熱プレスロールで加熱、加圧する方法等の公知の方法が挙げられる。温度が高すぎると、樹脂フィルム(F3)に含まれる(B)成分の多くがベースプリプレグ(P1)の(A)成分内に含浸し、プリプレグのタック性がほとんどなくなってしまい、繊維強化複合材料を製造する際に問題が生じる可能性がある。圧力が高すぎると、樹脂フィルム(F3)に含まれる(C)成分の多くがベースプリプレグ(P1)の(A)成分内に入り込んでしまい、強化繊維の真直性を損なってしまったり、(A)成分の表面に(C)成分がほとんど無くなってしまったりする。   Examples of the method for bonding the resin film (F3) to the base prepreg (P1) include known methods such as heating and pressing with a heating press roll. When the temperature is too high, most of the component (B) contained in the resin film (F3) is impregnated into the component (A) of the base prepreg (P1), and the tackiness of the prepreg is almost lost, and the fiber reinforced composite material Problems can arise in the manufacture of If the pressure is too high, most of the component (C) contained in the resin film (F3) will intrude into the component (A) of the base prepreg (P1) and the straightness of the reinforcing fiber may be impaired, (A The component (C) is almost lost on the surface of the component).

ベースプリプレグ(P1)に含まれる(B)成分と樹脂フィルム(F3)に含まれる(B)成分とは、同じ樹脂組成であってもよく、異なる樹脂組成であってもよい。   The component (B) contained in the base prepreg (P1) and the component (B) contained in the resin film (F3) may have the same resin composition or different resin compositions.

ベースプリプレグ(P1)にさらに樹脂フィルム(F3)を貼り合わせる方法(γ)の性質上、ベースプリプレグ(P1)における(B)成分の含有率は、方法(α)に比べ低くしておくことが好ましい。   The content of the component (B) in the base prepreg (P1) may be lower than that of the method (α) due to the nature of the method (γ) of bonding the resin film (F3) to the base prepreg (P1). preferable.

方法(δ):
方法(δ)は、(B)成分および(C)成分を含む樹脂フィルム(F3)、もしくは(B)成分、(C)成分を含む樹脂フィルム(F3)を、(A)成分の片面または両面に貼り合わせ、(B)成分を(A)成分に含浸させる方法である。
樹脂フィルム(F3)は、方法(γ)と同様にして作製できる。
Method (δ):
In the method (δ), the resin film (F3) containing the (B) component and the (C) component, or the resin film (F3) containing the (B) component and the (C) component, is used as one side or both sides of the (A) component (B) component is impregnated into the (A) component.
The resin film (F3) can be produced in the same manner as the method (γ).

(C)成分は(A)成分上で濾され、プリプレグの表面近傍に(C)成分が偏在する。(A)成分上で(C)成分を濾すため、(C)成分の平均粒子径は他の方法に比べ大きいほうが好ましい。(c1)成分のポリアミド粒子および(c2)融点140〜175℃のポリアミドの真球形状の粒子の平均粒子径は5〜50μmが好ましく、10〜50μmがより好ましく、15〜50μmがさらに好ましい。また、(c1)成分の熱硬化性ポリイミド粒子および(c2)成分に含むことができる熱硬化性ポリイミド粒子の平均粒子径は15〜50μmが好ましく、20〜50μmがより好ましく、25〜50μmがさらに好ましい。   The component (C) is filtered on the component (A), and the component (C) is localized near the surface of the prepreg. In order to filter the component (C) on the component (A), the average particle diameter of the component (C) is preferably larger than in the other methods. The average particle diameter of the polyamide particles of component (c1) and the spherical particles of polyamide having a melting point of 140 to 175 ° C. is preferably 5 to 50 μm, more preferably 10 to 50 μm, and still more preferably 15 to 50 μm. The average particle diameter of the thermosetting polyimide particles which can be contained in the thermosetting polyimide particles of the component (c1) and the component (c2) is preferably 15 to 50 μm, more preferably 20 to 50 μm, and further 25 to 50 μm. preferable.

<繊維強化複合材料>
本発明の第一の態様における繊維強化複合材料は、プリプレグを2つ以上積層し、(B)成分の硬化温度以上で加熱して(B)成分を硬化することによって得られる。
積層したプリプレグを加熱成形する際の温度は、(B)成分を適切に硬化可能な温度であればいずれの温度でもよいが、加熱成形に用いる設備の(B)成分の硬化に要する時間の点から170〜190℃が好ましい。加熱成形する際の温度が170℃以上であれば、(B)成分が十分に硬化し、より高い耐熱性を有する硬化物を得ることができる。加熱成形する際の温度が190℃以下であれば、加熱成形に用いる設備や副資材としてより安価なものを用いることができる。
<Fiber-reinforced composite material>
The fiber-reinforced composite material in the first aspect of the present invention is obtained by laminating two or more prepregs and heating at a curing temperature or more of the component (B) to cure the component (B).
The temperature at which the laminated prepreg is thermoformed may be any temperature that can appropriately cure the component (B), but the time required for curing the component (B) of the equipment used for the thermoforming From 170 to 190 ° C. is preferable. If the temperature at the time of thermoforming is 170 ° C. or higher, the component (B) is sufficiently cured, and a cured product having higher heat resistance can be obtained. If the temperature at the time of heat molding is 190 ° C. or less, it is possible to use less expensive equipment and auxiliary materials used for heat molding.

さらに(B)成分と(C)成分との界面をより強固にし、硬化物の層間領域に生じた亀裂はより(A)成分と(B)成分の界面へ進行しにくくするため、(C)成分が結晶性である場合は(C)成分の融点以上、(C)成分が非晶性の場合は(C)成分のガラス転移温度以上で硬化することが好ましい。   Furthermore, the interface between the (B) component and the (C) component is further strengthened, and the crack generated in the interlayer region of the cured product is less likely to progress to the interface between the (A) component and the (B) component. When the component is crystalline, it is preferable to cure at a temperature higher than the melting point of the component (C), and when the component (C) is non-crystalline, it is cured at a glass transition temperature of the component (C).

加熱成形時間は、(B)成分を十分に硬化でき、かつ後述する加熱成形法に適した時間であればよい。オートクレーブ成形法の場合、加熱成形時間は、1〜4時間が好ましい。加熱成形時間が1時間以上であれば、(B)成分の硬化が十分である。加熱成形が4時間を超えると、製造コストがより高額となる。   The heat molding time may be a time which can sufficiently cure the component (B) and which is suitable for a heat molding method described later. In the case of the autoclave molding method, the heat molding time is preferably 1 to 4 hours. If the heat molding time is one hour or more, curing of the component (B) is sufficient. If the thermoforming is more than 4 hours, the manufacturing cost becomes more expensive.

加熱成形法としては、オートクレーブ成形法、オーブン成形法、プレス成形法等の公知の方法が挙げられる。加熱成形法としては、より優れた機械特性を有する繊維強化複合材料を得ることができる点から、オートクレーブ成形法が好ましい。   Examples of the heat molding method include known methods such as an autoclave molding method, an oven molding method, and a press molding method. As a heat forming method, an autoclave forming method is preferable in that a fiber reinforced composite material having more excellent mechanical properties can be obtained.

本発明の第二の態様における繊維強化複合材料は、(A)成分、(B’)成分および(C)成分を含み、(A)成分が強化繊維基材であり、(B’)成分がエポキシ樹脂組成物の硬化物であり、(C)成分が(c1)成分又は(c2)成分であり、(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含む。
本発明の第二の態様における繊維強化複合材料では、(A)成分は複数枚積層されており、かつ(C)成分が(A)成分の層間に存在している。
(A)成分、(C)成分としては、プリプレグの説明において述べた(A)成分、及び(C)成分と同様のものが挙げられる。
(B’)成分としては、プリプレグの説明において述べた(B)成分を硬化させたものが挙げられる。
(B)成分を硬化させる方法としては、(B)成分を170〜190℃に加熱することが好ましい。加熱時間は1〜4時間が好ましい。
The fiber-reinforced composite material in the second aspect of the present invention comprises (A) component, (B ') component and (C) component, (A) component is a reinforcing fiber base, and (B') component is A cured product of an epoxy resin composition, wherein component (C) is component (c1) or component (c2), component (c1) contains polyamide particles and thermosetting polyimide particles, and component (c2) has a melting point It contains particles of the spherical shape of polyamide at 140 to 175 ° C.
In the fiber-reinforced composite material according to the second aspect of the present invention, a plurality of the component (A) is laminated, and the component (C) is present between the layers of the component (A).
Examples of the component (A) and the component (C) include the same as the components (A) and (C) described in the explanation of the prepreg.
As the component (B ′), one obtained by curing the component (B) described in the explanation of the prepreg can be mentioned.
It is preferable to heat the (B) component to 170-190 degreeC as a method of hardening the (B) component. The heating time is preferably 1 to 4 hours.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

<物性・評価>
(平均粒子径)
樹脂粒子の平均粒子径は、以下のようにして求めた。
樹脂粒子について、レーザー散乱式粒度測定機(日揮装社製、MODEL:7340 マイクロトラックFRA)を用いて粒子径分布測定を行い、累積分布を得た。累積分布にける体積基準での累積頻度が50%となる粒子径(D50)を平均粒子径とした。
<Physical Properties / Evaluation>
(Average particle size)
The average particle size of the resin particles was determined as follows.
The resin particles were subjected to particle size distribution measurement using a laser scattering type particle size measurement device (manufactured by JGC Corp., MODEL: 7340 Microtrac FRA) to obtain a cumulative distribution. The particle size (D50) at which the cumulative frequency on a volume basis in the cumulative distribution is 50% was taken as the average particle size.

(繊維強化複合材料からなる評価用成形板の作製)
図3に示す通り、プリプレグ2を、強化繊維の繊維軸方向が揃うように20枚積層した。図3において、矢印は強化繊維の繊維軸方向を表している。10枚目のプリプレグ2と11枚目のプリプレグ2との間に、強化繊維の繊維軸方向に対して長手方向が直角になるように、厚さ50μmの長尺のフッ素樹脂フィルム3を、フッ素樹脂フィルム3の幅70mm程度がプリプレグ2と重複するように挟んだ。積層されたプリプレグに隙間のないよう真空バッグを被せた。積層されたプリプレグを、オートクレーブを用いて2℃/分、または0.5℃/分の昇温速度で室温から180℃まで加熱し、2時間保持した。積層されたプリプレグを、3℃/minの降温スピードで50℃以下となるまでオートクレーブ内に保持した。オートクレーブ内から評価用成形板1を取り出した。加熱開始から取り出しまでの間、オートクレーブ内の圧力は0.6MPaとした。
(熱変形樹脂粒子の偏在化率)
評価用成形板から20mm角の試験片を切り出した。研磨機(リファインテック社製、REFINE−POLISHER APM−122)を用いて、試験片の断面を研磨した。デジタルマイクロスコープ(KEYENCE社製、VHX−5000)を用いて試験片の断面を500倍に拡大した写真を得た。写真から、強化繊維基材間の層間領域にある熱変形樹脂粒子と、強化繊維基材内にある熱変形樹脂粒子とを切り抜き、切り抜いた写真の質量を測定し下記式(3)から偏在化率を算出した。
偏在化率=層間領域に存在する熱変形樹脂粒子の質量/(層間領域に存在する熱変形樹脂粒子の質量+強化繊維基材内にある熱変形樹脂粒子の質量)×100 ・・・式(3)
(Fabrication of evaluation molded plate made of fiber reinforced composite material)
As shown in FIG. 3, 20 sheets of prepreg 2 were laminated so that the fiber axial direction of reinforcing fibers was aligned. In FIG. 3, the arrows indicate the fiber axis direction of the reinforcing fibers. Between the tenth prepreg 2 and the eleventh prepreg 2, a 50 μm thick fluororesin film 3 is placed between the 10th prepreg 2 and the 11th prepreg 2 so that the longitudinal direction is perpendicular to the fiber axial direction of the reinforcing fiber. The width 70 mm of the resin film 3 was sandwiched so as to overlap the prepreg 2. The laminated prepreg was covered with a vacuum bag so as not to have a gap. The laminated prepreg was heated from room temperature to 180 ° C. at a heating rate of 2 ° C./minute or 0.5 ° C./minute using an autoclave and held for 2 hours. The laminated prepreg was held in the autoclave at a temperature lowering speed of 3 ° C./min until it became 50 ° C. or less. The evaluation molding plate 1 was taken out of the autoclave. The pressure in the autoclave was 0.6 MPa from the start of heating until the removal.
(Distribution ratio of heat-deformed resin particles)
A test piece of 20 mm square was cut out from the molded plate for evaluation. The cross section of the test piece was polished using a polishing machine (REFINE-POLISHER APM-122, manufactured by Refinetech). A digital microscope (manufactured by KEYENCE, VHX-5000) was used to obtain a 500-fold enlarged photograph of the cross section of the test piece. From the photo, the thermally deformed resin particles in the interlayer region between the reinforcing fiber substrates and the thermally deformed resin particles in the reinforcing fiber substrate are cut out, and the mass of the cut out photo is measured, and localized from the following formula (3) The rate was calculated.
Distribution ratio = mass of thermally deformable resin particles present in the interlayer region / (mass of thermally deformed resin particles present in the interlayer region + mass of thermally deformable resin particles in the reinforcing fiber base) × 100 (Formula (S) 3)

(GICの測定)
評価用成形板について、インストロン万能試験機(インストロン社製)を用い、ASTM D5528に準拠してGICを測定した。
(Measurement of GIC)
The GIC of the molded plate for evaluation was measured according to ASTM D5528 using an Instron universal tester (manufactured by Instron).

(GIICの測定)
評価用成形板について、インストロン万能試験機(インストロン社製)を用い、ASTM D7905に準拠してGIICを測定した。
(Measurement of GIIC)
GIIC of the molded plate for evaluation was measured using an Instron universal tester (manufactured by Instron) in accordance with ASTM D7905.

<原料>
((A)成分)
(強化繊維束)
MR70:炭素繊維束(三菱ケミカル社製、PYROFIL(登録商標)MR70 12P、ストランド強度:7000MPa、炭素繊維の繊維径:5μm、炭素繊維の本数:12000本)。
((B)成分)
(エポキシ樹脂)
TSR−400:オキサゾリドン環骨格を有するエポキシ樹脂(DIC社製、EPICLON TSR−400)。
jER807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、jER(登録商標)807)。
jER604:ジアミノジフェニルメタン型半固形エポキシ樹脂(三菱ケミカル社製、jER(登録商標)604)。
(硬化剤)
セイカキュアーS:4,4’−ジアミノジフェニルスルホン(和歌山精化工業社製、セイカキュアーS)。
(任意成分)
E2020P:ポリエーテルスルホン(BASFジャパン社製、ULTRASON(登録商標)E2020 P SR MICRO)。
((C)成分)
((c1)成分のポリアミド粒子)
VESTOSINT2158:ポリアミド12粒子(ダイセル・エボニック社製、VESTOSINT(登録商標)2158 natural、融点:177℃、平均粒子径:21μm)。
((c1)成分の熱硬化性ポリイミド粒子)
p84:熱硬化性ポリイミド粒子(HP Polymer社製、P84(登録商標)Polyimide、平均粒子径:17.7μm)。
PIP−3:熱硬化性ポリイミド粒子(山曹ミクロン社製、ポリイミドパウダーPIP−3、平均粒子径:2.8μm)。
PIP−25:熱硬化性ポリイミド粒子(山曹ミクロン社製、ポリイミドパウダーPIP−25、平均粒子径:12.9μm)。
((c1)成分に含まれない樹脂粒子)
P84NT1:ポリイミド粒子(ダイセル・エボニック社製、ポリイミドP84(登録商標)NT1、平均粒子径:8.9μm)。
P84NT2:ポリイミド粒子(ダイセル・エボニック社製、ポリイミドP84(登録商標)NT2、平均粒子径:15.9μm)
<Raw material>
((A) ingredient)
(Reinforcing fiber bundle)
MR70: Carbon fiber bundle (PYROFIL (registered trademark) MR7012 P, manufactured by Mitsubishi Chemical Corporation, strand strength: 7000 MPa, fiber diameter of carbon fiber: 5 μm, number of carbon fibers: 12000).
((B) ingredient)
(Epoxy resin)
TSR-400: Epoxy resin having an oxazolidone ring skeleton (manufactured by DIC, EPICLON TSR-400).
jER 807: bisphenol F type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER (registered trademark) 807).
jER 604: Diaminodiphenylmethane semisolid epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 604).
(Hardening agent)
Seikacure S: 4,4'-diaminodiphenyl sulfone (Wakayama Seika Kogyo Co., Ltd., Seikacure S).
(Optional ingredient)
E2020P: Polyether sulfone (manufactured by BASF Japan Ltd., ULTRASON (registered trademark) E2020 P SR MICRO).
((C) ingredient)
(Polyamide particles of (c1) component)
VESTOSINT 2158: polyamide 12 particles (manufactured by Daicel Evonik, VESTOSINT (registered trademark) 2158 natural, melting point: 177 ° C., average particle size: 21 μm).
(Thermosetting polyimide particles of (c1) component)
p84: thermosetting polyimide particles (manufactured by HP Polymer, P84 (registered trademark) Polyimide, average particle diameter: 17.7 μm).
PIP-3: thermosetting polyimide particles (manufactured by Sanyo Micron Corporation, polyimide powder PIP-3, average particle size: 2.8 μm).
PIP-25: thermosetting polyimide particles (manufactured by Sanyo Micron Corporation, polyimide powder PIP-25, average particle diameter: 12.9 μm).
(Resin particles not included in component (c1))
P84 NT1: Polyimide particles (manufactured by Daicel Evonik Co., polyimide P84 (registered trademark) NT1, average particle size: 8.9 μm).
P84 NT2: Polyimide particles (manufactured by Daicel Evonik Co., polyimide P84 (registered trademark) NT2, average particle diameter: 15.9 μm)

<実施例1>
((B)成分の調製)
プラネタリミキサーに、TSR−400の35質量部、jER807の49質量部、jER604の16質量部、E2020Pの2.8部質量を加えた。プラネタリミキサーのジャケット温度を140〜160℃に設定し、原料が均一となるまで混合した。内容物の温度が60℃以下となるまで放冷し、プラネタリミキサーにセイカキュアーSの40.6質量部を加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、(B)成分を得た。
Example 1
(Preparation of (B) component)
To a planetary mixer, 35 parts by mass of TSR-400, 49 parts by mass of jER 807, 16 parts by mass of jER 604, and 2.8 parts by mass of E2020P were added. The jacket temperature of the planetary mixer was set to 140-160 ° C. and mixed until the raw materials became uniform. The contents were allowed to cool until the temperature of the contents reached 60 ° C. or less, and 40.6 parts by mass of Seikacure S was added to a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain the component (B).

(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびp84を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とp84の合計の含有量を12.9質量部、そしてVESTOSINT2158とp84の合計の含有量に占めるp84の割合を33.5質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
方法(δ)によってプリプレグを作製した。
ホットメルトコーターを用いて、混合物(BC)を離型紙の表面に均一な厚さで塗工して樹脂フィルム(F3)を作製した。
樹脂フィルム(F3)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を構成要素(A)に含浸させ、(C)成分は(A)成分上で濾し、プリプレグの表面近傍に(C)成分を偏在化させ、プリプレグを得た。プリプレグの組成、作製方法を表1に示す。
(繊維強化複合材料の製造、および評価)
上述した方法にしたがい、評価用成形板を作製した。評価用成形板について評価を行った。結果を表1に示す。
(Preparation of mixture (BC))
12.4 parts by mass of VESTOSINT 2158 and 6.2 parts by mass of p84 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and p84 per 100 parts by mass of the component The proportion of p84 in the total content of 12.9 parts by mass and VESTOSINT 2158 and p84 was 33.5% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
A prepreg was produced by the method (δ).
The mixture (BC) was coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce a resin film (F3).
A resin film (F3) is laminated on both sides of the component (A) in which a plurality of MR70s are aligned to form a sheet, and the component (A) is impregnated with the component (B) using a fusing press, The component (C) was filtered on the component (A), and the component (C) was localized near the surface of the prepreg to obtain a prepreg. Table 1 shows the composition of the prepreg and the preparation method.
(Manufacturing and evaluation of fiber reinforced composite materials)
A molded plate for evaluation was produced according to the method described above. The evaluation was performed on the molded plate for evaluation. The results are shown in Table 1.

<実施例2>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を18.6質量部、およびp84を9.3質量部加え、(B)成分の100質量部に対するVESTOSINT2158とp84の合計の含有量を19.5質量部、そしてVESTOSINT2158とp84の合計の含有量に占めるp84の割合を33.3質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表1に示す。
Example 2
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC))
18.6 parts by mass of VESTOSINT2158 and 9.3 parts by mass of p84 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and p84 per 100 parts by mass of the component (B) The proportion of p84 in the total content of 19.5 parts by mass and VESTOSINT 2158 and p84 was 33.3% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 1.

<実施例3>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を14.3質量部、およびp84を4.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とp84の合計の含有量を12.9質量部、そしてVESTOSINT2158とp84の合計の含有量に占めるp84の割合を22.7質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表1に示す。
Example 3
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC))
14.3 parts by mass of VESTOSINT 2158 and 4.2 parts by mass of p84 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and p84 per 100 parts by mass of the component (B) The proportion of p84 in the total content of 12.9 parts by mass and VESTOSINT 2158 and p84 was 22.7% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 1.

<実施例4>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を16.5質量部、およびp84を2.0質量部加え、(B)成分の100質量部に対するVESTOSINT2158とp84の合計の含有量を12.9質量部、そしてVESTOSINT2158とp84の合計の含有量に占めるp84の割合を10.8質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混
合物(BC)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表1に示す。
Example 4
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC))
16.5 parts by mass of VESTOSINT 2158 and 2.0 parts by mass of p84 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and p84 with respect to 100 parts by mass of the component (B) The proportion of p84 in the total content of 12.9 parts by mass and VESTOSINT 2158 and p84 was 10.8% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 1.

<実施例5>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびPIP−3を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とPIP−3の合計の含有量を12.9質量部、そしてVESTOSINT2158とPIP−3の合計の含有量に占めるPIP−3の割合を33.5質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表1に示す。
Example 5
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC))
12.3 parts by mass of VESTOSINT 2158 and 6.2 parts by mass of PIP-3 are added to 143.4 parts by mass of the component (B) in a planetary mixer, and the total of VESTOSINT 2158 and PIP-3 per 100 parts by mass of the component (B) The content of PIP-3 was 12.9 parts by mass, and the ratio of PIP-3 to the total content of VESTOSINT 2158 and PIP-3 was 33.5% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 1.

<実施例6>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびPIP−25を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とPIP−25の合計の含有量を12.9質量部、そしてVESTOSINT2158とPIP−25の合計の含有量に占めるPIP−25の割合を33.5質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表1に示す。
Example 6
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC))
12.3 parts by mass of VESTOSINT 2158 and 6.2 parts by mass of PIP-25 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total of VESTOSINT 2158 and PIP-25 per 100 parts by mass of the component (B) The ratio of PIP-25 in the total content of 12.9 parts by mass of VESTOSINT 2158 and PIP-25 was 33.5% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 1.

<比較例1>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT215
8を18.6質量部加え、(B)成分の100質量部に対するVESTOSINT2158の含有量を13.0質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表2に示す。
Comparative Example 1
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC '))
VESTOSINT 215 in 143.4 parts by mass of component (B) in a planetary mixer
18.6 mass parts of 8 were added, and content of VESTOSINT2158 with respect to 100 mass parts of (B) component was 13.0 mass parts. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 2.

<比較例2>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびP84NT1を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とP84NT1の合計の含有量を12.9質量部、そしてVESTOSINT2158とP84NT1の合計の含有量に占めるP84NT1の割合を33.5質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表2に示す。
Comparative Example 2
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC '))
12.4 parts by mass of VESTOSINT2158 and 6.2 parts by mass of P84NT1 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and P84NT1 per 100 parts by mass of the component (B) The proportion of P84NT1 in the total content of 12.9 parts by mass and VESTOSINT2158 and P84NT1 was 33.5% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 2.

<比較例3>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびP84NT2を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とP84NT2の合計の含有量を12.9質量部、そしてVESTOSINT2158とP84NT1の合計の含有量に占めるP84NT2の割合を33.5質量%とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表2に示す。
Comparative Example 3
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC '))
12.34 parts by mass of VESTOSINT2158 and 6.2 parts by mass of P84NT2 were added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and P84NT2 per 100 parts by mass of the component (B) was added The proportion of P84NT2 in the total content of 12.9 parts by mass and VESTOSINT2158 and P84NT1 was 33.5% by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 2.

<比較例4>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にP84を18.6質量部加え、(B)成分の100質量部に対するP84の合計の含有量を13.0質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
実施例1と同様に、方法(δ)によってプリプレグを作製した。
(繊維強化複合材料の製造、および評価)
実施例1と同様に、評価用成形板を作製、および評価を行った。結果を表2に示す。
Comparative Example 4
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.
(Preparation of mixture (BC '))
18.6 parts by mass of P84 was added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of P84 with respect to 100 parts by mass of the component (B) was 13.0 parts by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
As in Example 1, a prepreg was produced by the method (δ).
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 1, a molded plate for evaluation was produced and evaluated. The results are shown in Table 2.

実施例1〜6の繊維強化複合材料は、2.0℃/分、0.5℃/分、いずれの成型条件においても1.0kJ/m以上のGIIcを示し、モードII層間破壊靱性に優れていた。一方で熱硬化性ポリイミド粒子を含まない比較例1〜3の繊維強化複合材料は、0.5℃/分の成型条件において1.0kJ/m未満のGIIcを示し、モードII層間破壊靱性が劣った。また熱硬化性ポリイミド粒子のみしか含まない比較例4では、2.0℃/分、0.5℃/分、いずれの成型条件においても1.0kJ/m未満の低い値となった。
実施例1と実施例2とを比較すると、より多くの(C)成分を含む、実施例2の方がより高いGIIcを示した。優れたモードII層間破壊靱性の発現の観点において、(B)成分100質量部に対する(C)成分の含有量の合計は、実施例2の方がより好ましい。
また実施例1と実施例3、4とを比較すると、0.5℃/分の成型条件のGIIcは、実施例4、実施例3、実施例1の順で高くなっており、これらの実施例の(A)成分〜(C)の組み合わせにおいては、(C)成分((c1)ポリアミド粒子と熱硬化性ポリイミド粒子)占める熱硬化性ポリイミド粒子の割合は、実施例4よりも実施例3が好ましく、実施例3よりも実施例1が好ましい。
本発明の繊維強化複合材料の製造方法によって得られた繊維強化複合材料は、製造条件に関わらず安定してモードI層間破壊靱性およびモードII層間破壊靱性に優れた繊維強化複合材料を提供するため、航空機用途をはじめスポーツ・レジャー用途、自動車用途、他の一般産業用途(緊張材)等として有用である。
The fiber-reinforced composite materials of Examples 1 to 6 exhibit GIIc of 2.0 kC / min or more and 1.0 kJ / m 2 or more under any molding conditions at 2.0 ° C./min and 0.5 ° C./min, and show mode II interlaminar fracture toughness It was excellent. On the other hand, the fiber-reinforced composite materials of Comparative Examples 1 to 3 which do not contain a thermosetting polyimide particle show GIIc of less than 1.0 kJ / m 2 under molding conditions of 0.5 ° C./min. inferior. Further, in Comparative Example 4 in which only thermosetting polyimide particles were contained, the temperature was 2.0 ° C./minute, 0.5 ° C./minute, and a low value of less than 1.0 kJ / m 2 under any molding condition.
When Example 1 and Example 2 are compared, Example 2 showed higher GIIc containing more (C) components. From the viewpoint of expression of excellent mode II interlaminar fracture toughness, Example 2 is more preferable as the total of the content of the component (C) with respect to 100 parts by mass of the component (B).
Moreover, when Example 1 and Example 3, 4 are compared, GIIc of the shaping | molding conditions of 0.5 degree-C / min becomes high in order of Example 4, Example 3, and Example 1, and these implementation In the combinations of the components (A) to (C) in the example, the ratio of the thermosetting polyimide particles in the component (C) ((c1) polyamide particles and thermosetting polyimide particles) is higher than that in Example 4 compared with Example 3. Is preferred, and Example 1 is preferred over Example 3.
The fiber-reinforced composite material obtained by the method for producing a fiber-reinforced composite material of the present invention stably provides a fiber-reinforced composite material excellent in mode I interlaminar fracture toughness and mode II interlaminar fracture toughness regardless of manufacturing conditions. It is useful as aerospace applications, sports and leisure applications, automotive applications, and other general industrial applications (tendons).

<原料>
((A)成分)
(強化繊維束)
MR70:炭素繊維束(三菱ケミカル社製、PYROFIL(登録商標)MR70 12P、ストランド強度:7000MPa、炭素繊維の繊維径:5μm、炭素繊維の本数:12000本)。
<Raw material>
((A) ingredient)
(Reinforcing fiber bundle)
MR70: Carbon fiber bundle (PYROFIL (registered trademark) MR7012 P, manufactured by Mitsubishi Chemical Corporation, strand strength: 7000 MPa, fiber diameter of carbon fiber: 5 μm, number of carbon fibers: 12000).

((B)成分)
(エポキシ樹脂)
TSR−400:オキサゾリドン環骨格を有するエポキシ樹脂(DIC社製、EPICLON TSR−400)。
jER807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、jER(登録商標)807)。
((B) ingredient)
(Epoxy resin)
TSR-400: Epoxy resin having an oxazolidone ring skeleton (manufactured by DIC, EPICLON TSR-400).
jER 807: bisphenol F type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER (registered trademark) 807).

jER604:ジアミノジフェニルメタン型半固形エポキシ樹脂(三菱ケミカル社製、jER(登録商標)604)。
(硬化剤)
セイカキュアーS:4,4’−ジアミノジフェニルスルホン(和歌山精化工業社製、セイカキュアーS)。
(任意成分)
E2020P:ポリエーテルスルホン(BASFジャパン社製、ULTRASON(登録商標)E2020 P SR MICRO)。
jER 604: Diaminodiphenylmethane semisolid epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 604).
(Hardening agent)
Seikacure S: 4,4'-diaminodiphenyl sulfone (Wakayama Seika Kogyo Co., Ltd., Seikacure S).
(Optional ingredient)
E2020P: Polyether sulfone (manufactured by BASF Japan Ltd., ULTRASON (registered trademark) E2020 P SR MICRO).

((C)成分)
(c2)成分のポリアミド粒子
MW−330:真球状共重合ポリアミド粒子(住化エンバイロメンタルサイエンス社製、MW−330、融点:166℃、平均粒子径:8μm、短径/長径の平均値:0.96)。
((C) ingredient)
Polyamide particles of component (c2) MW-330: True spherical copolyamide particles (manufactured by Sumika Environmental Science Co., Ltd., MW-330, melting point: 166 ° C., average particle size: 8 μm, average value of minor axis / major axis: 0 .96).

(c2)成分に含むことができる熱硬化性ポリイミド粒子
p84:熱硬化性ポリイミド粒子(HP Polymer社製、P84(登録商標)Polyimide、平均粒子径:18μm)。
(C2) Thermosetting polyimide particles that can be contained in component p84: thermosetting polyimide particles (manufactured by HP Polymer, P84 (registered trademark) Polyimide, average particle diameter: 18 μm).

((C)成分に含まれない樹脂粒子)
VESTOSINT2158:非真球状ポリアミド12粒子(ダイセル・エボニック社製、VESTOSINT(登録商標)2158 natural、融点:177℃、平均粒子径:21μm、短径/長径の平均値:0.65)。
Ny12粒子A:真球状ポリアミド12粒子(融点:177℃、平均粒子径:21μm、短径/長径の平均値:0.94)。
TR55:真球状非晶性ポリアミド粒子(エムスケミー社製グリルアミド(登録商標)TR55、融点:160℃、平均粒子径:10μm、短径/長径の平均値:0.91)。
(Resin particles not included in component (C))
VESTOSINT 2158: non-spherical polyamide 12 particles (manufactured by Daicel Evonik, VESTOSINT (registered trademark) 2158 natural, melting point: 177 ° C., average particle size: 21 μm, average value of minor axis / major axis: 0.65).
Ny 12 particles A: true spherical polyamide 12 particles (melting point: 177 ° C., average particle diameter: 21 μm, average value of minor axis / major axis: 0.94).
TR55: True spherical amorphous polyamide particles (Grillamide (registered trademark) TR55, manufactured by Emskiemy, melting point: 160 ° C., average particle size: 10 μm, average value of minor axis / major axis: 0.91).

<Ny12粒子Aの作製>
特開平10−316750記載の真球状ポリアミドの製造方法とおり、真球状のポリアミド12粒子を作製した。
<Preparation of Ny12 particle A>
True spherical polyamide 12 particles were produced according to the method for producing true spherical polyamide described in JP-A-10-316750.

<実施例7>
((B)成分の調製)
プラネタリミキサーに、TSR−400の35質量部、jER807の49質量部、jER604の16質量部、E2020Pの2.8部質量を加えた。プラネタリミキサーのジャケット温度を140〜160℃に設定し、原料が均一となるまで混合した。内容物の温度が60℃以下となるまで放冷し、プラネタリミキサーにセイカキュアーSの40.6質量部を加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、(B)成分を得た。
Example 7
(Preparation of (B) component)
To a planetary mixer, 35 parts by mass of TSR-400, 49 parts by mass of jER 807, 16 parts by mass of jER 604, and 2.8 parts by mass of E2020P were added. The jacket temperature of the planetary mixer was set to 140-160 ° C. and mixed until the raw materials became uniform. The contents were allowed to cool until the temperature of the contents reached 60 ° C. or less, and 40.6 parts by mass of Seikacure S was added to a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain the component (B).

(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にMW−330を37.2質量部加え、(B)成分の100質量部に対するMW−330の含有量を25.9質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(Preparation of mixture (BC))
37.2 parts by mass of MW-330 was added to 143.4 parts by mass of the component (B) in the planetary mixer, and the content of MW-330 was 100 parts by mass of the component (B) to 25.9 parts by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).

(プリプレグの作製)
方法(γ)によってプリプレグを作製した。
(Preparation of prepreg)
A prepreg was produced by the method (γ).

ホットメルトコーターを用いて、(B)成分および混合物(BC)をそれぞれ離型紙の表面に均一な厚さで塗工して樹脂フィルム(F1)および(F3)を作製した。
樹脂フィルム(F1)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を(A)成分に含浸させベースプリプレグ(P1)を作製し、さらにベースプリプレグ(P1)の両面に樹脂フィルム(F3)を張り合わせることで、プリプレグを得た。得られたプリプレグの(B)成分 100質量部に対する(C)成分の含有量は13.0質量部となる。プリプレグの組成、作製方法を表4に示す。
The component (B) and the mixture (BC) were respectively coated on the surface of a release paper with a uniform thickness using a hot melt coater to produce resin films (F1) and (F3).
A plurality of resin films (F1) are aligned to form a sheet of MR 70 and bonded to both sides of the component (A), and the component (A) is impregnated with the component (B) using a fusing press to make a base prepreg A prepreg was obtained by preparing (P1) and further laminating a resin film (F3) on both sides of the base prepreg (P1). The content of the component (C) with respect to 100 parts by mass of the component (B) of the obtained prepreg is 13.0 parts by mass. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
上述した方法にしたがい、評価用成形板を作製した。評価用成形板について評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
A molded plate for evaluation was produced according to the method described above. The evaluation was performed on the molded plate for evaluation. The results are shown in Table 4.

<実施例8>
((B)成分の調製)
実施例1と同様にして(B)成分を得た。
Example 8
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 1.

(混合物(BC)の調製)
プラネタリミキサー中の(B)成分143.4質量部にMW−330を33.0質量部、およびp84を4.0質量部加え、(B)成分の100質量部に対するMW−330およびp84の合計の含有量を12.9質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(Preparation of mixture (BC))
33.0 parts by mass of MW-330 and 4.0 parts by mass of p84 are added to 143.4 parts by mass of component (B) in a planetary mixer, and the sum of MW-330 and p84 per 100 parts by mass of component (B) Content of 12.9 mass parts. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).

(プリプレグの作製)
実施例7と同様に、方法(γ)によってプリプレグを作製した。得られたプリプレグの(B)成分 100質量部に対する(C)成分の含有量は12.9質量部となる。プリプレグの組成、作製方法を表4に示す。
(Preparation of prepreg)
In the same manner as in Example 7, a prepreg was produced by the method (γ). The content of the component (C) with respect to 100 parts by mass of the component (B) of the obtained prepreg is 12.9 parts by mass. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
実施例7と同様に、評価用成形板を作製、および評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 7, a molded plate for evaluation was produced and evaluated. The results are shown in Table 4.

<比較例5>
((B)成分の調製)
実施例7と同様にして(B)成分を得た。
Comparative Example 5
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 7.

(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を18.6質量部加え、(B)成分の100質量部に対するVESTOSINT2158の含有量を13.0質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(Preparation of mixture (BC '))
18.6 parts by mass of VESTOSINT 2158 was added to 143.4 parts by mass of the component (B) in the planetary mixer, and the content of VESTOSINT 2158 was 13.0 parts by mass with respect to 100 parts by mass of the component (B). The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).

(プリプレグの作製)
方法(δ)によってプリプレグを作製した。
(Preparation of prepreg)
A prepreg was produced by the method (δ).

ホットメルトコーターを用いて、混合物(BC’)を離型紙の表面に均一な厚さで塗工して樹脂フィルム(F3)を作製した。
樹脂フィルム(F3)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を構成要素(A
)に含浸させ、VESTOSINT2158は(A)成分上で濾し、プリプレグの表面近傍にVESTOSINT2158を偏在化させ、プリプレグを得た。得られたプリプ
レグの(B)成分 100質量部に対するVESTOSINT2158の含有量の合
計は13.0質量部となる。プリプレグの組成、作製方法を表4に示す。
The mixture (BC ′) was coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce a resin film (F3).
A plurality of resin films (F3) are aligned to form a sheet of MR 70 and bonded to both sides of component (A), and component (B) is component (A) using a fusing press.
And the VESTOSINT 2158 was filtered on the component (A), and the VESTOSINT 2158 was localized near the surface of the prepreg to obtain a prepreg. The total content of VESTOSINT 2158 with respect to 100 parts by mass of the (B) component of the obtained prepreg is 13.0 parts by mass. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
実施例7と同様に、評価用成形板を作製、および評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 7, a molded plate for evaluation was produced and evaluated. The results are shown in Table 4.

<比較例6>
((B)成分の調製)
実施例7と同様にして(B)成分を得た。
Comparative Example 6
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 7.

(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にVESTOSINT2158を12.3質量部、およびp84を6.2質量部加え、(B)成分の100質量部に対するVESTOSINT2158とp84の合計の含有量を12.9質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(Preparation of mixture (BC '))
12.4 parts by mass of VESTOSINT 2158 and 6.2 parts by mass of p84 are added to 143.4 parts by mass of the component (B) in the planetary mixer, and the total content of VESTOSINT 2158 and p84 per 100 parts by mass of the component (B) It was 12.9 parts by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).

(プリプレグの作製)
方法(δ)によってプリプレグを作製した。
ホットメルトコーターを用いて、混合物(BC’)を離型紙の表面に均一な厚さで塗工して樹脂フィルム(F3)を作製した。
樹脂フィルム(F3)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を構成要素(A)に含浸させ、VESTOSINT2158およびp84は(A)成分上で濾し、プリプレグの表面近傍にVESTOSINT2158およびp84を偏在化させ、プリプレグを得た。得られたプリプレグの(B)成分 100質量部に対す
るVESTOSINT2158とp84の含有量の合計は12.9質量部となる。プリプレグの組成、作製方法を表4に示す。
(Preparation of prepreg)
A prepreg was produced by the method (δ).
The mixture (BC ′) was coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce a resin film (F3).
A resin film (F3) is laminated on both sides of the component (A) in which a plurality of MR70s are aligned to form a sheet, and the component (A) is impregnated with the component (B) using a fusing press, VESTOSINT 2158 and p84 were filtered on the component (A), and VESTOSINT 2158 and p84 were localized near the surface of the prepreg to obtain a prepreg. The total content of VESTOSINT 2158 and p84 with respect to 100 parts by mass of the (B) component of the obtained prepreg is 12.9 parts by mass. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
実施例7と同様に、評価用成形板を作製、および評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 7, a molded plate for evaluation was produced and evaluated. The results are shown in Table 4.

<比較例7>
((B)成分の調製)
実施例7と同様にして(B)成分を得た。
Comparative Example 7
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 7.

(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にNy12粒子Aを18.6質量部加え、(B)成分の100質量部に対するNy12粒子Aの含有量を13.0質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(Preparation of mixture (BC '))
18.6 parts by mass of Ny12 particles A were added to 143.4 parts by mass of the component (B) in a planetary mixer, and the content of the Ny12 particles A was 100 parts by mass to 13.0 parts by mass. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).

(プリプレグの作製)
方法(δ)によってプリプレグを作製した。
ホットメルトコーターを用いて、混合物(BC’)を離型紙の表面に均一な厚さで塗工して樹脂フィルム(F3)を作製した。
(Preparation of prepreg)
A prepreg was produced by the method (δ).
The mixture (BC ′) was coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce a resin film (F3).

樹脂フィルム(F3)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を構成要素(A)に含浸させ、Ny12粒子Aは(A)成分上で濾し、プリプレグの表面近傍にNy
12粒子Aを偏在化させ、プリプレグを得た。得られたプリプレグの(B)成分 1
00質量部に対するNy12粒子Aの含有量は12.9質量部となる。プリプレグの組成、作製方法を表4に示す。
A resin film (F3) is laminated on both sides of the component (A) in which a plurality of MR70s are aligned to form a sheet, and the component (A) is impregnated with the component (B) using a fusing press, Ny12 particles A are filtered on the (A) component, and Ny near the surface of the prepreg
The 12 particles A were localized to obtain a prepreg. Component (B) 1 of the obtained prepreg
The content of Ny12 particles A with respect to 00 parts by mass is 12.9 parts by mass. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
実施例7と同様に、評価用成形板を作製、および評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 7, a molded plate for evaluation was produced and evaluated. The results are shown in Table 4.

<比較例8>
((B)成分の調製)
実施例7と同様にして(B)成分を得た。
Comparative Example 8
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 7.

(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にTR55を18.6質量部加え、(B)成分の100質量部に対するTR55粒子Aの含有量を13.0質量部とした。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(Preparation of mixture (BC '))
To 143.4 parts by mass of the component (B) in a planetary mixer, 18.6 parts by mass of TR 55 was added to adjust the content of TR 55 particles A to 13.0 parts by mass with respect to 100 parts by mass of the component (B). The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).

(プリプレグの作製)
方法(δ)によってプリプレグを作製した。
ホットメルトコーターを用いて、混合物(BC’)を離型紙の表面に均一な厚さで塗工して樹脂フィルム(F3)を作製した。
(Preparation of prepreg)
A prepreg was produced by the method (δ).
The mixture (BC ′) was coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce a resin film (F3).

樹脂フィルム(F3)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて(B)成分を構成要素(A)に含浸させ、TR55は(A)成分上で濾し、プリプレグの表面近傍にTR55を偏在化させ、プリプレグを得た。得られたプリプレグの(B)成分100質量部に対するTR55粒子Aの含有量は13.0質量部となる。プリプレグの組成、作製方法を表4に示す。   A resin film (F3) is laminated on both sides of the component (A) in which a plurality of MR70s are aligned to form a sheet, and the component (A) is impregnated with the component (B) using a fusing press, TR55 was filtered on component (A), and TR55 was localized near the surface of the prepreg to obtain a prepreg. The content of TR55 particles A is 13.0 parts by mass with respect to 100 parts by mass of the (B) component of the obtained prepreg. Table 4 shows the composition of the prepreg and the preparation method.

(繊維強化複合材料の製造、および評価)
実施例7と同様に、評価用成形板を作製、および評価を行った。結果を表4に示す。
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 7, a molded plate for evaluation was produced and evaluated. The results are shown in Table 4.

実施例7、8の繊維強化複合材料は、2.0℃/分、0.5℃/分、いずれの成型条件においても0.7kJ/m以上のGIcを示し、かつ1.5kJ/m以上のGIIcを示し、安定して優れた層間破壊靱性であった。一方で(C)成分を含まない比較例5〜8の繊維強化複合材料は、0.5℃/分の成型条件において大きく劣るGIcやGIIcを示し、不安定な層間破壊靱性であった。The fiber-reinforced composite materials of Examples 7 and 8 exhibit GIc of 2.0 kC / min or more and 0.5 kC / min or more and 0.7 kJ / m 2 or more under any molding conditions, and 1.5 kJ / m 2 It showed two or more GIIc and was stable and excellent in interlaminar fracture toughness. On the other hand, the fiber-reinforced composite materials of Comparative Examples 5 to 8 which do not contain the component (C) exhibited significantly inferior GIc and GIIc under molding conditions of 0.5 ° C./min and were unstable interlayer fracture toughness.

実施例7と実施例8とを比較すると、より(c2)成分に含めることができる熱硬化性ポリイミド粒子((c2)成分の融点140〜175℃の真球形状のポリアミド粒子とともに(C)成分として併用することができる熱硬化性ポリイミド粒子)を含む実施例8の方が成型条件によるよりGIcやGIIcの差がより小さくなり、より安定した層間破壊靱性を示した。   Comparison of Example 7 and Example 8 shows that the thermosetting polyimide particles (the (c2) component together with the true spherical polyamide particles having a melting point of 140 to 175 ° C. of the (c2) component) can be included in the (c2) component. The difference in GIc and GIIc was smaller in Example 8 including the thermosetting polyimide particles (which can be used in combination) than in the molding conditions, and more stable interlaminar fracture toughness was exhibited.

また比較例5と6とを比較すると、プリプレグ表層に存在する樹脂粒子の形状を真球とすることで0.5℃/分の成型条件においても高いGIcを示したが、GIIcは0.5℃/分の成型条件において大きく低下する。プリプレグ表層に存在する樹脂粒子が真球で素材がより低い融点を持つ共重合ポリアミドである実施例1は0.5℃/分の成型条件においても高いGIcやGIIcを示した。   In addition, when Comparative Examples 5 and 6 are compared, when the shape of the resin particles present in the surface layer of the prepreg is a true sphere, high Glc is shown even under molding conditions of 0.5 ° C./min. The temperature drops significantly at molding conditions of ° C./min. Example 1 in which the resin particles present in the surface layer of the prepreg are true spheres and the raw material is a copolyamide having a lower melting point showed high Glc and GIIc even under molding conditions of 0.5 ° C./min.

<物性・評価>
(繊維強化複合材料からなるガラス転移温度評価用成形板の作製)
プリプレグを、強化繊維の繊維軸方向が揃うように12枚積層した。積層されたプリプレグに隙間のないよう真空バッグを被せた。積層されたプリプレグを、オートクレーブを用いて2℃/分の昇温速度で室温から180℃まで加熱し、2時間保持した。積層されたプリプレグを、3℃/minの降温スピードで50℃以下となるまでオートクレーブ内に保持した。オートクレーブ内から評価用成形板を取り出した。加熱開始から取り出しまでの間、オートクレーブ内の圧力は0.6MPaとした。
<Physical Properties / Evaluation>
(Fabrication of molded plate for glass transition temperature evaluation made of fiber reinforced composite material)
Twelve sheets of the prepreg were laminated so that the fiber axial directions of the reinforcing fibers were aligned. The laminated prepreg was covered with a vacuum bag so as not to have a gap. The laminated prepreg was heated from room temperature to 180 ° C. at a heating rate of 2 ° C./min using an autoclave and held for 2 hours. The laminated prepreg was held in the autoclave at a temperature lowering speed of 3 ° C./min until it became 50 ° C. or less. The evaluation molding plate was taken out of the autoclave. The pressure in the autoclave was 0.6 MPa from the start of heating until the removal.

(ガラス転移温度の測定)
ガラス転移温度評価用成形板について、ARES−RDA(TAインスツルメント社製)を用い、ASTM D4065に準拠してガラス転移温度を測定した。貯蔵弾性率G’曲線における、ガラス状態での接線と転移状態の変曲点での接線との交点の温度をガラス転移温度とした、測定用試験体のサイズは強化繊維の繊維軸方向の長さが55mm、強化繊維の繊維軸方向と垂直となる幅が12.7mmとした。昇温速度は5℃/分、周波数は1Hzとした。また測定用試験体を測定前に71℃の温水に2週間浸漬させることで吸湿処理を行った。
(Measurement of glass transition temperature)
About the shaping | molding board for glass transition temperature evaluation, glass transition temperature was measured based on ASTMD4065 using ARES-RDA (made by TA Instruments). The size of the test specimen is the length of the reinforcing fiber in the fiber axial direction, with the temperature at the intersection of the tangent in the glass state and the tangent at the inflection point of the transition in the storage elastic modulus G 'curve as the glass transition temperature. And the width perpendicular to the fiber axis direction of the reinforcing fiber is 12.7 mm. The heating rate was 5 ° C./min, and the frequency was 1 Hz. Moreover, the moisture absorption process was performed by making the test body for measurement immerse in a 71 degreeC warm water for 2 weeks before a measurement.

<原料>
((A)成分)
(強化繊維束)
MR70:炭素繊維束(三菱ケミカル社製、PYROFIL(登録商標)MR70 12P、ストランド強度:7000MPa、炭素繊維の繊維径:5μm、炭素繊維の本数:12000本)。
((B)成分)
(エポキシ樹脂)
TSR−400:オキサゾリドン環骨格を有するエポキシ樹脂(DIC社製、EPICLON(登録商標)TSR−400)。
HP−4032SS:2官能ナフタレン型エポキシ樹脂(DIC社製、EPICLON(登録商標)HP−4032SS)
HP−4700:4官能ナフタレン型エポキシ樹脂(DIC社製、EPICLON(登録商標)HP−4700)
jER807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、jER(登録商標)807)
jER604:ジアミノジフェニルメタン型半固形エポキシ樹脂(三菱ケミカル社製、jER(登録商標)604)
(硬化剤)
セイカキュアーS:4,4’−ジアミノジフェニルスルホン(和歌山精化工業社製、セイカキュアーS)
(任意成分)
E2020P:ポリエーテルスルホン(BASFジャパン社製、ULTRASON(登録商標)E2020 P SR MICRO)
((C)成分)
(c2)成分のポリアミド粒子
MW−330:真球状共重合ポリアミド粒子(住化エンバイロメンタルサイエンス社製、MW−330、融点:166℃、平均粒子径:8μm、短径/長径の平均値:0.96)
(c2)成分に含めることができる熱硬化性ポリイミド粒子
p84:熱硬化性ポリイミド粒子(HP Polymer社製、P84(登録商標)Polyimide、平均粒子径:18μm)
<Raw material>
((A) ingredient)
(Reinforcing fiber bundle)
MR70: Carbon fiber bundle (PYROFIL (registered trademark) MR7012 P, manufactured by Mitsubishi Chemical Corporation, strand strength: 7000 MPa, fiber diameter of carbon fiber: 5 μm, number of carbon fibers: 12000).
((B) ingredient)
(Epoxy resin)
TSR-400: Epoxy resin having an oxazolidone ring skeleton (manufactured by DIC, EPICLON (registered trademark) TSR-400).
HP-4032 SS: bifunctional naphthalene type epoxy resin (manufactured by DIC, EPICLON (registered trademark) HP-4032 SS)
HP-4700: tetrafunctional naphthalene type epoxy resin (manufactured by DIC, EPICLON (registered trademark) HP-4700)
jER 807: Bisphenol F liquid epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 807)
jER 604: Diaminodiphenylmethane semisolid epoxy resin (Mitsubishi Chemical Corporation, jER (registered trademark) 604)
(Hardening agent)
Seikacure S: 4,4'-diaminodiphenyl sulfone (Wakayama Seika Kogyo Co., Ltd., Seikacure S)
(Optional ingredient)
E2020P: Polyether sulfone (manufactured by BASF Japan Ltd., ULTRASON (registered trademark) E2020 P SR MICRO)
((C) ingredient)
Polyamide particles of component (c2) MW-330: True spherical copolyamide particles (manufactured by Sumika Environmental Science Co., Ltd., MW-330, melting point: 166 ° C., average particle size: 8 μm, average value of minor axis / major axis: 0 .96)
(C2) Thermosetting polyimide particles that can be included in the component p84: thermosetting polyimide particles (manufactured by HP Polymer, P84 (registered trademark) Polyimide, average particle diameter: 18 μm)

<実施例9>
((B)成分の調製)
プラネタリミキサーに、TSR−400の35質量部、HP−4032SSの65質量部、E2020Pの2.8部質量を加えた。プラネタリミキサーのジャケット温度を140〜160℃に設定し、原料が均一となるまで混合した。内容物の温度が60℃以下となるまで放冷し、プラネタリミキサーにセイカキュアーSの43質量部を加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分145.8質量部にMW−330を43.3質量部加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
方法(γ)によってプリプレグを作製した。
ホットメルトコーターを用いて、(B)成分および混合物(BC)をそれぞれ離型紙の表面に均一な厚さで塗工して樹脂フィルム(F1)および(F3)を作製した。
樹脂フィルム(F1)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を(A)成分に含浸させベースプリプレグ(P1)を作製し、さらにベースプリプレグ(P1)の両面に樹脂フィルム(F3)を張り合わせることで、プリプレグを得た。得られたプリプレグの(B)成分100質量部に対する(C)成分の含有量の合計は13.0質量部となる。プリプレグの組成、作製方法を表5に示す。
(繊維強化複合材料の製造、および評価)
上述した方法にしたがい、評価用成形板を作製した。評価用成形板について評価を行った。結果を表5に示す。
Example 9
(Preparation of (B) component)
In a planetary mixer, 35 parts by mass of TSR-400, 65 parts by mass of HP-4032 SS, and 2.8 parts by mass of E2020P were added. The jacket temperature of the planetary mixer was set to 140-160 ° C. and mixed until the raw materials became uniform. The contents were allowed to cool until the temperature of the contents reached 60 ° C. or less, and 43 parts by mass of Seikacure S was added to a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain the component (B).
(Preparation of mixture (BC))
43.3 parts by mass of MW-330 was added to 145.8 parts by mass of the component (B) in a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
A prepreg was produced by the method (γ).
The component (B) and the mixture (BC) were respectively coated on the surface of a release paper with a uniform thickness using a hot melt coater to produce resin films (F1) and (F3).
A plurality of resin films (F1) are aligned to form a sheet of MR 70 and bonded to both sides of the component (A), and the component (A) is impregnated with the component (B) using a fusing press to make a base prepreg A prepreg was obtained by preparing (P1) and further laminating a resin film (F3) on both sides of the base prepreg (P1). The total content of the component (C) with respect to 100 parts by mass of the component (B) of the obtained prepreg is 13.0 parts by mass. Table 5 shows the composition of the prepreg and the preparation method.
(Manufacturing and evaluation of fiber reinforced composite materials)
A molded plate for evaluation was produced according to the method described above. The evaluation was performed on the molded plate for evaluation. The results are shown in Table 5.

<実施例10>
((B)成分の調製)
実施例9と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分143.4質量部にMW−330を38.6質量部、およびp84を4.7質量部加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
ホットメルトコーターを用いて、(B)成分および混合物(BC’)をそれぞれ離型紙の表面に均一な厚さで塗工して樹脂フィルム(F1)および(F3)を作製した。
樹脂フィルム(F1)を、MR70の複数本を引き揃えてシート状にした(A)成分の両面に貼り合わせ、ヒュージングプレス機を用いて (B)成分を(A)成分に含浸させベースプリプレグ(P1)を作製し、さらにベースプリプレグ(P1)の両面に樹脂フィルム(F3)を張り合わせることで、プリプレグを得た。得られたプリプレグの(B)成分100質量部に対する構成要素(c2)成分の含有量の合計は13.0質量部となる。プリプレグの組成、作製方法を表5に示す。
(繊維強化複合材料の製造、および評価)
実施例9と同様に、評価用成形板を作製、および評価を行った。結果を表5に示す。
Example 10
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 9.
(Preparation of mixture (BC '))
38.6 parts by mass of MW-330 and 4.7 parts by mass of p84 were added to 143.4 parts by mass of the component (B) in a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
The component (B) and the mixture (BC ') were each coated on the surface of the release paper with a uniform thickness using a hot melt coater to produce resin films (F1) and (F3).
A plurality of resin films (F1) are aligned to form a sheet of MR 70 and bonded to both sides of the component (A), and the component (A) is impregnated with the component (B) using a fusing press to make a base prepreg A prepreg was obtained by preparing (P1) and further laminating a resin film (F3) on both sides of the base prepreg (P1). The total content of the component (c2) component is 13.0 parts by mass with respect to 100 parts by mass of the component (B) of the obtained prepreg. Table 5 shows the composition of the prepreg and the preparation method.
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 9, a molded plate for evaluation was produced and evaluated. The results are shown in Table 5.

<実施例11>
((B)成分の調製)
プラネタリミキサーに、HP−4700の35質量部、HP−4032SSの65質量部、E2020Pの2.8部質量を加えた。プラネタリミキサーのジャケット温度を140〜160℃に設定し、原料が均一となるまで混合した。内容物の温度が60℃以下となるまで放冷し、プラネタリミキサーにセイカキュアーSの51.5質量部を加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、(B)成分を得た。
(混合物(BC)の調製)
プラネタリミキサー中の(B)成分154.3質量部にMW−330を45.9質量部加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC)を得た。
(プリプレグの作製)
方法(γ)によってプリプレグを作製した。
実施例9と同様に、方法(γ)によってプリプレグを作製した。得られたプリプレグの(B)成分 100質量部に対する(C)成分の含有量の合計は13.0質量部となる。プリプレグの組成、作製方法を表5に示す。
(繊維強化複合材料の製造、および評価)
上述した方法にしたがい、評価用成形板を作製した。評価用成形板について評価を行った。結果を表5に示す。
Example 11
(Preparation of (B) component)
In a planetary mixer, 35 parts by mass of HP-4700, 65 parts by mass of HP-4032 SS, and 2.8 parts by mass of E2020P were added. The jacket temperature of the planetary mixer was set to 140-160 ° C. and mixed until the raw materials became uniform. The contents were allowed to cool until the temperature of the contents reached 60 ° C. or less, and 51.5 parts by mass of Seikacure S was added to a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain the component (B).
(Preparation of mixture (BC))
45.9 parts by mass of MW-330 was added to 154.3 parts by mass of the component (B) in a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC).
(Preparation of prepreg)
A prepreg was produced by the method (γ).
In the same manner as in Example 9, a prepreg was produced by the method (γ). The total content of the component (C) with respect to 100 parts by mass of the component (B) of the obtained prepreg is 13.0 parts by mass. Table 5 shows the composition of the prepreg and the preparation method.
(Manufacturing and evaluation of fiber reinforced composite materials)
A molded plate for evaluation was produced according to the method described above. The evaluation was performed on the molded plate for evaluation. The results are shown in Table 5.

<実施例12>
((B)成分の調製)
実施例11と同様にして(B)成分を得た。
(混合物(BC’)の調製)
プラネタリミキサー中の(B)成分154.3質量部にMW−330を35.4質量部、およびp84を10.5質量部加えた。ジャケット温度を55〜70℃に設定し、原料が均一となるまで混合し、混合物(BC’)を得た。
(プリプレグの作製)
実施例10と同様に、方法(γ)によってプリプレグを作製した。得られたプリプレグの(B)成分100質量部に対する構成要素(c2)めるの含有量の合計は13.0質量部となる。プリプレグの組成、作製方法を表5に示す。
(繊維強化複合材料の製造、および評価)
実施例9と同様に、評価用成形板を作製、および評価を行った。結果を表5に示す。
Example 12
(Preparation of (B) component)
The component (B) was obtained in the same manner as in Example 11.
(Preparation of mixture (BC '))
35.4 parts by mass of MW-330 and 10.5 parts by mass of p84 were added to 154.3 parts by mass of the component (B) in a planetary mixer. The jacket temperature was set to 55 to 70 ° C., and mixing was performed until the raw materials became uniform, to obtain a mixture (BC ′).
(Preparation of prepreg)
As in Example 10, a prepreg was produced by the method (γ). The total content of component (c2) per 100 parts by mass of the obtained prepreg is 13.0 parts by mass. Table 5 shows the composition of the prepreg and the preparation method.
(Manufacturing and evaluation of fiber reinforced composite materials)
As in Example 9, a molded plate for evaluation was produced and evaluated. The results are shown in Table 5.

いずれの実施例も吸湿条件のガラス転移温度が145℃以上と十分に高い耐熱性を有していた。また一般的に耐熱性の高い繊維強化複合材料は層間靭性値が大きく低下する傾向にあるが、本発明の実施例のGIcやGIIcはいずれも、昇温速度によらず、良好な層間破壊靱性を示した。   The glass transition temperature of moisture absorption conditions had heat resistance high enough as 145 degreeC or more also in any Example. In general, a fiber-reinforced composite material having high heat resistance tends to significantly decrease the interlayer toughness value, but GIC and GIIc in the examples of the present invention have good interlayer fracture toughness regardless of the temperature rising rate. showed that.

本発明によれば、硬化温度や昇温速度等の製造条件に関わらず、安定してモードI層間破壊靱性およびモードII層間破壊靱性に優れたプリプレグおよび繊維強化複合材料を提供することができる。   According to the present invention, it is possible to provide a prepreg and a fiber-reinforced composite material stably having excellent mode I interlaminar fracture toughness and mode II interlaminar fracture toughness regardless of manufacturing conditions such as a curing temperature and a temperature rising rate.

1 評価用成形板
2 プリプレグ
3 フッ素樹脂フィルム
20 (B)成分
30 (C)成分
1 evaluation molding plate 2 prepreg 3 fluorocarbon resin film 20 (B) component 30 (C) component

Claims (17)

(A)成分、(B)成分および(C)成分を含むプリプレグであって、
前記(A)が強化繊維基材であり、
前記(B)がエポキシ樹脂組成物であり、
前記(C)成分が(c1)成分または(c2)成分であり、
前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、
前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含む、プリプレグ。
A prepreg comprising (A) component, (B) component and (C) component,
The above (A) is a reinforcing fiber base,
Said (B) is an epoxy resin composition,
The component (C) is the component (c1) or the component (c2),
The component (c1) contains polyamide particles and thermosetting polyimide particles,
The prepreg in which said (c2) component contains the particle | grains of a true-spherical shape of polyamide of 140-175 degreeC of melting | fusing point.
前記(C)成分が前記(c1)成分である、請求項1に記載のプリプレグ。   The prepreg according to claim 1, wherein the component (C) is the component (c1). 前記(C)成分が前記(c1)成分であり、
[ポリアミド粒子]:[熱硬化性ポリイミド粒子]で表される質量比が60:40〜95:5である、請求項1または2に記載のプリプレグ。
The component (C) is the component (c1),
The prepreg according to claim 1 or 2, wherein a mass ratio represented by [polyamide particles]: [thermosetting polyimide particles] is 60:40 to 95: 5.
前記(C)成分が前記(c1)成分であり、
前記(c1)成分中のポリアミド粒子の融点が140℃〜175℃である、請求項1から3のいずれか一項に記載のプリプレグ。
The component (C) is the component (c1),
The prepreg according to any one of claims 1 to 3, wherein the melting point of the polyamide particles in the component (c1) is 140 ° C to 175 ° C.
前記(C)成分が前記(c1)成分であり、
前記(c1)中のポリアミド粒子が結晶性共重合ナイロン粒子である、請求項1から4のいずれか一項に記載のプリプレグ。
The component (C) is the component (c1),
The prepreg according to any one of claims 1 to 4, wherein the polyamide particles in (c1) are crystalline copolymerized nylon particles.
前記(C)成分が前記(c1)成分であり、
前記(c1)中のポリアミド粒子が、ナイロン12とナイロン6との共重合体からなる真球形状の粒子である、請求項1から4のいずれか一項に記載のプリプレグ。
The component (C) is the component (c1),
The prepreg according to any one of claims 1 to 4, wherein the polyamide particles in (c1) are particles of a spherical shape consisting of a copolymer of nylon 12 and nylon 6.
前記(C)成分が前記(c2)成分である、請求項1に記載のプリプレグ。
The prepreg according to claim 1, wherein the component (C) is the component (c2).
前記融点140〜175℃のポリアミドの真球形状の粒子が、結晶性共重合ナイロン粒子である、請求項7に記載のプリプレグ。 The prepreg according to claim 7, wherein the spherical particles of polyamide having a melting point of 140 to 175 ° C are crystalline copolymerized nylon particles. 前記融点140〜175℃のポリアミドの真球形状の粒子が、ナイロン12とナイロン6との共重合体からなる真球形状の粒子である、請求項7に記載のプリプレグ。   The prepreg according to claim 7, wherein the spherical particles of polyamide having a melting point of 140 to 175 ° C are spherical particles consisting of a copolymer of nylon 12 and nylon 6. 前記(C)成分が前記(c2)成分であり、
前記(c2)が、更に熱硬化性ポリイミド粒子を含む、請求項1、および7から9のいずれかに記載のプリプレグ。
The component (C) is the component (c2),
The prepreg according to any one of claims 1 and 7 to 9, wherein (c2) further comprises thermosetting polyimide particles.
前記(C)成分が前記(c2)成分であり、
前記(c2)が、更に熱硬化性ポリイミド粒子を含み、
前記熱硬化性ポリイミド粒子が、下記一般式(1)または下記一般式(2)の化学構造を含む、請求項1、7〜10のいずれか一項に記載のプリプレグ。
(式(1)中、Rは2価の連結基を表す。)
The component (C) is the component (c2),
The above (c2) further contains a thermosetting polyimide particle,
The prepreg as described in any one of Claims 1-7 in which the said thermosetting polyimide particle | grain contains the chemical structure of following General formula (1) or following General formula (2).
(In formula (1), R represents a divalent linking group.)
前記(C)成分の70質量%以上が前記(A)成分の表層に存在する、請求項1から11のいずれか一項に記載のプリプレグ。   The prepreg according to any one of claims 1 to 11, wherein 70% by mass or more of the component (C) is present in the surface layer of the component (A). 前記(A)成分が強化繊維を含み、前記強化繊維が炭素繊維である、請求項1から12のいずれか一項に記載のプリプレグ。   The prepreg according to any one of claims 1 to 12, wherein the component (A) contains a reinforcing fiber, and the reinforcing fiber is a carbon fiber. 前記(B)成分が、エポキシ樹脂、及び芳香族ポリアミンを含有し、
前記エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含有し、
前記ナフタレン骨格を有するエポキシ樹脂の含有量が、前記エポキシ樹脂の総質量に対し、60〜100質量%である、請求項1から13のいずれか一項に記載のプリプレグ。
The component (B) contains an epoxy resin and an aromatic polyamine,
The epoxy resin contains an epoxy resin having a naphthalene skeleton,
The prepreg according to any one of claims 1 to 13, wherein the content of the epoxy resin having a naphthalene skeleton is 60 to 100% by mass with respect to the total mass of the epoxy resin.
前記(C)成分の含有量が、前記(B)成分100質量部に対し5〜25質量部である、請求項1〜14のいずれか一項に記載のプリプレグ。   The prepreg as described in any one of Claims 1-14 whose content of the said (C) component is 5-25 mass parts with respect to 100 mass parts of said (B) components. 請求項1から15のいずれか一項に記載のプリプレグを2枚以上積層し、前記(B)成分の硬化温度以上で加熱してなる繊維強化複合材料。   The fiber reinforced composite material formed by laminating | stacking two or more sheets of prepreg as described in any one of Claims 1-15, and heating at more than the curing temperature of the said (B) component. (A)成分、(B’)成分および(C)成分を含む繊維強化複合材料であって、
前記(A)成分が強化繊維基材であり、
前記(B’)成分がエポキシ樹脂組成物の硬化物であり、
前記(C)成分が(c1)成分又は(c2)成分であり、
前記(c1)成分がポリアミド粒子と熱硬化性ポリイミド粒子とを含み、
前記(c2)成分が融点140〜175℃のポリアミドの真球形状の粒子を含み、
前記(A)成分が複数枚積層されており、かつ前記(C)成分が前記(A)成分の層間に存在する、繊維強化複合材料。
A fiber-reinforced composite material comprising component (A), component (B ') and component (C),
The component (A) is a reinforcing fiber base,
The component (B ') is a cured product of an epoxy resin composition,
The component (C) is the component (c1) or the component (c2),
The component (c1) contains polyamide particles and thermosetting polyimide particles,
The component (c2) includes particles of a true sphere shape of polyamide having a melting point of 140 to 175 ° C.,
A fiber reinforced composite material, wherein a plurality of the component (A) is laminated, and the component (C) is present between layers of the component (A).
JP2018518751A 2017-03-24 2018-03-23 Prepreg and fiber reinforced composite materials Active JP6673474B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017058507 2017-03-24
JP2017058508 2017-03-24
JP2017058507 2017-03-24
JP2017058508 2017-03-24
JP2018030289 2018-02-23
JP2018030289 2018-02-23
PCT/JP2018/011715 WO2018174250A1 (en) 2017-03-24 2018-03-23 Prepreg and fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPWO2018174250A1 true JPWO2018174250A1 (en) 2019-03-28
JP6673474B2 JP6673474B2 (en) 2020-03-25

Family

ID=63585481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518751A Active JP6673474B2 (en) 2017-03-24 2018-03-23 Prepreg and fiber reinforced composite materials

Country Status (5)

Country Link
US (1) US10920031B2 (en)
EP (1) EP3604406A4 (en)
JP (1) JP6673474B2 (en)
CA (1) CA3056671C (en)
WO (1) WO2018174250A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3097322A1 (en) 2018-04-23 2019-10-31 Mitsubishi Chemical Corporation Epoxy resin composition for carbon-fiber-reinforced composite materials, prepreg, and carbon-fiber-reinforced composite material
EP4063457A4 (en) 2019-12-23 2023-12-13 Toray Industries, Inc. Thermosetting resin composition, thermosetting resin cured product, prepreg and fiber-reinforced composite material
WO2022039104A1 (en) * 2020-08-20 2022-02-24 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product
CN117069987B (en) * 2023-10-17 2023-12-29 天津爱思达航天科技股份有限公司 Carbon fiber prepreg and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323087A (en) * 1989-01-04 1999-11-26 Cytec Technol Corp Reinforced thermosetting structural material
WO2015033998A1 (en) * 2013-09-06 2015-03-12 ダイセル・エボニック株式会社 Fiber-reinforced resin and method for producing same, and molded article
JP2015098533A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098535A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098536A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for producing fiber-reinforced composite material, prepreg, particle-containing resin composition and fiber-reinforced composite material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694515B2 (en) 1986-12-25 1994-11-24 東レ株式会社 Prepreg
DE3789054T2 (en) 1986-12-25 1994-07-07 Toray Industries Tough composite materials.
JP3601284B2 (en) 1997-03-18 2004-12-15 宇部興産株式会社 Method for producing spherical polyamide
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
GB2460050A (en) * 2008-05-14 2009-11-18 Hexcel Composites Ltd Epoxy composite
JP5532549B2 (en) 2008-05-29 2014-06-25 三菱レイヨン株式会社 Method for forming prepreg and fiber-reinforced composite material
JP5648679B2 (en) 2011-01-28 2015-01-07 東レ株式会社 Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
US9187636B2 (en) * 2012-08-26 2015-11-17 Hexcel Corporation Composite material with polyamide particle mixtures
WO2016048885A1 (en) * 2014-09-22 2016-03-31 Cytec Industries Inc. Composite materials with high z-direction electrical conductivity
JP2016199682A (en) 2015-04-10 2016-12-01 東邦テナックス株式会社 Fiber-reinforced composite material
JP6495792B2 (en) 2015-09-16 2019-04-03 日本電信電話株式会社 Speech recognition apparatus, speech recognition method, and program
JP2017058508A (en) 2015-09-16 2017-03-23 富士ゼロックス株式会社 Developing device, image forming unit, and image forming apparatus
JP6907468B2 (en) 2016-05-18 2021-07-21 三菱ケミカル株式会社 Manufacturing method of fiber reinforced composite material
US10208176B2 (en) * 2016-06-22 2019-02-19 Hexcel Corporation Composite material with thermoplastic toughened novolac-based epoxy resin matrix
JP2018030289A (en) 2016-08-24 2018-03-01 三菱鉛筆株式会社 Friction tool and friction tool set
JP6555360B2 (en) * 2016-10-04 2019-08-07 三菱ケミカル株式会社 Prepreg, prepreg laminate, and fiber reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323087A (en) * 1989-01-04 1999-11-26 Cytec Technol Corp Reinforced thermosetting structural material
WO2015033998A1 (en) * 2013-09-06 2015-03-12 ダイセル・エボニック株式会社 Fiber-reinforced resin and method for producing same, and molded article
JP2015098533A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098535A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098536A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for producing fiber-reinforced composite material, prepreg, particle-containing resin composition and fiber-reinforced composite material

Also Published As

Publication number Publication date
US20200010634A1 (en) 2020-01-09
CA3056671C (en) 2021-06-15
EP3604406A4 (en) 2020-03-18
EP3604406A1 (en) 2020-02-05
CA3056671A1 (en) 2018-09-27
JP6673474B2 (en) 2020-03-25
US10920031B2 (en) 2021-02-16
WO2018174250A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US11292883B2 (en) Prepreg, prepreg laminate, and fiber-reinforced composite material
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP6673474B2 (en) Prepreg and fiber reinforced composite materials
RU2605424C2 (en) Composition based on epoxy resins and film, prepreg and fibre-reinforced plastic obtained using said composition
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2011162619A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
EP3129428B1 (en) Composite materials
JP2019038939A (en) Prepreg and fiber-reinforced composite material
WO2017038880A1 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2009242459A (en) Resin composition, prepreg, and method for manufacturing those
JP2016169381A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2016147925A (en) Prepreg and fiber-reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JP2020152861A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6555006B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2012193322A (en) Prepreg, and carbon fiber-reinforced composite material
JP5495285B2 (en) Prepreg and its manufacturing method
WO2019208040A1 (en) Epoxy resin composition for carbon-fiber-reinforced composite materials, prepreg, and carbon-fiber-reinforced composite material
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2012021112A (en) Prepreg and composite material thereof
JP2019156981A (en) Prepreg, fiber reinforced composite material, and manufacturing method therefor
EP3086940A2 (en) Toughened composite materials and methods of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151